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PREFACE

The aim of The Book of R: A First Course in Programming
and Statistics 1s to provide a relatively gentle yet infor-
mative exposure to the statistical software environ-
ment R, alongside some common statistical analyses,
so that readers may have a solid foundation from

which to eventually become experts in their own right. Learning to use
and program in a computing language is much the same as learning a new
spoken language. At the beginning, it is often difficult and may even be
daunting—but total immersion in and active use of the language is the
best and most effective way to become fluent.

Many beginner-style texts that focus on R can generally be allocated to
one of two categories: those concerned with computational aspects (that is,
syntax and general programming tools) and those with statistical modeling
and analysis in mind, often one particular type. In my experience, these
texts are extremely well written and contain a wealth of useful information
but better suit those individuals wanting to pursue fairly specific goals from
the outset. This text seeks to combine the best of both worlds, by first focus-
ing on only an appreciation and understanding of the language and its style
and subsequently using these skills to fully introduce, conduct, and inter-
pret some common statistical practices. The target audience is, quite simply,
anyone who wants to gain a foothold in R as a first computing language,
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perhaps with the ultimate goal of completing their own statistical analyses.
This includes but is certainly not limited to undergraduates, postgraduates,
academic researchers, and practitioners in the applied sciences with little
or no experience in programming or statistics in general. A basic under-
standing of elementary mathematical behavior (for example, the order of
operations) and associated operators (for example, the summation symbol
Y) is desirable, however.

In view of this, The Book of R can be used purely as a programming text
to learn the language or as an introductory statistical methods book with
accompanying instruction in R. Though it is not intended to represent an
exhaustive dictionary of the language, the aim is to provide readers with a
comfortable learning tool that eliminates the kind of foreboding many have
voiced to me when they have considered learning R from scratch. The fact
remains that there are usually many different ways to go about any given
task—something that holds true for most so-called high-level computer lan-
guages. What this text presents reflects my own way of thinking about learn-
ing and programming in R, which I approach less as a computer scientist
and more as an applied data analyst.

In part, I aim to provide a precursor and supplement to the work in The
Art of R Programming: A Tour of Statistical Software Design, the other R text pub-
lished by No Starch Press (2011), written by Professor Norman Matloff (Uni-
versity of California, Davis). In his detailed and well-received book, Professor
Matloff comes at R from a computer science angle, that is, treating it as a
programming language in its own right. As such, The Art of R Programming
provides some of the best descriptions of R’s computational features I've
yet to come across (for example, running external code such as C from R
programs, handling and manipulating R’s memory allocations, and formal
debugging strategies). Noteworthy, however, is the fact that some previous
experience and knowledge of programming in general goes a long way to
appreciating some of these more advanced features. It is my hope that my
text will not only provide this experience but do so in R itself at a comfort-
able pace, with statistical analyses as the supplementary motivation.

This text, which serves as a “traveler’s guide” as we backpack our way
through R country, was born out of a three-day introductory R workshop I
began teaching at the University of Otago in New Zealand. The emphasis
is on active use of the software, with each chapter containing a number of
code examples and practice exercises to encourage interaction. For those
readers not part of a workshop, just fire up your computer, grab a drink and
a comfy chair, and start with Chapter 1.

Tilman M. Davies
Dunedin, New Zealand
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INTRODUCTION

R plays a key role in a wide variety of

research and data analysis projects because
it makes many modern statistical methods,

both simple and advanced, readily available

and easy to use. It’s true, however, that a beginner to
R is often new to programming in general. As a begin-
ner, you must not only learn to use R for your specific
data analysis goals but also learn to think like a pro-
grammer. This is partly why R has a bit of a reputation
for being “hard”—but rest assured, that really isn’t
the case.

A Brief History of R

R is based heavily on the S language, first developed in the 1960s and 1970s
by researchers at Bell Laboratories in New Jersey (for an overview, see, for
example, Becker et al., 1988). With a view to embracing open source soft-
ware, R’s developers—Ross Thaka and Robert Gentleman at the Univer-
sity of Auckland in New Zealand—released it in the early 1990s under the



GNU public license. (The software was named for Ross and Robert’s shared
first initial.) Since then, the popularity of R has grown in leaps and bounds
because of its unrivaled flexibility for data analysis and powerful graphical
tools, all available for the princely sum of nothing. Perhaps the most appeal-
ing feature of R is that any researcher can contribute code in the form of
packages (or libraries), so the rest of the world has fast access to developments
in statistics and data science (see Section A.2).

Today, the main source code archives are maintained by a dedicated
group known as the R Core Team, and R is a collaborative effort. You can find
the names of the most prominent contributors at http://www.rproject.org/;
these individuals deserve thanks for their ongoing efforts, which keep R alive
and at the forefront of statistical computing!

The team issues updated versions of R relatively frequently. There
have been substantial changes to the software over time, though neighbor-
ing versions are typically similar to one another. In this book, I’'ve employed
versions 3.0.1-3.2.2. You can find out what’s new in the latest version by fol-
lowing the NEWS link on the relevant download page (see Appendix A).

About This Book
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The Book of R is intended as a resource to help you get comfortable with R as
a first programming language and with the statistical thought that underpins
much of its use. The goal is to lay an introductory yet comprehensive foun-
dation for understanding the computational nature of modern data science.
The structure of the book seeks to progress naturally in content, first
focusing on R as a computational and programming tool and then shifting
gears to discuss using R for probability, statistics, and data exploration and
modeling. You’ll build your knowledge up progressively, and at the end
of each chapter, you’ll find a section summarizing the important code as a
quick reference.

Part I: The Language

Part I, which covers the fundamental syntax and object types used across all
aspects of R programming, is essential for beginners. Chapters 2 through 5
introduce the basics of simple arithmetic, assignment, and important object
types such as vectors, matrices, lists, and data frames. In Chapter 6, I'll dis-
cuss the way R represents missing data values and distinguishes among dif-
ferent object types. You're given a primer on plotting in Chapter 7, using
both built-in and contributed functionality (via the ggplot2 package—see
Wickham, 2009); this chapter lays the groundwork for graphical design
discussed later in the book. In Chapter 8, I’ll cover the fundamentals of
reading data in from external files, essential for analysis of your own col-
lected data.


http://www.r-project.org/

Part II: Programming

Part II focuses on getting you familiar with common R programming mech-
anisms. First, I'll discuss functions and how they work in R in Chapter 9.
Then, in Chapter 10, I'll cover loops and conditional statements, which

are used to control the flow, repetition, and execution of your code, before
teaching you how to write your own executable R functions in Chapter 11.
The examples in these two chapters are designed primarily to help you
understand the behavior of these mechanisms rather than to present real-
world analyses. I’ll also cover some additional topics, such as error handling
and measuring function execution time, in Chapter 12.

Part lll: Statistics and Probability

With a firm handle on R as a language, you’ll shift your attention to sta-
tistical thinking in Part III. In Chapter 13, you'll look at important termi-
nology used to describe variables; elementary summary statistics such as
the mean, variance, quantiles, and correlation; and how these statistics are
implemented in R. Turning again to plotting, Chapter 14 covers how to
visually explore your data (with both built-in and ggplot2 functionality) by
using and customizing common statistical plots such as histograms and box-
and-whisker plots. Chapter 15 gives an overview of the concepts of proba-
bility and random variables, and then you’ll look at the R implementation
and statistical interpretation of some common probability distributions in
Chapter 16.

Part IV: Statistical Testing and Modeling

In Part IV, you’re introduced to statistical hypothesis testing and linear
regression models. Chapter 17 introduces sampling distributions and con-
fidence intervals. Chapter 18 details hypothesis testing and p-values and
demonstrates implementation and interpretation using R; the common
ANOVA procedure is then discussed in Chapter 19. In Chapters 20 and 21,
you’ll explore linear regression modeling in detail, including model fitting
and dealing with different types of predictor variables, inferring and predict-
ing, and dealing with variable transformation and interactive effects. Round-
ing off Part IV, Chapter 22 discusses methods for selecting an appropriate
linear model and assessing the validity of that model with various diagnostic
tools.

Linear regression represents just one class of parametric models and is
a natural starting point for learning about statistical regression. Similarly,
the R syntax and output used to fit, summarize, predict from, and diagnose
linear models of this kind are much the same for other regression models—
so once you're comfortable with these chapters, you’ll be ready to tackle the
R implementation of more complicated models covered in more advanced
texts with relative ease.

Introduction XXix
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Parts IIT and IV represent much of what you’d expect to see in first- and
second-year college statistics courses. My aim is to keep mathematical details
to a minimum and focus on implementation and interpretation. I’ll provide
references to other resources where necessary if you're interested in looking
more closely at the underlying theory.

Part V: Advanced Graphics

The final part looks at some more advanced graphing skills. Chapter 23
shows you how to customize traditional R graphics, from handling the
graphics devices themselves to controlling the finer aspects of your plot’s
appearance. In Chapter 24, you’ll study the popular ggplot2 package further,
looking at more advanced features such as adding smooth scatterplot trends
and producing multiple plots via faceting. The final two chapters concen-
trate on higher dimensional plotting in R. Chapter 25 covers color handling
and 3D surface preparation before discussing contour plots, perspective
plots, and pixel images with the aid of multiple examples. Chapter 26 then
focuses on interactive plots and includes some simple instructions for plot-
ting multivariate parametric equations.

Though not strictly necessary, it’s helpful to have some familiarity with
the linear regression methods discussed in Part IV before tackling Part V,
since some of the examples in this last part use fitted linear models.

For Students

Introduction

Like many, I first started becoming proficient in R programming and the
associated implementation of various statistical methods when I began my
graduate studies (at Massey University in Palmerston North, New Zealand).
Building on little more than the odd line or two of code I’d encountered
during my undergraduate years in Australia, being “thrown in the deep
end” had both benefits and drawbacks. While the immersion accelerated
my progress, not knowing what to do when things don’t work properly is of
course frustrating.

The Book of R thus represents the introduction to the language that I
wish I’d had when I began exploring R, combined with the first-year funda-
mentals of statistics as a discipline, implemented in R. With this book, you’ll
be able to build a well-rounded foundation for using R, both as a program-
ming language and as a tool for statistical analyses.

This book was written to be read cover to cover, like a story (albeit with
no plot twists!). Ideas are built up progressively within each part of the book,
so you can choose to begin either right at the start or where you feel your
level of knowledge currently stands. With that in mind, I offer the following
recommendation to students of R:

* Trynot to be afraid of R. It will do exactly what you tell it to—nothing
more, nothing less. When something doesn’t work as expected or an



error occurs, this literal behavior works in your favor. Look carefully at
the commands line by line and try to narrow down the instructions that
caused the fault.

¢ Attempt the practice exercises in this book and check your responses
using the suggested solutions—these are all available as R script files
on the book’s website, https://www.nostarch.com/bookofr/. Download the
.zip file and extract the .R files, one for each part of the book. Open
these in your R session, and you can run the lines like you would any R
code to see the output. The short practice exercises are intended to be
exactly that—practice—as opposed to being hard or insurmountable
challenges. Everything you need to know to complete them will be con-
tained in the preceding sections of that chapter.

* Especially in your early stages of learning, when you’re away from this
book, try to use R for everything, even for very simple tasks or calcula-
tions you might usually do elsewhere. This will force your mind to switch
to “R mode” more often, and it'll get you comfortable with the environ-
ment quickly.

For Instructors

This book was designed from a three-day workshop, Introduction to R, that
I run at my current institution—the Department of Mathematics & Statistics
at the University of Otago in New Zealand—as part of our Statistics Work-
shops for Postgraduates and Staff (SWoPS). Succeeded by the SWoPS class
Statistical Modelling 1 run by two of my colleagues, the aim of Introduction
to Riis, as the title suggests, to address the programming side of things. Your
coverage will naturally depend on your target audience.

Here I provide some recommendations for using the content in 7he Book
of R for workshops of similar length to our SWoPS series. Particular chapters
can be added or dropped depending on your target workshop duration and
students’ existing knowledge.

* Programming Introduction: Parts I and II. Selected material from
Part V, especially Chapter 23 (Advanced Plot Customization), might
also suit the scope of such a course.

e  Statistics Introduction: Parts III and IV. If a brief introduction to R is
warranted beforehand, consider dropping, for example, Chapter 13
from Part IIT and Chapters 17 through 19 in Part IV and building an
initial foundation from content in Part I.

¢ Intermediate Programming and Statistics: Parts II and IV. Consider
dropping Chapters 17 through 19 from Part IV to include Part V if the
audience is interested in developing plotting skills.

* R Graphics: Parts I and V. Depending on audience knowledge, mate-
rial from Part I may be dropped so that Chapter 14 in Part II can be
included (Basic Data Visualization).

Introduction XXXi
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If you’re planning to go even further and structure a longer course
around this book, the practice exercises make particularly good lecture-
specific homework to keep students abreast of the skills in R and statistics as
they’re developed. The main points of the sections making up each chapter
are relatively easy to translate into slides that can be initially structured with
help from the Contents in Detail.









GETTING STARTED

R provides a wonderfully flexible pro-
gramming environment favored by the
many researchers who do some form of
data analysis as part of their work. In this chap-
ter, I'll lay the groundwork for learning and using R,
and I’ll cover the basics of installing R and certain
other things useful to know before you begin.

1.1 Obtaining and Installing R from CRAN

R is available for Windows, OS X, and Linux/Unix platforms. You can
find the main collection of R resources online at the Comprehensive R
Archive Network (CRAN). If you go to the R project website at http://
www.r-project.org/, you can navigate to your local CRAN mirror and down-
load the installer relevant to your operating system. Section A.1 provides
step-by-step instructions for installing the base distribution of R.
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1.2 Opening R for the First Time

NOTE

Chapter 1

R is an interpreted language that’s strictly case- and character-sensitive,
which means that you enter instructions that follow the specific syntactic
rules of the language into a console or command-line interface. The soft-
ware then interprets and executes your code and returns any results.

R is what’s known as a high-level programming language. Level refers to the level of
abstraction away from the fundamental details of computer execution. That is, a low-
level language will require you to do things such as manually manage the machine’s

memory allotments, but with a high-level language like R, you're fortunately spared
these technicalities.

When you open the base R application, you’re presented with the R con-
sole; Figure 1-1 shows a Windows instance, and the left image of Figure 1-2
shows an example in OS X. This represents R’s naturally incorporated graph-
ical user interface (GUI) and is the typical way base R is used.

R Roui (64-bit) [==Er=]
File Edit Packages Windows Help

R R Console =reEr=

R version 3.2.2 (2015-08-14) -- "Fire Safevy”
Copyrignt (C) 2015 The R Foundation for Statistical Computing
Placform: x86_64-we4-mingw32/x64 (64-bit)

R is free software and comes with AESOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many cContributors.
(' for more
‘citation()' on how to cite R or R packages in publications.

IR Untited - REditor EGE=]

Type 'demo()' for some demos, 'help()' for on-lime help, or
‘help.start()® for an HTML browser interface to help.
Type 'q()' to quit R.

>

Figure 1-1: The R GUI application (default configuration) in Windows

The functional, “no-frills” appearance of the interpreter, which in my
experience has struck fear into the heart of many an undergraduate, stays
true to the very nature of the software—a blank statistical canvas that can be
used for any number of tasks. Note that OS X versions use separate windows
for the console and editor, though the default behavior in Windows is to
contain these panes in one overall R window (you can change this in the
GUI preferences if desired; see Section 1.2.1).
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Tove hmnsez) or l\mncE() For dstriotion detarle

Natural language support but English locale
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Figure 1-2: The base R GUI console pane (left] and a newly opened instance of the
builtin editor (right] in OS X

As T've just done, in some parts of the book I'll vefer specifically to the R GUI func-
tionality in Windows and OS X, given these are the two platforms most often used
by beginners. As well as Linux/Unix implementations, it’s possible to run R from a
terminal or shell or;, indeed, in the alternative batch mode. The vast majority of the
code in this book is functional in all settings.

1.2.1 Console and Editor Panes

There are two main window types used for programming R code and viewing
output. The console or command-line interpreter that you’ve just seen is
where all execution takes place and where all textual and numeric output

is provided. You may use the R console directly for calculations or plot-

ting. You would typically use the console directly only for short, one-line
commands.

By default, the R prompt that indicates R is ready and awaiting a com-
mand is a > symbol, after which a text cursor appears. To avoid confusion
with the mathematical symbol for “greater than,” >, some authors (including
me) prefer to modify this. A typical choice is R>, which you can set as follows:

> options(prompt="R> ")
R>

With the cursor placed at the prompt, you can use the keyboard up
arrow (T) and down arrow () to scroll through any previously executed
commands; this is useful when making small tweaks to earlier commands.

For longer chunks of code and function authoring, it’s more convenient
to first write your commands in an editor and execute them in the console
only when you’re done. There is a built-in R code editor for this purpose.
The R scripts you write in the code editor are essentially just plain-text files
with a .R extension.

Getting Started 5
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You can open a new instance of the editor using the R GUI menus (for
example, File — New script in Windows or File — New Document in OS X).
The built-in editor features useful keystroke shortcuts (for example,

CTRL-R in Windows or $-RETURN in OS X), which automatically send lines

to the console. You can send the line upon which the cursor sits, a high-
lighted line, a highlighted part of a line, or a highlighted chunk of code.
It’s common to have multiple editor panes open at once when working
with multiple R script files; keystroke code submissions simply operate with
respect to the currently selected editor.

Aesthetics such as coloring and character spacing of both the console
and editor can be tailored to a certain extent depending on operating sys-
tem; you simply need to access the relevant GUI preferences. Figure 1-3
shows the R GUI preferences in Windows (Edit — GUI preferences...) and
OS X (R — Preferences...). A nice feature of the OS X version of R in partic-
ular is the code-coloring and bracket-matching features of the editor, which
can improve the authoring and readability of large sections of code.

Rgui Configuration Editor [0} Preferences

Single or multple @ Mo o [Z]MDItoolba [C]MDI statusbar ‘A ® o =‘ (
! La) & =
Pager style @ multiple windows Lang: enus 5
P = 1 Show All Console Editer Startup Quartz Syntax
single window
General
Font  Courier New ~ [V TrueType only size 10 - style [normal |-
V=)
R
Console rows columns Tnitialleft [0 | wp 0] Startup
[7] et options{width) on resize? buffer chars 250000 lines [8000
[7] buffer console by default? .
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Figure 1-3: The R GUI preferences in Windows (left) and OS X {right)

1.2.2 Comments

In R, you can annotate your code with comments. Just preface the line with

a hash mark (#), and anything that comes thereafter will be ignored by the
interpreter. For example, executing the following in the console does noth-
ing but return you to the prompt:

R> # This is a comment in R...

Comments can also appear after valid commands.

R> 1+1 # This works out the result of one plus one!
(1] 2

If you’re writing large or complicated chunks of code in the editor, this
kind of annotation can be helpful to others (and indeed yourself!) who want
to understand what your code is doing.



1.2.3  Working Directory

An active R session always has a working directory associated with it. Unless
you explicitly specify a file path when saving or importing data files, R will
use this working directory by default. To check the location of the working
directory, use the getwd function.

R> getwd()
[1] "/Users/tdavies"

File paths are always enclosed in double quotation marks, and R uses
forward slashes, not backslashes, when specifying folder locations.

You can change the default working directory using the function setwd as
follows:

R> setwd("/folderi/folder2/folder3/")

You may provide your file path relative to the current working directory
or fully (in other words, from a system root drive). Either way, it’s important
to remember the case-sensitive nature of R; you must match the naming and
punctuation of any folder names exactly or an error will be thrown.

That said, if you're happy specifying a full and correct file path each
time you read or write a file (there are further details in Chapter 8), then
the files of interest can reside anywhere on your computer.

1.2.4 Installing and Loading R Packages

The base installation of R comes ready with a plethora of builtin commands
for numeric calculations, common statistical analyses, and plotting and visu-
alization. These commands can be used right from the outset and needn’t
be loaded or imported in any way. I’ll refer to these functions as built-in or
ready-to-use in this text.

Slightly more specialized techniques and data sets are contained within
packages (also referred to as libraries) of code. Using contributed packages is
common, and you’ll be doing so throughout this book, so it’s important to
get comfortable with installing and loading the required libraries.

Section A.2 covers the relevant details concerning package download
and installation from CRAN, but I'll provide a brief overview here.

Loading Packages

There are a small number of recommended packages that are included with
the base distribution of R (listed in Section A.2.2). They don’t need to be
installed separately, but to use them, you do need to load them by calling
library. One package you’ll use in this book is named MASS (Venables and
Ripley, 2002). To load it (or any other installed package) and gain access to
its functions and data sets, simply execute library at the prompt as follows:

R> library("MASS")

Getting Started 7
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Note that calling library provides access to a package’s functionality only
for the running R session. When you close R and reopen a fresh instance,
you’ll need to reload any packages you want to use.

Installing Packages

There are thousands of contributed packages not included with the typi-
cal R installation; to make them loadable in R, you must first download and
install them from a repository (usually CRAN). The easiest way to do this is
by using the install.packages function directly at the R prompt (for this you
need an Internet connection).

For example, one such package is ks (Duong, 2007), which you’ll use in
Chapter 26. Executing the following will attempt to connect to your local
CRAN mirror and download and install ks, as well as several packages upon
which it relies (called dependencies):

R> install.packages("ks")

The console will show running output as the procedure completes.

You need to install a package only once; thereafter it will be available for
your R installation. You can then load your installed package (like ks) in any
newly opened instance of R with a call to library, just as you did for MASS.

Section A.2.3 offers more detail on package installation.

Updating Packages

The maintainers of contributed packages periodically provide version
updates to fix bugs and add functionality. Every so often, you might want
to check for updates to your collection of installed packages.

From the R prompt, a simple execution of the following will attempt
to connect to your set package repository (defaulting to CRAN), looking
for versions of all your installed packages that are later than those you cur-
rently have.

R> update.packages()

Section A.3 offers more details about updating packages and Section A.4
discusses alternate CRAN mirrors and repositories.

1.2.5 Help Files and Function Documentation

R comes with a suite of help files that you can use to search for particular
functionality, to seek information on precisely how to use a given function
and specify its arguments (in other words, the values or objects you supply
to the function when you execute it), to clarify the role of arguments in the
operations, to learn about the form of any returned objects, to provide pos-
sible examples of using the function, and to get details on how you may cite
any software or data sets.



To access the help file for a given command or other object, use the
help function at the console prompt or use the convenient shortcut ?. For
example, consider the ready-to-use arithmetic mean function, mean.

R> ?mean

This brings up the file in the top image of Figure 1-4.

L] L] R Help
Print Q
‘mean {base} R Documentation
Arithmetic Mean
Description
Generic function for the (trimmed) arithmetic mean.
Usage
mean(x, -..)

## Default S3 method:
mean(x, trim = 0, na.rm = FALSE, ...)

Arguments

An R object. Currently there are methods for numeric/logical vectors and date, date-time and time interval objects. Complex vectors are
allowed for txim = 0, only.

trim
the fraction (0 to 0.5) of observations to be trimmed from each end of x before the mean is computed. Values of trim outside that range are
taken as the nearest endpoint.

alogical value indicating whether xa values should be stripped before the computation proceeds.
further arguments passed to or from other methods.

Value

If trim is zero (the default), the arithmetic mean of the values in x is computed, as a numeric or complex vector of length one. If x is not logical
(coerced to numeric), numeric (including integer) or complex, Na_real_ s returned, with a warning.

If txin s non-zero, a symmetrically trimmed mean is computed with a fraction of txim observations deleted from each end before the mean is
computed.

References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth & Brooks/Cole.
See Also

weighted.mean, mean.POSIXct, colkeans for row and column means.

Examples

x <= ¢(0:10, 50)
xm <- mean (x)
c(xm, mean(x, trim = 0.10))

[Package base version 3.2.2 Index]

e0ce Help topics matching ‘mean’
Topic Package Description

effectiveSize coda Effective sample size for estimating the mean

geom_smooth agplot2 Add a smoothed conditional mean.

hmisc ggplot2 Wrap up a selection of summary functions from Hmisc to make it easy to use with 'stat
mean_se agplot2 Calculate mean and standard errors on either side

cset sets Customizable sets

gset sets Generalized sets

as.character.interval sets Intervals

row_sums slam Form Row and Column Sums and Means

nmise sm mean integrated squared error for density estimation with normal data
addplot sm Internal sm functions

DateTimeClasses base Date-Time Classes

Date base Date Class

colSums base Form Row and Column Sums and Means

difftime base Time Intervals
e - e
sunspot boot Annual Mean Sunspot Numbers

meanabsdev cluster Internal cluster functions

tmd lattice: Tukey Mean-Difference Plot

Matrix-class Matrix Virtual Class *Matrix" Class of Matrices

colSums Matrix Form Row and Column Sums and Means

dgeMatrix-class Matrix Class "dgeMatrix" of Dense Numeric (S4 Class) Matrices
sparseMatrix-class Matrix Virtual Class *sparseMatrix” - Mother of Sparse Matrices
sparseVector-class Matrix Sparse Vector Classes

meanvar rpart Mean-Variance Plot for an Rpart Object

kmeans stats K-Means Clustering

oneway.test stats Test for Equal Means in a One-Way Layout

weighted. mean stats Weighted Arithmetic Mean

Figure 1-4: The R help file for the function mean (top) and the results
of a help search for the string "mean" (bottom) in OS X
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If you’re unsure of the precise name of the desired function, you can
search the documentation across all installed packages using a character
string (a statement in double quotes) passed to help.search, or you can use
?? as a shortcut:

R> ??"mean”

This search brings up a list of functions, with their host packages and
descriptions, whose help files contain the string of interest, as shown in
the bottom image of Figure 1-4 (the highlighted entry is that of the arith-
metic mean).

All help files follow the general format shown in the top image of Fig-
ure 1-4; the length and level of detail in the file typically reflect the complex-
ity of the operations carried out by the function. Most help files include the
first three items listed here; the others are common but optional:

®  The Description section provides a short statement about the operations
carried out.

® The Usage section specifies the form of the function in terms of how it
should be passed to the R console, including the natural order of the
arguments and any default values (these are the arguments that are
shown being set using =).

* In the Arguments section, more detail is given about what each argument
does as well as the possible values that they’re allowed to take on.

® The nature of the object that’s returned by the function (if anything) is
specified under Value.

®  The References section provides relevant citations for the command or
the methodology behind the function.

* The help files for related functions are linked under See Also.

*  Examples provides executable code that you can copy and paste into the
console, demonstrating the function in action.

There are several more possible fields in a help file—functions with
longer explanations often contain a Details section after the Arguments sec-
tion. Common traps or mistakes made when calling the function are usually
placed in a Warnings section, and additional information can be placed in
Notes.

Although they might seem quite technical when you’re first starting out,
I encourage you to keep looking at help files—even if you already know
how a function works, getting comfortable with the layout and interpreta-
tion of function documentation is an important part of becoming a skilled
R user.



1.2.6  Third-Party Editors

The popularity of R has led to the development of several third-party code
editors, or compatible plug-ins for existing code-editing software, which can
enhance the experience of coding in R.

One noteworthy contribution is RStudio (RStudio Team, 2015). This is
an integrated development environment (IDE) available free for Windows,
OS X, and Linux/Unix platforms at http://www.rstudio.com/ .

RStudio includes a direct-submission code editor; separate point-and-
click panes for things such as file, object, and project management; and the
creation of markup documents incorporating R code. Appendix B discusses
RStudio and its capabilities in more detail.

Use of any third-party editor, including RStudio, is by and large a per-
sonal choice. In this book, I simply assume use of the typical base R GUI
application.

1.3 Saving Work and Exiting R

So, you’ve spent a few hours coding in R, and it’s time to go home? When
saving work in R, you need to pay attention to two things: any R objects that
have been created (and stored) in the active session and any R script files
written in an editor.

1.3.1 Workspaces

You can use the GUI menu items (for example, under File in Windows

and under Workspace in OS X) to save and load workspace image files. An

R workspace image contains all the information held in the R session at the
time of exit and is saved as a .RData file. This will include all objects you've
created and stored (in other words, assigned) within the session (you’ll see
how to do this in Chapter 2), including those that may have been loaded
from a previous workspace file.

Essentially, loading a stored .RData file allows you to “pick up from
where you left off.” At any point in an R session, you can execute 1s() at
the prompt, which lists all objects, variables, and user-defined functions cur-
rently present in the active workspace.

Alternatively, you can use the R commands save.image and load at the
console for handling workspace .RData files—both of these functions con-
tain a file argument to which you pass the folder location and name of the
target .RData file (see the corresponding help files ?save.image and ?1load for
further information on the use of these).

Note that saving a workspace image in this way doesn’t retain the func-
tionality of any contributed packages that were loaded in the previously
active R session. As mentioned in Section 1.2.4, you’ll need to use library
to load any packages required for your work for each new instance of R.

Getting Started 11
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NOTE

The quickest way to exit the software is to enter q() at the prompt:

R> q()

Simply exiting the console will bring up a dialog asking if you’d like to
save the workspace image. In this case, choosing to save doesn’t open a file
browser to name your file but creates (or overwrites) a “no-name” file as one
with a .RData extension in your working directory (refer to Section 1.2.3).

If an unnamed .RDala file exists in the default working directory when a
new instance of R is opened, the program will automatically load that default
workspace—if that has happened, you’ll be notified in the console’s wel-
coming text.

Alongside the .RData file, R will automatically save a file containing a line-by-line
history of all the commands executed in the console for the associated workspace in
the same divectory. It’s this history file that allows you to scroll through the previously
executed commands using the keyboard directional arrows, as noted earlier.

1.3.2  Scripts

For tasks requiring anything more than a handful of commands, you’ll usu-
ally want to work in the builtin code editor. Saving your R scripts is there-
fore at least as important as saving a workspace, if not more so.

You save editor scripts as plain-text files with a .R extension (noted
in Section 1.2.1); this allows your operating system to associate these files
with the R software by default. To save a script from the built-in editor,
ensure the editor is selected and navigate to File — Save (or press CTRL-S in
Windows or #-S in OS X). To open a previously saved script, select File —
Open script... (CTRL-O) in Windows or File — Open Document... (38-O)
in OS X.

Often, you won’t really need to save a workspace .RData file if your
script files are saved. Once any required commands in a saved script are
reexecuted in a new R console, the objects created previously (in other
words, those contained within a saved .RData file) are simply created once
more. This can be useful if you’re working on multiple problems at one
time because it can be easy to mistakenly overwrite an object when relying
solely on the stand-alone default workspace. Keeping your collection of R
scripts separate is therefore a simple way to separate several projects without
needing to worry about overwriting anything important that may have been
stored previously.

R also provides a number of ways to write individual objects, such as data
sets and image files of plots, to disk, which you’ll look at in Chapter 8.

1.4 Conventions

Chapter 1

There are a few conventions that I'll follow in the book in terms of the pre-
sentation of code and math.



1.4.1 Coding

As mentioned, when you code with R, you execute the code in the console,
possibly after writing the script in the editor first. The following points are
important to note:

R code that’s entered directly into the console for execution is shown
preceded by the R> prompt and followed by any output displayed in the
console. For example, this simple division of 14 by 6 from Section 2.1.1
looks like this:

R> 14/6
[1] 2.333333

If you want to copy and paste console-executed code directly from
the text of the book, you’ll need to omit the R> prompt.

For code that should be written in the editor before it’s executed in the
console, I'll indicate as such in the text, and the code will be presented
without the prompt. The following example comes from Section 10.2.1:

for(myitem in 5:7){
cat("--BRACED AREA BEGINS--\n")
cat("the current item is",myitem,"\n")
cat("--BRACED AREA ENDS--\n\n")

My preferred coding style for actually arranging and indenting
chunks like this will become clearer as you progress through Part II.

There will occasionally be long lines of code (either executed directly
in the console or written in the editor), which, for the sake of print,

will be split and indented at an appropriate place to fit on the page. For
example, take this line from Section 6.2.2:

R> ordfac.vec <- factor(x=c("Small","Large","Large","Regular”,"Small"),

levels=c("Small","Regular","Large"),
ordered=TRUE)

Although this can be written out as a single line when using R, you
can also break the line at a comma (in this case, the comma splits the
arguments to the factor function). The broken line will be indented
to the level of the opening parenthesis of the relevant command. Both
forms—single line or split—will work as is when executed in R.

Lastly, in a couple of places when the console output is lengthy and not
essential to your understanding of the immediate content, it’ll be sup-
pressed for the sake of print. I'll say as much in the text, and you’ll see
the designation --snip-- in the affected chunk of code.
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1.4.2 Math and Equation References

Mathematics and equations that appear in this book (mainly in Parts III and
IV) will be kept to a minimum, but in certain sections it’s sometimes neces-
sary to go into a little mathematical detail.

Important equations will be presented on their own lines as follows:

y =4x (1.1)

Equations will be numbered in parentheses, and references to equations
in the text will use these parenthesized numbers and may or may not be pre-
ceded by Equation. For example, you'll see equations referred to in both of
the following ways:
* Asper Equation (1.1), y = 8 when x = 2.
¢ Inversion of (1.1) yields x = y/4.

When numeric results are rounded to a certain level, they’ll be noted as

such according to the number of decimal places, abbreviated to d.p. Here are
some examples:

® The famous geometric value pi is given as 7 = 3.1416 (rounded to
4d.p.).

e Setting x = 1.467 in (1.1) results in y = 5.87 (2 d.p.).

1.4.3 Exercises

Exercise questions in the chapters appear in a rounded box:

a. Say the word cat aloud.

b. Using nothing but your brain, find the solution to 1 + 1.

These exercises are optional. If you choose to tackle them, they are
intended to be completed as and when they appear in the text to help you
practice and understand the specific content and code in the sections that
immediately precede them.

All the data sets you’ll use in this book for coding and plotting examples
are available either as built-in R objects or as part of one of the contributed
packages you’ll install. These packages will be noted in the relevant text (for
a short list of them, see Section A.2.3).

For your convenience, all code examples in this book, as well as com-
plete suggested solutions to all practice exercises, are freely available as
runnable .R script files on the book’s web page at https:// www.nostarch.com/
bookofr/ .


https://www.nostarch.com/bookofr/
https://www.nostarch.com/bookofr/

You should think of these solutions (and any accompanying commen-

tary) as “suggested” because there are often multiple ways to perform a cer-

tain task in R, which may not necessarily be any better or worse than those

supplied.

Important Code in This Chapter

Function/operator  Brief description First occurrence
options Set various R options Section 1.2.1, p. 5
# A comment (ignored by interpreter)  Section 1.2.2, p. 6
getwd Print current working directory Section 1.2.3, p. 7
setwd Set current working directory Section 1.2.3, p. 7
library Load an installed package Section 1.2.4, p. 7
install.packages Download and install package Section 1.2.4, p. 8
update.packages Update installed packages Section 1.2.4, p. 8
help or ? Function/obiject help file Section 1.2.5, p. 9
help.search or ?? Search help files Section 1.2.5, p. 10
q Quit R Section 1.3.1, p. 12

Getting Started
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NUMERICS, ARITHMETIC,
ASSIGNMENT, AND VECTORS

In its simplest role, R can function as a
mere desktop calculator. In this chapter,
I'll discuss how to use the software for arith-

metic. I'll also show how to store results so you
can use them later in other calculations. Then, you’ll
learn about vectors, which let you handle multiple

values at once. Vectors are an essential tool in R, and much of R’s function-
ality was designed with vector operations in mind. You’ll examine some
common and useful ways to manipulate vectors and take advantage of
vector-oriented behavior.

2
7\

2.1 R for Basic Math

All common arithmetic operations and mathematical functionality are ready
to use at the console prompt. You can perform addition, subtraction, mul-
tiplication, and division with the symbols +, -, *, and /, respectively. You can
create exponents (also referred to as powers or indices) using *, and you con-
trol the order of the calculations in a single command using parentheses, ().
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2.1.1 Arithmetic

In R, standard mathematical rules apply throughout and follow the usual
left-to-right order of operations: parentheses, exponents, multiplication,
division, addition, subtraction (PEMDAS). Here’s an example in the
console:

R> 243

[1] 5

R> 14/6

[1] 2.333333
R> 14/6+5
[1] 7.333333
R> 14/(6+5)
[1] 1.272727
R> 372

[1] 9

R> 273

[1] 8

You can find the square root of any non-negative number with the sqrt
function. You simply provide the desired number to x as shown here:

R> sqrt(x=9)

[1] 3

R> sqrt(x=5.311)
[1] 2.304561

When using R, you’ll often find that you need to translate a complicated
arithmetic formula into code for evaluation (for example, when replicating
a calculation from a textbook or research paper). The next examples pro-
vide a mathematically expressed calculation, followed by its execution in R:

3 X 60 R> 1072+3%60/8-3
)
107+ 8 -3 [1] 119.5
53 % (6 —2) R> 5°3%(6-2)/(61-3+4)
61 -3 +4 [1] 8.064516

R> 27 (2+1)-4+647((-2)"(2.25-1/4))

9 o5_1
22.29—2

92+l _ 44 64 [1] 16777220
1
0.44%x(1-0.44)\2 R> (0.44%(1-0.44)/34)"(1/2)
34 [1] 0.08512966




Note that some R expressions require extra parentheses that aren’t
present in the mathematical expressions. Missing or misplaced parenthe-
ses are common causes of arithmetic errors in R, especially when dealing
with exponents. If the exponent is itself an arithmetic calculation, it must
always appear in parentheses. For example, in the third expression, you
need parentheses around 2.25-1/4. You also need to use parentheses if the
number being raised to some power is a calculation, such as the expression
221 in the third example. Note that R considers a negative number a cal-
culation because it interprets, for example, -2 as -1x2. This is why you also
need the parentheses around -2 in that same expression. It’s important to
highlight these issues early because they can easily be overlooked in large
chunks of code.

2.1.2 logarithms and Exponentials

You'll often see or read about researchers performing a log transformation

on certain data. This refers to rescaling numbers according to the logarithm.
When supplied a given number x and a value referred to as a base, the log-
arithm calculates the power to which you must raise the base to get to x.

For example, the logarithm of x = 243 to base 3 (written mathematically as
logs 243) is 5, because 35 = 9243. In R, the log transformation is achieved
with the log function. You supply log with the number to transform, assigned
to the value x, and the base, assigned to base, as follows:

R> log(x=243,base=3)
[1] 5

Here are some things to consider:

* Both x and the base must be positive.
* The log of any number x when the base is equal to x is 1.

® The log of x = 1 is always 0, regardless of the base.

There’s a particular kind of log transformation often used in mathe-
matics called the natural log, which fixes the base at a special mathematical
number—ZFEuler’s number. This is conventionally written as e and is approxi-
mately equal to 2.718.

Euler’s number gives rise to the exponential function, defined as e raised
to the power of x, where x can be any number (negative, zero, or positive).
The exponential function, f(x) = e¥, is often written as exp(x) and repre-
sents the inverse of the natural log such that exp(log, x) = log, exp(x) = x.
The R command for the exponential function is exp:

R> exp(x=3)
[1] 20.08554
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The default behavior of log is to assume the natural log:

R> log(x=20.08554)
[1] 3

You must provide the value of base yourself if you want to use a value
other than e. The logarithm and exponential functions are mentioned here
because they become important later on in the book—many statistical meth-
ods use them because of their various helpful mathematical properties.

2.1.3 E-Notation

When R prints large or small numbers beyond a certain threshold of sig-
nificant figures, set at 7 by default, the numbers are displayed using the
classic scientific e-notation. The e-notation is typical to most programming
languages—and even many desktop calculators—to allow easier interpreta-
tion of extreme values. In e-notation, any number x can be expressed as xey,
which represents exactly x X 107. Consider the number 2,342,151,012,900.
It could, for example, be represented as follows:

e 2.3421510129¢12, which is equivalent to writing 2.3421510129 x 10'2
e 234.21510129¢10, which is equivalent to writing 234.21510129 x 101°

You could use any value for the power of y, but standard e-notation
uses the power that places a decimal just after the first significant digit. Put
simply, for a positive power +y, the e-notation can be interpreted as “move
the decimal point y positions to the right.” For a negative power —y, the inter-
pretation is “move the decimal point y positions to the left.” This is exactly
how R presents e-notation:

R> 2342151012900
[1] 2.342151e+12
R> 0.0000002533
[1] 2.533e-07

In the first example, R shows only the first seven significant digits and
hides the rest. Note that no information is lost in any calculations even if
R hides digits; the e-notation is purely for ease of readability by the user, and
the extra digits are still stored by R, even though they aren’t shown.

Finally, note that R must impose constraints on how extreme a number
can be before it is treated as either infinity (for large numbers) or zero (for
small numbers). These constraints depend on your individual system, and
I’ll discuss the technical details a bit more in Section 6.1.1. However, any
modern desktop system can be trusted to be precise enough by default for
most computational and statistical endeavors in R.



a. Using R, verify that
6a + 42

m = 29.50556
when a = 2.3.
b. Which of the following squares negative 4 and adds 2 to the
result?
1. (-4)"2+2
i, -42+42
iii. (-4)~(2+2)
iv. -4"(2+2)

c. Using R, how would you calculate the square root of half of the
average of the numbers 25.2, 15, 16.44, 15.3, and 18.6?

d. Find log, 0.3.
e. Compute the exponential transform of your answer to (d).

f. Identify R’s representation of —0.00000000423546322 when
printing this number to the console.

2.2 Assigning Objects

So far, R has simply displayed the results of the example calculations by
printing them to the console. If you want to save the results and perform fur-
ther operations, you need to be able to assign the results of a given computa-
tion to an object in the current workspace. Put simply, this amounts to storing
some item or result under a given name so it can be accessed later, without
having to write out that calculation again. In this book, I will use the terms
assign and store interchangeably. Note that some programming books refer
to a stored object as a variable because of the ability to easily overwrite that
object and change it to something different, meaning that what it represents
can vary throughout a session. However, I’ll use the term object throughout
this book because we’ll discuss variables in Part III as a distinctly different
statistical concept.

You can specify an assignment in R in two ways: using arrow notation
(<-) and using a single equal sign (=). Both methods are shown here:

R> x <- -5
R> X
[1] -5
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R> x = x + 1 # this overwrites the previous value of x
R> x
(1] -4

R> mynumber = 45.2
R> y <- mynumberxx
R>y

[1] -180.8

R> 1s()
[1] Ilmynumberll IIXll Ilyll

As you can see from these examples, R will display the value assigned
to an object when you enter the name of the object into the console. When
you use the object in subsequent operations, R will substitute the value you
assigned to it. Finally, if you use the 1s command (which you saw in Sec-
tion 1.3.1) to examine the contents of the current workspace, it will reveal
the names of the objects in alphabetical order (along with any other previ-
ously created items).

Although = and <- do the same thing, it is wise (for the neatness of code
if nothing else) to be consistent. Many users choose to stick with the <-, how-
ever, because of the potential for confusion in using the = (for example, I
clearly didn’t mean that x is mathematically equal to x + 1 earlier). In this
book, I’ll do the same and reserve = for setting function arguments, which
begins in Section 2.3.2. So far you’ve used only numeric values, but note that
the procedure for assignment is universal for all types and classes of objects,
which you’ll examine in the coming chapters.

Objects can be named almost anything as long as the name begins with
aletter (in other words, not a number), avoids symbols (though underscores
and periods are fine), and avoids the handful of “reserved” words such as
those used for defining special values (see Section 6.1) or for controlling
code flow (see Chapter 10). You can find a useful summary of these naming
rules in Section 9.1.2.

a. Create an object that stores the value 3% x 41/8,

Overwrite your object in (a) by itself divided by 2.33. Print the
result to the console.

c. Create a new object with the value —8.2 x 10713

d. Print directly to the console the result of multiplying (b) by (c).
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2.3 Vectors

Often you’ll want to perform the same calculations or comparisons upon
multiple entities, for example if you're rescaling measurements in a data set.
You could do this type of operation one entry at a time, though this is clearly
not ideal, especially if you have a large number of items. R provides a far
more efficient solution to this problem with vectors.

For the moment, to keep things simple, you’ll continue to work with
numeric entries only, though many of the utility functions discussed here
may also be applied to structures containing non-numeric values. You’ll start
looking at these other kinds of data in Chapter 4.

2.3.1 Creating a Vector

The vector is the essential building block for handling multiple items in R.
In a numeric sense, you can think of a vector as a collection of observations
or measurements concerning a single variable, for example, the heights of
50 people or the number of coffees you drink daily. More complicated data
structures may consist of several vectors. The function for creating a vector
is the single letter c, with the desired entries in parentheses separated by
commas.

R> myvec <- c(1,3,1,42)
R> myvec
[1] 1 3 1 42

Vector entries can be calculations or previously stored items (including
vectors themselves).

R> foo <- 32.1

R> myvec2 <- c(3,-3,2,3.45,1e+03,64"0.5,2+(3-1.1)/9.44,fo0)

R> myvec2

[1] 3.000000 -3.000000  2.000000  3.450000 1000.000000  8.000000
[7] 2.201271  32.100000

This code created a new vector assigned to the object myvec2. Some of
the entries are defined as arithmetic expressions, and it’s the result of the
expression that’s stored in the vector. The last element, foo, is an existing
numeric object defined as 32.1.

Let’s look at another example.

R> myvec3 <- c(myvec,myvec2)

R> myvec3
[1] 1.000000 3.000000 1.000000  42.000000 3.000000  -3.000000
[7] 2.000000 3.450000 1000.000000 8.000000 2.201271  32.100000

This code creates and stores yet another vector, myvec3, which contains
the entries of myvec and myvec2 appended together in that order.
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2.3.2 Sequences, Repetition, Sorting, and Lengths

Here I'll discuss some common and useful functions associated with R vec-
tors: seq, rep, sort, and length.

Let’s create an equally spaced sequence of increasing or decreasing
numeric values. This is something you’ll need often, for example when
programming loops (see Chapter 10) or when plotting data points (see
Chapter 7). The easiest way to create such a sequence, with numeric values
separated by intervals of 1, is to use the colon operator.

R> 3:27
[1] 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

The example 3:27 should be read as “from 3 to 27 (by 1).” The result is
a numeric vector just as if you had listed each number manually in parenthe-
ses with c. As always, you can also provide either a previously stored value or
a (strictly parenthesized) calculation when using the colon operator:

R> foo <- 5.3
R> bar <- foo:(-47+1.5)
R> bar

[1] 5.3 4.3 3.3 2.3 1.3 0.3 -0.7 -1.7 -2.7 -3.7 -4.7
12] -5.7 -6.7 -7.7 -8.7 -9.7 -10.7 -11.7 -12.7 -13.7 -14.7 -15.7
23] -16.7 -17.7 -18.7 -19.7 -20.7 -21.7 -22.7 -23.7 -24.7 -25.7 -26.7
34] -27.7 -28.7 -29.7 -30.7 -31.7 -32.7 -33.7 -34.7 -35.7 -36.7 -37.7

[
[
[
[45] -38.7 -39.7 -40.7 -41.7 -42.7 -43.7 -44.7

Sequences with seq

You can also use the seq command, which allows for more flexible creations
of sequences. This ready-to-use function takes in a from value, a to value, and
a by value, and it returns the corresponding sequence as a numeric vector.

R> seq(from=3,to0=27,by=3)
[1] 3 6 9 12 15 18 21 24 27

This gives you a sequence with intervals of 3 rather than 1. Note that
these kinds of sequences will always start at the from number but will not
always include the to number, depending on what you are asking R to
increase (or decrease) them by. For example, if you are increasing (or
decreasing) by even numbers and your sequence ends in an odd number,
the final number won’t be included. Instead of providing a by value, how-
ever, you can specify a length.out value to produce a vector with that many
numbers, evenly spaced between the from and to values.

R> seq(from=3,to=27,length.out=40)

[1] 3.000000 3.615385 4.230769 4.846154 5.461538 6.076923 6.692308
[8] 7.307692 7.923077 8.538462 9.153846 9.769231 10.384615 11.000000
[15] 11.615385 12.230769 12.846154 13.461538 14.076923 14.692308 15.307692



[22] 15.923077 16.538462 17.153846 17.769231 18.384615 19.000000 19.615385
[29] 20.230769 20.846154 21.461538 22.076923 22.692308 23.307692 23.923077
[36] 24.538462 25.153846 25.769231 26.384615 27.000000

By setting length.out to 40, you make the program print exactly 40 evenly
spaced numbers from 3 to 27.

For decreasing sequences, the use of by must be negative. Here’s an
example:

R> foo <- 5.3
R> myseq <- seq(from=foo,to=(-47+1.5),by=-2.4)
R> myseq

[1] 5.3 2.9 0.5 -1.9 -4.3 -6.7 -9.1 -11.5 -13.9 -16.3 -18.7 -21.1
[13] -23.5 -25.9 -28.3 -30.7 -33.1 -35.5 -37.9 -40.3 -42.7 -45.1

This code uses the previously stored object foo as the value for from and
uses the parenthesized calculation (-47+1.5) as the to value. Given those
values (that is, with foo being greater than (-47+1.5)), the sequence can
progress only in negative steps; directly above, we set by to be -2.4. The use
of length.out to create decreasing sequences, however, remains the same
(it would make no sense to specify a “negative length”). For the same from
and to values, you can create a decreasing sequence of length 5 easily, as
shown here:

R> myseq2 <- seq(from=foo,to=(-47+1.5),length.out=5)
R> myseq2
[1] 5.3 -7.4 -20.1 -32.8 -45.5

There are shorthand ways of calling these functions, which you’ll learn
about in Chapter 9, but in these early stages I'll stick with the explicit usage.

Repetition with rep

Sequences are extremely useful, but sometimes you may want simply to
repeat a certain value. You do this using rep.

R> rep(x=1,times=4)

[1]1111

R> rep(x=c(3,62,8.3),times=3)

[1] 3.0 62.0 8.3 3.0 62.0 8.3 3.0 62.0 8.3

R> rep(x=c(3,62,8.3),each=2)

[1] 3.0 3.0 62.0 62.0 8.3 8.3

R> rep(x=c(3,62,8.3),times=3,each=2)

[1] 3.0 3.0 62.0 62.0 8.3 8.3 3.0 3.0 62.0 62.0 8.3 8.3 3.0 3.0 62.0
[16] 62.0 8.3 8.3

The rep function is given a single value or a vector of values as its
argument x, as well as a value for the arguments times and each. The value
for times provides the number of times to repeat x, and each provides the
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number of times to repeat each element of x. In the first line directly above,
you simply repeat a single value four times. The other examples first use

rep and times on a vector to repeat the entire vector, then use each to repeat
each member of the vector, and finally use both times and each to do both
at once.

If neither times nor each is specified, R’s default is to treat the values of
times and each as 1 so that a call of rep(x=c(3,62,8.3)) will just return the origi-
nally supplied x with no changes.

As with seq, you can include the result of rep in a vector of the same data
type, as shown in the following example:

R> foo <- 4
R> c(3,8.3,rep(x=32,times=foo0),seq(from=-2,to=1,length.out=foo+1))
[1] 3.00 8.30 32.00 32.00 32.00 32.00 -2.00 -1.25 -0.50 0.25 1.00

Here, I've constructed a vector where the third to sixth entries (inclu-
sive) are governed by the evaluation of a rep command—the single value
32 repeated foo times (where foo is stored as 4). The last five entries are the
result of an evaluation of seq, namely a sequence from —2 to 1 of length
foo+1 (5).

Sorting with sort

Sorting a vector in increasing or decreasing order of its elements is another
simple operation that crops up in everyday tasks. The conveniently named
sort function does just that.

R> sort(x=c(2.5,-1,-10,3.44),decreasing=FALSE)
[1] -10.00 -1.00 2.50 3.44

R> sort(x=c(2.5,-1,-10,3.44),decreasing=TRUE)
[1] 3.44 2.50 -1.00 -10.00

R> foo <- seq(from=4.3,to=5.5,length.out=8)

R> foo

[1] 4.300000 4.471429 4.642857 4.814286 4.985714 5.157143 5.328571 5.500000
R> bar <- sort(x=foo,decreasing=TRUE)

R> bar

[1] 5.500000 5.328571 5.157143 4.985714 4.814286 4.642857 4.471429 4.300000

R> sort(x=c(foo,bar),decreasing=FALSE)
[1] 4.300000 4.300000 4.471429 4.471429 4.642857 4.642857 4.814286 4.814286
[9] 4.985714 4.985714 5.157143 5.157143 5.328571 5.328571 5.500000 5.500000

The sort function is pretty straightforward. You supply a vector to the
function as the argument x, and a second argument, decreasing, indicates
the order in which you want to sort. This argument takes a type of value
you have not yet met: one of the all-important logical values. A logical value



can be only one of two specific, case-sensitive values: TRUE or FALSE. Gener-
ally speaking, logicals are used to indicate the satisfaction or failure of a
certain condition, and they form an integral part of all programming lan-
guages. You’ll investigate logical values in R in greater detail in Section 4.1.
For now, in regards to sort, you set decreasing=FALSE to sort from smallest to
largest, and decreasing=TRUE sorts from largest to smallest.

Finding a Vector Length with length

I’ll round off this section with the length function, which determines how
many entries exist in a vector given as the argument x.

R> length(x=c(3,2,8,1))
(1] 4

R> length(x=5:13)
(1] 9

R> foo <- 4

R> bar <- c(3,8.3,rep(x=32,times=foo),seq(from=-2,to=1,length.out=Ffoo+1))
R> length(x=bar)

[1] 12

Note that if you include entries that depend on the evaluation of other
functions (in this case, calls to rep and seq), length tells you the number of
entries affer those inner functions have been executed.

Exercise 2.3

a. Create and store a sequence of values from 5 to —11 that pro-
gresses in steps of 0.3.

b. Overwrite the object from (a) using the same sequence with the
order reversed.

c. Repeat the vector c(-1,3,-5,7,-9) twice, with each element
repeated 10 times, and store the result. Display the result sorted
from largest to smallest.

d. Create and store a vector that contains, in any configuration, the
following:

i. Asequence of integers from 6 to 12 (inclusive)

ii. A threefold repetition of the value 5.3

iii. The number -3

iv. A sequence of nine values starting at 102 and ending at the
number that is the total length of the vector created in (c)

e. Confirm that the length of the vector created in (d) is 20.
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2.3.3 Subsetting and Element Extraction

In all the results you have seen printed to the console screen so far, you may
have noticed a curious feature. Immediately to the left of the output there
is a square-bracketed [1]. When the output is a long vector that spans the
width of the console and wraps onto the following line, another square-
bracketed number appears to the left of the new line. These numbers rep-
resent the index of the entry directly to the right. Quite simply, the index
corresponds to the position of a value within a vector, and that’s precisely why
the first value always has a [1] next to it (even if it’s the only value and not
part of a larger vector).

These indexes allow you to retrieve specific elements from a vector,
which is known as subsetting. Suppose you have a vector called myvec in
your workspace. Then there will be exactly length(x=myvec) entries in myvec,
with each entry having a specific position: 1 or 2 or 3, all the way up to
length(x=myvec). You can access individual elements by asking R to return
the values of myvec at specific locations, done by entering the name of the
vector followed by the position in square brackets.

R> myvec <- c(5,-2.3,4,4,4,6,8,10,40221,-8)
R> length(x=myvec)

[1] 10

R> myvec[1]

[1] 5

R> foo <- myvec[2]
R> foo
[1] -2.3

R> myvec[length(x=myvec)]
[1] -8

Because length(x=myvec) results in the final index of the vector (in this
case, 10), entering this phrase in the square brackets extracts the final ele-
ment, -8. Similarly, you could extract the second-to-last element by subtract-
ing 1 from the length; let’s try that, and also assign the result to a new object:

R> myvec.len <- length(x=myvec)
R> bar <- myvec[myvec.len-1]

R> bar

[1] 40221

As these examples show, the index may be an arithmetic function of
other numbers or previously stored values. You can assign the result to a new
object in your workspace in the usual way with the <- notation. Using your
knowledge of sequences, you can use the colon notation with the length of



the specific vector to obtain all possible indexes for extracting a particular
element in the vector:

R> 1:myvec.len
[1] 12 2 3 4 5 6 7 8 910

You can also delete individual elements by using negative versions of the
indexes supplied in the square brackets. Continuing with the objects myvec,
foo, bar, and myvec.len as defined earlier, consider the following operations:

R> myvec[-1]
[1] -2.3 4.0 4.0 4.0 6.0 8.0 10.0 40221.0 -8.0

This line produces the contents of myvec without the first element. Sim-
ilarly, the following code assigns to the object baz the contents of myvec with-
out its second element:

R> baz <- myvec[-2]
R> baz
[1] 5 4 4 4 6 8 10 40221 -8

Again, the index in the square brackets can be the result of an appropri-
ate calculation, like so:

R> qux <- myvec[-(myvec.len-1)]
R> qux
[1] 5.0 -2.3 4.0 4.0 4.0 6.0 8.0 10.0 -8.0

Using the square-bracket operator to extract or delete values from a
vector does not change the original vector you are subsetting unless you
explicitly overwrite the vector with the subsetted version. For instance, in
this example, qux is a new vector defined as myvec without its second-to-last
entry, but in your workspace, myvec itself remains unchanged. In other words,
subsetting vectors in this way simply returns the requested elements, which
can be assigned to a new object if you want, but doesn’t alter the original
object in the workspace.

Now, suppose you want to piece myvec back together from qux and bar.
You can call something like this:

R> c(qux[-length(x=qux)],bar,qux[length(x=qux)])
[1] 5.0 -2.3 4.0 4.0 4.0 6.0 8.0 10.0 40221.0
[10] -8.0

As you can see, this line uses ¢ to reconstruct the vector in three parts:
qux[-length(x=qux)], the object bar defined earlier, and qux[length(x=qux)]. For
clarity, let’s examine each part in turn.
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®  qux[-length(x=qux)]

This piece of code returns the values of qux except for its last element.

R> length(x=qux)

[1] 9

R> qux[-length(x=qux)]

[1] 5.0 -2.3 4.0 4.0 4.0 6.0 8.0 10.0

Now you have a vector that’s the same as the first eight entries of
myvec.

® bar

Earlier, you had stored bar as the following:

R> bar <- myvec[myvec.len-1]
R> bar
[1] 40221

This is precisely the second-to-last element of myvec that qux is missing.
So, you'll slot this value in after qux[-length(x=qux)].
®  qux[length(x=qux)]

Finally, you just need the last element of qux that matches the last ele-
ment of myvec. This is extracted from qux (not deleted as earlier) using
length.

R> qux[length(x=qux)]
[1] -8

Now it should be clear how calling these three parts of code together, in
this order, is one way to reconstruct myvec.

As with most operations in R, you are not restricted to doing things one
by one. You can also subset objects using vectors of indexes, rather than indi-
vidual indexes. Using myvec again from earlier, you get the following:

R> myvec[c(1,3,5)]
[1] 544

This returns the first, third, and fifth elements of myvec in one go.
Another common and convenient subsetting tool is the colon operator
(discussed in Section 2.3.2), which creates a sequence of indexes. Here’s
an example:

R> 1:4

[1]1234

R> foo <- myvec[1:4]
R> foo

[1] 5.0 -2.3 4.0 4.0




This provides the first four elements of myvec (recall that the colon oper-
ator returns a numeric vector, so there is no need to explicitly wrap this
using c).

The order of the returned elements depends entirely upon the index
vector supplied in the square brackets. For example, using foo again, con-
sider the order of the indexes and the resulting extractions, shown here:

R> length(x=foo):2
[1] 43 2

R> foo[length(foo):2]
[1] 4.0 4.0 -2.3

Here you extracted elements starting at the end of the vector, working
backward. You can also use rep to repeat an index, as shown here:

R> indexes <- c(4,rep(x=2,times=3),1,1,2,3:1)

R> indexes

[1]4222112321

R> foo[indexes]

[1] 4.0 -2.3 -2.3 -2.3 5.0 5.0 -2.3 4.0 -2.3 5.0

This is now something a little more general than strictly “subsetting”—
by using an index vector, you can create an entirely new vector of any length
consisting of some or all of the elements in the original vector. As shown
earlier, this index vector can contain the desired element positions in any
order and can repeat indexes.

You can also return the elements of a vector after deleting more than
one element. For example, to create a vector after removing the first and
third elements of foo, you can execute the following:

R> foo[-c(1,3)]
[1] -2.3 4.0

Note that it is not possible to mix positive and negative indexes in a
single index vector.

Sometimes you’ll need to overwrite certain elements in an existing vec-
tor with new values. In this situation, you first specify the elements you want
to overwrite using square brackets and then use the assignment operator to
assign the new values. Here’s an example:

R> bar <- c(3,2,4,4,1,2,4,1,0,0,5)
R> bar
[1]32441241005
R> bar[1] <- 6
R> bar
[1162441241005
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This overwrites the first element of bar, which was originally 3, with a
new value, 6. When selecting multiple elements, you can specify a single
value to replace them all or enter a vector of values that’s equal in length
to the number of elements selected to replace them one for one. Let’s try
this with the same bar vector from earlier.

R> bar[c(2,4,6)] <- c(-2,-0.5,-1)
R> bar
[1] 6.0 -2.0 4.0 -0.5 1.0 -1.0 4.0 1.0 0.0 0.0 5.0

Here you overwrite the second, fourth, and sixth elements with -2, -0.5,
and -1, respectively; all else remains the same. By contrast, the following
code overwrites elements 7 to 10 (inclusive), replacing them all with 100:

R> bar[7:10] <- 100
R> bar
[1] 6.0 -2.0 4.0 -0.5 1.0 -1.0 100.0 100.0 100.0 100.0 5.0

Finally, it’s important to mention that this section has focused on just
one of the two main methods, or “flavors,” of vector element extraction in R.
You’ll look at the alternative method, using logical flags, in Section 4.1.5.

Exercise 2.4

a. Create and store a vector that contains the following, in this
order:
— Asequence of length 5 from 3 to 6 (inclusive)
— A twofold repetition of the vector c(2,-5.1,-33)
— The value 412 +2

b. Extract the first and last elements of your vector from (a), storing
them as a new object.

c. Store as a third object the values returned by omitting the first
and last values of your vector from (a).

d. Use only (b) and (c) to reconstruct (a).

e. Opverwrite (a) with the same values sorted from smallest to
largest.

f.  Use the colon operator as an index vector to reverse the order
of (e), and confirm this is identical to using sort on (e) with
decreasing=TRUE.

g. Create a vector from (c) that repeats the third element of (c)
three times, the sixth element four times, and the last ele-
ment once.




h. Create a new vector as a copy of (e) by assigning (e) asis to a
newly named object. Using this new copy of (e), overwrite the
first, the fifth to the seventh (inclusive), and the last element with
the values 99 to 95 (inclusive), respectively.

2.3.4 Vector-Oriented Behavior

Vectors are so useful because they allow R to carry out operations on
multiple elements simultaneously with speed and efficiency. This vector-
oriented, vectorized, or element-wise behavior is a key feature of the language,
one that you will briefly examine here through some examples of rescaling
measurements.

Let’s start with this simple example:

R> foo <- 5.5:0.5

R> foo

[1] 5.5 4.5 3.5 2.5 1.5 0.5

R> foo-c(2,4,6,8,10,12)

[1] 3.5 0.5 -2.5 -5.5 -8.5 -11.5

This code creates a sequence of six values between 5.5 and 0.5, in incre-
ments of 1. From this vector, you subtract another vector containing 2, 4,

6, 8, 10, and 12. What does this do? Well, quite simply, R matches up the
elements according to their respective positions and performs the operation
on each corresponding pair of elements. The resulting vector is obtained by
subtracting the first element of c(2,4,6,8,10,12) from the first element of foo
(5.5 -2 = 3.5), then by subtracting the second element of c(2,4,6,8,10,12)
from the second element of foo (4.5 — 4 = 0.5), and so on. Thus, rather than
inelegantly cycling through each element in turn (as you could do by hand
or by explicitly using a loop), R permits a fast and efficient alternative using
vector-oriented behavior. Figure 2-1 illustrates how you can understand this
type of calculation and highlights the fact that the positions of the elements
are crucial in terms of the final result; elements in differing positions have
no effect on one another.

The situation is made more complicated when using vectors of different
lengths, which can happen in two distinct ways. The first is when the length
of the longer vector can be evenly divided by the length of the shorter vec-
tor. The second is when the length of the longer vector cannot be divided by
the length of the shorter vector—this is usually unintentional on the user’s
part. In both of these situations, R essentially attempts to replicate, or recycle,
the shorter vector by as many times as needed to match the length of the
longer vector, before completing the specified operation. As an example,
suppose you wanted to alternate the entries of foo shown earlier as negative
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Vector A Operation/Comparison Vector B

[1] = > [1]

[2] = > [2]

[n] = > [n]

Figure 2-1: A conceptual diagram of the element-wise behavior of a
comparison or operation carried out on two vectors of equal length

in R. Note that the operation is performed by matching up the element
positions.

and positive. You could explicitly multiply foo by ¢(1,-1,1,-1,1,-1), but you
don’t need to write out the full latter vector. Instead, you can write the
following:

R> bar <- c(1,-1)
R> fooxbar
[1] 5.5 -4.5 3.5 -2.5 1.5 -0.5

Here bar has been applied repeatedly throughout the length of foo until
completion. The left plot of Figure 2-2 illustrates this particular example.
Now let’s see what happens when the vector lengths are not evenly divisible.

R> baz <- c(1,-1,0.5,-0.5)
R> fooxbaz
[1] 5.50 -4.50 1.75 -1.25 1.50 -0.50
Warning message:
In foo * baz :
longer object length is not a multiple of shorter object length

Here you see that R has matched the first four elements of foo with the
entirety of baz, but it’s not able to fully repeat the vector again. The repeti-
tion has been attempted, with the first two elements of baz being matched
with the last two of the longer foo, though not without a protest from R,
which notifies the user of the unevenly divisible lengths (you’ll look at warn-
ings in more detail in Section 12.1). The plot on the right in Figure 2-2 illus-
trates this example.



foo * bar foo * baz

[6] [6]

Figure 2-2: An element-wise operation on two vectors of differing lengths.
Left: foo multiplied by bar; lengths are evenly divisible. Right: foo multiplied
by baz, lengths are not evenly divisible, and a warning is issued.

As I noted in Section 2.3.3, you can consider single values to be vectors
of length 1, so you can use a single value to repeat an operation on all the
values of a vector of any length. Here’s an example, using the same vec-
tor foo:

R> qux <- 3
R> foo+qux
[1] 8.5 7.5 6.5 5.5 4.5 3.5

This is far easier than executing foo+c(3,3,3,3,3,3) or the more general
foo+rep(x=3,times=length(x=foo)). Operating on vectors using a single value in
this fashion is quite common, such as if you want to rescale or translate a set
of measurements by some constant amount.

Another benefit of vector-oriented behavior is that you can use vector-
ized functions to complete potentially laborious tasks. For example, if you
want to sum or multiply all the entries in a numeric vector, you can just use
a built-in function.
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Recall foo, shown earlier:

R> foo
[1] 5.5 4.5 3.5 2.5 1.5 0.5

You can find the sum of these six elements with

R> sum(foo)
[1] 18

and their product with

R> prod(foo)
[1] 162.4219

Far from being just convenient, vectorized functions are faster and more
efficient than an explicitly coded iterative approach like a loop. The main
takeaway from these examples is that much of R’s functionality is designed
specifically for certain data structures, ensuring neatness of code as well as
optimization of performance.

Lastly, as mentioned earlier, this vector-oriented behavior applies in the
same way to overwriting multiple elements. Again using foo, examine the
following:

R> foo

[1] 5.5 4.5 3.5 2.5 1.5 0.5

R> foo[c(1,3,5,6)] <- c(-99,99)

R> foo

[1] -99.0 4.5 99.0 2.5 -99.0 99.0

You see four specific elements being overwritten by a vector of length 2,
which is recycled in the same fashion you’re familiar with. Again, the length
of the vector of replacements must evenly divide the number of elements
being overwritten, or else a warning similar to the one shown earlier will be
issued when R cannot complete a full-length recycle.

Exercise 2.5

a. Convert the vector c(2,0.5,1,2,0.5,1,2,0.5,1) to a vector of only
1s, using a vector of length 3.

b. The conversion from a temperature measurement in degrees
Fahrenheit F to Celsius C is performed using the following
equation:

5
C= §(F—32)




Use vector-oriented behavior in R to convert the tempera-
tures 45, 77, 20, 19, 101, 120, and 212 in degrees Fahrenheit to
degrees Celsius.

c. Use the vector c(2,4,6) and the vector c(1,2) in conjunction with
rep and * to produce the vector c(2,4,6,4,8,12).

d. Overwrite the middle four elements of the resulting vector from
(c) with the two recycled values -0.1 and -100, in that order.

Important Code in This Chapter

Function/operator

Brief description

First occurrence

ok "
sqrt
log

Arithmetic

Square root

Logarithm

Exponential

Obiject assignment

Vector creation

Sequence creation
Value/vector repetition
Vector sorting

Determine vector length
Vector subsetting/extraction
Sum all vector elements
Multiply all vector elements

Section 2.1, p. 17
Section 2.1.1, p. 18
Section 2.1.2, p. 19
Section 2.1.2, p. 19
Section 2.2, p. 21

Section 2.3.1, p. 23
Section 2.3.2, p. 24
Section 2.3.2, p. 25
Section 2.3.2, p. 26
Section 2.3.2, p. 27
Section 2.3.3, p. 28
Section 2.3.4, p. 36
Section 2.3.4, p. 36
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MATRICES AND ARRAYS

By now, you have a solid handle on

using vectors in R. A matrix is simply sev-
eral vectors stored together. Whereas the

size of a vector is described by its length, the

size of a matrix is specified by a number of rows and
a number of columns. You can also create higher-
dimensional structures that are referred to as arrays.
In this chapter, we’ll begin by looking at how to work
with matrices before increasing the dimension to form
arrays.

3.1 Defining a Matrix

The matrix is an important mathematical construct, and it’s essential to
many statistical methods. You typically describe a matrix A as an m X n
matrix; that is, A will have exactly m rows and n columns. This means A
will have a total of mn entries, with each entry g; ; having a unique position
given by its specificrow (i = 1,2, ..., m) and column (j =1, 2, ..., n).
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You can therefore express a matrix as follows:

ai, 1 a2 ... Aaln
a1 as. 9o e ao n
am,l am’g e am,n

To create a matrix in R, use the aptly named matrix command, providing
the entries of the matrix to the data argument as a vector:

R> A <- matrix(data=c(-3,2,893,0.17),nrow=2,ncol=2)
R> A
[1]  [,2]
[1,] -3 893.00
[2,] 2 o0.17

You must make sure that the length of this vector matches exactly
with the number of desired rows (nrow) and columns (ncol). You can
elect not to supply nrow and ncol when calling matrix, in which case R’s
default behavior is to return a single-column matrix of the entries in
data. For example, matrix(data=c(-3,2,893,0.17)) would be identical to
matrix(data=c(-3,2,893,0.17),nrow=4,ncol=1).

3.1.1 Filling Direction

It’s important to be aware of how R fills up the matrix using the entries from
data. Looking at the previous example, you can see that the 2 X 2 matrix A
has been filled in a column-by-column fashion when reading the data entries
from left to right. You can control how R fills in data using the argument
byrow, as shown in the following examples:

R> matrix(data=c(1,2,3,4,5,6),nrow=2,ncol=3,byrow=FALSE)
[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

Here, I've instructed R to provide a 2 X 3 matrix containing the digits
1 through 6. By using the optional argument byrow and setting it to FALSE,
you explicitly tell R to fill this 2 X 3 structure in a column-wise fashion, by
filling each column before moving to the next, reading the data argument
vector from left to right. This is R’s default handling of the matrix function,
so if the byrow argument isn’t supplied, the software will assume byrow=FALSE.
Figure 3-1 illustrates this behavior.



o( 1, 2, 3, 4, 5, 6 )

l——

Figure 3-1: Filling a 2 x 3 matrix in a column-wise fashion with byrow=FALSE (R default)

Now, let’s repeat the same line of code but set byrow=TRUE.

R> matrix(data=c(1,2,3,4,5,6),nrow=2,ncol=3,byrow=TRUE)
[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

The resulting 2 X 3 structure has now been filled in a row-wise fashion,
as shown in Figure 3-2.

c( 1, 2, 3, 4, 5, 6 )

4 5 6

[———

Figure 3-2: Filling a 2 x 3 matrix in a row-wise fashion with byrow=TRUE

3.1.2  Row and Column Bindings

If you have multiple vectors of equal length, you can quickly build a matrix
by binding together these vectors using the built-in R functions, rbind and
cbind. You can either treat each vector as a row (by using the command
rbind) or treat each vector as a column (using the command cbind). Say
you have the two vectors 1:3 and 4:6. You can reconstruct the 2 X 3 matrix
in Figure 3-2 using rbind as follows:

R> rbind(1:3,4:6)

[,1] [,2] [,3]
[, 1 2 3
[2,] 4 5 6
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Here, rbind has bound together the vectors as two rows of a matrix, with
the top-to-bottom order of the rows matching the order of the vectors sup-
plied to rbind. The same matrix could be constructed as follows, using cbind:

R> cbind(c(1,4),c(2,5),c(3,6))
[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

Here, you have three vectors each of length 2. You use cbind to glue
together these three vectors in the order they were supplied, and each vec-
tor becomes a column of the resulting matrix.

3.1.3 Matrix Dimensions

Another useful function, dim, provides the dimensions of a matrix stored in
your workspace.

R> mymat <- rbind(c(1,3,4),5:3,c(100,20,90),11:13)

R> mymat

[,1] [,2] [,3]
[1,] 1 3 4
[2,] 5 4 3
[3,] 100 20 90
[4,] 112 12 13
R> dim(mymat)
[1] 43
R> nrow(mymat)
[1] 4
R> ncol(mymat)
(1] 3
R> dim(mymat)[2]
[1] 3

Having defined a matrix mymat using rbind, you can confirm its dimen-
sions with dim, which returns a vector of length 2; dim always supplies the
number of rows first, followed by the number of columns. You can also use
two related functions: nrow (which provides the number of rows only) and
ncol (which provides the number of columns only). In the last command
shown, you use dim and your knowledge of vector subsetting to extract the
same result that ncol would give you.

3.2 Subsetting

Extracting and subsetting elements from matrices in R is much like extract-
ing elements from vectors. The only complication is that you now have
an additional dimension. Element extraction still uses the square-bracket
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operator, but now it must be performed with both a row and a column posi-
tion, given strictly in the order of [row,column]. Let’s start by creating a 3 x 3
matrix, which I’ll use for the examples in this section.

R> A <- matrix(c(0.3,4.5,55.3,91,0.1,105.5,-4.2,8.2,27.9),nrow=3,ncol=3)
R> A
[1] [,2] [,3]
[1,] 0.3 91.0 -4.2
[2,] 4.5 0.1 8.2
[3,] 55.3 105.5 27.9

To tell R to “look at the third row of A and give me the element from the
second column,” you execute the following:

R> A[3,2]
[1] 105.5

As expected, you're given the element at position [3,2].

3.2.1 Row, Column, and Diagonal Extractions

To extract an entire row or column from a matrix, you simply specify the
desired row or column number and leave the other value blank. It’s impor-
tant to note that you must still include the comma that separates the row and
column numbers—this is how R distinguishes between a request for a row
and a request for a column. The following returns the second column of A:

R> A[,2]
[1] 91.0 0.1 105.5

The following examines the first row:

R> A[1,]
[1] 0.3 91.0 -4.2

Note that whenever an extraction (or deletion, covered in a moment)
results in a single value, single row, or single column, R will always return
stand-alone vectors comprised of the requested values. You can also per-
form more complicated extractions, for example requesting whole rows or
columns, or multiples rows or columns, where the result must be returned as
a new matrix of the appropriate dimensions. Consider the following subsets:

R> A[2:3,]

[,1] [,2] [,3]
[1,] 4.5 0.1 8.2
[2,] 55.3 105.5 27.9

R> A[,c(3,1)]
[,1] [,2]
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[1,] -4.2 0.3
[2,] 8.2 4.5
[3,] 27.9 55.3

R> A[c(3,1),2:3]

[,1] [,2]
[1,] 105.5 27.9
[2,] 91.0 -4.2

The first command returns the second and third rows of A, and the sec-
ond command returns the third and first columns of A. The last command
accesses the third and first rows of A, in that order, and from those rows it
returns the second and third column elements.

You can also identify the values along the diagonal of a square matrix
(that is, a matrix with an equal number of rows and columns) using the diag
command.

R> diag(x=A)
[1] 0.3 0.1 27.9

This returns a vector with the elements along the diagonal of A, starting
at A[1,1].

3.2.2 Omitting and Overwriting

To delete or omit elements from a matrix, you again use square brackets,
but this time with negative indexes. The following provides A without its sec-
ond column:

R> A[,-2]

[,1] [,2]
[1,] 0.3 -4.2
[2,] 4.5 8.2
[3,] 55.3 27.9

The following removes the first row from A and retrieves the third and
second column values, in that order, from the remaining two rows:

R> A[-1,3:2]
[1] [,2]

[1,] 8.2 0.1

[2,] 27.9 105.5

The following produces A without its first row and second column:

R> A[-1,-2]
[>1] [,2]

[1,] 4.5 8.2

[2,] 55.3 27.9




Lastly, this deletes the first row and then deletes the second and third
columns from the result:

R> A[-1,-c(2,3)]
[1] 4.5 55.3

Note that this final operation leaves you with only the last two elements
of the first column of A, so this result is returned as a stand-alone vector
rather than a matrix.

To overwrite particular elements, or entire rows or columns, you identify
the elements to be replaced and then assign the new values, as you did with
vectors in Section 2.3.3. The new elements can be a single value, a vector of
the same length as the number of elements to be replaced, or a vector whose
length evenly divides the number of elements to be replaced. To illustrate
this, let’s first create a copy of A and call it B.

R> B <- A
R> B

[1]1 [,2] [,3]
[1,] 0.3 91.0 -4.2
[2,] 4.5 0.1 8.2
[3,] 55.3 105.5 27.9

The following overwrites the second row of B with the sequence 1, 2,
and 3:

R> B[2,] <- 1:3
R> B

[1]1 [,2] [,3]
[1,] 0.3 91.0 -4.2
[2,] 1.0 2.0 3.0
[3,] 55.3 105.5 27.9

The following overwrites the second column elements of the first and
third rows with 900:

R> B[c(1,3),2] <- 900
R> B

[,1] [,2] [,3]
[1,] 0.3 900 -4.2
[2,] 1.0 2 3.0
[3,] 55.3 900 27.9

)

Next, you replace the third column of B with the values in the third
row of B.

R> B[)3] <- B[3J]
R> B
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[1,] 0.3 900 55.3
[2,] 1.0 2 900.0
[3,] 55.3 900 27.9

To try R’s vector recycling, let’s now overwrite the first and third column
elements of rows 1 and 3 (a total of four elements) with the two values -7
and 7.

R> B[c(1,3),c(1,3)] <- c(-7,7)

R> B

[,1] [,2] [,3]
[1,] -7 900 -7
[2,] 1 2 900
[3,] 7 900 7

The vector of length 2 has replaced the four elements in a column-wise
Jashion. The replacement vector c(-7,7) overwrites the elements at positions
(1,1) and (3,1), in that order, and is then repeated to overwrite (1,3) and
(3,3), in that order.

To highlight the role of index order on matrix element replacement,
consider the following example:

R> B[c(1,3),2:1] <- c(65,-65,88,-88)
R> B
[,1] [,2] [,3]
[1,] 88 65 -7
[2,] 1 2 900
[3,] -88 -65 7

The four values in the replacement vector have overwritten the four
specified elements, again in a column-wise fashion. In this case, because
I specified the first and second columns in reverse order, the overwriting
proceeded accordingly, filling the second column before moving to the
first. Position (1,2) is matched with 65, followed by (3,2) with -65; then (1,1)
becomes 88, and (3,1) becomes -88.

If you just want to replace the diagonal of a square matrix, you can avoid
explicit indexes and directly overwrite the values using the diag command.

R> diag(x=B) <- rep(x=0,times=3)

R> B

[,1] [,2] [,3]
[1,] 0 65 -7
[2,] 1 0o 900
[3,] -88 -65 0




Exercise 3.1

a. Construct and store a 4 X 2 matrix that’s filled row-wise with the
values 4.3, 3.1, 8.2, 8.2, 3.2, 0.9, 1.6, and 6.5, in that order.

b. Confirm the dimensions of the matrix from (a) are 3 X 2 if you
remove any one row.

c. Overwrite the second column of the matrix from (a) with that
same column sorted from smallest to largest.

d. What does R return if you delete the fourth row and the first col-
umn from (c)? Use matrix to ensure the result is a single-column
matrix, rather than a vector.

Store the bottom four elements of (c) as a new 2 X 2 matrix.

f.  Overwrite, in this order, the elements of (c) at positions (4,2),
(1,2), (4,1), and (1,1) with —% of the two values on the diagonal
of (e).

3.3 Matrix Operations and Algebra

You can think of matrices in R from two perspectives. First, you can use
these structures purely as a computational tool in programming to store and
operate on results, as you've seen so far. Alternatively, you can use matrices
for their mathematical properties in relevant calculations, such as the use
of matrix multiplication for expressing regression model equations. This
distinction is important because the mathematical behavior of matrices is
not always the same as the more generic data handling behavior. Here I’ll
briefly describe some special matrices, as well as some of the most common
mathematical operations involving matrices, and the corresponding func-
tionality in R. If the mathematical behavior of matrices isn’t of interest to
you, you can skip this section for now and refer to it later as needed.

3.3.1 Matrix Transpose

For any m X n matrix A, its transpose, AT, is the n X m matrix obtained by
writing either its columns as rows or its rows as columns.
Here’s an example:

2 6
IfA:[g ? i],thenATz 5 1
2 4

In R, the transpose of a matrix is found with the function t. Let’s create a
new matrix and then transpose it.
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R> A <- rbind(c(2,5,2),c(6,1,4))
R> A

[,11 [,2] [,3]
[1,] 2 5
[2,] 6 1 4

N

R> t(A)

[,1] [,2]
[1,] 2 6
[2,] 5 1
[3,] 2 4

If you “transpose the transpose” of A, you’ll recover the original matrix.

R> t(t(A))

[>1] [,2] [,3]
[1,] 2 5 2
[2,] 6 1 4

3.3.2 Identity Matrix

The identity matrix written as I, is a particular kind of matrix used in mathe-
matics. It’s a square m X m matrix with ones on the diagonal and zeros
elsewhere.

Here’s an example:

1 0 0
Iz3=0 1 0
0 0 1

You can create an identity matrix of any dimension using the standard
matrix function, but there’s a quicker approach using diag. Earlier, I used
diag on an existing matrix to extract or overwrite its diagonal elements. You
can also use it as follows:

R> A <- diag(x=3)
R> A
[,1

]
1
0
0

Here you see diag can be used to easily produce an identity matrix. To
clarify, the behavior of diag depends on what you supply to it as its argu-
ment x. If, as earlier, x is a matrix, diag will retrieve the diagonal elements
of the matrix. If x is a single positive integer, as is the case here, then diag
will produce the identity matrix of the corresponding dimension. You can
find more uses of diag on its help page.



3.3.3 Scalar Multiple of a Matrix

A scalar value is just a single, univariate value. Multiplication of any matrix A
by a scalar value a results in a matrix in which every individual element is
multiplied by a.

Here’s an example:

o [2 5 2] _[4 10 4
6 1 4| |12 2 8

R will perform this multiplication in an element-wise manner, as you
might expect. Scalar multiplication of a matrix is carried out using the stan-
dard arithmetic * operator.

R> A <- rbind(c(2,5,2),c(6,1,4))
R> a <- 2
R> axA

3.3.4 Matrix Addition and Subtraction

Addition or subtraction of two matrices of equal size is also performed in
an element-wise fashion. Corresponding elements are added or subtracted
from one another, depending on the operation.

Here’s an example:

2 6 -2 8.1 4 =21
5 -13 82|=]|2 =72
2 4 6 -9.8 -4 13.8

You can add or subtract any two equally sized matrices with the standard
+and - symbols.

R> A <- cbind(c(2,5,2),c(6,1,4))

R> A

[,1] [,2]
[1,] 2 6
[2,] 5 1
[3,] 2 4
R> B <- cbind(c(-2,3,6),c(8.1,8.2,-9.8))
R> B

[,1] [,2]
[1,] -2 8.1
[2,] 3 8.2
[3,] 6 -9.8
R> A-B
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[,1] [,2]
[1,] 4 -2.1
[2,] 2 -7.2
[3,] -413.8

3.3.5 Matrix Multiplication

In order to multiply two matrices A and B of size m X nand p X g, it must

be true that n = p. The resulting matrix A - B will have the size m X g. The

elements of the product are computed in a row-by-column fashion, where

the value at position (AB); ; is computed by element-wise multiplication of

the entries in row i of A by the entries in column j of B, summing the result.
Here’s an example:

-1 1
61415

243+ by (1) + 241 24(=3) + 5x (1) + 245
643 + 1x(—1) + 441 64 (=3) + 14(1) +4xb

|23

Note that, in general, multiplication of appropriately sized matrices
(denoted, say, with C and D) is not commutative; thatis, CD # DC.

Unlike addition, subtraction, and scalar multiplication, matrix multipli-
cation is not a simple elementwise calculation, and the standard * operator
cannot be used. Instead, you must use R’s matrix product operator, written
with percent symbols as %+%. Before you try this operator, let’s first store the
two example matrices and check to make sure the number of columns in the
first matrix matches the number of rows in the second matrix using dim.

I

R> A <- rbind(c(2,5,2),c(6,1,4))
R> dim(A)

[1] 23

R> B <- cbind(c(3,-1,1),c(-3,1,5))
R> dim(B)

[1] 3 2

This confirms the two matrices are compatible for multiplication, so you
can proceed.

R> A%*%B
[,1] [,2]




You can show that matrix multiplication is noncommutative using
the same two matrices. Switching the order of multiplication gives you
an entirely different result.

R> B%x%A

[,1] [,2] [,3]
[1,] -12 12 -6
[2,] 4 -4
[3,] 32 10 22

3.3.6 Matrix Inversion

Some square matrices can be ¢nverted. The inverse of a matrix A is denoted
A~!. An invertible matrix satisfies the following equation:

AAT =1,

Here’s an example of a matrix and its inverse:
-1
3 1 |1 =05
4 2| |-2 15

Matrices that are not invertible are referred to as singular. Inverting
a matrix is often necessary when solving equations with matrices and has
important practical ramifications. There are several different approaches
to matrix inversion, and these calculations can become extremely computa-
tionally expensive as you increase the size of a matrix. We won’t go into too
much detail here, but if you're interested, see Golub and Van Loan (1989)
for formal discussions.

For now, I’ll just show you the R function solve as one option for invert-
ing a matrix.

R> A <- matrix(data=c(3,4,1,2),nrow=2,ncol=2)
R> A

[,1] [,2]
[1,] 3 1
[2,] 4 2
R> solve(A)

[,1] [,2]
[1,] 1 -0.5
[2,] -2 1.5

You can also verify that the product of these two matrices (using matrix
multiplication rules) results in the 2 X 2 identity matrix.
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R> A%x%solve(A)
[,1] [,2]

a. Calculate the following:

of[L 2] [10 20
=([2 4|30 40
7 6] [50 60]

b. Store these two matrices:

1 3]
A=|2| B=|4
7 8]

Which of the following multiplications are possible? For
those that are, compute the result.
i A-B
ii. AT-B
iii. BT-(A-A")
iv. (A-AT)-BT
v. [(B-BT)+(A-AT)-100I5]""

c. For

S oo N
S O W o
S ot o O

S o O

-1

confirm that A™! - A — I; provides a 4 x 4 matrix of zeros.

3.4 Multidimensional Arrays

Just as a matrix (a “rectangle” of elements) is the result of increasing the
dimension of a vector (a “line” of elements), the dimension of a matrix can
be increased to get more complex data structures. In R, vectors and matrices
can be considered special cases of the more general array, which is how I’ll
refer to these types of structures when they have more than two dimensions.
So, what’s the next step up from a matrix? Well, just as a matrix is con-
sidered to be a collection of vectors of equal length, a three-dimensional
array can be considered to be a collection of equally dimensioned matrices,

52 Chapter 3



providing you with a rectangular prism of elements. You still have a fixed
number of rows and a fixed number of columns, as well as a new third
dimension called a layer. Figure 3-3 illustrates a three-row, four-column,
two-layer (3 x 4 X 2) array.

[1,1,2] ———— [1,2,2] ——— [1,3,2] ——— [1,4,2]
[1,1,1] [1,2,1] [1,3,1] [1,4,1]
[2,1,2] ——|——[2,2,2] ——|—[2,3,2] ——|——[2,4,2]
Anra g
[2,1,1] [2,2,1] [2,3,1] [2,4,1]
[3,1,2] —|——[3,2,2] ——|——[3,3,2] ——|——[3,4,2]
Ve
[3,1,1] [3,2,1] [3,3,1] ———— [3,4,1]

Figure 3-3: A conceptual diagram of a 3 x 4 x 2 array. The index of each element
is given at the corresponding position. These indexes are provided in the strict order
of [row,column,layer].

3.4.1 Definition

To create these data structures in R, use the array function and specify the
individual elements in the data argument as a vector. Then specify size in
the dim argument as another vector with a length corresponding to the
number of dimensions. Note that array fills the entries of each layer with
the elements in data in a strict column-wise fashion, starting with the first
layer. Consider the following example:

R> AR <- array(data=1:24,dim=c(3,4,2))

R> AR
) ) 1

[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
) ) 2
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[,1] [,2] [,3] [,4]
[1,] 13 16 19 22
[2,] 14 17 20 23
[3,] 15 18 21 24

This gives you an array of the same size as in Figure 3-3—each of the
two layers constitutes a 3 X 4 matrix. In this example, note the order of the
dimensions supplied to dim: c(rows,columns,layers). Just like a single matrix,
the product of the dimension sizes of an array will yield the total number
of elements. As you increase the dimension further, the dim vector must be
extended accordingly. For example, a four-dimensional array is the next
step up and can be thought of as blocks of three-dimensional arrays. Suppose
you had a four-dimensional array comprised of three copies of AR, the three-
dimensional array just defined. This new array can be stored in R as follows
(once again, the array is filled column-wise):

R> BR <- array(data=rep(1:24,times=3),dim=c(3,4,2,3))

R> BR
) 1) 1

[>1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
) ) 2) 1

1] [,2] [,3] [,4]
[1,] 13 16 19 22
[2,] 14 17 20 23
[3,] 15 18 21 24

) 1) 2

[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,1] 3 6 9 12
) ) 2) 2

[,1] [,2] [,3] [,4]
[1,] 13 16 19 22
[2,] 14 17 20 23
[3,] 15 18 21 24



[>1] [,2] [,3] [,4]
[1,] 1 4 7 10
[21] 2 5 8 11
[3,] 3 6 9 12
) ) 2) 3

[,1] [,2] [,3] [,4]
[1,] 13 16 19 22
[2,] 14 17 20 23
[3,] 15 18 21 24

With BR you now have three copies of AR. Each of these copies is split into
its two layers so R can print the object to the screen. As before, the rows are
indexed by the first digit, the columns by the second digit, and the layers by
the third digit. The new fourth digit indexes the blocks.

3.4.2 Subsets, Extractions, and Replacements

Even though high-dimensional objects can be difficult to conceptualize,
R indexes them consistently. This makes extracting elements from these
structures straightforward now that you know how to subset matrices—you
just have to keep using commas in the square brackets as separators of the
dimensions being accessed. This is highlighted in the examples that follow.
Suppose you want the second row of the second layer of the previously
created array AR. You just enter these exact dimensional locations of AR in
square brackets.

R> AR[2,,2]
[1] 14 17 20 23

The desired elements have been extracted as a vector of length 4. If you
want specific elements from this vector, say the third and first, in that order,
you can call the following:

R> AR[2,c(3,1),2]
[1] 20 14

Again, this literal method of subsetting makes dealing with even high-
dimensional objects in R manageable.

An extraction that results in multiple vectors will be presented as
columns in the returned matrix. For example, to extract the first rows of
both layers of AR, you enter this:

R> AR[1,,]
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[2,] 4 16
(31 7 19
[4,] 10 22

The returned object has the first rows of each of the two matrix
layers. However, it has returned each of these vectors as a column of the
single returned matrix. As this example shows, when multiple vectors are
extracted from an array, they will be returned as columns by default. This
means extracted rows will not necessarily be returned as rows.

Turning to the object BR, the following gives you the single element of
the second row and first column of the matrix in the first layer of the three-
dimensional array located in the third block.

R> BR[2,1,1,3]
[1] 2

Again, you just need to look at the position of the index in the square
brackets to know which values you are asking R to return from the array.
The following examples highlight this:

R> BR[1,,,1]
[,1] [,2]

[,L] 1 13
[2,] 4 16
[3,] 7 19
[4,] 10 22

This returns all the values in the first row of the first block. Since I left
the column and layer indexes blank in this subset [1,,,1], the command has
returned values for all four columns and both layers in that block of BR.

Next, the following line returns all the values in the second layer of the
array BR, composed of three matrices:

R> BR[,,2,]
PR

[,1] [,2] [,3] [,4]
[1,] 13 16 19 22
[2,] 14 17 20 23
[3,] 15 18 21 24

[,1] [,2] [,3] [,4]
[1,] 13 16 19 22
[2,] 14 17 20 23
[3,] 15 18 21 24



[,1] [,2] [,3] [,4]
[1,] 13 16 19 22
[2,] 14 17 20 23
[3,] 15 18 21 24

This last example highlights a feature noted earlier, where multiple
vectors from AR were returned as a matrix. Broadly speaking, if you have
an extraction that results in multiple d-dimensional arrays, the result will
be an array of the next-highest dimension, d + 1. In the last example, you
extracted multiple (two-dimensional) matrices, and they were returned as a
three-dimensional array. This is demonstrated again in the next example:

R> BR[3:2,4,,]
» o, 1

This extracts the elements at rows 3 and 2 (in that order), column 4, for
all layers and for all array blocks. Consider the following final example:

R> BR[2,,1,]

[,1] [,2] [,3]
[1,] 2 2 2
[2,] 5 5 5
[3,] 8 8 8
[4,] 112 112 11

Here you’ve asked R to return the entire second rows of the first layers
of all the arrays stored in BR.

Deleting and overwriting elements in high-dimensional arrays follows
the same rules as for stand-alone vectors and matrices. You specify the
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dimension positions the same way, using negative indexes (for deletion) or
using the assignment operator for overwriting.

You can use the array function to create one-dimensional arrays (vec-
tors) and two-dimensional arrays (matrices) should you want to (by setting
the dim argument to be of length 1 or 2, respectively). Note, though, that
vectors in particular may be treated differently by some functions if created
with array instead of ¢ (see the help file ?array for technical details). For this
reason, and to make large sections of code more readable, it’s more con-
ventional in R programming to use the specific vector- and matrix-creation
functions c and matrix.

a. Create and store a three-dimensional array with six layers of a
4 X 2 matrix, filled with a decreasing sequence of values between
4.8 and 0.1 of the appropriate length.

b. Extract and store as a new object the fourth- and first-row ele-
ments, in that order, of the second column only of all layers
of (a).

c. Use a fourfold repetition of the second row of the matrix formed
in (b) to fill a new array of dimensions 2 X 2 X 2 x 3.

d. Create a new array comprised of the results of deleting the sixth
layer of (a).

e. Overwrite the second and fourth row elements of the second
column of layers 1, 3, and 5 of (d) with —99.

Important Code in This Chapter
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Function/operator  Brief description First occurrence
matrix Create a matrix Section 3.1, p. 40
bind Create a matrix (bind rows) Section 3.1.2, p. 41
cbind Create a matrix (bind columns) Section 3.1.2, p. 42
dim Get matrix dimensions Section 3.1.3, p. 42
nrow Get number of rows Section 3.1.3, p. 42
ncol Get number of columns Section 3.1.3, p. 42
[, Matrix/array subsetting Section 3.2, p. 43
diag Diagonal elements/identity matrix ~ Section 3.2. 1 p. 44
t Matrix transpose Section 3.3. 1, p. 47
* Scalar matrix multiple Section 3.3.3, p. 49
+, - Matrix addition/subtraction Section 3.3.4, p. 49
%% Matrix multiplication Section 3.3.5, p. 50
solve Matrix inversion Section 3.3.6, p. 51
array Create an array Section 3.4.1, p. 53




NON-NUMERIC VALUES

So far, you’ve been working almost exclu-

sively with numeric values. But statistical
programming also requires non-numeric

values. In this chapter, we’ll consider three

important non-numeric data types: logicals, char-
acters, and factors. These data types play an impor-
tant role in effective use of R, especially as we get into
more complex R programming in Part II.

4.1 Logical Values

Logical values (also simply called logicals) are based on a simple premise:
a logical-valued object can only be either TRUE or FALSE. These can be inter-
preted as yes/no, one/zero, satisfied/not satisfied, and so on. This is a con-
cept that appears across all programming languages, and logical values have
many important uses. Often, they signal whether a condition has been satis-
fied or whether a parameter should be switched on or off.

You encountered logical values briefly when you used the sort function
in Section 2.3.2 and the matrix function in Section 3.1. When using sort, set-
ting decreasing=TRUE returns a vector ordered from largest to smallest, and
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decreasing=FALSE sorts the vector the other way around. Similarly, when con-

structing a matrix, byrow=TRUE fills the matrix entries row-wise; otherwise, the

matrix is filled column-wise. Now, you’ll take a more detailed look at ways to
use logicals.

4.1.1 TRUE or FALSE?

Logical values in R are written fully as TRUE and FALSE, but they are fre-
quently abbreviated as T or F. The abbreviated version has no effect on the
execution of the code, so, for example, using decreasing=T is equivalent to
decreasing=TRUE in the sort function. (But do not create objects named T or F
if you want to make use of this convenience—see Section 9.1.3.)

Assigning logical values to an object is the same as assigning numeric
values.

R> foo <- TRUE
R> foo

[1] TRUE

R> bar <- F

R> bar

[1] FALSE

This gives you one object with the value TRUE and one with the value
FALSE. Similarly, vectors can be filled with logical values.

R> baz <- c(T,F,F,F,T,F,T,T,T,F,T,F)
R> baz
[1] TRUE FALSE FALSE FALSE TRUE FALSE TRUE TRUE TRUE FALSE TRUE FALSE
R> length(x=baz)
[1] 12

Matrices (and other higher-dimensional arrays) can be created with
these values too. Using foo and baz from earlier, you could construct some-
thing like this:

R> qux <- matrix(data=baz,nrow=3,ncol=4,byrow=foo)
R> qux
L1 [,2]1 [,31 [,4]
[1,] TRUE FALSE FALSE FALSE
[2,] TRUE FALSE TRUE TRUE
[3,] TRUE FALSE TRUE FALSE

4.1.2 A Logical Outcome: Relational Operators

Logicals are commonly used to check relationships between values. For
example, you might want to know whether some number a is greater than
a predefined threshold b. For this, you use the standard relational operators
shown in Table 4-1, which produce logical values as results.



Table 4-1: Relational Operators

Operator  Interpretation

== Equal to

1= Not equal to

> Greater than

< Less than

>= Greater than or equal to
<= Less than or equal to

Typically, these operators are used on numeric values (though you’ll
look at some other possibilities in Section 4.2.1). Here’s an example:

R> 1==2

[1] FALSE
R> 1>2

[1] FALSE
R> (2-1)<=2
[1] TRUE

R> 11=(243)
[1] TRUE

The results should be unsurprising: 1 being equal to 2 is FALSE and 1
being greater than 2 is also FALSE, while the result of 2-1 being less than or
equal to 2 is TRUE and it is also TRUE that 1 is not equal to 5 (2+3). These kinds
of operations are much more useful when used on numbers that are variable
in some way, as you’ll see shortly.

You're already familiar with R’s element-wise behavior when working
with vectors. The same rules apply when using relational operators. To illus-
trate this, let’s first create two vectors and double-check that they’re of equal
length.

R> foo <- ¢(3,2,1,4,1,2,1,-1,0,3)
R> bar <- c(4,1,2,1,1,0,0,3,0,4)
R> length(x=foo)==1length(x=bar)
[1] TRUE

Now consider the following four evaluations:

R> foo==bar

[1] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE
R> foo<bar

[1] TRUE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE TRUE
R> foo<=bar

[1] TRUE FALSE TRUE FALSE TRUE FALSE FALSE TRUE TRUE TRUE
R> foo<=(bar+10)

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
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The first line checks whether the entries in foo are equal to the corre-
sponding entries in bar, which is true only for the fifth and ninth entries.
The returned vector will contain a logical result for each pair of elements,
so it will be the same length as the vectors being compared. The second
line compares foo and bar in the same way, this time checking whether the
entries in foo are less than the entries in bar. Contrast this result with the
third comparison, which asks whether entries are less than or equal to one
another. Finally, the fourth line checks whether foo’s members are less than
or equal to bar, when the elements of bar are increased by 10. Naturally, the
results are all TRUE.

Vector recycling also applies to logicals. Let’s use foo from earlier, along
with a shorter vector, baz.

R> baz <- foo[c(10,3)]
R> baz
[1] 31

Here you create baz as a vector of length 2 comprised of the 10th and
3rd elements of foo. Now consider the following:

R> foo>baz
[1] FALSE TRUE FALSE TRUE FALSE TRUE FALSE FALSE FALSE TRUE

Here, the two elements of baz are recycled and checked against the
10 elements of foo. Elements 1 and 2 of foo are checked against 1 and 2 of
baz, elements 3 and 4 of foo are checked against 1 and 2 of baz, and so on.
You can also check all the values of a vector against a single value. Here’s an
example:

R> foo<3
[1] FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE

This is a typical operation when handling data sets in R.
Now let’s rewrite the contents of foo and bar as 5 X 2 column-filled
matrices.

R> foo.mat <- matrix(foo,nrow=5,ncol=2)

R> foo.mat
[,1] [,2]
[,] 3 2
[2,] 2 1
[3,] 1 -1
(4,1 4

[5,] 1
R> bar.mat <- matrix(bar,nrow=5,ncol=2)
R> bar.mat
[,1] [,2]
[1,L] 4 o0



(2,]
(3]
(4]
(5]

B RN R
H O w O

The same element-wise behavior applies here; if you compare the
matrices, you get a matrix of the same size filled with logicals.

R> foo.mat<=bar.mat

L1l [,2]

[1,] TRUE FALSE
[2,] FALSE FALSE
[3,] TRUE TRUE
[4,] FALSE TRUE
[5,] TRUE TRUE
R> foo.mat<3
[,1] [,2]
[1,] FALSE TRUE
[2,] TRUE TRUE
[3,] TRUE TRUE
[4,] FALSE TRUE
[5,]1 TRUE FALSE

This kind of evaluation also applies to arrays of more than two
dimensions.

There are two useful functions you can use to quickly inspect a collec-
tion of logical values: any and all. When examining a vector, any returns
TRUE if any of the logicals in the vector are TRUE and returns FALSE otherwise.
The function all returns a TRUE only if all of the logicals are TRUE, and returns
FALSE otherwise. As a quick example, let’s work with two of the logical vectors
formed by the comparisons of foo and bar from the beginning of this section.

R> qux <- foo==bar
R> qux
[1] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE
R> any(qux)
[1] TRUE
R> all(qux)
[1] FALSE

Here, the qux contains two TRUEs, and the rest are FALSE—so the result of
any is of course TRUE, but the result of all is FALSE. Following the same rules,
you get this:

R> quux <- foo<=(bar+10)
R> quux

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
R> any(quux)
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[1] TRUE
R> all(quux)
[1] TRUE

The any and all functions do the same thing for matrices and arrays of
logical values.

a. Store the following vector of 15 values as an object in your
workspace: ¢(6,9,7,3,6,7,9,6,3,6,6,7,1,9,1). Identify the fol-
lowing elements:

i. Those equal to 6

ii. Those greater than or equal to 6
iii. Those less than 6 + 2

iv. Those not equal to 6

b. Create a new vector from the one used in (a) by deleting its
first three elements. With this new vector, fill a 2 X 2 X 3 array.
Examine the array for the following entries:

i. Those less than or equal to 6 divided by 2, plus 4
ii. Those less than or equal to 6 divided by 2, plus 4, afier
increasing every element in the array by 2

c. Confirm the specific locations of elements equal to 0 in the
10 x 10 identity matrix Iy (see Section 3.3).

d. Check whether any of the values of the logical arrays created in
(b) are TRUE. If they are, check whether they are all TRUE.

e. By extracting the diagonal elements of the logical matrix created
in (c), use any to confirm there are no TRUE entries.

4.1.3 Multiple Comparisons: Logical Operators

Logicals are especially useful when you want to examine whether multiple
conditions are satisfied. Often you’ll want to perform certain operations
only if a number of different conditions have been met.

The previous section looked at relational operators, used to com-
pare the literal values (that is, numeric or otherwise) of stored R objects.
Now you’ll look at logical operators, which are used to compare two TRUE
or FALSE objects. These operators are based on the statements AND and
OR. Table 4-2 summarizes the R syntax and the behavior of logical opera-
tors. The AND and OR operators each have a “single” and “element-wise”
version—you’ll see how they’re different in a moment.
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Table 4-2: Logical Operators Comparing Two Logical Values

Operator Interpretation Results

TRUE & TRUE is TRUE

X AND TRUE & FALSE is FALSE
(element-wise) FALSE & TRUE is FALSE
FALSE & FALSE is FALSE

88 AND Same as & above

(single comparison)

TRUE | TRUE is TRUE
OR TRUE | FALSE is TRUE
(element-wise) FALSE | TRUE is TRUE

FALSE | FALSE is FALSE

OR
I Same as | above
(single comparison)

ITRUE is FALSE
! NOT )
IFALSE is TRUE

The result of using any logical operator is a logical value. An AND com-
parison is true only if both logicals are TRUE. An OR comparison is true if at
least one of the logicals is TRUE. The NOT operator (!) simply returns the
opposite of the logical value it’s used on. You can combine these operators
to examine multiple conditions at once.

R> FALSE| | ((T&&TRUE)| | FALSE)
[4] TRUE

R> ITRUES&TRUE

[1] FALSE

R> (T&&(TRUE| |F))&&FALSE

[4] FALSE

R> (6<4)||(3!=1)

[1] TRUE

As with numeric arithmetic, there is an order of importance for logical
operations in R. An AND statement has a higher precedence than an OR
statement. It’s helpful to place each comparative pair in parentheses to pre-
serve the correct order of evaluation and make the code more readable. You
can see this in the first line of this code, where the innermost comparison is
the first to be carried out: T83&TRUE results in TRUE; this is then provided as one
of the logical values for the next bracketed comparison where TRUE| | FALSE
results in TRUE. The final comparison is then FALSE||TRUE, and the result, TRUE,
is printed to the console. The second line reads as NOT TRUE AND TRUE,
which of course returns FALSE. In the third line, once again the innermost
pair is evaluated first: TRUE| |F is TRUE; T&&TRUE is TRUE; and finally TRUE&&FALSE

Non-numeric Values 03



66

Chapter 4

is FALSE. The fourth and final example evaluates two distinct conditions in
parentheses, which are then compared using a logical operator. Since 6<4 is
FALSE and 3!=1 is TRUE, that gives you a logical comparison of FALSE| |TRUE and a
final result of TRUE.

In Table 4-2, there is a short (&, |) and long (88, ||) version of the AND
and OR operators. The short versions are meant for element-wise compar-
isons, where you have two logical vectors and you want multiple logicals as
a result. The long versions, which you’ve been using so far, are meant for
comparing two individual values and will return a single logical value. This
is important when programming conditional checks in R in an if statement,
which you’ll look at in Chapter 10. It’s possible to compare a single pair of
logicals using the short version—though it’s considered better practice to
use the longer versions when a single TRUE/FALSE result is needed.

Let’s look at some examples of element-wise comparisons. Suppose you
have two vectors of equal length, foo and bar:

R> foo <- c(T,F,F,F,T,F,T,T,T,F,T,F)
R> foo
[1] TRUE FALSE FALSE FALSE TRUE FALSE TRUE TRUE TRUE FALSE TRUE FALSE

and

R> bar <- c(F,T,F,T,F,F,F,F,T,T,T,T)
R> bar
[1] FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE

The short versions of the logical operators match each pair of elements
by position and return the result of the comparison.

R> foolbar

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE
R> foo|bar

[1] TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE

Using the long version of the operators, on the other hand, means
R carries out the comparison only on the first pair of logicals in the two
vectors.

R> food&&bar
[1] FALSE
R> foo| |bar
[1] TRUE

Notice that the last two results match the first entries of the vectors you
got using the short versions of the logical operators.



a. Store the vector ¢(7,1,7,10,5,9,10,3,10,8) as foo. Identify the
elements greater than 5 OR equal to 2.

b. Store the vector c(8,38,4,4,5,1,5,6,6,8) as bar. Identify the ele-
ments less than or equal to 6 AND not equal to 4.

c. Identify the elements that satisfy (a) in foo AND satisfy (b) in bar.

d. Store a third vector called baz that is equal to the element-wise
sum of foo and bar. Determine the following:

i. The elements of baz greater than or equal to 14 but not
equal to 15

ii. The elements of the vector obtained via an element-wise
division of baz by foo that are greater than 4 OR less than or
equal to 2

e. Confirm that using the long version in all of the preceding
exercises performs only the first comparison (that is, the results
each match the first entries of the previously obtained vectors).

4.1.4 logicals Are Numbers!

Because of the binary nature of logical values, they’re often represented with
TRUE as 1 and FALSE as 0. In fact, in R, if you perform elementary numeric
operations on logical values, TRUE is treated like 1, and FALSE is treated like o.

R> TRUE+TRUE

(1] 2

R> FALSE-TRUE
(1] -1

R> T+T+F+T+F+F+T
(1] 4

These operations turn out the same as if you had used the digits 1 and
0. In some situations when you’d use logicals, you can substitute the numeric
values.

R> 18&1
[1] TRUE
R> 1|0
[1] TRUE
R> 0881
[1] FALSE

Non-numeric Values 07
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Being able to interpret logicals as zeros and ones means you can use a
variety of functions to summarize a logical vector, and you’ll explore this
further in Part III.

4.1.5 Logical Subsetting and Extraction

Logicals can also be used to extract and subset elements in vectors and other
objects, in the same way as you’ve done so far with index vectors. Rather
than entering explicit indexes in the square brackets, you can supply logical
flag vectors, where an element is extracted if the corresponding entry in the
flag vector is TRUE. As such, logical flag vectors should be the same length as
the vector that’s being accessed (though recycling does occur for shorter
flag vectors, as a later example shows).

At the beginning of Section 2.3.3 you defined a vector of length 10 as
follows:

R> myvec <- c(5,-2.3,4,4,4,6,8,10,40221,-8)

If you wanted to extract the two negative elements, you could either
enter myvec[c(2,10)], or you could do the following using logical flags:

R> myvec[c(F,T,F,F,F,F,F,F,F,T)]
[1] -2.3 -8.0

This particular example may seem far too cumbersome for practical
use. It becomes useful, however, when you want to extract elements based
on whether they satisfy a certain condition (or several conditions). For
example, you can easily use logicals to find negative elements in myvec by
applying the condition <o.

R> myvec<0
[1] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

This a perfectly valid flag vector that you can use to subset myvec to get
the same result as earlier.

R> myvec[myvec<0]
[1] -2.3 -8.0

As mentioned, R recycles the flag vector if it’s too short. To extract
every second element from myvec, starting with the first, you could enter the
following:

R> myvec[c(T,F)]
[1] 5 4 4 8 40221




You can do more complicated extractions using relational and logical
operators, such as:

R> myvec[ (myvec>0)&(myvec<1000)]
[1] 5 4 4 4 6 810

This returns the positive elements that are less than 1,000. You can also
overwrite specific elements using a logical flag vector, just as with index
vectors.

R> myvec[myvec<0] <- -200
R> myvec
[1] 5 -200 4 4 4 6 8 10 40221 -200

This replaces all existing negative entries with —200. Note, though, that
you cannot directly use negative logical flag vectors to delete specific ele-
ments; this can be done only with numeric index vectors.

As you can see, logicals are therefore very useful for element extrac-
tion. You don’t need to know beforehand which specific index positions
to return, since the conditional check can find them for you. This is par-
ticularly valuable when you’re dealing with large data sets and you want to
inspect records or recode entries that match certain criteria.

In some cases, you might want to convert a logical flag vector into a
numeric index vector. This is helpful when you need the explicit indexes
of elements that were flagged TRUE. The R function which takes in a logical
vector as the argument x and returns the indexes corresponding to the posi-
tions of any and all TRUE entries.

R> which(x=c(T,F,F,T,T))
[1] 145

You can use this to identify the index positions of myvec that meet a cer-
tain condition; for example, those containing negative numbers:

R> which(x=myvec<0)
[1] 2 10

The same can be done for the other myvec selections you experimented
with. Note that a line of code such as myvec[which(x=myvec<0)] is redundant
because that extraction can be made using the condition by itself, that is, via
myvec[myvec<0], without using which. On the other hand, using which lets you
delete elements based on logical flag vectors. You can simply use which to
identify the numeric indexes you want to delete and render them negative.
To omit the negative entries of myvec, you could execute the following:

R> myvec[-which(x=myvec<0)]
[1] 5 4 4 4 6 8 10 40221
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The same can be done with matrices and other arrays. In Section 3.2,
you stored a 3 X 3 matrix as follows:

R> A <- matrix(c(0.3,4.5,55.3,91,0.1,105.5,-4.2,8.2,27.9),nrow=3,ncol=3)
R> A
[1] [,2] [,3]
[1,] 0.3 91.0 -4.2
[2,] 4.5 0.1 8.2
[3,] 55.3 105.5 27.9

To extract the second and third column elements of the first row of A
using numeric indexes, you could execute A[1,2:3]. To do this with logical
flags, you could enter the following:

R> A[C(T;F,F))C(F)T:T)]
[1] 91.0 -4.2

Again, though, you usually wouldn’t explicitly specify the logical vectors.
Suppose for example you want to replace all elements in A that are less than
1 with —7. Performing this using numeric indexes is rather fiddly. It’s much
easier to use the logical flag matrix created with the following:

R> A1

[1] [,21 [,3]
[1,] TRUE FALSE TRUE
[2,] FALSE TRUE FALSE
[3,] FALSE FALSE FALSE

)

You can supply this logical matrix to the square bracket operators, and
the replacement is done as follows:

R> A[A<1] <- -7
R> A

[,1] [,2] [,3]
[1,] -7.0 91.0 -7.0
[2,] 4.5 -7.0 8.2
[3,] 55.3 105.5 27.9

This is the first time you’ve subsetted a matrix without having to list row
or column positions inside the square brackets, using commas to separate
out dimensions (see Section 3.2). This is because the flag matrix has the
same number of rows and columns as the target matrix, thereby providing
all the relevant structural information.

If you use which to identify numeric indexes based on a logical flag struc-
ture, you have to be a little more careful when dealing with two-dimensional
objects or higher. Suppose you want the index positions of the elements that
are greater than 25. The appropriate logical matrix is as follows.



R> A>25

[11 [,2] [L3]
[1,] FALSE TRUE FALSE
[2,] FALSE FALSE FALSE
[3,] TRUE TRUE TRUE

Now, say you ask R the following:

R> which(x=A>25)
[113469

This returns the four indexes of the elements that satisfied the relational
check, but they are provided as scalar values. How do these correspond to
the row/column positioning of the matrix?

The answer lies in R’s default behavior for the which function, which
essentially treats the multidimensional object as a single vector (laid
out column after column) and then returns the vector of correspond-
ing indexes. Say the matrix A was arranged as a vector by stacking the
columns first through third, using c(A[,1],A[,2],A[,3]). Then the indexes
returned make more sense.

R> which(x=c(A[,1],A[,2],A[,3])>25)
[113469

With the columns laid out end to end, the elements that return TRUE
are the third, fourth, sixth, and ninth elements in the list. This can be diffi-
cult to interpret, though, especially when dealing with higher-dimensional
arrays. In this kind of situation, you can make which return dimension-
specific indexes using the optional argument arr.ind (array indexes). By
default, this argument is set to FALSE, resulting in the vector converted
indexes. Setting arr.ind to TRUE, on the other hand, treats the object as a
matrix or array rather than a vector, providing you with the row and col-
umn positions of the elements you requested.

R> which(x=A>25,arr.ind=T)

row col
[1,] 3 1
[2,] 1 2
[3,] 3 2
[4,] 3 3

The returned object is now a matrix, where each row represents an ele-
ment that satisfied the logical comparison and each column provides the
position of the element. Comparing the output here with A, you can see
these positions do indeed correspond to elements where A>25.

Both versions of the output (with arr.ind=T or arr.ind=F) can be useful—
the correct choice depends on the application.
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Exercise 4.3

a. Store this vector of 10 values: foo <- ¢(7,5,6,1,2,10,8,3,8,2).
Then, do the following:
i.  Extract the elements greater than or equal to 5, storing the
result as bar.
ii. Display the vector containing those elements from foo that
remain after omitting all elements that are greater than or
equal to 5.

b. Use bar from (a) (i) to construct a 2 X 3 matrix called baz, filled in
a row-wise fashion. Then, do the following:
i. Replace any elements that are equal to 8 with the squared
value of the element in row 1, column 2 of baz itself.
ii. Confirm that all values in baz are now less than or equal to 25
AND greater than 4.

c. Create a 3 x 2 x 3 array called qux using the following vector of
18 values: c(10,5,1,4,7,4,3,3,1,3,4,3,1,7,8,3,7,3). Then, do the
following:

i. Identify the dimension-specific index positions of elements
that are either 3 OR 4.

ii. Replace all elements in qux that are less than 3 OR greater
than or equal to 7 with the value 100.

d. Return to foo from (a). Use the vector c(F,T) to extract every
second value from foo. In Section 4.1.4, you saw that in some
situations, you can substitute 0 and 1 for TRUE and FALSE. Can you
perform the same extraction from foo using the vector c(0,1)?
Why or why not? What does R return in this case?

4.2 Characters

NOTE

Chapter 4

Character strings are another common data type, and are used to repre-
sent text. In R, strings are often used to specify folder locations or software
options (as shown briefly in Section 1.2); to supply an argument to a func-
tion; and to annotate stored objects, provide textual output, or help clarify
plots and graphics. In a simple way, they can also be used to define differ-
ent groups making up a categorical variable, though as you’ll see in see Sec-
tion 4.3, factors are better suited for that.

There are three different string formats in the R environment. The default string
format is called an extended regular expression; the other variants are named
Perl and literal regular expressions. The intricacies of these variants are beyond
the scope of this book, so any mention of character strings from here on refers to an
extended regular expression. For more technical details about other string formats,
enler ?regex at the prompt.



4.2.1 Creating a String

Character strings are indicated by double quotation marks, ". To create a
string, just enter text between a pair of quotes.

R> foo <- "This is a character string!"
R> foo

[1] "This is a character string!"

R> length(x=foo)

[1] 2

R treats the string as a single entity. In other words, foo is a vector of
length 1 because R counts only the total number of distinct strings rather
than individual words or characters. To count the number of individual
characters, you can use the nchar function. Here’s an example using foo:

R> nchar(x=foo)
[1] 27

Almost any combination of characters, including numbers, can be a
valid character string.

R> bar <- "23.3"
R> bar
[1] ||23.3||

Note that in this form, the string has no numeric meaning, and it won’t
be treated like the number 23.3. Attempting to multiply it by 2, for example,
results in an error.

R> barx2
Error in bar * 2 : non-numeric argument to binary operator

This error occurs because * is expecting to operate on two numeric
values (not one number and one string, which makes no sense).

Strings can be compared in several ways, the most common comparison
being a check for equality.

R> "alpha"=="alpha"

[1] TRUE

R> "alpha"!="beta"

[1] TRUE

R> c("alpha","beta","gamma")=="beta"
[1] FALSE TRUE FALSE

Other relational operators work as you might expect. For example, R
considers letters that come later in the alphabet to be greater than earlier
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letters, meaning it can determine whether one string of letters is greater
than another with respect to alphabetical order.

R> "alpha"<="beta"
[1] TRUE
R> "gamma">"Alpha"
[1] TRUE

Furthermore, uppercase letters are considered greater than lowercase
letters.

R> "Alpha">"alpha"
[1] TRUE
R> "beta">="bEtA"
[1] FALSE

Most symbols can also be used in a string. The following string is valid,
for example:

R> baz <- "84 _ 3 *x%.? $ymbolic non$ense ,;
R> baz
[1] "84 _ 3 #x%.? $ymbolic non$ense ,;

One important exception is the backslash \, also called an escape. When
a backslash is used within the quotation marks of a string, it initiates some
simple control over the printing or display of the string itself. You’ll see how
this works in a moment in Section 4.2.3. First let’s look at two useful func-
tions for combining strings.

4.2.2 Concatenation

There are two main functions used to concatenate (or glue together) one or
more strings: cat and paste. The difference between the two lies in how their
contents are returned. The first function, cat, sends its output directly to the
console screen and doesn’t formally return anything. The paste function con-
catenates its contents and then returns the final character string as a usable
R object. This is useful when the result of a string concatenation needs to

be passed to another function or used in some secondary way, as opposed to
just being displayed. Consider the following vector of character strings:

R> qux <- c("awesome","R","is"
R> length(x=qux)

[1] 3

R> qux

[1] Ilawesomell IlRll Ilisll

As with numbers and logicals, you can also store any number of strings
in a matrix or array structure if you want.



NOTE

When calling cat or paste, you pass arguments to the function in the
order you want them combined. The following lines show identical usage
yet different types of output from the two functions:

R> cat(qux[2],qux[3],"totally",qux[1],"!"

R is totally awesome !

R> paste(qux[2],qux[3],"totally",qux[1],"!")
[1] "R is totally awesome !"

Here, you’ve used the three elements of qux as well as two additional
strings, "totally" and "!", to produce the final concatenated string. In the
output, note that cat has simply concatenated and printed the text to the
screen. This means you cannot directly assign the result to a new variable
and treat it as a character string. For paste, however, the [1] to the left of
the output and the presence of the " quotes indicate the returned item is a
vector containing a character string, and this can be assigned to an object
and used in other functions.

There’s a slight difference between OS X and Windows in the default handling of
string concatenation when using the R GUI. After calling cat in Windows, the new R
prompt awaiting your next command appears on the same line as the printed string,
in which case you can just hit ENTER to move to the next line, or use an escape
sequence, which you'll look at in Section 4.2.3. In OS X, the new prompt appears
on the next line as usual.

These two functions have an optional argument, sep, that’s used as a
separator between strings as they’re concatenated. You pass sep a character
string, and it will place this string between all other strings you’ve provided
to paste or cat. For example:

R> paste(qux[2],qux[3],"totally",qux[1],"!",sep="---")
[1] "R---is---totally---awesome---1"

R> paste(qux[2],qux[3],"totally",qux[1],
[1] "Ristotallyawesome!"

,Sep=" u)

The same behavior would occur for cat. Note that if you don’t want any
separation, you set sep="", an empty string, as shown in the second example.
The empty string separator can be used to achieve correct sentence spac-
ing; note the gap between awesome and the exclamation mark in the previous
code when you first used paste and cat. If the sep argument isn’t included, R
will insert a space between strings by default.

For example, using manual insertion of spaces where necessary, you can
write the following:

R> cat("Do you think ",qux[2],
Do you think R is awesome?

,qux[3]," ",qux[1],"?",sep="")

Concatenation can be useful when you want to neatly summarize the
results from a certain function or set of calculations. Many kinds of R objects
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can be passed directly to paste or cat; the software will attempt to automati-
cally coerce these items into character strings. This means R will convert the
input into a string so the values can be included in the final concatenated
string. This works particularly well with numeric objects, as the following
examples demonstrate:

R> a<-3

R> b <- 4.4

R> cat("The value stored as 'a' is ",a,".",sep="")

The value stored as 'a' is 3.

R> paste("The value stored as 'b' is ",b,".",sep="")

[1] "The value stored as 'b' is 4.4."

R> cat("The result of a+b is ",a,"+",b,"=",a+b,".",sep="")

The result of a+b is 3+4.4=7.4.

R> paste("Is ",atb," less than 10? That's totally ",a+b<10,".",sep="")
[1] "Is 7.4 less than 10? That's totally TRUE."

Here, the values of the non-string objects are placed where you want
them in the final string output. The results of calculations can also appear
as fields, as shown with the arithmetic a+b and the logical comparison a+b<10.
You’ll see more details about coercion from one kind of value to another in
Section 6.2.4.

4.2.3 Escape Sequences

In Section 4.2.1, I noted that a stand-alone backslash doesn’t act like a nor-
mal character within a string. The \ is used to invoke an escape sequence. An
escape sequence lets you enter characters that control the format and spac-
ing of the string, rather than being interpreted as normal text. Table 4-3
describes some of the most common escape sequences, and you can find a
full list by entering ?Quotes at the prompt.

Table 4-3: Common Escape Sequences for
Use in Character Strings

Escape sequence  Result

\n Starts a newline

\t Horizontal tab

\b Invokes a backspace

\ Used as a single backslash
\" Includes a double quote

Escape sequences add flexibility to the display of character strings,
which can be useful for summaries of results and plot annotations. You
enter the sequence precisely where you want it to take effect. Let’s look at
an example.
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R> cat("here is a string\nsplit\tto neww\b\n\n\tlines")
here is a string
split to new

lines

Since the signal for an escape is \ and the signal to begin and end a
string is ", if you want either of these characters to be included in a string,
you must also use an escape to have them be interpreted as a normal
character.

R> cat("I really want a backslash: \\\nand a double quote: \"")
I really want a backslash: \
and a double quote: "

These escape sequences mean that you can’t use a stand-alone backslash
in file path strings in R. As noted in Section 1.2.3 (where you used getwd to
print the current working directory and setwd to change it), folder separa-
tion must use a forward slash / and not a backslash.

R> setwd("/folderi/folder2/folder3/")

File path specification crops up when reading and writing files, which
you’ll explore in Chapter 8.

4.2.4 Substrings and Matching

Pattern matching lets you inspect a given string to identify smaller strings
within it.

The function substr takes a string x and extracts the part of the string
between two character positions (inclusive), indicated with numbers passed
as start and stop arguments. Let’s try it on the object foo from Section 4.2.1.

R> foo <- "This is a character string!"
R> substr(x=foo,start=21,stop=27)
[1] "string!"

Here, you've extracted the characters between positions 21 and 27,
inclusive, to get "string!". The function substr can also be used with the
assignment operator to directly substitute in a new set of characters. In this
case, the replacement string should contain the same number of characters
as the selected area.

R> substr(x=foo,start=1,stop=4) <- "Here"
R> foo
[1] "Here is a character string!"
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If the replacement string is longer than the number of characters indi-
cated by start and stop, then replacement still takes place, beginning at
start and ending at stop. It cuts off any characters that overrun the number
of characters you’re replacing. If the string is shorter than the number of
characters you’re replacing, then replacement ends when the string is fully
inserted, leaving the original characters up to stop untouched.

Substitution is more flexible using the functions sub and gsub. The
sub function searches a given string x for a smaller string pattern contained
within. It then replaces the first instance with a new string, given as the argu-
ment replacement. The gsub function does the same thing, but it replaces every
instance of pattern. Here’s an example:

R> bar <- "How much wood could a woodchuck chuck"
R> sub(pattern="chuck",replacement="hurl",x=bar)
[1] "How much wood could a woodhurl chuck"
R> gsub(pattern="chuck",replacement="hurl",x=bar)
[1] "How much wood could a woodhurl hurl"

With sub and gsub, the replacement value need not have the same number
of characters as the pattern being replaced. These functions also have search
options like case-sensitivity. The help files ?substr and ?sub have more details,
as well as noting a handful of other pattern-matching functions and tech-
niques. You might also want to check out the grep command and its variants;
see the relevant help file ?grep.

Exercise 4.4

a. Re-create exactly the following output:

"The quick brown fox
jumped over
the lazy dogs"

b. Suppose you’ve stored the values numi <- 4 and num2 <- 0.75.
Write a line of R code that returns the following string:

[1] "The result of multiplying 4 by 0.75 is 3"

Make sure your code produces a string with the correct
multiplication result for any two numbers stored as numi and num2.

c.  On my local machine, the directory for my work on this book is
specified in R as "/Users/tdavies/Documents/RBook/". Imagine it is
your machine—write a line of code that replaces tdavies in this
string with your first initial and surname.




d. In Section 4.2.4, you stored the following string:

R> bar <- "How much wood could a woodchuck chuck"

i.  Store a new string by gluing onto bar the words
"if a woodchuck could chuck wood".
ii. In the result of (i), replace all instances of wood with metal.

e. Store the string "Two 6-packs for $12.99". Then do the following:
i.  Use a check for equality to confirm that the substring
beginning with character 5 and ending with character 10
is "6-pack".
ii. Make it a better deal by changing the price to $10.99.

4.3 Factors

In this section, you’ll look at some simple functions related to creating,
handling, and inspecting factors. Factors are R’s most natural way of repre-
senting data points that fit in only one of a finite number of distinct cate-
gories, rather than belonging to a continuum. Categorical data like this can
play an important role in data science, and you’ll look at factors again in
more detail from a statistical perspective in Chapter 13.

4.3.1 Identifying Categories

To see how factors work, let’s start with a simple data set. Suppose you
find eight people and record their first name, sex, and month of birth in
Table 4-4.

Table 4-4: An Example Data Set of
Eight Individuals

Person Sex Month of birth
Liz Female  April

Jolene Female January
Susan Female December
Boris Male September
Rochelle  Female  November
Tim Male July

Simon Male July

Amy Female June
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There’s really only one sensible way to represent the name of each per-
son in R—as a vector of character strings.

R> firstname <- c("Liz","Jolene
IIAmy")

,"Susan","Boris","Rochelle","Tim","Simon",

You have more flexibility when it comes to recording sex, however. Cod-
ing females as 0 and males as 1, a numeric option would be as follows:

R> sex.num <- ¢(0,0,0,1,0,1,1,0)

Of course, character strings are also possible, and many prefer this
because you don’t need to remember the numeric code for each group.

R> sex.char <- c("female","female","female","male","female","male", "male",
"female")

There is, however, a fundamental difference between an individual’s
name and their sex when stored as data. Where a person’s name is a unique
identifier that can take any one of an infinite number of possibilities, there
are generally only two options for recording a person’s sex. These kinds of
data, where all possible values fall into a finite number of categories, are best
represented in R using factors.

Factors are typically created from a numeric or a character vector (note
that you cannot fill matrices or multidimensional arrays using factor values;
factors can only take the form of vectors). To create a factor vector, use the
function factor, as in this example working with sex.num and sex.char:

R> sex.num.fac <- factor(x=sex.num)

R> sex.num.fac

[1Joo0010110

Levels: 0 1

R> sex.char.fac <- factor(x=sex.char)

R> sex.char.fac

[1] female female female male female male male female
Levels: female male

Here, you obtain factor versions of the two vectors storing gender values.

At first glance, these objects don’t look much different from the char-
acter and numeric vectors from which they were created. Indeed, factor
objects work in much the same way as vectors, but with a little extra infor-
mation attached (R’s internal representation of factor objects is a little dif-
ferent as well). Functions like length and which work the same way on factor
objects as with vectors, for example.

The most important extra piece of information (or attribute; see Sec-
tion 6.2.1) that a factor object contains is its levels, which store the possible
values in the factor. These levels are printed at the bottom of each factor



vector. You can extract the levels as a vector of character strings using the
levels function.

R> levels(x=sex.num.fac)
[1] "o" "1"

R> levels(x=sex.char.fac)
[1] "female" "male"

You can also relabel a factor using levels. Here’s an example:

R> levels(x=sex.num.fac) <- c("1","2")
R> sex.num.fac

[1]11121221

Levels: 1 2

This relabels the females 1 and the males 2.
Factor-valued vectors are subsetted in the same way as any other vector.

R> sex.char.fac[2:5]

[1] female female male female
Levels: female male

R> sex.char.fac[c(1:3,5,8)]

[1] female female female female female
Levels: female male

Note that after subsetting a factor object, the object continues to store
all defined levels even if some of the levels are no longer represented in the
subsetted object.

If you want to subset from a factor using a logical flag vector, keep in
mind that the levels of a factor are stored as character strings, even if the
original data vector was numeric, so you need to use a string when request-
ing or testing for a particular level. To, for example, identify all the men
using the newly relabeled sex.num.fac, use this:

R> sex.num.fac=="2"
[1] FALSE FALSE FALSE TRUE FALSE TRUE TRUE FALSE

Since the elements in firstname and sex have corresponding positions in
their factor vectors, you can then use this logical vector to obtain the names
of all the men (this time using the "male"/"female" factor vector).

R> firstname[sex.char.fac=="male"]
[1] "Boris" "Tim"  "Simon"

Of course, this simple subsetting could have been achieved in much the
same way with the raw numeric vector sex.num or the raw character vector
sex.char. In the next section, you’ll explore some more distinctive advan-
tages to having categorical data represented as a factor in R.
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4.3.2 Defining and Ordering Levels

The sex factor from the previous section represents the simplest kind of
factor variable—there are only two possible levels with no ordering, in

that one level is not intuitively considered “higher than” or “following” the
other. Here you’ll look at factors with levels that can be logically ordered;
for example, month of birth (MOB), where there are 12 levels that have a
natural order. Let’s store the observed MOB data from earlier as a character
vector.

R> mob <- C(“Apr“,"Jan","DeC","Sep","NOV","JU].","JU].","JUn")

There are two problems with the data in this vector. First, not all possi-
ble categories are represented since mob contains only seven unique months.
Second, this vector doesn’t reflect the natural order of the months. If you
compare January and December to see which is greater, you get:

R> mob[2]
[1] "Jan"
R> mob[3]
[1] "Dec"
R> mob[2]<mob[3]
[1] FALSE

Alphabetically, this result is of course correct—/ doesn’t occur before
D. But in terms of the order of the calendar months, which is what we’re
interested in, the FALSE result is incorrect.

If you create a factor object from these values, you can deal with both
of these problems by supplying additional arguments to the factor func-
tion. You can define additional levels by supplying a character vector of
all possible values to the levels argument and then instruct R to order the
values precisely as they appear in levels by setting the argument ordered
to TRUE.

R> ms <- c("Jan","Feb","Maxr","Apr", "May","Jun","Jul", "Aug","Sep","Oct", "Nov",
"Dec")

R> mob.fac <- factor(x=mob,levels=ms,ordered=TRUE)

R> mob.fac

[1] Apr Jan Dec Sep Nov Jul Jul Jun

Levels: Jan < Feb < Mar < Apr < May < Jun < Jul < Aug < Sep < Oct < Nov < Dec

Here, the mob.fac vector contains the same individual entries at the same
index positions as the mob vector from earlier. But notice that this variable
has 12 levels, even though you have not made any observations for the lev-
els "Feb", "Maxr", "May", "Aug", or "Oct". (Note that if your R console window is
too narrow to print all the levels to the screen, you may see a ..., indicating
there’s more output that’s been hidden. Just widen your window and reprint

the object to see the hidden levels.) Also, the strict order of these levels is



shown by the < symbol in the object output. Using this new factor object, you
can perform the relational comparison from earlier and get the result you
might expect.

R> mob.fac[2]

[1] Jan

Levels: Jan < Feb < Mar < Apr < May < Jun < Jul < Aug < Sep < Oct < Nov < Dec
R> mob.fac[3]

[1] Dec

Levels: Jan < Feb < Mar < Apr < May < Jun < Jul < Aug < Sep < Oct < Nov < Dec
R> mob.fac[2]<mob.fac[3]

[1] TRUE

These improvements are far from just cosmetic. There’s a big differ-
ence, for example, between a data set with zero observations in some of the
categories and the same data set defined with fewer categories to begin with.
The choice of whether to instruct R to formally order a factor vector can also
have important consequences in the implementation of various statistical
methods, such as regression and other types of modeling.

4.3.3 Combining and Cutting

As you’ve seen, it’s usually simple to combine multiple vectors of the same
kind (whether numeric, logical, or character) using the c function. Here’s
an example:

R> foo <- ¢(5.1,3.3,3.1,4)
R> bar <- c(4.5,1.2)

R> c(foo,bar)

[1] 5.1 3.3 3.1 4.0 4.5 1.2

This combines the two numeric vectors into one.

However, the c function doesn’t work the same way with factor-valued
vectors. Let’s see what happens when you use it on the data in Table 4-4 and
the MOB factor vector mob.fac, from Section 4.3.2. Suppose you now observe
three more individuals with MOB values "0ct", "Feb", and "Feb", which are
stored as a factor object, as follows.

R> new.values <- factor(x=c("Oct","Feb","Feb"),levels=1evels(mob.fac),
ordered=TRUE)

R> new.values

[1] Oct Feb Feb

Levels: Jan < Feb < Mar < Apr < May < Jun < Jul < Aug < Sep < Oct < Nov < Dec

Now you have mob.fac with the original eight observations and new.values
with an additional three. Both are factor objects, defined with identical,
ordered levels. You might expect that you can just use c to combine the two
as follows.
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R> c(mob.fac,new.values)
[1] 4 112 9112 7 7 610 2 2

Clearly, this has not done what you want it to do. Combining the two
factor objects resulted in a numeric vector. This is because the ¢ func-
tion interprets factors as integers. Comparing this with the defined levels,
you can see that the numbers refer to the index of each month within the
ordered levels.

R> levels(mob.fac)
[1] "Jan" "Feb" "Mar" "Apr“ "May" "Jun" "Ju]_" "Augll llsepll lloctll "NOV“ "Dec"

This means you can use these integers with levels(mob.fac) to retrieve a
character vector of the complete observed data—the original eight observa-
tions plus the additional three.

R> levels(mob.fac)[c(mob.fac,new.values)]
[1] lIApIII "Jan" "Dec" Ilsepll IINOVH IIJulll “Jul" HJunII Iloctll "Feb" "Feb"

Now you have all the observations stored in a vector, but they are cur-
rently stored as strings, not factor values. The final step is to turn this vector
into a factor object.

R> mob.new <- levels(mob.fac)[c(mob.fac,new.values)]

R> mob.new.fac <- factor(x=mob.new,levels=levels(mob.fac),ordered=TRUE)

R> mob.new.fac

[1] Apr Jan Dec Sep Nov Jul Jul Jun Oct Feb Feb

Levels: Jan < Feb < Mar < Apr < May < Jun < Jul < Aug < Sep < Oct < Nov < Dec

As this example shows, combining factors requires you to essentially
deconstruct the two objects, obtaining the numeric index positions of each
entry with respect to the factor levels, and then rebuild them together. This
helps ensure that the levels are consistent and the observations are valid in
the final product.

Factors are also often created from data that was originally measured on
a continuum, for example the weight of a set of adults or the amount of a
drug given to a patient. Sometimes you’ll need to group (or bin) these types
of observations into categories, like Small/Medium/Large or Low/High. In
R, you can mold this kind of data into discrete factor categories using the cut
function. Consider the following numeric vector of length 10:

R> Y <- ¢(0.53,5.4,1.5,3.33,0.45,0.01,2,4.2,1.99,1.01)

Suppose you want to bin the data as follows: Small refers to obser-
vations in the interval [0,2), Medium refers to [2,4), and Large refers



to [4,6]. A square bracket refers to inclusion of its nearest value, and a
parenthesis indicates exclusion, so an observation y will fall in the Small
interval if 0 < y < 2, in Medium if 2 < y < 4, orin Large if 4 < y < 6. For
this you’d use cut and supply your desired break intervals to the breaks
argument:

R> br <- ¢(0,2,4,6)
R> cut(x=Y,breaks=br)
[1] (0,2] (4,6] (0,2]

(2,4] (0,2] (0,2] (0,2] (4,6] (0,2] (0,2]
Levels: (0,2] (2,4] (4,6]

This gives you a factor, with each observation now assigned an inter-
val. However, notice that your boundary intervals are back-to-front—you
want the boundary levels on the left like [0,2), rather than the right as they
appear by default, (0,2]. You can fix this by setting the logical argument
right to FALSE.

R> cut(x=Y,breaks=br,right=F)
[1] [0,2) [4,6) [0,2) [2,4) [0,2) [0,2) [2,4) [4,6) [0,2) [0,2)
Levels: [0,2) [2,4) [4,6)

Now you’ve swapped which boundaries are inclusive and exclusive. This
is important because it changes which categories the values fall into. Notice
that the seventh observation has changed categories. But there’s still a prob-
lem: the final interval currently excludes 6, and you want this maximum value
to be included in the highest level. You can fix this with another logical argu-
ment: include.lowest. Even though it’s called “include.lowest,” this argument
can also be used to include the highest value if right is FALSE, as indicated in
the help file ?cut.

R> cut(x=Y,breaks=br,right=F,include.lowest=T)

[1] [0,2) [4,6] [0,2) [2,4) [0,2) [0,2) [2,4) [4,6] [0,2) [0,2)
Levels: [0,2) [2,4) [4,6]

The intervals are now defined how you want. Finally, you want to add
better labels to the categories, rather than using the interval levels that R
applies by default, by passing a character string vector to the labels argu-
ment. The order of labels must match the order of the levels in the factor
object.

R> lab <- c("Small","Medium","Large")

R> cut(x=Y,breaks=br,right=F,include.lowest=T,labels=1ab)

[1] Small Large Small Medium Small Small Medium Large Small Small
Levels: Small Medium Large
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The New Zealand government consists of the political parties
National, Labour, Greens, and Maori, with several smaller parties
labeled as Other. Suppose you asked 20 New Zealanders which of
these they identified most with and obtained the following data:

e There were 12 males and 8 females; the individuals numbered 1,
5-7, 12, and 14-16 were females.

e  The individuals numbered 1, 4, 12, 15, 16, and 19 identified with
Labour; no one identified with Maori; the individuals numbered
6,9, and 11 identified with Greens; 10 and 20 identified with
Other; and the rest identified with National.

a. Use your knowledge of vectors (for example, subsetting and
overwriting) to create two character vectors: sex with entries
"M" (male) and "F" (female) and party with entries "National",

"Labour", "Greens", "Maori", and "Other". Make sure the entries are
placed in the correct positions as outlined earlier.

b. Create two different factor vectors based on sex and party. Does
it make any sense to use ordered=TRUE in either case? How has R
appeared to arrange the levels?

c. Use factor subsetting to do the following:
i.  Return the factor vector of chosen parties for only the male
participants.
ii. Return the factor vector of genders for those who chose
National.

d. Another six people joined the survey, with the results
c("National","Maori", "Maori","Labour","Greens","Labour") for the
preferred party and c("M","M","F","F","F","M") as their gender.
Combine these results with the original factors from (b).

Suppose you also asked all individuals to state how confident they
were that Labour will win more seats in Parliament than National
in the next election and to attach a subjective percentage to that
confidence. The following 26 results were obtained: 93, 55, 29, 100,
52, 84, 56, 0, 33, 52, 35, 53, 55, 46, 40, 40, 56, 45, 64, 31, 10, 29, 40,
95, 18, 61.

e. Create a factor with levels of confidence as follows: Low for
percentages [0,30]; Moderate for percentages (30,70]; and
High for percentages (70,100].

f.  From (e), extract the levels corresponding to those individuals
who originally said they identified with Labour. Do this also for
National. What do you notice?




Important Code in This Chapter

Function/operator

Brief description

First occurrence

TRUE, FALSE

T, F

==, I=, 5, ¢, >=, <=
any

all

88, 8, |1, 1,!

which

nchar
cat
paste

\

substr
sub, gsub
factor
levels
cut

Reserved logical values

Unreserved versions of above
relational operators

Checks whether any entries are TRUE
Checks whether all entries are TRUE
logical operators

Determines indexes of TRUEs

Creates a character string

Gets number of characters in a string
Concatenates strings (no return)
Pastes strings (returns a string)
String escape

Subsets a string

String matching and replacement
Creates a factor vector

Gets levels of a factor

Creates factor from continuum

Section 4.1.1,
Section 4.1.1,
Section 4.1
Section 4.1
Section 4.1
Section 4.1

1

2

’

’

'

Section 4.
Section 4.2.1,
Section 4.2.1

’

’

Section 4.2.2, p.
Section 4.2.2, p.
Section 4.2.3, p.
Section 4.2.4, p.
Section 4.2.4, p.
Section 4.3.1, p.
Section 4.3.1, p.
Section 4.3.3, p.

p
p
2,p
2, p
2, p.
3,p
S, p
p
p

Non-numeric Values

87






LISTS AND DATA FRAMES

Vectors, matrices, and arrays are efficient
and convenient data storage structures in
R, but they have one distinct limitation: they

can store only one type of data. In this chap-
ter, you'll explore two more data structures, lists and
data frames, which can store multiple types of values
at once.

5.1 Lists of Objects

The #st is an incredibly useful data structure. It can be used to group
together any mix of R structures and objects. A single list could contain a
numeric matrix, a logical array, a single character string, and a factor object.
You can even have a list as a component of another list. In this section,
you’ll see how to create, modify, and access components of these flexible
structures.

5.1.1 Definition and Component Access

Creating a list is much like creating a vector. You supply the elements that
you want to include to the list function, separated by commas.
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R> foo <- list(matrix(data=1:4,nrow=2,ncol=2),c(T,F,T,T),"hello")
R> foo

[1] TRUE FALSE TRUE TRUE

[[3]]
[1] "hello"

In the list foo, you’ve stored a 2 X 2 numeric matrix, a logical vector, and
a character string. These are printed in the order they were supplied to list.
Just as with vectors, you can use the length function to check the number of
components in a list.

R> length(x=foo)
[1] 3

You can retrieve components from a list using indexes, which are
entered in double square brackets.

R> foo[[1]]
[>1] [,2]
[,] 1 3
[2,] 2 4
R> foo[[3]]
[1] "hello"

This action is known as a member reference. When you’ve retrieved a
component this way, you can treat it just like a stand-alone object in the
workspace; there’s nothing special that needs to be done.

R> foo[[1]] + 5.5
[,1] [,2]

[1,] 6.5 8.5

[2,] 7.5 9.5

R> foo[[1]]1[1,2]

[1] 3

R> foo[[1]][2,]

[1] 2 4

R> cat(foo[[3]],"you!")
hello you!




To overwrite a member of foo, you use the assignment operator.

R> foo[[3]]

[1] "hello"

R> foo[[3]] <- paste(foo[[3]],"you!")
R> foo

([1]]

[[2]]
[1] TRUE FALSE TRUE TRUE

[[3]]
[1] "hello you!"

Suppose now you want to access the second and third components of foo
and store them as one object. Your first instinct might be to try something
like this:

R> foo[[c(2,3)]]
[1] TRUE

But R hasn’t done what you wanted. Instead, it returned the third ele-
ment of the second component. This is because using double square brack-
ets on a list is always interpreted with respect to a single member. Fortu-
nately, member referencing with the double square brackets is not the only
way to access components of a list. You can also use single square bracket
notation. This is referred to as lst slicing, and it lets you select multiple list
items at once.

R> bar <- foo[c(2,3)]
R> bar

[[1]]
[1] TRUE FALSE TRUE TRUE

[[2]]
[1] "hello you!"

Note that the result bar is itself a list with the two components stored in
the order in which they were requested.

5.1.2 Naming

You can name list components to make the elements more recognizable and
easy to work with. Just like the information stored about factor levels (as you
saw in Section 4.3.1), a name is an R atiribute.
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Let’s start by adding names to the list foo from earlier.

R> names(foo) <- c("mymatrix",
R> foo
$mymatrix

[,1] [,2]

mylogicals","mystring")

$mylogicals
[1] TRUE FALSE TRUE TRUE

$mystring
[1] "hello you!"

This has changed how the object is printed to the console. Where ear-
lier it printed [[1]], [[2]], and [[3]] before each component, now it prints
the names you specified: $mymatrix, $mylogicals, and $mystring. You can now
perform member referencing using these names and the dollar operator,
rather than the double square brackets.

R> foo$mymatrix
[,1] [,2]

(1,] 1 3

[2,] 2 4

This is the same as calling foo[[1]]. In fact, even when an object is
named, you can still use the numeric index to obtain a member.

Subsetting named members also works the same way.

R> all(foo$mymatrix[,2]==Ffoo[[1]][,2])
[1] TRUE

This confirms (using the all function you saw in Section 4.1.2) that
these two ways of extracting the second column of the matrix in foo provide
an identical result.

To name the components of a list as it’s being created, assign a label
to each component in the list command. Using some components of foo,
create a new, named list.

R> baz <- list(tom=c(foo[[2]],T,T,T,F),dick="g'day mate",harry=foo$mymatrix*2)
R> baz
$tom



NOTE

[1] TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE

$dick
[1] "g'day mate"

$harry

The object baz now contains the three named components tom, dick, and
harry.

R> names(baz)
[1] "tom"  "dick" "harry"

If you want to rename these members, you can simply assign a character
vector of length 3 to names(baz), the same way you did for foo earlier.

When using the names function, the component names are always provided and
returned as character strings in double quotes. However, if you re specifying names
when a list is created (inside the 1ist function) or using names to extract members
with the dollar operator, the names are entered without quotes (in other words, they
are not given as strings).

5.1.3 Nesting

As noted earlier, a member of a list can itself be a list. When nesting lists like
this, it’s important to keep track of the depth of any member for subsetting
or extraction later.

Note that you can add components to any existing list by using the dol-
lar operator and a new name. Here’s an example using foo and baz from
earlier:

R> baz$bobby <- foo

R> baz

$tom

[1] TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE

$dick
[1] "g'day mate"

$harry

[,1] [,2]
[1,] 2 6
[2,] 4 8
$bobby
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$bobby$mymatrix
1] [,2]

[1,] 1 3

[2,] 2 4

$bobby$mylogicals
[1] TRUE FALSE TRUE TRUE

$bobby$mystring
[1] "hello you!"

Here you’ve defined a fourth component to the list baz called bobby. The
member bobby is assigned the entire list foo. As you can see by printing the
new baz, there are now three components in bobby. Naming and indexes
are now both layered, and you can use either (or combine them) to retrieve
members of the inner list.

R> baz$bobby$mylogicals[1:3]
[1] TRUE FALSE TRUE
R> baz[[4]][[2]][1:3]
[1] TRUE FALSE TRUE
R> baz[[4]]$mylogicals[1:3]
[1] TRUE FALSE TRUE

These all instruct R to return the first three elements of the logical vec-
tor stored as the second component ([[2]], also named mylogicals) of the
list bobby, which in turn is the fourth component of the list baz. As long as
you’re aware of what is returned at each layer of a subset, you can continue
to subset as needed using names and numeric indexes. Consider the third
line in this example. The first layer of the subset is baz[[4]], which is a list
with three components. The second layer of subsetting extracts the compo-
nent mylogicals from that list by calling baz[[4]]$mylogicals. This component
represents a vector of length 4, so the third layer of subsetting retrieves the
first three elements of that vector with the line baz[[4]]$mylogicals[1:3].

Lists are often used to return output from various R functions. But they
can quickly become rather large objects in terms of system resources to
store. It’s generally recommended that when you have only one type of data,
you should stick to using basic vector, matrix, or array structures to record
and store the observations.

a. Create a list that contains, in this order, a sequence of 20 evenly
spaced numbers between —4 and 4; a 3 X 3 matrix of the logical
vector c(F,T,T,T,F,T,T,F,F) filled column-wise; a character vector




with the two strings "don" and "quixote"; and a factor vector con-
tahlhlg the observations C("LOW","MED","LOW","MED","MED","HIGH")
Then, do the following:

i.  Extract row elements 2 and 1 of columns 2 and 3, in that
order, of the logical matrix.

ii. Use sub to overwrite "quixote" with "Quixote" and "don" with
"Don" inside the list. Then, using the newly overwritten list
member, concatenate to the console screen the following
statement exactly:

"Windmills! ATTACK!"
-\Don Quixote/-

iii. Obtain all values from the sequence between —4 and 4 that
are greater than 1.

iv. Using which, determine which indexes in the factor vector are
assigned the "MED" level.

b. Create a new list with the factor vector from (a) as a compo-
nent named "facs"; the numeric vector c(3,2.1,3.3,4,1.5,4.9) as a
component named "nums"; and a nested list comprised of the first
three members of the list from (a) (use list slicing to obtain this),
named "oldlist". Then, do the following:

i.  Extract the elements of "facs" that correspond to elements of
"nums" that are greater than or equal to 3.

ii. Add a new member to the list named "flags". This member
should be a logical vector of length 6, obtained as a twofold
repetition of the third column of the logical matrix in the
"o0ldlist" component.

iii. Use "flags" and the logical negation operator ! to extract the
entries of "num" corresponding to FALSE.

iv. Overwrite the character string vector component of "oldlist"
with the single character string "Don Quixote".

5.2 Data Frames

A data frame is R’s most natural way of presenting a data set with a collection
of recorded observations for one or more variables. Like lists, data frames
have no restriction on the data types of the variables; you can store numeric
data, factor data, and so on. The R data frame can be thought of as a list
with some extra rules attached. The most important distinction is that in a
data frame (unlike a list), the members must all be vectors of equal length.

The data frame is one of the most important and frequently used tools
in R for statistical data analysis. In this section, you’ll look at how to create
data frames and learn about their general characteristics.
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5.2.1 Construction

To create a data frame from scratch, use the data.frame function. You supply
your data, grouped by variable, as vectors of the same length—the same way
you would construct a named list. Consider the following example data set:

R> mydata <- data.frame(person=c("Peter","Lois","Meg",
age=c(42,40,17,14,1),
SeX:faCtOI(C(HM",“F")"F"’"M")"M“)))

Chris","Stewie"),

R> mydata

person age sex
1 Peter 42 M
2 lois 40 F
3 Meg 17 F
4 Chris 14 M
5 Stewie 1 M

Here, you've constructed a data frame with the first name, age in years,
and sex of five individuals. The returned object should make it clear why
vectors passed to data.frame must be of equal length: vectors of differing
lengths wouldn’t make sense in this context. If you pass vectors of unequal
length to data.frame, then R will attempt to recycle any shorter vectors to
match the longest, throwing your data off and potentially allocating obser-
vations to the wrong variable. Notice that data frames are printed to the
console in rows and columns—they look more like a matrix than a named
list. This natural spreadsheet style makes it easy to read and manipulate data
sets. Each row in a data frame is called a record, and each column is a variable.

You can extract portions of the data by specifying row and column index
positions (much as with a matrix). Here’s an example:

R> mydata[2,2]
[1] 40

This gives you the element at row 2, column 2—the age of Lois. Now
extract the third, fourth, and fifth elements of the third column:

R> mydata[3:5,3]
[1] FM M
Levels: F M

This returns a factor vector with the sex of Meg, Chris, and Stewie. The
following extracts the entire third and first columns (in that order):

R> mydata[,c(3,1)]

sex person
1 M Peter
2 F Lois
3 F Meg



4 M Chris
5 M Stewie

This results in another data frame giving the sex and then the name of
each person.

You can also use the names of the vectors that were passed to data.frame
to access variables even if you don’t know their column index positions,
which can be useful for large data sets. You use the same dollar operator you
used for member-referencing named lists.

R> mydata$age
[1] 42 40 17 14 1

You can subset this returned vector, too:

R> mydata$age[2]
[1] 40

This returns the same thing as the earlier call of mydata[2,2].

You can report the size of a data frame—the number of records and
variables—just as you’ve seen for the dimensions of a matrix (first shown
in Section 3.1.3).

R> nrow(mydata)
[1] 5

R> ncol(mydata)
[1] 3

R> dim(mydata)
[1] 53

The nrow function retrieves the number of rows (records), ncol retrieves
the number of columns (variables), and dim retrieves both.

R’s default behavior for character vectors passed to data.frame is to con-
vert each variable into a factor object. Observe the following:

R> mydata$person
[1] Peter Lois Meg Chris Stewie
Levels: Chris Lois Meg Peter Stewie

Notice that this variable has levels, which shows it’s being treated as a
factor. But this isn’t what you intended when you defined mydata earlier—
you explicitly defined sex to be a factor but left person as a vector of character
strings. To prevent this automatic conversion of character strings to factors
when using data.frame, set the optional argument stringsAsFactors to FALSE
(otherwise, it defaults to TRUE). Reconstructing mydata with this in place looks
like this:

R> mydata <- data.frame(person=c("Peter","Lois","Meg","Chris",
age=c(42,40,17,14,1),

Stewie"),
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sex=factor(c("M","F","F","M","M")),
stringsAsFactors=FALSE)

R> mydata

person age sex

1 Peter 42

2 lois 40 F

3 Meg 17 F

4 Chris 14 M

5 Stewie 1 M

R> mydata$person

[1] "Peter" "Lois" "Meg" "Chris" "Stewie"

You now have person in the desired, nonfactor form.

5.2.2 Adding Data Columns and Combining Data Frames

Say you want to add data to an existing data frame. This could be a set of
observations for a new variable (adding to the number of columns), or it
could be more records (adding to the number of rows). Once again, you
can use some of the functions you’ve already seen applied to matrices.
Recall the rbind and cbind functions from Section 3.1.2, which let you
append rows and columns, respectively. These same functions can be used
to extend data frames intuitively. For example, suppose you had another
record to include in mydata: the age and sex of another individual, Brian.
The first step is to create a new data frame that contains Brian’s information.

R> newrecord <- data.frame(person="Brian",age=7,
sex=factor("M",levels=1evels(mydata$sex)))
R> newrecord
person age sex
1 Brian 7 M

To avoid any confusion, it’s important to make sure the variable names
and the data types match the data frame you’re planning to add this to.
Note that for a factor, you can extract the levels of the existing factor vari-
able using levels.

Now, you can simply call the following:

R> mydata <- rbind(mydata,newrecord)
R> mydata
person age sex

1 Peter 42
2 Lois 40
3 Meg 17
4 Chris 14
5 Stewie 1
6 Brian 7

E=EZ=E2T T =




Using rbind, you combined mydata with the new record and overwrote
mydata with the result.

Adding a variable to a data frame is also quite straightforward. Let’s say
you’re now given data on the classification of how funny these six individuals
are, defined as a “degree of funniness.” The degree of funniness can take
three possible values: Low, Med (medium), and High. Suppose Peter, Lois, and
Stewie have a high degree of funniness, Chris and Brian have a medium
degree of funniness, and Meg has a low degree of funniness. In R, you’d
have a factor vector like this:

R> funny <- c("High","High","Low","Med","High","Med")

R> funny <- factor(x=funny,levels=c("Low", " "Med","High"))
R> funny

[1] High High Low Med High Med

Levels: Low Med High

The first line creates the basic character vector as funny, and the second
line overwrites funny by turning it into a factor. The order of these elements
must correspond to the records in your data frame. Now, you can simply use
cbind to append this factor vector as a column to the existing mydata.

R> mydata <- cbind(mydata,funny)
R> mydata

person age sex funny
1 Peter 42 M High

2 lois 40 F High
3 Meg 17 F Low
4 Chris 14 M Med
5 Stewie 1 M High
6 Brian 7 M Med

The rbind and cbind functions aren’t the only ways to extend a data
frame. One useful alternative for adding a variable is to use the dollar oper-
ator, much like adding a new member to a named list, as in Section 5.1.3.
Suppose now you want to add another variable to mydata by including a
column with the age of the individuals in months, not years, calling this
new variable age.mon.

R> mydata$age.mon <- mydata$agex12
R> mydata

person age sex funny age.mon
1 Peter 42 M High 504

2 lois 40 F High 480
3 Meg 17 F Low 204
4 Chris 14 M Med 168
5 Stewie 1 M High 12
6 Brian 7 M Med 84
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This creates a new age.mon column with the dollar operator and at the
same time assigns it the vector of ages in years (already stored as age) multi-

plied by 12.

5.2.3 Logical Record Subsets

In Section 4.1.5, you saw how to use logical flag vectors to subset data struc-
tures. This is a particularly useful technique with data frames, where you’ll
often want to examine a subset of entries that meet certain criteria. For
example, when working with data from a clinical drug trial, a researcher
might want to examine the results for just male participants and compare
them to the results for females. Or the researcher might want to look at the
characteristics of individuals who responded most positively to the drug.

Let’s continue to work with mydata. Say you want to examine all records
corresponding to males. From Section 4.3.1, you know that the following
line will identify the relevant positions in the sex factor vector:

R> mydata$sex=="M"
[1] TRUE FALSE FALSE TRUE TRUE TRUE

This flags the male records. You can use this with the matrix-like syntax
you saw in Section 5.2.1 to get the male-only subset.

R> mydata[mydata$sex=="M",]
person age sex funny age.mon
1 Peter 42 M High 504

4 Chris 14 M Med 168
5 Stewie 1 M High 12
6 Brian 7 M Med 84

This returns data for all variables for only the male participants. You can
use the same behavior to pick and choose which variables to return in the
subset. For example, since you know you are selecting the males only, you
could omit sex from the result using a negative numeric index in the column
dimension.

R> mydata[mydata$sex=="M",-3]
person age funny age.mon

1 Peter 42 High 504

4 Chris 14 Med 168

5 Stewie 1 High 12

6 Brian 7 Med 84

If you don’t have the column number or if you want to have more con-
trol over the returned columns, you can use a character vector of variable
names instead.



R> mydata[mydata$sex=="M",c("person”,"age","funny","age.mon")]
person age funny age.mon

1 Peter 42 High 504

4 Chris 14 Med 168

5 Stewie 1 High 12

6 Brian 7 Med 84

The logical conditions you use to subset a data frame can be as simple
or as complicated as you need them to be. The logical flag vector you place
in the square brackets just has to match the number of records in the data
frame. Let’s extract from mydata the full records for individuals who are
more than 10 years old OR have a high degree of funniness.

R> mydata[mydata$age>10|mydata$funny=="High",]
person age sex funny age.mon
1 Peter 42 M High 504

2 Lois 40 F High 480
3 Meg 17 F Low 204
4 Chris 14 M Med 168
5 Stewie 1 M High 12

Sometimes, asking for a subset will yield no records. In this case, R
returns a data frame with zero rows, which looks like this:

R> mydata[mydata$age>45, ]
[1] person age sex funny  age.mon
<0 rows> (or 0-length row.names)

In this example, no records are returned from mydata because there
are no individuals older than 45. To check whether a subset will contain
any records, you can use nrow on the result—if this is equal to zero, then no
records have satisfied the specified condition(s).

Exercise 5.2

a. Create and store this data frame as dframe in your R workspace:

person sex funny

Stan M High

Francine F Med

Steve M Low

Roger M High

Hayley F Med

Klaus M Med
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The variables person, sex, and funny should be identical in
nature to the variables in the mydata object studied throughout
Section 5.2. That is, person should be a character vector, sex
should be a factor with levels F and M, and funny should be a
factor with levels Low, Med, and High.

Stan and Francine are 41 years old, Steve is 15, Hayley is 21, and
Klaus is 60. Roger is extremely old—1,600 years. Append these
data as a new numeric column variable in dframe called age.

Use your knowledge of reordering the column variables based
on column index positions to overwrite dframe, bringing it in line
with mydata. That is, the first column should be person, the second
column age, the third column sex, and the fourth column funny.

Turn your attention to mydata as it was left after you included the
age.mon variable in Section 5.2.2. Create a new version of mydata
called mydata2 by deleting the age.mon column.

Now, combine mydata2 with dframe, naming the resulting object
mydataframe.

Write a single line of code that will extract from mydataframe just
the names and ages of any records where the individual is female
and has a level of funniness equal to Med OR High.

Use your knowledge of handling character strings in R to extract
all records from mydataframe that correspond to people whose
names start with S. Hint: Recall substr from Section 4.2.4 (note
that substr can be applied to a vector of multiple character
strings).

Important Code in This Chapter

Function/operator  Brief description First occurrence

list Create a list Section 5.1.1, p. 89
[rn Unnamed member reference Section 5.1.1, p. 90
[1 List slicing (multiple members) Section 5.1.1, p. 91
$ Get named member/variable Section 5.1.2, p. 92
data.frame Create a data frame Section 5.2.1, p. 96
[, Extract data frame row/columns  Section 5.2.1, p. 96




SPECIAL VALUES, CLASSES,
AND COERCION

You’ve now learned about numeric values,
logicals, character strings, and factors, as
well as their unique properties and applica-

tions. Now you’ll look at some special values
in R that aren’t as well-defined. You’ll see how they
might come about and how to handle and test for
them. Then you’ll look at different data types in R
and some general object class concepts.

6.1 Some Special Values

Many situations in R call for special values. For example, when a data set has
missing observations or when a practically infinite number is calculated, the
software has some unique terms that it reserves for these situations. These
special values can be used to mark abnormal or missing values in vectors,
arrays, or other data structures.
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6.1.1 Infinity

In Section 2.1, I mentioned that R imposes limits on how extreme a number
can be before the software cannot reliably represent it. When a number is
too large for R to represent, the value is deemed to be infinite. Of course,
the mathematical concept of infinity (co) does not correspond to a specific
number—R simply has to define an extreme cutoff point. The precise cutoff
value varies from system to system and is governed in part by the amount

of memory R has access to. This value is represented by the special object
Inf, which is case sensitive. Because it represents a numeric value, Inf can be
associated only with numeric vectors. Let’s create some objects to test it out.

R> foo <- Inf

R> foo

[1] Inf

R> bar <- c(3401,Inf,3.1,-555,Inf,43)
R> bar

[1] 3401.0 Inf 3.1 -555.0 Inf  43.0
R> baz <- 90000100

R> baz

[1] Inf

Here, you’ve defined an object foo that is a single instance of an infinite
value. You’ve also defined a numeric vector, bar, with two infinite elements,
and then raised 90,000 to a power of 100 in baz to produce a result R deems
infinite.

R can also represent negative infinity, with -Inf.

R> qux <- c(-42,565,-Inf,-Inf,Inf,-45632.3)
R> qux
[1] -42.0 565.0 -Inf -Inf Inf -45632.3

This creates a vector with two negative-infinite values and one positive-
infinite value.

Though infinity does not represent any specific value, to a certain extent
you can still perform mathematical operations on infinite values in R. For
example, multiplying Inf by any negative value will result in -Inf.

R> Infx-9
[1] -Inf

If you add to or multiply infinity, you also get infinity as a result.

R> Inf+1

[1] Inf

R> 4x-Inf
[1] -Inf

R> -45.2-Inf
[1] -Inf



R> Inf-45.2
[1] Inf

R> Inf+Inf
[1] Inf

R> Inf/23
[1] Inf

Zero and infinity go hand in hand when it comes to division. Any
(finite) numeric value divided by infinity, positive or negative, will result
in zero.

R> -59/Inf
[1] 0
R> -59/-Inf
[1] o

Though it isn’t mathematically defined, note that in R, any nonzero
value divided by zero will result in infinity (positive or negative depending
on the sign of the numerator).

R> -59/0
[1] -Inf
R> 59/0
[1] Inf
R> Inf/0
[1] Inf

Often, you’ll simply want to detect infinite values in a data structure.
The functions is.infinite and is.finite take in a collection of values, typ-
ically a vector, and return for each element a logical value answering the
question posed. Here’s an example using qux from earlier:

R> qux

[1] -42.0 565.0 -Inf -Inf Inf -45632.3
R> is.infinite(x=qux)

[1] FALSE FALSE TRUE TRUE TRUE FALSE

R> is.finite(x=qux)

[1] TRUE TRUE FALSE FALSE FALSE TRUE

Note that these functions do not distinguish between positive or nega-
tive infinity, and the result of is.finite will always be the opposite (the nega-
tion) of the result of is.infinite.

Finally, relational operators function as you might expect.

R> -Inf<Inf
[1] TRUE

R> Inf>Inf
[1] FALSE
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R> qux==Inf

[1] FALSE FALSE FALSE FALSE TRUE FALSE
R> qux==-Inf

[1] FALSE FALSE TRUE TRUE FALSE FALSE

Here, the first line confirms that -Inf is indeed treated as less than Inf,
and the second line shows that Inf is not greater than Inf. The third and
fourth lines, again using qux, test for equality, which is a useful way to dis-
tinguish between positive and negative infinity if you need to.

6.1.2 NaN

In some situations, it’s impossible to express the result of a calculation using
a number, Inf, or -Inf. These difficult-to-quantify special values are labeled
NaN in R, which stands for Not a Number.

As with infinite values, NaN values are associated only with numeric obser-
vations. It’s possible to define or include a NaN value directly, but this is rarely
the way they’re encountered.

R> foo <- NaN

R> foo

[1] NaN

R> bar <- c(NaN,54.3,-2,NaN,90094.123,-Inf,55)

R> bar

[1] NaN 54.30 -2.00 NaN 90094.12 -Inf 55.00

Typically, NaN is the unintended result of attempting a calculation that’s
impossible to perform with the specified values.

In Section 6.1.1, you saw that adding or subtracting from Inf or -Inf will
simply result again in Inf or -Inf. However, if you attempt to cancel repre-
sentations of infinity in any way, the result will be NaN.

R> -Inf+Inf
[1] NaN
R> Inf/Inf
[1] NaN

Here, the first line won’t result in zero because positive and negative
infinity can’t be interpreted in that numeric sense, so you get NaN as a result.
The same thing happens if you attempt to divide Inf by itself. In addition,
although you saw earlier that a nonzero value divided by zero will result in
positive or negative infinity, NaN results when zero is divided by zero.

R> 0/0
[1] NaN

Note that any mathematical operation involving NaN will simply result
in NaN.



R> NaN+1

[1] NaN

R> 2+6%(4-4)/0
[1] NaN

R> 3.5%(-Inf/Inf)
[1] NaN

In the first line, adding 1 to “not a number” is still NaN. In the second
line, you obtain NaN from the (4-4)/0, which is clearly 0/0, so the result is also
NaN. In the third line, NaN results from -Inf/Inf, so the result of the remain-
ing calculation is again NaN. This begins to give you an idea of how NaN or
infinite values might unintentionally crop up. If you have a function where
various values are passed to a fixed calculation and you don’t take care to
prevent, for example, 0/0 from occurring, then the code will return NaN.

Like with Inf, a special function (is.nan) is used to detect the presence
of NaN values. Unlike infinite values, however, relational operators cannot be
used with NaN. Here’s an example using bar, which was defined earlier:

R> bar

[1] NaN 54.30 -2.00 NaN 90094.12 -Inf  55.00
R> is.nan(x=bar)

[1] TRUE FALSE FALSE TRUE FALSE FALSE FALSE

R> !is.nan(x=bar)

[1] FALSE TRUE TRUE FALSE TRUE TRUE TRUE

R> is.nan(x=bar)|is.infinite(x=bar)

[1] TRUE FALSE FALSE TRUE FALSE TRUE FALSE

R> bar[-(which(is.nan(x=bar)|is.infinite(x=bar)))]

[1]  54.30  -2.00 90094.12  55.00

Using the is.nan function on bar flags the two NaN positions as TRUE. In the
second example, you use the negation operator ! to flag the positions where
the elements are NOT NaN. Using the element-wise OR, | (see Section 4.1.3),
you then identify elements that are either NaN OR infinite. Finally, the last
line uses which to convert these logical values into numeric index positions
so that you can remove them with negative indexes in square brackets (see
Section 4.1.5 for a refresher on using which).

You can find more details on the functionality and behavior of NaN and
Inf in the R help file by entering ?Inf at the prompt.

a. Store the following vector:

foo <- c(13563,-14156,-14319,16981,12921,11979,9568,8833,-12968,
8133)
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Then, do the following:

i.  Output all elements of foo that, when raised to a power of 75,
are NOT infinite.

ii. Return the elements of foo, excluding those that result in
negative infinity when raised to a power of 75.

b. Store the following 3 X 4 matrix as the object bar:

77875.40  27551.45 23764.30 —-36478.88
—35466.25 -73333.85 36599.69 —70585.69
—39803.81 55976.34 76694.82 47032.00

Now, do the following:

i.  Identify the coordinate-specific indexes of the entries of bar
that are NaN when you raise bar to a power of 65 and divide by
infinity.

ii. Return the values in bar that are NOT NaN when bar is raised
to a power of 67 and infinity is added to the result. Confirm
this is identical to identifying those values in bar that, when
raised to a power of 67, are not equal to negative infinity.

iii. Identify those values in bar that are either negative infinity
OR finite when you raise bar to a power of 67.

6.1.3 NA

In statistical analyses, data sets often contain missing values. For example,
someone filling out a questionnaire may not respond to a particular item, or
a researcher may record some observations from an experiment incorrectly.
Identifying and handling missing values is important so that you can still use
the rest of the data. R provides a standard special term to represent missing
values, NA, which reads as Not Available.

NA entries are not the same as NaN entries. Whereas NaN is used only with
respect to numeric operations, missing values can occur for any type of
observation. As such, NAs can exist in both numeric and non-numeric set-
tings. Here’s an example:

R> foo <- c("character","a",NA,"with","string",NA)

R> foo

[1] "character" "a" NA "with" "string" NA

R> bar <- factor(c("blue",NA,NA,"blue","green","blue",NA,"red","red",NA,
"green"))

R> bar

[1] blue <NA> <NA> blue green blue <NA> red 7red <NA> green
Levels: blue green red
R> baz <- matrix(c(1:3,NA,5,6,NA,8,NA),nrow=3,ncol=3)

108 Chapter 6



R> baz

[,1] [,2] [,3]
[1,] 1 NA NA
[2,] 2 5 8
[3,] 3 6 NA

The object foo is a character vector with entries 3 and 6 missing; bar is a
factor vector of length 11 with elements 2, 3, 7, and 10 missing; and baz is a
numeric matrix with row 1, columns 2 and 3, and row 3, column 3, elements
missing. In the factor vector, note that the NAs are printed as <NA>. This is to
differentiate between bona fide levels of the factor and the missing observa-
tions, to prevent NA from being mistakenly interpreted as one of the levels.

Like the other special values so far, you can identify NA elements using
the function is.na. This is often useful for removing or replacing NA values.
Consider the following numeric vector:

R> qux <- c(NA,5.89,Inf,NA,9.43,-2.35,NaN,2.10,-8.53,-7.58,NA,-4.58,2.01,NaN)
R> qux

[1] NA 5.89 Inf NA 9.43 -2.35 NaN 2.10 -8.53 -7.58 NA -4.58
[13] 2.01 NaN

This vector has a total of 14 entries, including NA, NaN, and Inf.

R> is.na(x=qux)
[1] TRUE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE
[13] FALSE TRUE

As you can see, is.na flags the corresponding NA entries in qux as TRUE.
But this is not all—note that it also flags elements 7 and 14, which are NaN,
not NA. Strictly speaking, NA and NaN are different entities, but numericly they
are practically the same since there is almost nothing you can do with either
value. Using is.na labels both as TRUE, allowing the user to remove or recode
both at the same time.

If you want to identify NA and NaN entries separately, you can use is.nan in
conjunction with logical operators. Here’s an example:

R> which(x=is.nan(x=qux))
[1] 7 14

This identifies the index positions whose elements are specifically NaN. If
you want to identify NA entries only, try the following:

R> which(x=(is.na(x=qux)&!is.nan(x=qux)))
[1] 1 412

This identifies the element indexes for only the NA entries (by checking
for entries where is.na is TRUE AND where is.nan is NOT TRUE).
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After locating the offending elements, you could use negative indexes in
square brackets to remove them, though R offers a more direct option. The
function na.omit will take a structure and delete all NAs from it; na.omit will
also apply to NaNs if the elements are numeric.

R> quux <- na.omit(object=qux)

R> quux

[1] 5.89 Inf 9.43 -2.35 2.10 -8.53 -7.58 -4.58 2.01
attr(,"na.action")

[1] 1 4 71114

attr(,"class")

[1] "omit"

Note that the structure passed to na.omit is given as the argument object
and that some additional output is displayed in printing the returned object.
These extra details are provided to inform the user that there were elements
in the original vector that were removed (in this case, the element positions
provided in the attribute na.action). Attributes will be discussed more in
Section 6.2.1.

Similar to NaN, arithmetic calculations with NA result in NA. Using rela-
tional operators with either NaN or NA will also result in NA.

R> 3+2.1%NA-4

[1] NA

R> 3*c(1,2,NA,NA,NaN,6)

[1] 3 6 NA NANaN 18
R> NA>76

[1] NA

R> 76>NaN

[1] NA

You can find more details on the usage and finer technicalities of NA
values by entering ?NA.

6.1.4 NULL

Finally, you’ll look at the null value, written as NULL. This value is often used
to explicitly define an “empty” entity, which is quite different from a “miss-
ing” entity specified with NA. An instance of NA clearly denotes an existing
position that can be accessed and/or overwritten if necessary—not so for
NULL. You can see an indication of this if you compare the assignment of NA
with the assignment of a NULL.

R> foo <- NULL
R> foo

NULL

R> bar <- NA
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R> bar
[1] NA

Note that bar, the NA object, is printed with an index position [1]. This
suggests you have a vector with a single element. In contrast, you explicitly
instructed foo to be empty with NULL. Printing this object doesn’t provide a
position index because there is no position to access.

This interpretation of NULL also applies to vectors that have other well-
defined items. Consider the following two lines of code:

R> c(2,4,NA,8)
[1] 2 4NA 8
R> c(2,4,NULL,8)
[1] 24 8

The first line creates a vector of length 4, with the third position coded
as NA. The second line creates a similar vector but using NULL instead of NA.
The result is a vector with a length of only 3. That’s because NULL cannot take
up a position in the vector. As such, it makes no sense to assign NULL to multi-
ple positions in a vector (or any other structure). Again, here’s an example:

R> c(NA,NA,NA)

[1] NA NA NA

R> c(NULL,NULL,NULL)
NULL

The first line can be interpreted as “three possible slots with unrecorded
observations.” The second line simply provides “emptiness three times,”
which is interpreted as one single, unsubsettable, empty object.

At this point, you might wonder why there is even a need for NULL. If
something is empty and doesn’t exist, why define it in the first place? The
answer lies in the need to be able to explicitly state or check whether a cer-
tain object has been defined. This occurs often when calling functions in R.
For example, when a function contains optional arguments, internally the
function has to check which of those arguments have been supplied and
which are missing or empty. The NULL value is a useful and flexible tool
that the author of a function can use to facilitate such checks. You’ll see
examples of this later on in Chapter 11.

The is.null function is used to check whether something is explicitly
NULL. Suppose you have a function with an optional argument named opt.arg
and that, if supplied, opt.arg should be a character vector of length 3. Let’s
say a user calls this function with the following.

R> opt.arg <- c("string1","string2","string3")
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Now if you check whether the argument was supplied using NA, you
might call this:

R> is.na(x=opt.arg)
[1] FALSE FALSE FALSE

The position-specific nature of NA means that this check is element-wise
and returns an answer for each value in opt.arg. This is problematic because
you want only a single answer—is opt.arg empty or is it supplied? This is
when NULL comes to the party.

R> is.null(x=opt.arg)
[1] FALSE

Quite clearly opt.arg is not empty, and the function can proceed as nec-
essary. If the argument is empty, using NULL over NA for the check is again
better for these purposes.

R> opt.arg <- c(NA,NA,NA)
R> is.na(x=opt.arg)
[1] TRUE TRUE TRUE

R> opt.arg <- c(NULL,NULL,NULL)
R> is.null(x=opt.arg)
[1] TRUE

As noted earlier, filling a vector with NULL isn’t usual practice; it’s done
here just for illustration. But usage of NULL is far from specific to this partic-
ular example. It’s commonly used throughout both ready-to-use and user-
contributed functionality in R.

The empty NULL has an interesting effect if it’s included in arithmetic or
relational comparisons.

R> NULL+53
numeric(0)
R> 53<=NULL
logical(0)

Rather than NULL as you might expect, the result is an “empty” vector of
a type determined by the nature of the operation attempted. NULL typically
dominates any arithmetic, even if it includes other special values.

R> NaN-NULL+NA/Inf
numeric(0)

NULL also occurs naturally when examining lists and data frames. For
example, define a new list foo.



R> foo <- list(memberi=c(33,1,5.2,7),member2="NA or NULL?")
R> foo

$member1

[1] 33.0 1.0 5.2 7.0

$member2
[1] "NA or NULL?"

This list obviously doesn’t include a member called member3. Look at
what happens when you try to access a member in foo by that name:

R> foo$member3
NULL

The result of NULL signals that a member called member3 in foo doesn’t
exist, or in R terms, is empty. Therefore, it can be filled with whatever
you want.

R> foo$member3 <- NA

R> foo

$member1

[1] 33.0 1.0 5.2 7.0

$member2
[1] "NA or NULL?"

$member3
[1] NA

The same principle applies when querying a data frame for a nonexis-
tent column or variable using the dollar operator (as in Section 5.2.2).

For more technical details on how NULL and is.null are handled by R, see
the help file accessed by ?NULL.

a. Consider the following line of code:

foo <- c(4.3,2.2,NULL,2.4,NaN,3.3,3.1,NULL,3.4,NA)

Decide yourself which of the following statements are true
and which are false and then use R to confirm:

i.  The length of foo is 8.
ii. Calling which(x=is.na(x=foo)) will not result in 4 and 8.
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iii. Checking is.null(x=foo) will provide you with the locations of
the two NULL values that are present.
iv. Executing is.na(x=foo[8])+4/NULL will not result in NA.

b. Create and store a list containing a single member: the vector
c(7,7,NA,3,NA,1,1,5,NA). Then, do the following:
i. Name the member "alpha".
ii. Confirm that the list doesn’t have a member with the
name "beta" using the appropriate logical valued function.
1ii. Add a new member called beta, which is the vector obtained
by identifying the index positions of alpha that are NA.

6.2 Understanding Types, Classes, and Coercion

Chapter 6

By now, you’ve studied many of the fundamental features in the R language
for representing, storing, and handling data. In this section, you’ll examine
how to formally distinguish between different kinds of values and structures
and look at some simple examples of conversion from one type to another.

6.2.1 Attributes

Each R object you create has additional information about the nature of
the object itself. This additional information is referred to as the object’s
attributes. You’ve see a few attributes already. In Section 3.1.3, you identified
the dimensions attribute of a matrix using dim. In Section 4.3.1, you used
levels to get the levels attribute of a factor. It was also noted that names can
get the member names of a list in Section 5.1.2, and in Section 6.1.3, that an
attribute annotates the result of applying na.omit.

In general, you can think of attributes as either explicit or implicit.
Explicit attributes are immediately visible to the user, while R determines
implicit attributes internally. You can print explicit attributes for a given
object with the attributes function, which takes any object and returns a
named list. Consider, for example, the following 3 X 3 matrix:

R> foo <- matrix(data=1:9,nrow=3,ncol=3)
R> foo
[,1] [,2]
[1,] 1 4
[2,] 2 5
3,1 3 6
R> attributes(foo)
$dim
[1] 33




Here, calling attributes returns a list with one member: dim. Of course,
you can retrieve the contents of dim with attributes(foo)$dim, but if you know
the name of an attribute, you can also use attr:

R> attr(x=foo,which="dim")
[1] 33

This function takes the object in as x and the name of the attribute as
which. Recall that names are specified as character strings in R. To make
things even more convenient, the most common attributes have their own
functions (usually named after the attribute) to access the corresponding
value. For the dimensions of a matrix, you’ve already seen the function dim.

R> dim(foo)
[1] 33

These attribute-specific functions are useful because they also allow
access to implicit attributes, which, while still controllable by the user, are set
automatically by the software as a matter of necessity. The names and levels
functions mentioned earlier are also both attribute-specific functions.

Explicit attributes are often optional; if they aren’t specified, they are
NULL. For example, when building a matrix with the matrix function, you can
use the optional argument dimnames to annotate the rows and columns with
names. You pass dimnames a list made up of two members, both character vec-
tors of the appropriate lengths—the first giving row names and the second
giving column names. Let’s define the matrix bar as follows:

R> bar <- matrix(data=1:9,nrow=3,ncol=3,dimnames=list(c("A","B","C"),
c("D","E","F")))
R> bar
DEF
A147
B2538
€369

Because the dimension names are attributes, the dimnames appear when
you call attributes(bar).

R> attributes(bar)

$dim

[1] 33
$dimnames
$dimnames[[1]]
[a] "A"™ "B" "C"
$dimnames[[2]]
[1] "D" "E" "F"
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Note that dimnames is itself a list, nested inside the larger attributes list.
Again, to extract the values of this attribute, you can use list member ref-
erencing, you can use attr as shown earlier, or you can use the attribute-
specific function.

R> dimnames (bar)

[[1]]
[1] "A™ "B" "C"

([2]]
[1] "D" "E" "F"

Some attributes can be modified after an object has been created (as
you saw already in Section 5.1.2, where you renamed members of a list).
Here, to make foo match bar exactly, you can give foo some dimnames by
assigning them to the attribute-specific function:

R> dimnames(foo) <- list(c("A","B","C"),c("D","E","F"))
R> foo
DEF
A147
B2538
C3609

I've used matrices in the discussion here, but optional attributes for
other objects in R are treated the same way. Attributes are not restricted
to built-in R objects, either. Objects you build yourself can be defined with
their own attributes and attribute-specific functions. Just remember that the
role of an attribute is typically to provide descriptive data about an object, or
you could end up overcomplicating your object structures unnecessarily.

6.2.2 Object Class

An object’s class is one of the most useful attributes for describing an entity
in R. Every object you create is identified, either implicitly or explicitly, with
at least one class. R is an object-oriented programming language, meaning
entities are stored as objects and have methods that act upon them. In such
a language, class identification is formally referred to as inheritance.

This section will focus on the most common classing structure used in R, called S3.
There is another structure, S4, which is essentially a more formal set of rules for the
identification and treatment of different objects. For most practical intents and cer-
tainly for beginners, understanding and using S3 will be sufficient. You can find
Sfurther details in R’s online documentation.

The class of an object is explicit in situations where you have user-
defined object structures or an object such as a factor vector or data frame
where other attributes play an important part in the handling of the object
itself—for example, level labels of a factor vector, or variable names in a data



frame, are modifiable attributes that play a primary role in accessing the
observations of each object. Elementary R objects such as vectors, matrices,
and arrays, on the other hand, are implicitly classed, which means the class
is not identified with the attributes function. Whether implicit or explicit,
the class of a given object can always be retrieved using the attribute-specific
function class.

Stand-Alone Vectors

Let’s create some simple vectors to use as examples.

R> num.vecl <- 1:4

R> num.vec1i

[1]1234

R> num.vec2 <- seq(from=1,to=4,length=6)

R> num.vec2

[1] 1.0 1.6 2.2 2.8 3.4 4.0

R> char.vec <- c("a","few","strings", "here")

R> char.vec

[1] "a" "few" "strings" "here"

R> logic.vec <- c(T,F,F,F,T,F,T,T)

R> logic.vec

[1] TRUE FALSE FALSE FALSE TRUE FALSE TRUE TRUE
R> fac.vec <- factor(c("Blue","Blue","Green","Red","Green","Yellow"))
R> fac.vec

[1] Blue Blue Green Red Green Yellow
Levels: Blue Green Red Yellow

You can pass any object to the class function, and it returns a character
vector as output. Here are examples using the vectors just created:

R> class(num.vec1)
[1] "integer"

R> class(num.vec2)
[1] "numeric"

R> class(char.vec)
[1] "character"

R> class(logic.vec)
[1] "logical®

R> class(fac.vec)
[1] "factor"

The output from using class on the character vector, the logical vector,
and the factor vector simply match the kind of data that has been stored.
The output from the number vectors is a little more intricate, however. So
far, I've referred to any object with an arithmetically valid set of numbers as
“numeric.” If all the numbers stored in a vector are whole, then R identifies
the vector as "integer". Numbers with decimal places (called floating-point
numbers), on the other hand, are identified as "numeric". This distinction
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is necessary because some tasks strictly require integers, not floating-point
numbers. Colloquially, I'll continue to refer to both types as “numeric” and
in fact, the is.numeric function will return TRUE for both integer and floating-
point structures, as you’ll see in Section 6.2.3.

Other Data Structures

As mentioned earlier, R’s classes are essentially designed to facilitate object-
oriented programming. As such, class usually reports on the nature of the
data structure, rather than the type of data that’s stored—it returns the data
type only when used on stand-alone vectors. Let’s try it on some matrices.

R> num.matl <- matrix(data=num.veci,nrow=2,ncol=2)
R> num.mat1
[,1] [,2]
[1,] 1 3
[2,] 2 4
R> num.mat2 <- matrix(data=num.vec2,nrow=2,ncol=3)
R> num.mat2
[,1] [,2] [,3]
[1,] 1.0 2.2 3.4
[2,] 1.6 2.8 4.0
R> char.mat <- matrix(data=char.vec,nrow=2,ncol=2)
R> char.mat
1] [,2]
[1,] "a"  "strings"
[2,] "few" "here"
R> logic.mat <- matrix(data=logic.vec,nrow=4,ncol=2)
R> logic.mat
[1] [,2]
1,] TRUE TRUE
2,] FALSE FALSE
3,] FALSE TRUE

[
[
[
[4,] FALSE TRUE

Note from Section 4.3.1 that factors are used only in vector form, so
fac.vec is not included here. Now check these matrices with class.

R> class(num.mat1)

[1] "matrix"
R> class(num.mat2)
[1] "matrix"
R> class(char.mat)
[1] "matrix"
R> class(logic.mat)
[1] "matrix"




NOTE

You see that regardless of the data type, class reports the structure of
the object itself—all matrices. The same is true for other object structures,
like arrays, lists, and data frames.

Multiple Classes

Certain objects will have multiple classes. A variant on a standard form of
an object, such as an ordered factor vector, will inherit the usual factor class
and also contain the additional ordered class. Both are returned if you use
the class function.

R> ordfac.vec <- factor(x=c("Small","Large","Large","Regular","Small"),
levels=c("Small","Regular","Large"),
ordered=TRUE)

R> ordfac.vec

[1] Small Large Large Regular Small

Levels: Small < Regular < Large

R> class(ordfac.vec)

[1] "ordered" "factor"

Earlier, fac.vec was identified as "factor" only, but the class of ordfac.vec
has two components. It’s still identified as "factor", but it also includes
"ordered", which identifies the variant of the "factor" class also present in
the object. Here, you can think of "ordered" as a subclass of "factor". In other
words, it is a special case that inherits from, and therefore behaves like, a
"factor". For further technical details on R subclasses, I recommend Chap-
ter 9 of The Art of R Programming by Matloft (2011).

I have focused on the class function here because it’s directly relevant to the object-
oriented programming style exercised in this text, especially in Part II. There are other
Junctions that show some of the complexities of R’s classing rules. For example, the
Jfunction typeof reports the type of data contained within an object, not just for vectors
but also for matrices and arrays. Note, however, that the terminology in the output of
typeof doesn’t always match the output of class. See the help file 2typeof for details
on the values it returns.

To summarize, an object’s class is first and foremost a descriptor of the
data structure, though for simple vectors, the class function reports the type
of data stored. If the vector entries are exclusively whole numbers, then R
classes the vector as "integer", whereas "numeric” is used to label a vector with
floating-point numbers.

6.2.3 Is-Dot Object-Checking Functions

Identifying the class of an object is essential for functions that operate on
stored objects, especially those that behave differently depending on the
class of the object. To check whether the object is a specific class or data
type, you can use the is-dot functions on the object and it will return a TRUE
or FALSE logical value.
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Is-dot functions exist for almost any sensible check you can think of. For
example, consider once more the num.vec1 vector from Section 6.2.2 and the
following six checks:

R> num.vecl <- 1:4

R> num.vec1

[1]1234

R> is.integer(num.vec1)
[1] TRUE

R> is.numeric(num.vecl)
[1] TRUE

R> is.matrix(num.vec1)
[1] FALSE

R> is.data.frame(num.vec1)
[1] FALSE

R> is.vector(num.vec1)
[1] TRUE

R> is.logical(num.vecl)
[1] FALSE

The first, second, and sixth is-dot functions check the kind of data
stored in the object, while the others check the structure of the object itself.
The results are to be expected: num.vec1 is an “integer” (and is “numeric”),
and it is a “vector.” It’s not a matrix or a data frame, nor is it logical.

Briefly, it’s worth noting that these checks use more general categories
than the formal classes identified with class. Recall that num.vec1 was identi-
fied solely as "integer" in Section 6.2.2, but using is.numeric here still returns
TRUE. In this example, the num.vec1 with integer data is generalized to be
"numeric". Similarly, for a data frame, an object of class "data.frame" will
return TRUE for is.data.frame and is.list because a data frame is intuitively
generalized to a list.

There’s a difference between the object is-dot functions detailed here
and functions such as is.na discussed in Section 6.1. The functions to check
for the special values like NA should be thought of as a check for equality;
they exist because it is not legal syntax to write something like foo==NA. Those
functions from Section 6.1 thus operate in R’s element-wise fashion, whereas
the object is-dot functions inspect the object itself, returning only a single
logical value.

6.2.4 As-Dot Coercion Functions

You've seen different ways to modify an object after it’s been created—by
accessing and overwriting elements, for example. But what about the struc-
ture of the object itself and the type of data contained within?

Converting from one object or data type to another is referred to as
coercion. Like other features of R you’ve met so far, coercion is performed
either implicitly or explicitly. Implicit coercion occurs automatically when



elements need to be converted to another type in order for an operation to
complete. In fact, you’ve come across this behavior already, in Section 4.1.4,
for example, when you used numeric values for logical values. Remember
that logical values can be thought of as integers—one for TRUE and zero

for FALSE. Implicit coercion of logical values to their numeric counterparts
occurs in lines of code like this:

R> 1:4+c(T,F,F,T)
[1]2235

In this operation, R recognizes that you’re attempting an arithmetic cal-
culation with +, so it expects numeric quantities. Since the logical vector is
not in this form, the software internally coerces it to ones and zeros before
completing the task.

Another frequent example of implicit coercion is when paste and cat are
used to glue together character strings, as explored in Section 4.2.2. Non-
character entries are automatically coerced to strings before the concatena-
tion takes place. Here’s an example:

R> foo <- 34

R> bar <- T

R> paste("Definitely foo: ",foo,"; definitely bar: ",bar,
[1] "Definitely foo: 34; definitely bar: TRUE."

. ,Sep="")

Here, the integer 34 and the logical T are implicitly coerced to characters
since R knows the output of paste must be a string.

In other situations, coercion won’t happen automatically and must
be carried out by the user. This explicit coercion can be achieved with the
as-dot functions. Like is-dot functions, as-dot functions exist for most typical
R data types and object classes. The previous two examples can be coerced
explicitly, as follows.

R> as.numeric(c(T,F,F,T))

[1]1001

R> 1:4+as.numeric(c(T,F,F,T))

[1] 2235

R> foo <- 34

R> foo.ch <- as.character(foo)

R> foo.ch

[1] "34"

R> bar <- T

R> bar.ch <- as.character(bar)

R> bar.ch

[1] "TRUE"

R> paste("Definitely foo: ",foo.ch,"; definitely bar: ",bar.ch,".",sep="")
[1] "Definitely foo: 34; definitely bar: TRUE."
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Coercions are possible in most cases that “make sense.” For example, it’s
easy to see why R is able to read something like this:

R> as.numeric("32.4")
[1] 32.4

However, the following conversion makes no sense:

R> as.numeric("g'day mate")
[1] NA

Warning message:

NAs introduced by coercion

Since there is no logical way to translate “g’day mate” into numbers,
the entry is returned as NA (in this case, R has also issued a warning mes-
sage). This means that in certain cases, multiple coercions are needed to
attain the final result. Suppose, for example, you have the character vector
c("1","0","1","0","0") and you want to coerce it to a logical-valued vector.
Direct character to logical coercion is not possible, because even if all the
character strings contained numbers, there is no guarantee in general that
they would all be ones and zeros.

R> as.logical(c(“l"’"O","l","0“,"0"))
[1] NA NA NA NA NA

However, you know that character string numbers can be converted to
a numeric data type, and you know that ones and zeros are easily coerced to
logicals. So, you can perform the coercion in those two steps, as follows:

R> as.logical(as.numeric(c("1","0","1","0","0")))
[1] TRUE FALSE TRUE FALSE FALSE

Not all data-type coercion is entirely straightforward. Factors, for
example, are trickier because R treats the levels as integers. In other words,
regardless of how the levels of a given factor are actually labeled, the soft-
ware will refer to them internally as level 1, level 2, and so on. This is clear
if you try to coerce a factor to a numeric data type.

R> baz <- factor(x=c("male","male","female","male"))
R> baz

[1] male male female male

Levels: female male

R> as.numeric(baz)

[1]1 2212

Here, you see that R has assigned the numeric representation of the fac-
tor in the stored order of the factor labels (alphabetic by default). Level 1
refers to female, and level 2 refers to male. This example is simple enough,



though it’s important to be aware of the behavior since coercion from fac-
tors with numeric levels can cause confusion.

R> qux <- factor(x=c(2,2,3,5))
R> qux

[1] 2235

Levels: 2 3 5

R> as.numeric(qux)

[1] 1123

The numeric representation of the factor qux is c(1,1,2,3). This high-
lights again that the levels of qux are simply treated as level 1 (even though
it has a label of 2), level 2 (which has a label of 3), and level 3 (which has a
label of 5).

Coercion between object classes and structures can also be useful. For
example, you might need to store the contents of a matrix as a single vector.

R> foo <- matrix(data=1:4,nrow=2,ncol=2)
R> foo
[,1] [,2]
[1,] 1 3
[2,] 2 4
R> as.vector(foo)
[11 1234

Note that as.vector has coerced the matrix by “stacking” the columns
into a single vector. The same column-wise deconstruction occurs for
higher-dimensional arrays, in order of layer or block.

R> bar <- array(data=c(8,1,9,5,5,1,3,4,3,9,8,8),dim=c(2,3,2))
R> bar
))1

(1] [,2] [,3]

[1,] 8 9 5
[2,] 1 5 1

R> as.matrix(bar)

[»1]
(1,] 8
(2,] 1
3,1 9
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(4,1 5
[5] 5
[6,] 1
(7,1 3
(8,1 4
[9;1 3
[10,] 9
[11,] 8
[12,] 8

R> as.vector(bar)
[1] 8195513439838

You can see that as.matrix stores the array as a 12 X 1 matrix, and
as.vector stores it as a single vector. Similar commonsense rules for data
types apply to coercion when working with object structures. For example,
coercing the following list baz to a data frame produces an error:

R> baz <- list(vari=foo,var2=c(T,F,T),var3=factor(x=c(2,3,4,4,2)))
R> baz
$vari

$var2
[1] TRUE FALSE TRUE

$var3
[1]123442
Levels: 2 3 4

R> as.data.frame(baz)
Error in data.frame(vari = 1:4, var2 = c(TRUE, FALSE, TRUE), var3 = c(iL,
arguments imply differing number of rows: 2, 3, 5

The error occurs because the variables do not have matching lengths.
But there is no problem with coercing the list qux, shown here, which has
equal-length members:

R> qux <- list(vari=c(3,4,5,1),var2=c(T,F,T,T),var3=factor(x=c(4,4,2,1)))
R> qux

$varl

[1] 3451

$var2
[1] TRUE FALSE TRUE TRUE



$var3
[1]4421
Levels: 12 4

R> as.data.frame(qux)
varl var2 var3

1 3 TRUE 4
2 4 FALSE 4
3 5 TRUE 2
4 1 TRUE 1

This stores the variables as a data set in a column-wise fashion, in the
order that your list supplies them as members.

This discussion on object classes, data types, and coercion is not
exhaustive, but it serves as a useful introduction to how R deals with issues
surrounding the formal identification, description, and handling of the
objects you create—issues that are present for most high-level languages.
Once you’re more familiar with R, the help files (such as the one accessed
by entering ?as at the prompt) provide further details about object handling
in the software.

a. Identify the class of the following objects. For each object, also
state whether the class is explicitly or implicitly defined.
i. foo <- array(data=1:36,dim=c(3,3,4))
ii. bar <- as.vector(foo)
ili. baz <- as.character(bar)
iv. qux <- as.factor(baz)
V. quux <- bar+c(-0.1,0.1)

b. For each object defined in (a), find the sum of the result of
calling is.numeric and is.integer on it separately. For example,
is.numeric(foo)+is.integer(foo) would compute the sum for (i).
Turn the collection of five results into a factor with levels o, 1,
and 2, identified by the results themselves. Compare this factor
vector with the result of coercing it to a numeric vector.

c. Turn the following:

(1] [,2] [,3] [,4]
[1,] 2 5 8 11
[2,] 3 6 9 12
[3,] 4 7 10 13

into the following:

[1] u2u u5u "8“ "11" ||3|| ||6u ||9u "12" u4|| ||7|| ||10u ||13u
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d. Store the following matrix:

34 0 1
23 1 2
33 1 1
42 0 1
41 0 2

Then, do the following:

i.  Coerce the matrix to a data frame.

ii. As adataframe, coerce the second column to be logical-

valued.

iii. As a data frame, coerce the third column to be factor-valued.

Important Code in This Chapter

Function/operator  Brief description First occurrence

Inf, -Inf Value for +infinity Section 6.1.1, p. 104
is.infinite Element-wise check for Inf Section 6.1.1, p. 105
is.finite Element-wise check for finiteness  Section 6.1.1, p. 105
NaN Value for invalid numerics Section 6.1.2, p. 106
is.nan Element-wise check for NaN Section 6.1.2, p. 107
NA Value for missing observation Section 6.1.3, p. 108
is.na Element-wise check for NA OR NaN  Section 6.1.3, p. 109
na.omit Delete all Nas and Nans Section 6.1.3, p. 110
NULL Value for “empty” Section 6.1.4, p. 110
is.null Check for nuLL Section 6.1.4, p. 111
attributes List explicit attributes Section 6.2.1, p. 114
attr Obtain specific attribute Section 6.2.1, p. 115
dimnames Get array dimension names Section 6.2.1, p. 116
class Get object class (S3) Section 6.2.2, p. 117
is._ Obijectchecking functions Section 6.2.3, p. 120
as. Object-coercion functions Section 6.2.4, p. 121




BASIC PLOTTING

One particularly popular feature of R is
its incredibly flexible plotting tools for
data and model visualization. This is what
draws many to R in the first place. Mastering
R’s graphical functionality does require practice, but
the fundamental concepts are straightforward. In this

chapter, I'll provide an overview of the plot function and some useful
options for controlling the appearance of the final graph. Then I’ll cover
the basics of using ggplot2, a powerful library for visualizing data in R. This
chapter will cover just the basics of plotting, and then you’ll learn more
about creating different types of statistical plots in Chapter 14, and about
advanced plotting techniques in Part V.

7.1 Using plot with Coordinate Vectors

The easiest way to think about generating plots in R is to treat your screen
as a blank, two-dimensional canvas. You can plot points and lines using x-
and y-coordinates. On paper, these coordinates are usually represented
with points written as a pair: (x value, y value). The R function plot, on the
other hand, takes in two vectors—one vector of x locations and one vector
of y locations—and opens a graphics device where it displays the result. If a
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graphics device is already open, R’s default behavior is to refresh the device,
overwriting the current contents with the new plot.

For example, let’s say you wanted to plot the points (1.1,2), (2,2.2),
(3.5,-1.3), (3.9,0), and (4.2,0.2). In plot, you must provide the vector of x
locations first, and the y locations second. Let’s define these as foo and bar,
respectively:

R> foo <- c(1.1,2,3.5,3.9,4.2)
R> bar <- c¢(2,2.2,-1.3,0,0.2)
R> plot(foo,bar)

Figure 7-1 shows the resulting graphics device with the plot (I'll use this
simple data set as a working example throughout this section).

800 Quartz 2 [*]

bar
0.0 0.5 1.0 15 2.0
| 1
o
o]

-0.5
1

-1.0

foo

Figure 7-1: The five plotted points using R’s default behavior

The x and y locations don’t necessarily need to be specified as separate
vectors. You can also supply coordinates in the form of a matrix, with the
x values in the first column and the y values in the second column, or as a
list. For example, setting up a matrix of the five points, the following code
exactly reproduces Figure 7-1 (note the window pane will look slightly differ-
ent depending on your operating system):

R> baz <- cbind(foo,bar)
R> baz
foo bar



[1,] 1.2 2.0
[2,] 2.0 2.2
[3,] 3.5 -1.3
[4,] 3.9 0.0
[5,]1 4.2 0.2
R> plot(baz)

The plot function is one of R’s versatile generic functions. It works dif-
ferently for different objects and allows users to define their own methods
for handling objects (including user-defined object classes). Technically, the
version of the plot command that you’ve just used is internally identified as
plot.default. The help file ?plot.default provides additional details on this
scatterplot style of data visualization.

7.2 Graphical Parameters

There are a wide range of graphical parameters that can be supplied as argu-
ments to the plot function (or other plotting functions, such as those in
Section 7.3). These parameters invoke simple visual enhancements, like
coloring the points and adding axis labels, and can also control technical
aspects of the graphics device (Chapter 23 covers the latter in more detail).
Some of the most commonly used graphical parameters are listed here; I’ll
briefly discuss each of these in turn in the following sections:

type Tells R how to plot the supplied coordinates (for example, as
stand-alone points or joined by lines or both dots and lines).

main, xlab, ylab Options to include plot title, the horizontal axis label,
and the vertical axis label, respectively.

col Color (or colors) to use for plotting points and lines.

pch Stands for point character. This selects which character to use for
plotting individual points.

cex Stands for character expansion. This controls the size of plotted point
characters.

1ty Stands for line type. This specifies the type of line to use to connect
the points (for example, solid, dotted, or dashed).

lwd Stands for line width. This controls the thickness of plotted lines.

xlim, ylim This provides limits for the horizontal range and vertical
range (respectively) of the plotting region.

7.2.1 Avtomatic Plot Types

By default, the plot function will plot individual points, as shown in Fig-

ure 7-1. This is the default plot type, but other plot types will have a differ-
ent appearance. To control the plot type, you can specify a single character-
valued option for the argument type.
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For example, in many cases it makes sense to show lines connecting
each coordinate, such as when plotting time series data. For this, you would
specify plot type "1". Using foo and bar from Section 7.1, the following pro-
duces the plot in the left panel of Figure 7-2:

R> plot(foo,bar,type="1")
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Figure 7-2: A line plot produced using five adjoined coordinates, setting type="1" (left)
or type="b" (right)

The default value for type is "p", which can be interpreted as “points
only.” Since you didn’t specify anything different, this is what was used for
the graph in Figure 7-1. In this last example, on the other hand, you've set
type="1" (meaning “lines only”). Other options include "b" for both points
and lines (shown in the right panel of Figure 7-2) and "o" for overplotting
the points with lines (this eliminates the gaps between points and lines vis-
ible for type="b"). The option type="n" results in no points or lines plotted,
creating an empty plot, which can be useful for complicated plots that must
be constructed in steps.

7.2.2 Title and Axis Labels

By default, a basic plot won’t have a main title, and its axes will be labeled
with the names of the vectors being plotted. But a main title and more
descriptive axis labels often make the plotted data easier to interpret. You
can add these by supplying text as character strings to main for a title, x1ab
for the x-axis label, and ylab for the y-axis label. Note that these strings may
include escape sequences (discussed in Section 4.2.3). The following code
produces the plots in Figure 7-3:

R> plot(foo,bar,type="b",main="My lovely plot",xlab="x axis label",
ylab="location y")

R> plot(foo,bar,type="b",main="My lovely plot\ntitle on two lines",xlab="",
ylab="")
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Figure 7-3: Two examples of plots with axis labels and titles

In the second plot, note how the new line escape sequence splits the
title into two lines. In that plot, xlab and ylab are also set to the empty
string "" to prevent R from labeling the axes with the names of the x and
y vectors.

7.2.3 Color

Adding color to a graph is far from just an aesthetic consideration. Color
can make data much clearer—for example by distinguishing factor levels
or emphasizing important numeric limits. You can set colors with the col
parameter in a number of ways. The simplest options are to use an integer
selector or a character string. There are a number of color string values
recognized by R, which you can see by entering colors() at the prompt.
The default color is integer 1 or the character string "black”. The top row
of Figure 7-4 shows two examples of colored graphs, created by the follow-
ing code:

R> plot(foo,bar,type="b",main="My lovely plot",xlab="",ylab="",col=2)
R> plot(foo,bar,type="b",main="My lovely plot",xlab="",ylab="",col="seagreens")

There are eight possible integer values (shown in the leftmost plot of
Figure 7-5) and around 650 character strings to specify color. But you aren’t
limited to these options since you can also specify colors using RGB (red,
green, and blue) levels and by creating your own palettes. I'll talk more
about the last two options in Chapter 25.
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Figure 7-4: Experimenting with basic R plotting. Top row: Two examples of colored plots
with col=2 (left) and col="seagreens" (right]. Middle row: Two further examples making
use of pch, 1ty, cex, and 1wd. Bottom row: Setting plotting region limits x1im=c(-10,5),
ylim=c(-3,3) (left], and xlim=c(3,5), ylim=c(-0.5,0.2) (right).
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7.2.4 line and Point Appearances

To alter the appearance of the plotted points you would use pch, and to
alter the lines you would use 1ty. The pch parameter controls the character
used to plot individual data points. You can specify a single character to
use for each point, or you can specify a value between 1 and 25 (inclusive).
The symbols corresponding to each integer are shown in the middle plot
of Figure 7-5. The 1ty parameter, which affects the type of line drawn, can
take the values 1 through 6. These options are shown in the rightmost plot
of Figure 7-5.
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Figure 7-5: Some reference plots giving the results of possible integer options of col (left,
pch (middle), and 1ty (right)

You can also control the size of plotted points using cex and the thick-
ness of lines using lwd. The default size and thickness for both of these is
1. To request half-size points, for example, you’d specify cex=0.5; to specify
double-thick lines, use lwd=2.

The following two lines produce the two plots in the middle row of Fig-
ure 7-4, showing off pch, 1ty, cex, and lwd:

R> plot(foo,bar,type="b",main="My lovely plot",xlab="",ylab="",
col=4,pch=8,1ty=2,cex=2.3,1wd=3.3)
R> plot(foo,bar,type="b",main="My lovely plot",xlab="",ylab="",

col=6,pch=15,1ty=3,cex=0.7,1lwd=2)

7.2.5 Plotting Region Limits

As you can see in the plots of foo and bar, by default R sets the range of
each axis by using the range of the supplied x and y values (plus a small
constant to pad a little area around the outermost points). But you might
need more space than this to, for example, annotate individual points, add
alegend, or plot additional points that fall outside the original ranges (as
you’ll see in Section 7.3). You can set custom plotting area limits using x1im
and ylim. Both parameters require a numeric vector of length 2, provided as
c(lower,upper).
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Consider the plots in the bottom row of Figure 7-4, created with the fol-
lowing two commands:

R> plot(foo,bar,type="b",main="My lovely plot",xlab="",ylab="",
col=4,pch=8,1ty=2,cex=2.3,1wd=3.3,x1lim=c(-10,5),ylim=c(-3,3))

R> plot(foo,bar,type="b",main="My lovely plot",xlab="",ylab="",
col=6,pch=15,1ty=3,cex=0.7,1lwd=2,x1im=c(3,5),ylim=c(-0.5,0.2))

These plots are exactly the same as the two in the middle row, except
for one important difference. In the bottom-left plot of Figure 7-4, the x-
and y-axes are set to be much wider than the observed data, and the plot on
the right restricts the plotting window so that only a portion of the data is
displayed.

7.3 Adding Points, Lines, and Text to an Existing Plot

Chapter 7

Generally speaking, each call to plot will refresh the active graphics device
for a new plotting region. But this is not always desired—to build more com-
plicated plots, it’s easiest to start with an empty plotting region and progres-
sively add any required points, lines, text, and legends to this canvas. Here
are some useful, ready-to-use functions in R that will add to a plot without
refreshing or clearing the window:

points Adds points

lines, abline, segments Adds lines

text Writes text

arrows Adds arrows

legend Adds alegend

The syntax for calling and setting parameters for these functions is the
same as plot. The best way to see how these work is through an extended

example, which I'll base on some hypothetical data made up of 20 (x,y)
locations.

R> x <- 1:20
R> y <- c(-1.49,3.37,2.59,-2.78,-3.94,-0.92,6.43,8.51,3.41,-8.23,
-12.01,-6.58,2.87,14.12,9.63,-4.58,-14.78,-11.67,1.17,15.62)

Using these data, you’ll build up the plot shown in Figure 7-6 (note
that you may need to manually enlarge your graphics device and replot
to ensure the legend doesn’t overlap other features of the image). It’s
worth remembering a generally accepted rule in plotting: “keep it clear
and simple.” Figure 7-6 is an exception for the sake of demonstrating the
R commands used.
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Figure 7-6: An elaborate final plot of some hypothetical data

In Figure 7-6, the data points will be plotted differently according to
their x and y locations, depending on their relation to the “sweet spot”
pointed out in the figure. Points with a y value greater than 5 are marked
with a purple X; points with a y value less than —5 are marked with a
green +. Points between these two y values but still outside of the sweet
spot are marked with a o. Finally, points in the sweet spot (with x between
5 and 15 and with y between —b5 and 5) are marked as a blue o. Red horizon-
tal and vertical lines delineate the sweet spot, which is labeled with an arrow,
and there’s also a legend.

Ten lines of code were used to build this plot in its entirety (plus one
additional line to add the legend). The plot, as it looks at each step, is given
in Figure 7-7. The lines of code are detailed next.

1. The first step is to create the empty plotting region where you can add
points and draw lines. This first line tells R to plot the data in x and y,
though the option type is set to "n". As mentioned in Section 7.2, this
opens or refreshes the graphics device and sets the axes to the appropri-

ate lengths (with labels and axes), but it doesn’t plot any points or lines.

R> plot(x,y,type="n",main="")

2. The abline function is a simple way to add straight lines spanning a
plot. The line (or lines) can be specified with slope and intercept values
(see the later discussions on regression in Chapter 20). You can also
simply add horizontal or vertical lines. This line of code adds two
separate horizontal lines, one at y = 5 and the other at y = 5, using
h=c(-5,5). The three parameters (covered in Section 7.2) make these
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Figure 7-7: Building the final plot given in Figure 7-6. The plots (1)
through (10) correspond to the itemized lines of code in the text.
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two lines red, dashed, and double-thickness. For vertical lines, you could
have written v=c(-5,5), which would have drawn them at x = —5 and
x =b5.

R> abline(h=c(-5,5),col="red",1ty=2,1wd=2)

The third line of code adds shorter vertical lines between the horizontal
ones drawn in step 2 to form a box. For this you use segments, not abline,
since you don’t want these lines to span the entire plotting region. The
segments command takes a “from” coordinate (given as x0 and yo) and

a “to” coordinate (as x1 and y1) and draws the corresponding line. The
vector-oriented behavior of R matches up the two sets of “from” and “to”
coordinates. Both lines are red and dotted and have double-thickness.
(You could also supply vectors of length 2 to these parameters, in which
case the first segment would use the first parameter value and the sec-
ond segment would use the second value.)

R> segments(x0=c(5,15),y0=c(-5,-5),x1=c(5,15),y1=c(5,5),col="red",1ty=3,
1wd=2)

As step 4, you use points to begin adding specific coordinates from x
and y to the plot. Just like plot, points takes two vectors of equal lengths
with x and y values. In this case, you want points plotted differently
according to their location, so you use logical vector subsetting (see
Section 4.1.5) to identify and extract elements of x and y where the y
value is greater than or equal to 5. These (and only these) points are
added as purple X symbols and are enlarged by a factor of 2 with cex.

R> points(x[y>=5],y[y>=5],pch=4,col="darkmagenta",cex=2)

The fifth line of code is much like the fourth; this time it extracts the
coordinates where y values are less than or equal to —=5. A + point char-
acter is used, and you set the color to dark green.

R> points(x[y<=-5],y[y<=-5],pch=3,col="darkgreen",cex=2)

The sixth step adds the blue “sweet spot” points, which are identified
with (x>=58x<=15)&(y>-58y<5). This slightly more complicated set of condi-
tions extracts the points whose x location lies between 5 and 15 (inclu-
sive) AND whose y location lies between —5 and 5 (exclusive). Note that
this line uses the “short” form of the logical operator & throughout since
you want element-wise comparisons here (see Section 4.1.3).

R> points(x[ (x>=58x<=15)&(y>-58y<5)],y[ (x>=58x<=15)&(y>-58y<5)],pch=19,
col="blue")

This next command identifies the remaining points in the data set (with
an x value that is either less than 5 OR greater than 15 AND a y value
between —5 and 5). No graphical parameters are specified, so these
points are plotted with the default black o.

R> points(x[(x<5]|x>15)&(y>-58y<5)1,y[(x<5|x>15)&(y>-58y<5)])
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8. To draw lines connecting the coordinates in x and y, you use lines. Here
you’ve also set 1ty to 4, which draws a dash-dot-dash style line.

R> lines(x,y,lty=4)

9. The ninth line of code adds the arrow pointing to the sweet spot. The
function arrows is used just like segments, where you provide a “from”
coordinate (x0, yo) and a “to” coordinate (x1, y1). By default, the head
of the arrow is located at the “to” coordinate, though this (and other
options such as the angle and length of the head) can be altered using
optional arguments described in the help file ?arrows.

R> arrows(x0=8,y0=14,x1=11,y1=2.5)

10. The tenth line prints a label on the plot at the top of the arrow. As
per the default behavior of text, the string supplied as labels is centered
on the coordinates provided with the arguments x and y.

R> text(x=8,y=15,labels="sweet spot")

As a finishing touch, you can add the legend with the legend function,
which gives you the final product shown in Figure 7-6.

legend("bottomleft"”,
legend=c("overall process standard",

"too big","too small","sweet y range","sweet x range"),
pch=c(NA,19,1,4,3,NA,NA), 1ty=c(4,NA,NA,NA,NA,2,3),
col=c("black","blue", "black","darkmagenta","darkgreen", "red","red"),
lwd=c(1,NA,NA,NA,NA,2,2),pt.cex=c(NA,1,1,2,2,NA,NA))

, 'sweet",

The first argument sets where the legend should be placed. There are
various ways to do this (including setting exact x- and y-coordinates), but
it often suffices to pick a corner using one of the four following character
strings: "topleft”, "topright", "bottomleft", or "bottomright". Next you supply
the labels as a vector of character strings to the legend argument. Then you
need to supply the remaining argument values in vectors of the same length
so that the right elements match up with each label.

For example, for the first label ("overall process"), you want a line
of type 4 with default thickness and color. So, in the first positions of the
remaining argument vectors, you set pch=NA, 1ty=4, col="black", lwd=1, and
pt.cex=NA (all of these are default values, except for 1ty). Here, pt.cex simply
refers to the cex parameter when calling points (using just cex in legend would
expand the text used, not the points).

Note that you have to fill in some elements in these vectors with NA when
you don’t want to set the corresponding graphical parameter. This is just
to preserve the equal lengths of the vectors supplied so R can track which
parameter values correspond to each particular reference. As you work
through this book, you’ll see plenty more examples using legend.
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b. With the following data, create a plot of weight on the x-axis and
height on the y-axis. Use different point characters or colors to
distinguish between males and females and provide a matching
legend. Label the axes and give the plot a title.

Weight (kg)  Height (cm)  Sex

55 161 female
85 185 male
75 174 male
42 154 female
93 188 male
63 178 male
58 170 female
75 167 male
89 181 male
67 178 female

7.4 The ggplot2 Package

This chapter so far has shown off R’s built-in graphical tools (often called
base R graphics or traditional R graphics). Now, let’s look at another important
suite of graphical tools: ggplot2, a prominent contributed package by Hadley
Wickham (2009). Available on CRAN like any other contributed package,
ggplot2 offers particularly powerful alternatives to the standard plotting pro-
cedures in R. The gg stands for grammar of graphics—a particular approach
to graphical production described by Wilkinson (2005). In following this
approach, ggplot2 standardizes the production of different plot and graph
types, streamlines some of the more fiddly aspects of adding to existing plots
(such as including a legend), and lets you build plots by defining and manip-
ulating layers. For the moment, let’s see the elementary behavior of ggplot2
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using the same simple examples in Sections 7.1-7.3. You’ll get familiar with
the basic plotting function gplot and how it differs from the generic plot
function used earlier. I'll return to the topic of ggplot2 when I cover statis-
tical plots in Chapter 14, and you’ll investigate even more advanced abilities
in Chapter 24.

7.4.1 A Quick Plot with qplot

First, you must install the ggplot2 package by downloading it manually
or simply entering install.packages("ggplot2") at the prompt (see Sec-
tion A.2.3). Then, load the package with the following:

R> library("ggplot2")

Now, let’s go back to the five data points originally stored in Section 7.1
as foo and bar.

R> foo <- c(1.1,2,3.5,3.9,4.2)
R> bar <- ¢(2,2.2,-1.3,0,0.2)

You can produce ggplot2’s version of Figure 7-1 using its “quick plot”
function gplot.

R> gplot(foo,bar)

The result is shown in the left image of Figure 7-8. There are some obvi-
ous differences between this image and the one produced using plot, but the
basic syntax of gplot is the same as earlier. The first two arguments passed to
gplot are vectors of equal length, with the x-coordinates in foo supplied first,
followed by the y-coordinates in bar.

. My lovely gplot

- . .

bar
location y

foo ¥ axis label

Figure 7-8: Five plotted points using ggplot2’s default behavior for the gplot function (left
and with title and axis labels added (right)
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Adding a title and axis labels also uses the same arguments you already
saw with plot in Section 7.2.

R> gplot(foo,bar,main="My lovely gplot",xlab="x axis label",ylab="location y")

This produces the right panel of Figure 7-8.

Underneath this basic similarity in syntax, though, there is a funda-
mental difference between how ggplot2 and base R graphics create plots.
Constructing plots using the built-in graphics tools is essentially a live, step-
by-step process. This was particularly noticeable in Section 7.3, where you
treated the graphics device as an active canvas where you added points,
lines, and other features one by one. By contrast, ggplot2 plots are stored
as objects, which means they have an underlying, static representation until
you change the object—what you essentially visualize with gplot is the printed
object at any given time. To highlight this, enter the following code:

R> baz <- plot(foo,bar)
R> baz

NULL

R> qux <- gplot(foo,bar)
R> qux

The first assignment uses the built-in plot function. When you run that
line of code, the plot in Figure 7-1 pops up. Since nothing is actually stored
in the workspace, printing the supposed object baz yields the empty NULL
value. On the other hand, it makes sense to store the gplot content (stored
as the object qux here). This time, when you perform the assignment, no
plot is displayed. The graphic, which matches Figure 7-8, is displayed only
when you enter qux at the prompt, which invokes the print method for that
object. This may seem like a minor point, but the fact that you can save a
plot this way before displaying it opens up new ways to modify or enhance
plots before displaying them (as you will see in a moment), and it can be a
distinct advantage over base R graphics.

7.4.2  Setting Appearance Constants with Geoms

To add and customize points and lines in a ggplot2 graphic, you alter the
object itself, rather than using a long list of arguments or secondary func-
tions executed separately (such as points or lines). You can modify the
object using ggplot2’s convenient suite of geometric modifiers, known as geoms.
Let’s say you want to connect the five points in foo and bar with a line, just as
you did in Section 7.1. You can first create a blank plot object and then use
geometric modifiers on it like this:

R> gplot(foo,bar,geom="blank") + geom point() + geom_line()

The resulting plot is shown on the left of Figure 7-9. In the first call
to gplot, you create an empty plot object by setting the initial geometric
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modifier as geom="blank" (if you displayed this plot, you would just see the
gray background and the axes). Then you layer on the two other geoms as
geom_point() and geom_line(). As indicated by the parentheses, these geoms
are functions that result in their own specialized objects. You can add geoms
to the gplot object using the + operator. Here, you haven’t supplied any
arguments to either geom, which means they’ll operate on the same data
originally supplied to gplot (foo and bar) and they’ll stick to the default set-
tings for any other features, such as color or point/line type. You can con-
trol those features by specifying optional arguments, as shown here:

R> gplot(foo,bar,geom="blank") + geom point(size=3,shape=6,color="blue") +
geom_line(color="red",linetype=2)

bar
bar

foo foo

Figure 7-9: Two simple plots that use geometric modifiers to alter the appearance of a
gplot object. Left: Adding points and lines using default settings. Right: Using the geoms
to affect point character, size, and color, and line type and color.

Note that some of ggplot2’s argument names used here for things such
as point characters and size (shape and size) are different from the base R
graphics arguments (pch and cex). But ggplot2 is actually compatible with
many of the common graphical parameters used in R’s standard plot func-
tion, so you can use those arguments here too if you prefer. For instance,
setting cex=3 and pch=6 in geom_point in this example would result in the same
image.

The object-oriented nature of ggplot2 graphics means tweaking a plot or
experimenting with different visual features no longer requires you to rerun
every plotting command each time you change something. This is facilitated
by geoms. Say you like the line type used on the right side of Figure 7-9 but
want a different point character. To experiment, you could first store the
gplot object you created earlier and then use geom_point with that object to
try different point styles.
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R> mygplot <- gplot(foo,bar,geom="blank") + geom line(color="red",linetype=2)
R> mygplot + geom_point(size=3,shape=3,color="blue")
R> mygplot + geom point(size=3,shape=7,color="blue")

The first line stores the original plot in mygplot, and the next lines call
mygplot with different point shapes. The second and third lines produce the
graphics on the left and right of Figure 7-10, respectively.

bar
bar

foo foo

Figure 7-10: Using the objectoriented nature of ggplot2 graphics to experiment with
different point characters

There are a number of geometric modifiers that can be called using
a function name beginning with geom_ in ggplot2. To obtain a list, simply
ensure the package is loaded and enter ??"geom_" as a help search at the
prompt.

7.4.3  Aesthetic Mapping with Geoms

Geoms and ggplot2 also provide efficient, automated ways to apply differ-
ent styles to different subsets of a plot. If you split a data set into categories
using a factor object, ggplot2 can automatically apply particular styles to dif-
ferent categories. In ggplot2’s documentation, the factor that holds these cat-
egories is called a variable, which ggplot2 can map to aesthetic values. This gets
rid of much of the effort that goes into isolating subsets of data and plotting
them separately using base R graphics (as you did in Section 7.3).

All this is best illustrated with an example. Let’s return to the 20 obser-
vations you manually plotted, step-by-step, to produce the elaborate plot in
Figure 7-6.

R> x <- 1:20
R> y <- c(-1.49,3.37,2.59,-2.78,-3.94,-0.92,6.43,8.51,3.41,-8.23,
-12.01,-6.58,2.87,14.12,9.63,-4.58,-14.78,-11.67,1.17,15.62)
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In Section 7.3, you defined several categories that classified each obser-
vation as either “standard,” “sweet,” “too big,” or “too small” based on their
x and y values. Using those same classification rules, let’s explicitly define a
factor to correspond to x and y.

R> ptype <- rep(NA,length(x=x))

R> ptype[y>=5] <- "too_big"

R> ptype[y<=-5] <- "too small"

R> ptype[ (x>=58x<=15)8&(y>-58y<5)] <- "sweet"
R> ptype[ (x<5|x>15)&(y>-58y<5)] <- "standard"
R> ptype <- factor(x=ptype)

R> ptype
[1] standard standard standard standard sweet sweet too_big
[8] too big  sweet too_small too small too small sweet too_big

[15] too _big standard too_small too_small standard too_big
Levels: standard sweet too_big too_small

Now you have a factor with 20 values sorted into four levels. You’ll use
this factor to tell gplot how to map your aesthetics. Here’s a simple way to
do that:

R> gplot(x,y,color=ptype,shape=ptype)

This single line of code produces the left plot in Figure 7-11, which sep-
arates the four categories by color and point character and even provides
a legend. This was all done by the aesthetic mapping in the call to gplot,
where you set color and shape to be mapped to the ptype variable.
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Figure 7-11: Demonstration of aesthetic mapping using qplot and geoms in ggplot2.
Left: The initial call to gplot, which maps point character and color using ptype. Right:
Augmenting the left plot using various geoms to override the default mappings.



Now, let’s replot these data using the same gplot object along with a
suite of geom modifications in order to get something more like Figure 7-6.
Executing the following produces the plot on the right of Figure 7-11:

R> gplot(x,y,color=ptype,shape=ptype) + geom point(size=4) +
geom_line(mapping=aes(group=1),color="black",1ty=2) +
geom_hline(mapping=aes(yintercept=c(-5,5)),color="red") +
geom_segment (mapping=aes(x=5,y=-5,xend=5,yend=5),color="red",1ty=3) +
geom_segment (mapping=aes(x=15,y=-5,xend=15,yend=5),color="red",1ty=3)

In the first line, you add geom_point(size=4) to increase the size of all the
points on the graph. In the lines that follow, you add a line connecting all
the points, plus horizontal and vertical lines to mark out the sweet spot. For
those last four lines, you have to use aes to set alternate aesthetic mappings
for the point categories. Let’s look a little closer at what’s going on there.

Since you used ptype for aesthetic mapping in the initial call to gplot, by
default all other geoms will be mapped to each category in the same way,
unless you override that default mapping with aes. For example, when you
call geom_line to connect all the points, if you were to stick with the default
mapping to ptype instead of including mapping=aes(group=1), this geom would
draw lines connecting points within each category. You would see four sepa-
rate dashed lines—one connecting all “standard” points, another connecting
all “sweet” points, and so on. But that’s not what you want here; you want a
line that connects all of the points, from left to right. So, you tell geom_line to
treat all the observations as one group by entering aes(group=1).

After that, you use the geom_hline function to draw horizontal lines at
y = =b and y = 5 using its yintercept argument, again passed to aes to rede-
fine that geom’s mapping. In this case, you need to redefine the mapping to
operate on the vector c(-5,5), rather than using the observed data in x and
y. Similarly, you end by using geom_segment to draw the two vertical dotted
line segments. geom_segment operates much like segments—you redefine the
mapping based on a “from” coordinate (arguments x and y) and a “to” co-
ordinate (xend and yend here). Since the first geom, geom_point(size=4), sets
a constant enlarged size for every plotted point, it doesn’t matter how the
geom is mapped because it simply makes a uniform change to each point.

Plotting in R, from base graphics to contributed packages like ggplot2,
stays true to the nature of the language. The element-wise matching allows
you to create intricate plots with a handful of straightforward and intuitive
functions. Once you display a plot, you can save it to the hard drive by select-
ing the graphics device and choosing File — Save. However, you can also
write plots to a file directly, as you’ll see momentarily in Section 8.3.

The graphical capabilities explored in this section are merely the tip of
the iceberg, and you’ll continue to use data visualizations from this point
onward.
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In Exercise 7.1 (b), you used base R graphics to plot some weight and
height data, distinguishing males and females using different points
or colors. Repeat this task using ggplot2.

Important Code in This Chapter
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Function/operator  Brief description First occurrence
plot Create/display base R plot  Section 7.1, p. 128
type Set plot type Section 7.2.1, p. 130

main, xlab, ylab
col

Set axis labels
Set point/line color

Section 7.2.2, p. 130
Section 7.2.3, p. 131

pch, cex Set point type/size Section 7.2.4, p. 133
1ty, lwd Set line type/width Section 7.2.4, p. 133
xlim, ylim Set plot region limits Section 7.2.5, p. 134
abline Add vertical/horizontal line  Section 7.3, p. 137
segments Add specific line segments  Section 7.3, p. 137
points Add points Section 7.3, p. 137
Lines Add lines following coords ~ Section 7.3, p. 138
arrows Add arrows Section 7.3, p. 138
text Add text Section 7.3, p. 138
legend Add/control legend Section 7.3, p. 138
gplot Create ggplot2 “quick plot”  Section 7.4.1, p. 140
geom_point Add points geom Section 7.4.2, p. 141
geom_line Add lines geom Section 7.4.2, p. 141
size, shape, color Set geom constants Section 7.4.2, p. 142
linetype Set geom line type Section 7.4.2, p. 142
mapping, aes Geom aesthetic mapping Section 7.4.3, p. 145
geom hline Add horizontal lines geom Section 7.4.3, p. 145

geom_segment

Add line segments geom

Section 7.4.3, p. 145




READING AND WRITING FILES

Now I’ll cover one more fundamental
aspect of working with R: loading and sav-
ing data in an active workspace by reading
and writing files. Typically, to work with a large
data set, you’ll need to read in the data from an exter-
nal file, whether it’s stored as plain text, in a spread-
sheet file, or on a website. R provides command line

functions you can use to import these data sets, usually as a data frame
object. You can also export data frames from R by writing a new file on
your computer, plus you can save any plots you create as image files. In
this chapter, I'll go over some useful command-based read and write oper-
ations for importing and exporting data.

8.1 R-Ready Data Sets

First, let’s take a brief look at some of the data sets that are built into the
software or are part of user-contributed packages. These data sets are useful
samples to practice with and to experiment with functionality.

Enter data() at the prompt to bring up a window listing these ready-to-
use data sets along with a one-line description. These data sets are organized
in alphabetical order by name and grouped by package (the exact list that
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appears will depend on what contributed packages have been installed from
CRAN; see Section A.2).

8.1.1 Built-in Data Sets

There are a number of data sets contained within the built-in, automatically
loaded package datasets. To see a summary of the data sets contained in the
package, you can use the library function as follows:

R> library(help="datasets")

R-ready data sets have a corresponding help file where you can find
important details about the data and how it’s organized. For example, one
of the builtin data sets is named ChickWeight. If you enter ?ChickWeight at the
prompt, you’ll see the window in Figure 8-1.

o0 e R Help
Print Q

ChickWeight {datasets} R Documentation

Weight versus age of chicks on different diets

Description

The chickweight data frame has 578 rows and 4 columns from an experiment on the effect of diet on early growth of chicks.

Usage

ChickWeight

Format

An object of class c("nfnGr ", "nfGr ", "gr ", "data.frame") containing the following columns:
weight
anumeric vector giving the body weight of the chick (gm).
Time
a numeric vector giving the number of days since birth when the measurement was made.
Chick

an ordered factor with levels 18 < ... < 48 giving a unique identifier for the chick. The ordering of the levels groups chicks on the same diet
together and orders them according to their final weight (lightest to heaviest) within diet.

Diet
a factor with levels 1, ..., 4 indicating which experimental diet the chick received.
Details

The bodv weights of the chicks were measured at birth and everv second dav thereafter until dav 20. Thev were also measured on dav 21. There

Figure 8-1: The help file for the ChickWeight data set

As you can see, this file explains the variables and their values; it notes
that the data are stored in a data frame with 578 rows and 4 columns. Since
the objects in datasets are built in, all you have to do to access ChickWeight is
enter its name at the prompt. Let’s look at the first 15 records.

R> ChickWeight[1:15,]
weight Time Chick Diet

1 42 0 1 1
2 51 2 1 1
3 59 4 1 1
4 64 6 1 1
5 76 8 1 1



6 93 10 1 1
7 106 12 1 1
8 125 14 11
9 149 16 1 1
10 171 18 1 1
1 199 20 1 1
12 205 21 1 1
13 40 0 2 1
14 49 2 1
15 58 2 1

You can treat this data set like any other data frame you’ve created in
R—note the use of [1:15, ] to access the desired rows from such an object,
as detailed in Section 5.2.1.

8.1.2 (Contributed Data Sets

There are many more R-ready data sets that come as part of contributed
packages. To access them, first install and load the relevant package. Con-
sider the data set ice.river, which is in the contributed package tseries by
Trapletti and Hornik (2013). First, you have to install the package, which
you can do by running the line install.packages("tseries") at the prompt.
Then, to access the components of the package, load it using library:

R> library("tseries")
"tseries' version: 0.10-32
'tseries' is a package for time series analysis and computational finance.

See 'library(help="tseries")' for details.

Now you can enter library(help="tseries") to see the list of data sets in
this package, and you can enter ?ice.river to find more details about the
data set you want to work with here. The help file describes ice.river asa
“time series object” comprised of river flow, precipitation, and temperature
measurements—data initially reported in Tong (1990). To access this object
itself, you must explicitly load it using the data function. Then you can work
with ice.river in your workspace as usual. Here are the first five records:

R> data(ice.river)
R> ice.river[1:5,]

flow.vat flow.jok prec temp
[1,] 16.10 30.2 8.1 0.9
[2,] 19.20 29.0 4.4 1.6
[3,] 14.50 28.4 7.0 0.1
[4,] 11.00 27.8 0.0 0.6
[5,] 13.60 27.8 0.0 2.0
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The availability and convenience of these R-ready data sets make it easy
to test code, and I'll use them in subsequent chapters for demonstrations.
To analyze your own data, however, you'll often have to import them from
some external file. Let’s see how to do that.

8.2 Reading in External Data Files

R has a variety of functions for reading characters from stored files and
making sense of them. You’ll look at how to read table-format files, which
are among the easiest for R to read and import.

8.2.1 The Table Format

Table-format files are best thought of as plain-text files with three key fea-
tures that fully define how R should read the data.

Header If a header is present, it’s always the first line of the file. This
optional feature is used to provide names for each column of data.
When importing a file into R, you need to tell the software whether

a header is present so that it knows whether to treat the first line as
variable names or, alternatively, observed data values.

Delimiter The all-important delimiter is a character used to separate the
entries in each line. The delimiter character cannot be used for anything
else in the file. This tells R when a specific entry begins and ends (in
other words, its exact position in the table).

Missing value This is another unique character string used exclusively
to denote a missing value. When reading the file, R will turn these
entries into the form it recognizes: NA.

Typically, these files have a .txt extension (highlighting the plain-text
style) or .csv (for comma-separated values).

Let’s try an example, using a variation on the data frame mydata as
defined at the end of Section 5.2.2. Figure 8-2 shows an appropriate table-
format file called mydatafile.txt, which has the data from that data frame
with a few values now marked as missing. This data file can be found on
the book’s website at https://www.nostarch.com/bookofr/, or you can create it
yourself from Figure 8-2 using a text editor.

| mydatafile.txt B

800
T. | FilePathw: ~/mydatafile.txt
[9 mydatafi... = 4. W,
person age sex funny age.mon
Peter = M High 504
Lois 4@ F = 48@
Meg 17 F Low 204
Chris 14 M Med 168

Stewie 1 M High =*
Brian = M Med *

w4 bW e

Line 1 Col 1 (none) * Unicode (UTF-8) 3 Unix(LF) * o' |5

Figure 8-2: A plain-text table-format file

150 Chapter 8


https://www.nostarch.com/bookofr/

Note that the first line is the header, the values are delimited with a
single space, and missing values are denoted with an asterisk (*). Also, note
that each new record is required to start on a new line. Suppose you're
handed this plain-text file for data analysis in R. The ready-to-use com-
mand read.table imports table-format files, producing a data frame object,
as follows:

R> mydatafile <- read.table(file="/Users/tdavies/mydatafile.txt",
header=TRUE,sep=" ",na.strings="x",
stringsAsFactors=FALSE)

R> mydatafile

person age sex funny age.mon

1 Peter NA M High 504

2 Lois 40 F <NA> 480
3 Meg 17 F Low 204
4 Chris 14 M Med 168
5 Stewie 1 M High NA
6 Brian NA M Med NA

In a call to read.table, file takes a character string with the filename
and folder location (using forward slashes), header is a logical value telling R
whether file has a header (TRUE in this case), sep takes a character string pro-
viding the delimiter (a single space, " ", in this case), and na.strings requests
the characters used to denote missing values ("x" in this case).

If you’re reading in multiple files and don’t want to type the entire
folder location each time, it’s possible to first set your working directory
via setwd (Section 1.2.3) and then simply use the filename and its exten-
sion as the character string supplied to the file argument. However, both
approaches require you to know exactly where your file is located when
you’re working at the R prompt. Fortunately, R possesses some useful addi-
tional tools should you forget your file’s precise location. You can view tex-
tual output of the contents of any folder by using list.files. The following
example betrays the messiness of my local user directory.

R> list.files("/Users/tdavies")

[1] "bands-SCHIST1L200.txt" "Brass" "Desktop”
[4] "Documents" "DOS Games" "Downloads"
[7] "Dropbox" "Exercise2-20Data.txt" "Google Drive"
[10] "iCloud" "Library" "log.txt"
[13] "Movies" "Music" "mydatafile.txt"
[16] "OneDrive" "peritonitis.sav" "peritonitis.txt"
[19] "Personal94i4" "Pictures"” "Public"
[22] "Research" "Rintro.tex" "Rprofile.txt"
[25] "Rstartup.R" "spreadsheetfile.csv" "spreadsheetfile.xlsx"
[28] "TakeHome_ template.tex" "WISE-P2L" "WISE-P2S.txt"

[31] "WISE-SCHIST1L200.txt"
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One important feature to note here, though, is that it can be difficult to
distinguish between files and folders. Files will typically have an extension,
and folders won’t; however, WISE-P2L is a file that happens to have no exten-
sion and looks no different from any of the listed folders.

You can also find files interactively from R. The file.choose command
opens your filesystem viewer directly from the R prompt—just as any other
program does when you want to open something. Then, you can navigate to
the folder of interest, and after you select your file (see Figure 8-3), only a
character string is returned.

R> file.choose()
[1] "/Users/tdavies/mydatafile.txt"

[ ] Choose File

H = =N

Favorites e -
& Recents * bands-SCHIST1L200.txt

» [ Brass
» |50 Desktop

A& tdavies < Q

< iCloud Drive

/A Applications

» [ Documents

€ Downloads » [ DOS Games -
» [89] Downloads -
[ Desktop » B Dropbox B
[ Documents ] Exercise2-20Data.txt 40KB  text
B Movies » [& Google Drive /14 10:32 am - Foldel
7 Music = iCloud 14/11/14 10:21 am 59 bytes  Alias
| log.txt 14 11:14 am 1KB  text
Pictures > [El Movies - Folder
2} tdavios » [ Music -~ Foldes
133 bytes

Devices

Shared

@ mydatafile.txt
» [ OneDrive

(@l peritonitis.sav

% peritonitis.txt

7/06/14 11:50 am
23/03/15 9:49 am

850 byt

442

bytes

Media » [ Personalga14 11/11/13 9:26 am
» [ Pictures 28/04/15 4:20 pm ~  Folder
Tags N N
» [ Public 18/02/13 10:41 am ~  Folder
» [ Research 22/10/14 12:33 pm -~ Folde
" Rintro.tex 28/02/13 11:48 am 24KB  TeX File
Bnrnfila tet 22UN7/13 228 nm 248 hutoe_tavi
Cancol | SCL

Figure 8-3: My local file navigator opened as the result of a call to file.choose.
When the file of interest is opened, the R command returns the full file path to that
file as a character string.

This command is particularly useful, as it returns the character string
of the directory in precisely the format that’s required for a command such
as read.table. So, calling the following line and selecting mydatafile.txt, as in
Figure 8-3, will produce an identical result to the explicit use of the file path
in file, shown earlier:

R> mydatafile <- read.table(file=file.choose(),header=TRUE,sep=" ",

na.strings="",stringsAsFactors=FALSE)

If your file has been successfully loaded, you should be returned to the
R prompt without receiving any error messages. You can check this with
a call to mydatafile, which should return the data frame. When importing
data into data frames, keep in mind the difference between character string
observations and factor observations. No factor attribute information is



stored in the plain-text file, but read.table will convert non-numeric values
into factors by default. Here, you want to keep some of your data saved as
strings, so set stringsAsFactors=FALSE, which prevents R from treating all non-
numeric elements as factors. This way, person, sex, and funny are all stored as

character strings.
You can then overwrite sex and funny with factor versions of themselves if

you want them as that data type.

R> mydatafile$sex <- as.factor(mydatafile$sex)
R> mydatafile$funny <- factor(x=mydatafile$funny,levels=c("Low","Med","High"))

8.2.2 Spreadsheet Workbooks

Next, let’s examine some ubiquitous spreadsheet software file formats. The
standard file format for Microsoft Office Excel is .xls or .xlsx. In general,
these files are not directly compatible with R. There are some contributed
package functions that attempt to bridge this gap—see, for example, gdata
by Warnes et al. (2014) or XLConnect by Mirai Solutions GmbH (2014)—but
it’s generally preferable to first export the spreadsheet file to a table format,
such as CSV. Consider the hypothetical data from Exercise 7.1 (b), which
has been stored in an Excel file called spreadsheetfile.xlsx, shown in Figure 8-4.

[ ) ® | spreadsheetfile.xIsx

e e i o N
& x @ ) »
A Home Layout Tables | Charts | SmartArt
i = S R
= - Calibri (Body) x12 |» = - General
v v - = v 9
Paste | B I U||& A aign (B %>
Al fx| 55 -
_J A B | C D E | F G

o ssl 161 female
2 85 185 male
3 75 174 male
4 2 154 female
5 93 188 male
6 63 178 male
7 58 170 female
8 75 167 male
9 89 181 male
10 67 178 female

7] sheet1 / +J

Normal View Ready

BE)

Figure 8-4: A spreadsheet file of the data
from Exercise 7.1 (b)

To read this spreadsheet with R, you should first convert it to a table
format. In Excel, File — Save As... provides a wealth of options. Save the
spreadsheet as a comma-separated file, called spreadsheet.csv. R has a shortcut
version of read.table, read.csv, for these files.

R> spread <- read.csv(file="/Users/tdavies/spreadsheetfile.csv",
header=FALSE, stringsAsFactors=TRUE)
R> spread
Vi V2 V3
1 55 161 female
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2 85 185 male
3 75 174 male
4 42 154 female
5 93 188 male
6 63 178 male
7 58 170 female
8 75 167 male
9 89 181 male

10 67 178 female

Here, the file argument again specifies the desired file, which has no
header, so header=FALSE. You set stringsAsFactors=TRUE because you do want to
treat the sex variable (the only non-numeric variable) as a factor. There are
no missing values, so you don’t need to specify na.strings (though if there
were, this argument is simply used in the same way as earlier), and by defi-
nition, .csv files are comma-delimited, which read.csv correctly implements
by default, so you don’t need the sep argument. The resulting data frame,
spread, can then be printed in your R console.

As you can see, reading tabular data into R is fairly straightforward—
you just need to be aware of how the data file is headed and delimited and
how missing entries are identified. The simple table format is a natural and
common way for data sets to be stored, but if you need to read in a file with
a more complicated structure, R and its contributed packages make avail-
able some more sophisticated functions. See, for example, the documenta-
tion for the scan and readLines functions, which provide advanced control
over how to parse a file. You can also find documentation on read.table and
read.csv by accessing ?read.table from the prompt.

8.2.3 Web-Based Files

With an Internet connection, R can read in files from a website with the
same read.table command. All the same rules concerning headers, delim-
iters, and missing values remain in place; you just have to specify the URL
address of the file instead of a local folder location.

As an example, you’ll use the online repository of data sets made avail-
able by the Journal of Statistics Education (JSE) through the American Statisti-
cal Association at http://www.amstat.org/ publications/ jse/ jse_data_archive. htm.

One of the first files linked to at the top of this page is the table-format
data set 4edata.txt (hitp://www.amstat.org/publications/jse/vIn2/4cdata.ixt),
which contains data on the characteristics of 308 diamonds from an analy-
sis by Chu (2001) based on an advertisement in a Singaporean newspaper.
Figure 8-5 shows the data.

You can look at the documentation file (4¢.txt) and the accompanying
article linked from the JSE site for details on what is recorded in this table.
Note that of the five columns, the first and fifth are numeric, and the others
would be well represented by factors. The delimiter is blank whitespace,
there’s no header, and there are no missing values (so you don’t have to
specify a value used to represent them).


http://www.amstat.org/publications/jse/jse_data_archive.htm

G
[

00 < [am] = www.amstat.org/pul ) [+) ‘ +
0.3 VS2 GIA 1302
0.3 vsl GIA 1510
0.3 Vvsl GIA 1510
0.3 VSl GIA 1260
0.31 VSl GIA 1641
0.31 E VS1 GIA 1555
0.31 F vS1 GIA 1427
0.31 G VVS2 GIA 1427
0.31 H VS2 GIA 1126
0.31 I vS1 GIA 1126
0.32 F VS1 GIA 1468
0.32 G vs2 GIA 1202
0.33 E VS2 GIA 1327
0.33 I vS2 GIA 1098
0.34 E VS1 GIA 1693
0.34 F VvS1 GIA 1551
0.34 G vs1 GIA 1410
0.34 G VS2 GIA 1269
0.34 H VSl GIA 1316
0.34 H VS2 GIA 1222
0.35 E VvS1 GIA 1738
a zaa

28w ower ,Ta 1

Figure 8-5: A table-format data file found online

With this in mind, you can create a data frame directly from the R
prompt simply with the following lines:

R> dia.url <- "http://www.amstat.org/publications/jse/v9n2/4cdata.txt"
R> diamonds <- read.table(dia.url)

Note that you haven’t supplied any extra values in this call to read.table
because the defaults all work just fine. Because there’s no header in the
table, you can leave the default header value FALSE. The default value for sep
is "", meaning whitespace (not to be confused with " ", meaning an explicit
space character), which is exactly what this table uses. The default value
for stringsAsFactors is TRUE, which is what you want for your character string
columns. Following the import, you can supply names (based on the infor-

mation in the documentation) to each column as follows:

R> names(diamonds) <- c("Carat","Color","Clarity","Cert","Price")
R> diamonds[1:5,]
Carat Color Clarity Cert Price

1 0.30 D VS2 GIA 1302
2 0.30 E VS1 GIA 1510
3 0.30 G VS1 GIA 1510
4 0.30 G VS1 GIA 1260
5 0.31 D VS1 GIA 1641

Viewing the first five records shows that the data frame is displayed as
you intended.

8.2.4 Other File Formats

There are other file formats besides .#xt or .csv files that can be read into
R, such as the data file format .dat. These files can also be imported using
read.table, though they may contain extra information at the top that must
be skipped using the optional skip argument. The skip argument asks for
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the number of lines at the top of the file that should be ignored before R
begins the import.

As mentioned in Section 8.2.2, there are also contributed packages that
can cope with other statistical software files; however, if there are multiple
worksheets within a file it can complicate things. The R package foreign (R
Core Team, 2015), available from CRAN, provides support for reading data
files used by statistical programs such as Stata, SAS, Minitab, and SPSS.

Other contributed packages on CRAN can help R handle files from vari-
ous database management systems (DBMSs). For example, the RODBC package
(Ripley and Lapsley, 2013) lets you query Microsoft Access databases and
return the results as a data frame object. Other interfaces include the pack-
ages RMySOL (James and DebRoy, 2012) and RIDBC (Urbanek, 2013).

8.3 Writing Out Data Files and Plots

Chapter 8

Writing out new files from data frame objects with R is just as easy as reading
in files. R’s vector-oriented behavior is a fast and convenient way to recode
data sets, so it’s perfect for reading in data, restructuring it, and writing it
back out to a file.

8.3.1 Data Sets

The function for writing table-format files to your computer is write.table.
You supply a data frame object as x, and this function writes its contents to
a new file with a specified name, delimiter, and missing value string. For
example, the following line takes the mydatafile object from Section 8.2 and
writes it to a file:

R> write.table(x=mydatafile,file="/Users/tdavies/somenewfile.txt",
sep="@",na="22",quote=FALSE, row.names=FALSE)

You provide file with the folder location, ending in the filename you
want for your new data file. This command creates a new table-format file
called somenewfile.txt in the specified folder location, delimited by @ and with
missing values denoted with ?? (because you're actually creating a new file,
the file.choose command doesn’t tend to be used here). Since mydatafile has
variable names, these are automatically written to the file as a header. The
optional logical argument quote determines whether to encapsulate each
non-numeric entry in double quotes (if you explicitly need them in your file
for, say, formatting requirements of other software); request no quotes by
setting the argument to FALSE. Another optional logical argument, row.names,
asks whether to include the row names of mydatafile (in this example, this
would just be the numbers 1 to 6), which you also omit with FALSE. The result-
ing file, shown in Figure 8-6, can be opened in a text editor.

Like read.csv, write.csv is a shortcut version of the write.table function
designed specifically for .csv files.



[ JOX ] 7 somenewfile.txt
T || FilePathy : ~/somenewfile.txt
[} somenewfile.txt 4 ? ., vl

person@age@sex@funny@age.mon
Peter@??7@@High@504
Lois@40@F@??@480
Meg@17@F@Low@204
Chris@l4@MaMed@168
Stewie@l@M@High@??
Brian@??@@Med@??

PN U A WN P

Line 1 Col 1 Text File 4 Unicode (UTF-8) 4 Unix (LF) 4 o [J ..

Figure 8-6: The contents of somenewfile.ixt

8.3.2 Plots and Graphics Files

Plots can also be written directly to a file. In Chapter 7, you created and
displayed plots in an active graphics device. This graphics device needn’t
be a screen window; it can be a specified file. Instead of displaying the plot
immediately on the screen, you can have R follow these steps: open a “file”
graphics device, run any plotting commands to create the final plot, and
close the device. R supports direct writing to .jpeg, .bmp, .png, and .tiff files
using functions of the same names. For example, the following code uses
these three steps to create a .jpeg file:

R> jpeg(filename="/Users/tdavies/myjpegplot.jpeg",width=600,height=600)
R> plot(1:5,6:10,ylab="a nice ylab",xlab="here's an xlab",
main="a saved .jpeg plot")
R> points(1:5,10:6,cex=2,pch=4,col=2)
R> dev.off()
null device
1

The file graphics device is opened by a call to jpeg, where you pro-
vide the intended name of the file and its folder location as filename. By
default, the dimensions of the device are set to 480 x 480 pixels, but here you
change them to 600 x 600. You could also set these dimensions by supplying
other units (inches, centimeters, or millimeters) to width and height and by
specifying the unit with an optional units argument. Once the file is opened,
you execute any R plotting commands you need in order to create the
image—this example plots some points and then includes some additional
points with a second command. The final graphical result is silently writ-
ten to the specified file just as it would have been displayed on the screen.
When you’ve finished plotting, you must explicitly close the file device with
a call to dev.off(), which prints information on the remaining active device
(here, “null device” can be loosely interpreted as “nothing is left open”). If
dev.off() isn’t called, then R will continue to output any subsequent plotting
commands to the file, and possibly overwrite what you have there. The left
plot in Figure 8-7 shows the resulting file created in this example.
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ece =/ myjpegplot.jpeg
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Figure 8-7: R plots that have been written directly to disk: a .jpeg version (left)
and a .pdf version (right) of the same plotting commands

You can also store R plots as other file types, such as PDFs (using the
pdf function) and EPS files (using the postscript function). Though some
argument names and default values are different for these functions, they
follow the same basic premise. You specify a folder location, a filename, and
width and height dimensions; enter your plotting commands; and then close
the device with dev.off(). The right panel of Figure 8-7 shows the .pdf file
created with the following code:

R> pdf(file="/Users/tdavies/mypdfplot.pdf",width=5,height=5)
R> plot(1:5,6:10,ylab="a nice ylab",xlab="here's an xlab",
main="a saved .pdf plot")
R> points(1:5,10:6,cex=2,pch=4,co0l=2)
R> dev.off()
null device
1

Here, you use the same plotting commands as before, and there are just
a few minor differences in the code. The argument for the file is file (as
opposed to filename), and the units for width and height default to inches
in pdf. The difference of appearance between the two images in Figure 8-7
results primarily from these differences in width and height.

This same process also works for ggplot2 images. True to style, however,
ggplot2 provides a convenient alternative. The ggsave function can be used
to write the most recently plotted ggplot2 graphic to file and performs the
device open/close action in one line.

For example, the following code creates and displays a ggplot2 object
from a simple data set.

R> foo <- c(1.1,2,3.5,3.9,4.2)
R> bar <- c(2,2.2,-1.3,0,0.2)



R> gplot(foo,bar,geom="blank")
+ geom_point(size=3,shape=8,color="darkgreen")
+ geom_line(color="orange",linetype=4)

Now, to save this plot to a file, all you need is the following line:

R> ggsave(filename="/Users/tdavies/mypnggplot.png")
Saving 7 x 7 in image

This writes the image to a .png file in the specified filename directory.
(Note that dimensions are reported if you don’t explicitly set them using
width and height; these will vary depending on the size of your graphics
device.) The result is shown in Figure 8-8.

L XN ) = mypnggplot.png
o] @ & BB

bar

Figure 8-8: The .png file created using ggplot2’s ggsave
command

Beyond just being concise, ggsave is convenient in a few other ways. For
one, you can use the same command to create a variety of image file types—
the type is simply determined by the extension you supply in the filename
argument. Also, ggsave has a range of optional arguments if you want to con-
trol the size of the image and the quality or scaling of the graphic.

For more details on saving images from base R graphics, see the ?jpeg,
?pdf, and ?postscript help files. You can consult ?ggsave for more on saving
images with ggplota.
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8.4 Ad Hoc Object Read/Write Operations

For the typical R user, the most common input/output operations will
probably revolve around data sets and plot images. But if you need to read
or write other kinds of R objects, such as lists or arrays, you’ll need the dput
and dget commands, which can handle objects in a more ad hoc style.
Suppose, for example, you create this list in the current session:

R> somelist <- list(foo=c(5,2,45),
bar=matrix(data=c(T,T,F,F,F,F,T,F,T),nrow=3,ncol=3),
baz=factor(c(1,2,2,3,1,1,3),levels=1:3,0rdered=T))

R> somelist

$foo

[1] 5 245

$bar

L1l [2] [,3]
[1,] TRUE FALSE TRUE
[2,] TRUE FALSE FALSE
[3,] FALSE FALSE TRUE

$baz
[1]1223113
Levels: 1 <2< 3

This object can itself be written to a file, which is useful if you want to
pass it to a colleague or open it in a new R session elsewhere. Using dput, the
following line stores the object as a plain-text file that is interpretable by R:

R> dput(x=somelist,file="/Users/tdavies/myRobject.txt")

In technical terms, this command creates an American Standard Code
for Information Interchange (ASCII) representation of the object. As you
call dput, the object you want to write is specified as x, and the folder location
and name of the new plain-text file are passed to file. Figure 8-9 shows the
contents of the resulting file.

[ XOX ) ] myRobject.txt
T | File Pathv : ~/myRobject.txt
() myRobject.txt 4 . .H
structure(list(foo = c(5, 2, 45), bar = structure(c(TRUE, TRUE,
FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE), .Dim = c(3L,
3L)), baz = structure(c(1L, 2L, 2L, 3L, 1L, 1L, 3L), .Label = c("1",
"2", "3"), class = c("ordered", "factor"))), .Names = c("foo",
"bar", "baz"))

ou s wN R

Line 1 Col 1 Text File 4 Unicode (UTF-8) 4| Unix (LF) 4| uf | Last saved: 25/05/15 6:26:13 pm | [ 2...

Figure 8-9: myRobject.txt created by using dput on somelist
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Notice that dput stores all of the members of the object plus any other
relevant information, such as attributes. The third element of somelist, for
example, is an ordered factor, so it isn’t enough to simply represent it in the
text file as a stand-alone vector.

Now, let’s say you want to import this list into an R workspace. If a file
has been created with dput, then it can be read into any other workspace
using dget.

R> newobject <- dget(file="/Users/tdavies/myRobject.txt")
R> newobject

$foo

[1] 5 245

$bar

[,11 [,2] [,3]
[1,] TRUE FALSE TRUE
[2,] TRUE FALSE FALSE
[3,] FALSE FALSE TRUE

$baz
[1]1223113
Levels: 1 <2< 3

You read the object from the myRobject. ixt file using dget and assign it to
newobject. This object is the same as the original R object somelist, with all
structures and attributes present.

There are some drawbacks to using these commands. For starters, dput
is not as reliable a command as write.table because it’s sometimes quite dif-
ficult for R to create the necessary plain-text representation for an object
(fundamental object classes typically cause no problems, but complex user-
defined classes can). Also, because they need to store structural information,
files created using dput are relatively inefficient both in terms of required
space and in terms of how long it takes to execute read and write operations.
This becomes more noticeable for objects that contain a lot of data. Nev-
ertheless, dput and dget are useful ways to store or transfer specific objects
without having to save an entire workspace.

Exercise 8.1

a. In R’s built-in datasets library is the data frame quakes. Make sure
you can access this object and view the corresponding help file to
get an idea of what this data represents. Then, do the following:
i.  Select only those records that correspond to a magnitude

(mag) of greater than or equal to 5 and write them to a
table-format file called ¢5.¢xt in an existing folder on your
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machine. Use a delimiting character of ! and do not include
any row names.

ii. Read the file back into your R workspace, naming the object
q5.dframe.

b. In the contributed package car, there’s a data frame called Duncan,
which provides historical data on perceived job prestige in 1950.
Install the car package and access the Duncan data set and its help
file. Then, do the following:

i.  Write R code that will plot education on the x-axis and
income on the y-axis, with both x- and y-axis limits fixed to
be [0,100]. Provide appropriate axis labels. For jobs with a
prestige value of less than or equal to 80, use a black o as the
point character. For jobs with prestige greater than 80, use a
blue e.

ii. Add alegend explaining the difference between the two
types of points and then save a 500 X 500 pixel .png file of
the image.

c. Create a list called exer that contains the three data sets quakes,

q5.dframe, and Duncan. Then, do the following:

i.  Write the list object directly to disk, calling it ExerciseS-1.1xt.
Briefly inspect the contents of the file in a text editor.

ii. Read ExerciseS-1.txt back into your workspace; call the result-
ing object list.of.dataframes. Check that list.of.dataframes
does indeed contain the three data frame objects.

d. In Section 7.4.3, you created a ggplot2 graphic of 20 observations
displayed as the bottom image of Figure 7-11 on page 144. Use
ggsave to save a copy of this plot as a .tiff file.

Important Code in This Chapter

Function/operator  Brief description First occurrence

data Load contributed data set Section 8.1.2, p. 149
read. table Import table-format data file ~ Section 8.2.1, p. 151
list.files Print specific folder contents ~ Section 8.2.1, p. 151
file.choose Interactive file selection Section 8.2.1, p. 152
read.csv Import comma-delimited file ~ Section 8.2.2, p. 153
write.table Write tableformat file to disk ~ Section 8.3.1, p. 156
jpeg, bmp, png, tiff  Write image/plot file to disk  Section 8.3.2, p. 157
dev.off Close file graphics device Section 8.3.2, p. 157
pdf, postscript Write image/plot file to disk ~ Section 8.3.2, p. 158

ggsave Write ggplot2 plot file to disk ~ Section 8.3.2, p. 159
dput Write R object to file (ASCIl)  Section 8.4, p. 160
dget Import ASCII object file Section 8.4, p. 161
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CALLING FUNCTIONS

Before you start writing your own func-

tions in R, it’s useful to understand how
functions are called and interpreted in an R

session. First, you’ll look at how variable names

are compartmentalized in R. You'll see R’s rules for
naming arguments and objects, and how R searches
for arguments and other variables when a function
is called. Then you’ll look at some alternative ways to
specify arguments when calling a function.

9.1 Scoping

To begin with, it’s important to understand R’s scoping rules, which deter-
mine how the language compartmentalizes objects and retrieves them in
a given session. This framework also defines the situations in which dupli-
cate object names can exist at once. For example, you’ve used the argu-
ment data when calling matrix (Section 3.1), but data is also the name of a
ready-to-use function that loads data sets from contributed packages (Sec-
tion 8.1.2). In this section, you’ll gain an introductory understanding of
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how R behaves internally in these circumstances, which will help you later
on when it comes to programming and executing your own functions and
those of other packages.

9.1.1 Environments

R enforces scoping rules with virtual environments. You can think of environ-
ments as separate compartments where data structures and functions are
stored. They allow R to distinguish between identical names that are associ-
ated with different scopes and therefore stored in different environments.
Environments are dynamic entities—new environments can be created, and
existing environments can be manipulated or removed.

Technically speaking, environments don’t actually contain items. Rather, they have
pointers to the location of those items in the compuler’s memory. But using the “com-
partment” metaphor and thinking of objects “belonging to” these compartments is use-
Jful when youre first getting a general sense of how environments work.

There are three important kinds of environments: global environments,
package environments and namespaces, and local or lexical environments.

Global Environment

The global environment is the compartment set aside for user-defined objects.
Every object you've created or overwritten so far has resided in the global
environment of your current R session. In Section 1.3.1, I mentioned that a
call to 1s() lists all the objects, variables, and user-defined functions in the
active workspace—more precisely, 1s() prints the names of everything in the
current global environment.

Starting with a new R workspace, the following code creates two objects
and confirms their existence in the global environment:

R> foo <- 445
R> bar <- "stringtastic"
R> 1s()

[1] "bar" "foo"

But what about all the ready-to-use objects and functions? Why aren’t
those printed alongside foo and bar as members of this environment? In
fact, those objects and functions belong to package-specific environments,
described next.

Package Environments and Namespaces

For simplicity, I’ll use the term package environment rather loosely to refer
to the items made available by each package in R. In fact, the structure
of R packages in terms of scoping is a bit more complicated. Each pack-
age environment actually represents several environments that control
different aspects of a search for a given object. A package namespace, for
example, essentially defines the visibility of its functions. (A package can



have visible functions that a user is able to use and invisible functions that
provide internal support to the visible functions.) Another part of the pack-
age environment handles imports designations, dealing with any functions
or objects from other libraries that the package needs to import for its own
functionality.

To clarify this, you can think of all the ready-to-use functions and objects
you’re working with in this book as belonging to specific package environ-
ments. The same is true for the functions and objects of any contributed
packages you’ve explicitly loaded with a call to library. You can use 1s to list
the items in a package environment as follows:

R> 1s("package:graphics")

[1] "abline" "arrows" "assocplot” "axis"

[5] "Axis" "axis.Date" "axis.POSIXct" "axTicks"

[9] "barplot" "barplot.default" "box" "boxplot"”
[13] "boxplot.default" "boxplot.matrix" "bxp" "cdplot”

[17] "clip" "close.screen" "co.intervals" "contour"
[21] "contour.default" "coplot" "curve" "dotchart"”
[25] "erase.screen" "filled.contour" "fourfoldplot" "frame"

[29] "grconvertx" "grconvertyY" "grid" "hist"

[33] "hist.default” "identify" "image" "image.default"
[37] "layout" "layout.show" "lcm" "legend"

[41] "lines" "lines.default" "locator" "matlines"
[45] "matplot"” "matpoints” "mosaicplot” "mtext"
[49] "pairs" "pairs.default"  "panel.smooth" "par"
[53] "persp" "pie" "plot” "plot.default"”
[57] "plot.design" "plot.function”  "plot.new" "plot.window"
[61] "plot.xy" "points" "points.default” "polygon"
[65] "polypath" "rasterImage"” "rect" "rug"
[69] "screen" "segments" "smoothScatter"  "spineplot"
[73] "split.screen” "stars" "stem" "strheight"
[77] "stripchart" "strwidth" "sunflowerplot"  "symbols"
[81] "text" "text.default" "title" "xinch"
[85] "xspline" "xyinch" "yinch"

The 1s command lists all of the visible objects contained in the graphics
package environment. Note that this list includes some of the functions you
used in Chapter 7, such as arrows, plot, and segments.

Local Environments

Each time a function is called in R, a new environment is created called the
local environment, sometimes referred to as the lexical environment. This local
environment contains all the objects and variables created in and visible to
the function, including any arguments you’ve supplied to the function upon
execution. It’s this feature that allows the presence of argument names that
are identical to other object names accessible in a given workspace.
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For example, say you call matrix and pass in the argument data, as
follows:

R> youthspeak <- matrix(data=c("OMG","LOL","WTF","YOLO"),nrow=2,ncol=2)
R> youthspeak
1] [,2]
[1,] "OMG" "WTF"
[2,] "LOoL" "voLO"

Calling this function creates a local environment containing the data
vector. When you execute the function, it begins by looking for data in this
local environment. That means R isn’t confused by other objects or func-
tions named data in other environments (such as the data function auto-
matically loaded from the utils package environment). If a required item
isn’t found in the local environment, only then does R begin to widen its
search for that item (I’ll discuss this feature a little more in Section 9.1.2).
Once the function has completed, this local environment is automatically
removed. The same comments apply to the nrow and ncol arguments.

9.1.2 Search Path

To access data structures and functions from environments other than the
immediate global environment, R follows a search path. The search path lays
out all the environments that a given R session has available to it.

The search path is basically a list of the environments that R will search
when an object is requested. If the object isn’t found in one environment,
R proceeds to the next one. You can view R’s search path at any time using
search().

R> search()

[1] ".GlobalEnv" "tools:RGUI" "package:stats"
[4] "package:graphics" "package:grDevices" "package:utils"
[7] "package:datasets" "package:methods" "Autoloads"
[10] "package:base"

From the command prompt, this path will always begin at the global
user environment (.GlobalEnv) and end after the base package environment
(package:base). You can think of these as belonging to a hierarchy, with an
arrow pointing from left to right between each pair of environments. For my
current session, if I request a certain object at the R prompt, the program
will inspect .GlobalEnv — tools:RGUI — package:stats — ... — package:base
in turn, stopping the search when the desired object is found and retrieved.
Note that, depending on your operating system and whether you’re using
the built-in GUI, tools:RGUI might not be included in your search path.

If R doesn’t find what it’s looking for by following the environments in
the search path, the empty environment is reached. The empty environment
is not explicitly listed in the output from search(), but it’s always the final
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destination after package:base. This environment is special because it marks
the end of the search path.

For example, if you call the following, a number of things happen
internally:

R> baz <- seq(from=0,to=3,length.out=5)
R> baz
[1] 0.00 0.75 1.50 2.25 3.00

R first searches the global environment for a function called seq, and
when this isn’t found, it goes on to search in the enclosing environment,
which is the next level up in the search path (according to the left-to-right
arrows mentioned earlier). It doesn’t find it there, so R keeps going through
the path to the next environment, searching the packages that have been
loaded (automatically or otherwise) until it finds what it’s looking for. In
this example, R locates seq in the built-in base package environment. Then
it executes the seq function (creating a temporary local environment) and
assigns the results to a new object, baz, which resides in the global environ-
ment. In the subsequent call to print baz, R begins by searching the global
environment and immediately finds the requested object.

You can look up the enclosing environment of any function using
environment, as follows:

R> environment(seq)

<environment: namespace:base>

R> environment(arrows)
<environment: namespace:graphics>

Here, I've identified the package namespace of base as the owner of the
seq function and the graphics package as the owner of the arrows function.

Each environment has a parent, to direct the order of the search path.
Examining the earlier output from the call search(), you can see that the
parent of package:stats, for example, is package:graphics. The specific parent-
child structure is dynamic in the sense that the search path changes when
additional libraries are loaded or data frames are attached. When you load
a contributed package with a call to library, this essentially just inserts
the desired package in the search path. For example, in Exercise 8.1 on
page 161, you installed the contributed package car. After loading this
package, your search path will include its contents.

R> library("car"
R> search()

[1] ".GlobalEnv" "package:car" "tools:RGUI"

[4] "package:stats" "package:graphics" "package:grDevices"
[7] "package:utils" "package:datasets" "package:methods"
[10] "Autoloads" "package:base”
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Note the position of the car package environment in the path—inserted
directly after the global environment. This is where each subsequently
loaded package will be placed (followed by any additional packages it
depends upon for its own functionality).

As noted earlier, R will stop searching once it has exhausted the entire
search path and reached the empty environment. If you request a function
or object that you haven’t defined, that doesn’t exist, or that is perhaps in a
contributed package that you’ve forgotten to load (this is quite a common
little mistake), then an error is thrown. These “cannot find” errors are rec-
ognizable for both functions and other objects.

R> neither.here()

Error: could not find function "neither.here"
R> nor.there

Error: object 'nor.there' not found

Environments help compartmentalize the huge amount of functionality
in R. This becomes particularly important when there are functions with the
same name in different packages in the search path. At that point, masking,
discussed in Section 12.3, comes into play.

As you get more comfortable with R and want more precise control over
how it operates, it’s worth investigating in full how R handles environments.
For more technical details on this, Gupta (2012) provides a particularly well-
written online article.

9.1.3  Reserved and Protected Names
A few key terms are strictly forbidden from being used as object names in R.
These reserved names are necessary in order to protect fundamental opera-
tions and data types frequently used in the language.

The following identifiers are reserved:
e ifandelse
e  for, while, and in
e function
®  repeat, break, and next
®  TRUE and FALSE
e Infand -Inf
® NA, NaN, and NULL

I haven’t yet covered some of the terms on this list. These items repre-
sent the core tools for programming in the R language, and you’ll begin to
explore them in the following chapter. The last three bullet points include

the familiar logical values (Section 4.1) and special terms used to represent
things like infinity and missing entries (Section 6.1).



If you try to assign a new value to any of these reserved terms, an error
occurs.

R> NaN <- 5
Error in NaN <- 5 : invalid (do_set) left-hand side to assignment

Because R is case sensitive, it’s possible to assign values to any case-
variant of the reserved names, but this can be confusing and is generally
not advisable.

R> False <- "confusing"
R> nan <- "this is"

R> cat(nan,False)

this is confusing

Also be wary of assigning values to T and F, the abbreviations of TRUE and
FALSE. The full identifiers TRUE and FALSE are reserved, but the abbreviated
versions are not.

R> T <- 42
R> F <- TRUE
R> F8&TRUE
[1] TRUE

Assigning values to T and F this way will affect any subsequent code that
intends to use T and F to refer to TRUE and FALSE. The second assignment
(F <- TRUE) is perfectly legal in R’s eyes, but it’s extremely confusing given
the normal usage of F as an abbreviation: the line F&&TRUE now represents a
TRUEGBTRUE comparison! It’s best to simply avoid these types of assignments.

If you’ve been following along with the examples in your R console, it’s
prudent at this point to clear the global environment (thereby deleting the
objects False, nan, T, and F from your workspace). To do this, use the rm func-
tion as shown next. Using 1s(), supply a character vector of all objects in the
global environment as the argument list.

R> 1s()

[1] "bar" "baz" "F" "False" "foo" "nan"
[71 "T" "youthspeak"

R> rm(1list=1s())

R> 1s()

character(0)

Now the global environment is empty, and calling 1s() returns an empty
character vector (character(0)).
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Exercise 9.1

a. Identify the first 20 items contained in the built-in and auto-
matically loaded methods package. How many items are there in

total?
b. Determine the environment that owns each of the following
functions:
i. read.table
ii. data
iii. matrix
iv. jpeg

c. Use 1s and a test for character string equality to confirm the
function smoothScatter is part of the graphics package.

9.2 Argument Matching

Another set of rules that determine how R interprets function calls has to

do with argument matching. Argument matching conditions allow you to pro-
vide arguments to functions either with abbreviated names or without names
at all.

9.2.1 Exact

So far, you’ve mostly been using exact matching of arguments, where each
argument tag is written out in full. This is the most exhaustive way to call a
function. It’s helpful to write out full argument names this way when first
getting to know R or a new function.

Other benefits of exact matching include the following:

* Exact matching is less prone to mis-specification of arguments than
other matching styles.

¢ The order in which arguments are supplied doesn’t matter.

¢ Exact matching is useful when a function has many possible arguments
but you want to specify only a few.

The main drawbacks of exact matching are clear:

* It can be cumbersome for relatively simple operations.

e Exact matching requires the user to remember or look up the full, case-
sensitive tags.
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As an example, in Section 6.2.1, you used exact matching to execute the
following:

R> bar <- matrix(data=1:9,nrow=3,ncol=3,dimnames=list(c("A","B","C"),
c("D","E","F")))
R> bar
DEF
Al14g7
B2538
€369

This creates a 3 X 3 matrix object bar with a dimnames attribute for the rows
and columns. Since the argument tags are fully specified, the order of the
arguments doesn’t matter. You could switch around the arguments, and the
function still has all the information it requires.

R> bar <- matrix(nrow=3,dimnames=list(c("A","B","C"),c("D","E","F")),ncol=3,
data=1:9)
R> bar
DEF
Al147
B2538
€369

This behaves the same way as the previous function call. For the sake
of consistency, you usually won’t switch around arguments each time you
call a function, but this example shows a benefit of exact matching: you
don’t have to worry about the order of any optional arguments or about

skipping them.

9.2.2 Partial

Partial matching lets you identify arguments with an abbreviated tag. This
can shorten your code, and it still lets you provide arguments in any order.

Here is another way to call matrix that takes advantage of partial
matching:

R> bar <- matrix(nr=3,di=list(c("A","B","C"),c("D","E","F")),nc=3,dat=1:9)
R> bar
DEF
A147
B2538
C369
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Notice I've shortened the nrow, dimnames, and ncol argument tags to the
first two letters and shortened the data argument to the first three. For par-
tial matching, there’s no set number of letters you have to provide, as long
as each argument is still uniquely identifiable for the function being called.
Partial matching has the following benefits:

* Itrequires less code than exact matching.

* Argument tags are still visible (which limits the possibility of mis-
specification).

* The order of supplied arguments still doesn’t matter.
But partial matching also has some limitations. For one, it gets trickier if

there are multiple arguments whose tags start with the same letters. Here’s
an example:

R> bar <- matrix(nr=3,di=list(c("A","B","C"),c("D","E","F")),nc=3,d=1:9)
Error in matrix(nr = 3, di = list(c("A", "B", "C"), c("D", "E", "F")),
argument 4 matches multiple formal arguments

An error has occurred. The fourth argument tag is designated simply
as d, which is meant to stand for data. This is illegal because another argu-
ment, namely dimnames, also starts with d. Even though dimnames is specified
separately as di earlier in the same line, the call isn’t valid.

Drawbacks of partial matching include the following:

® The user must be aware of other potential arguments that can be
matched by the shortened tag (even if they aren’t specified in the call
or have a default value assigned).

¢ Each tag must have a unique identification, which can be difficult to
remember.

9.2.3 Positional

The most compact mode of function calling in R is positional matching. This
is when you supply arguments without tags, and R interprets them based
solely on their order.

Positional matching is usually used for relatively simple functions with
only a few arguments, or functions that are very familiar to the user. For
this type of matching, you must be aware of the precise positions of each
argument. You can find that information in the “Usage” section of the func-
tion’s help file, or it can be printed to the console with the args function.
Here’s an example:

R> args(matrix)
function (data = NA, nrow = 1, ncol = 1, byrow = FALSE, dimnames = NULL)
NULL




This shows the defined order of arguments of the matrix function, as
well as the default value for each argument. To construct the matrix bar with
positional matching, execute the following:

R> bar <- matrix(1:9,3,3,F,list(c("A","B","C"),c("D","E","F")))
R> bar
DEF
Al14g7
B2538
C3609

The benefits of positional matching are as follows:

¢ Shorter, cleaner code, particularly for routine tasks

* No need to remember specific argument tags

Notice that when using exact and partial matching, you didn’t need to
supply anything for the byrow argument, which, by default, is set to FALSE.
With positional matching, you must provide a value (given here as F) for
byrow as the fourth argument because R relies on position alone to interpret
the function call. If you leave out the argument, you get an error, as follows:

R> bar <- matrix(1:9,3,3,list(c("A","B","C"),c("D","E","F")))
Error in matrix(1:9, 3, 3, list(c("A", "B", "C"), c("D", "E", "F"))) :
invalid 'byrow' argument

Here R has tried to assign the fourth argument (the list you intended
for dimnames) as the value for the logical byrow argument. This brings us to the
drawbacks of positional matching:

*  You must look up and exactly match the defined order of arguments.

® Reading code written by someone else can be more difficult, especially
when it includes unfamiliar functions.

9.2.4 Mixed

Since each matching style has pros and cons, it’s quite common, and per-
fectly legal, to mix these three styles in a single function call.

For instance, you can avoid the type of error shown in the previous
example like so:

R> bar <- matrix(1:9,3,3,dim=1ist(c("A","B","C"),c("D","E","F")))
R> bar
DEF
A147
B2538
€369
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Here I've used positional matching for the first three arguments, which
are by now familiar to you. At the same time, I’ve used partial matching to
explicitly tell R that the list is meant as a dimnames value, not for byrow.

9.2.5 Dot-Dot-Dot: Use of Ellipses

Many functions exhibit variadic behavior. That is, they can accept any num-
ber of arguments, and it’s up to the user to decide how many arguments

to provide. The functions c, data.frame, and list are all like this. When you
call a function like data.frame, you can specify any number of members as
arguments.

This flexibility is achieved in R through the special dot-dot-dot designa-
tion (...), also called the ellipsis. This construct allows the user to supply any
number of data vectors (these become the columns in the final data frame).
You can see whether an ellipsis is used in a function on the function’s help
page or with args. Looking at data.frame, notice the first argument slot is an
ellipsis:

R> args(data.frame)

function (..., row.names = NULL, check.rows = FALSE, check.names = TRUE,
stringsAsFactors = default.stringsAsFactors())

NULL

When you call a function and supply an argument that can’t be matched
with one of the function’s defined argument tags, normally this would pro-
duce an error. But if the function is defined with an ellipsis, any arguments
that aren’t matched to other argument tags are matched to the ellipsis.

Functions that employ ellipses generally fall into two groups. The first
group includes functions such as c, data.frame, and list, where the ellipsis
always represents the “main ingredients” in the function call. That is, the
objective of the function is to use contents of the ellipsis in the resulting
object or output. The second group consists of functions where the ellipsis is
meant as a supplementary or potential repository of optional arguments. This
is common when the function of interest calls other subfunctions that them-
selves require additional arguments depending upon the originally supplied
items. Rather than explicitly copy all the arguments desired by the subfunc-
tion into the argument list of the “parent” function, the parent function can
instead be defined including an ellipsis that is subsequently provided to the
subfunction.

Here’s an example of the ellipsis used for supplementary arguments
with the generic plot function:

R> args(plot)
function (x, y, ...)
NULL

From examining the arguments, it’s clear that optional arguments such
as point size (argument tag cex) or line type (argument tag 1ty), if supplied,



are matched to the ellipsis. These optional arguments are then passed in to
the function to be used by various methods that tweak graphical parameters.
Ellipses are a convenient programming tool for writing variadic func-
tions or functions where an unknown number of arguments may be sup-
plied. This will become clearer when you start writing your own functions
in Chapter 11. However, when writing functions like this, it’s important to
properly document the intended use of ... so the potential users of the
function know exactly which arguments can be passed to it and what those
arguments are subsequently used for in execution.

a. Use positional matching with seq to create a sequence of values
between —4 and 4 that progresses in steps of 0.2.

b. In each of the following lines of code, identify which style of
argument matching is being used: exact, partial, positional, or
mixed. If mixed, identify which arguments are specified in each
style.

i. array(8:1,dim=c(2,2,2))

ii. rep(1:2,3)

1ii. seq(from=10,to=8,length=5)

iv. sort(decreasing=T,x=c(2,1,1,2,0.3,3,1.3))
v. which(matrix(c(T,F,T,T),2,2))

vi. which(matrix(c(T,F,T,T),2,2),a=T)

c. Suppose you explicitly ran the plotting function plot.default and
supplied values to arguments tagged type, pch, xlab, ylab, lwd, 1ty,
and col. Use the function documentation to determine which of
these arguments fall under the umbrella of the ellipsis.

Important Code in This Chapter

Function/operator  Brief description First occurrence

1s Inspect environment objects Section 9.1.1, p. 167
search Current search path Section 9.1.2, p. 168
environment Function environment properties ~ Section 9.1.2, p. 169
™ Delete objects in workspace Section 9.1.3, p. 171
args Show function arguments Section 9.2.3, p. 174
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CONDITIONS AND LOOPS

To write more sophisticated programs
with R, you’ll need to control the flow and
order of execution in your code. One funda-

mental way to do this is to make the execution
of certain sections of code dependent on a condition.
Another basic control mechanism is the loop, which
repeats a block of code a certain number of times. In
this chapter, we’ll explore these core programming
techniques using if-else statements, for and while
loops, and other control structures.

10.1 if Statements

The if statement is the key to controlling exactly which operations are
carried out in a given chunk of code. An if statement runs a block of code
only if a certain condition is true. These constructs allow a program to
respond differently depending on whether a condition is TRUE or FALSE.
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10.1.1 Stand-Alone Statement

Let’s start with the stand-alone if statement, which looks something like this:

if(condition){
do any code here

The condition is placed in parentheses after the if keyword. This condi-
tion must be an expression that yields a single logical value (TRUE or FALSE).
If it’s TRUE, the code in the braces, {}, will be executed. If the condition isn’t
satisfied, the code in the braces is skipped, and R does nothing (or contin-
ues on to execute any code after the closing brace).

Here’s a simple example. In the console, store the following:

R>a<-3
R> mynumber <- 4

Now, in the R editor, write the following code chunk:

if(a<=mynumber){
a <- a2

}

When this chunk is executed, what will the value of a be? It depends
on the condition defining the if statement, as well as what’s actually speci-
fied in the braced area. In this case, when the condition a<=mynumber is eval-
uated, the result is TRUE since 3 is indeed less than or equal to 4. That means
the code inside the braces is executed, which sets a to a*2, or 9.

Now highlight the entire chunk of code in the editor and send it to the
console for evaluation. Remember, you can do this in several ways:

¢ Copy and paste the selected text from the editor directly into the
console.

e  From the menu, select Edit » Run line or selection in Windows or select
Edit — Execute in OS X.

*  Use the keystroke shortcut such as CTRL-R in Windows or $-RETURN on
a Mac.

Once you execute the code in the console, you’ll see something
like this:

R> if(a<=mynumber){
+ a<- a2

+}




NOTE

Then, look at the object a, shown here:

[1] 9

Next, suppose you execute the same if statement again right away. Will
a be squared once more, giving 81?7 Nope! Since a is now 9 and mynumber is
still 4, the condition a<=mynumber will be FALSE, and the code in the braces will
not be executed; a will remain at 9.

Note that after you send the if statement to the console, each line after
the first is prefaced by a +. These + signs do not represent any kind of arith-
metic addition; rather, they indicate that R is expecting more input before it
begins execution. For example, when a left brace is opened, R will not begin
any kind of execution until that section is closed with a right brace. To avoid
redundancy, in future examples I won’t show this repetition of code sent
from the editor to the console.

You can change the + symbol by assigning a different character string to the continue
component of R’s options command, in the way you reset the prompt in Section 1.2.1.

The if statement offers a huge amount of flexibility—you can place
any kind of code in the braced area, including more if statements (see the
upcoming discussion of nesting in Section 10.1.4), enabling your program to
make a sequence of decisions.

To illustrate a more complicated if statement, consider the following
two new objects:

R> myvec <- c(2.73,5.40,2.15,5.29,1.36,2.16,1.41,6.97,7.99,9.52)
R> myvec

[1] 2.73 5.40 2.15 5.29 1.36 2.16 1.41 6.97 7.99 9.52
R> mymat <- matrix(c(2,0,1,2,3,0,3,0,1,1),5,2)

R> mymat

[,1] [,2]
[1,] 2 0
[2,] o 3
[3,] 1 0
[4,] 2 1
[5,1] 31

Use these two objects in the code chunk given here:

if(any((myvec-1)>9)||matrix(myvec,2,5)[2,1]<=6){
cat("Condition satisfied --\n")
new.myvec <- myvec
new.myvec[seq(1,9,2)] <- NA
mylist <- list(aa=new.myvec,bb=mymat+0.5)
cat("-- a list with",length(mylist),"members now exists.")
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Send this to the console, and it produces the following output:

Condition satisfied --
-- a list with 2 members now exists.

Indeed, an object mylist has been created that you can examine.

R> mylist
$aa
[1] NA5.40 NA 5.29 NA 2.16 NA 6.97 NA 9.52

$bb

[,1] [,2]
[1,] 2.5 0.5
[2,] 0.5 3.5
[3,] 1.5 0.5
[4,] 2.5 1.5
[5,] 3.5 1.5

In this example, the condition consists of two parts separated by an
OR statement using | |, which produces a single logical result. Let’s walk
through it.

®  The first part of the condition looks at myvec, takes 1 away from each ele-
ment, and checks whether any of the results are greater than 9. If you
run this part on its own, it yields FALSE.

R> myvec-1

[1] 1.73 4.40 1.15 4.29 0.36 1.16 0.41 5.97 6.99 8.52

R> (myvec-1)>9

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
R> any((myvec-1)>9)

[1] FALSE

® The second part of the condition uses positional matching in a call to
matrix to construct a two-row, five-column, column-filled matrix using
entries of the original myvec. Then, the number in the second row of
the first column of that result is checked to see whether it’s less than
or equal to 6, which it is.

R> matrix(myvec,2,5)

[,1] [,2] [,3] [,4] [,5]
[1,] 2.73 2.15 1.36 1.41 7.99
[2,] 5.40 5.29 2.16 6.97 9.52
R> matrix(myvec,2,5)[2,1]
[1] 5.4
R> matrix(myvec,2,5)[2,1]<=6
[1] TRUE
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This means the overall condition being checked by the if statement will
be FALSE| |TRUE, which evaluates as TRUE.

R> any((myvec-1)>9) | |matrix(myvec,2,5)[2,1]<=6
[1] TRUE

As a result, the code inside the braces is accessed and executed. First,
it prints the "Condition satisfied" string and copies myvec to new.myvec. Using
seq, it then accesses the odd-numbered indexes of new.myvec and overwrites
them with NA. Next, it creates mylist. In this list, new.myvec is stored in a mem-
ber named aa, and then it takes the original mymat, increases all its elements
by 0.5, and stores the result in bb. Lastly, it prints the length of the result-
ing list.

Note that if statements don’t have to match the exact style I'm using
here. Some programmers, for example, prefer to open the left brace on
a new line after the condition, or some may prefer a different amount of
indentation.

10.1.2 else Statements

The if statement executes a chunk of code if and only if a defined condi-
tion is TRUE. If you want something different to happen when the condition
is FALSE, you can add an else declaration. Here’s an example in pseudocode:

if(condition){

do any code in here if condition is TRUE
} else {

do any code in here if condition is FALSE

You set the condition, then in the first set of braces you place the code
to run if the condition is TRUE. After this, you declare else followed by a new
set of braces where you can place code to run if the condition is FALSE.

Let’s return to the first example in Section 10.1.1, once more storing
these values at the console prompt.

R>a<-3
R> mynumber <- 4

In the editor, create a new version of the earlier if statement.

if(a<=mynumber){
cat("Condition was",a<=mynumber)
a <- a"2

} else {
cat("Condition was",a<=mynumber)
a <- a-3.5
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Here, you again square a if the condition a<=mynumber is TRUE, but if FALSE,
a is overwritten by the result of itself minus 3.5. You also print text to the
console stating whether the condition was met. After resetting a and mynumber
to their original values, the first run of the if loop computes a as 9, just as
earlier, outputting the following:

Condition was TRUE
R> a
[1] 9

Now, immediately highlight and execute the entire statement again.
This time around, a<=mynumber will evaluate to FALSE and execute the code
after else.

Condition was FALSE
R> a
[1] 5.5

10.1.3  Using ifelse for Element-wise Checks

An if statement can check the condition of only a single logical value. If you
pass in, for example, a vector of logicals for the condition, the if statement
will only check (and operate based on) the very first element. It will issue a
warning saying as much, as the following dummy example shows:

R> if(c(FALSE,TRUE,FALSE,TRUE,TRUE)){}
Warning message:
In if (c(FALSE, TRUE, FALSE, TRUE, TRUE)) { :
the condition has length > 1 and only the first element will be used

There is, however, a shortcut function available, ifelse, which can per-
form this kind of vector-oriented check in relatively simple cases. To demon-
strate how it works, consider the objects x and y defined as follows:

R> X <-'5

R>y <- -5:5

R>y

[1] -5-4-3-2-1 0 1 2 3 4 5

Now, suppose you want to produce the result of x/y but with any
instance of Inf (that is, any instance where x is divided by zero) replaced
with NA. In other words, for each element in y, you want to check whether
y is zero. If so, you want the code to output NA, and if not, it should output
the result of x/y.



As you’ve just seen, a simple if statement won’t work here. Since it
accepts only a single logical value, it can’t run through the entire logical
vector produced by y==0.

R> y==0
[1] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

Instead, you can use the element-wise ifelse function for this kind of
scenario.

R> result <- ifelse(test=y==0,yes=NA,no=x/y)

R> result

[1] -1.000000 -1.250000 -1.666667 -2.500000 -5.000000 NA 5.000000 2.500000
[9] 1.666667 1.250000 1.000000

Using exact matching, this command creates the desired result vector
in one line. Three arguments must be specified: test takes a logical-valued
data structure, yes provides the element to return if the condition is satisfied,
and no gives the element to return if the condition is FALSE. As noted in the
function documentation (which you can access with ?ifelse), the returned
structure will be of “the same length and attributes as test.”

Exercise 10.1

a. Create the following two vectors:

vecl <- c(2,1,1,3,2,1,0)
vec2 <- c(3,8,2,2,0,0,0)

Without executing them, determine which of the following
if statements would result in the string being printed to the
console. Then confirm your answers in R.

1. if((veci[1]+vec2[2])==10){ cat("Print me!") }

ii.  if(veci[1]>=288vec2[1]>=2){ cat("Print me!") }

. if(all((vec2-vec1)[c(2,6)]<7)){ cat("Print me!") }

iv. if(lis.na(vec2[3])){ cat("Print me!") }

b. Using vec1 and vec2 from (a), write and execute a line of code
that multiplies the corresponding elements of the two vectors
together if their sum is greater than 3. Otherwise, the code
should simply sum the two elements.
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c. In the editor, write R code that takes a square character matrix
and checks if any of the character strings on the diagonal (top
left to bottom right) begin with the letter g, lowercase or upper-
case. If satisfied, these specific entries should be overwritten with
the string "HERE". Otherwise, the entire matrix should be replaced
with an identity matrix of the same dimensions. Then, try your
code on the following matrices, checking the result each time:

i.  mymat <- matrix(as.character(1:16),4,4)

ii. mymat <- matrix(c("DANDELION","Hyacinthus","Gerbera",
"MARIGOLD","geranium","ligularia",
"Pachysandra”, "SNAPDRAGON", "GLADIOLUS"),3,3)

iii. mymat <- matrix(c("GREAT","exercises","right","here"),2,2,
byrow=T)

Hint: This requires some thought—you will find the func-
tions diag from Section 3.2.1 and substr from Section 4.2.4 useful.

10.1.4  Nesting and Stacking Statements

An if statement can itself be placed within the outcome of another if state-
ment. By nesting or stacking several statements, you can weave intricate paths
of decision-making by checking a number of conditions at various stages
during execution.

In the editor, modify the mynumber example once more as follows:

if(a<=mynumber){
cat("First condition was TRUE\n")
a <- a"2
if(mynumber>3){
cat("Second condition was TRUE")
b <- seq(1,a,length=mynumber)
} else {
cat("Second condition was FALSE")
b <- axmynumber
}
} else {
cat("First condition was FALSE\n")
a <- a-3.5
if(mynumber>=4){
cat("Second condition was TRUE")
b <- a*(3-mynumber)
} else {
cat("Second condition was FALSE")
b <- rep(at+mynumber,times=3)



Here you see the same initial decision being made as earlier. The value
a is squared if it’s less than or equal to mynumber; if not, it has 3.5 subtracted
from it. But now there’s another if statement within each braced area. If the
first condition is satisfied and a is squared, you then check whether mynumber
is greater than 3. If TRUE, b is assigned seq(1,a,length=mynumber). If FALSE, b is
assigned amynumber.

If the first condition fails and you subtract 3.5 from a, then you check a
second condition to see whether mynumber is greater than or equal to 4. If it is,
then b becomes a*(3-mynumber). If it’s not, b becomes rep(a+mynumber, times=3).
Note that I've indented the code within each subsequent braced area to
make it easier to see which lines are relevant to each possible decision.

Now, reset a <- 3 and mynumber <- 4 either directly in the console or from
the editor. When you run the mynumber example code, you’ll get the following
output:

First condition was TRUE

Second condition was TRUE

R> a

[1] 9

R> b

[1] 1.000000 3.666667 6.333333 9.000000

The result indicates exactly which code was invoked—the first condition
and second condition were both TRUE. Trying another run of the same code,
after first setting

R> a<-6
R> mynumber <- 4

you see this output:

First condition was FALSE
Second condition was TRUE
R> a

[1] 2.5

R> b

[1] 0.4

This time the first condition fails, but the second condition checked
inside the else statement is TRUE.

Alternatively, you could accomplish the same thing by sequentially stack-
ing if statements and using a combination of logical expressions in each
condition. In the following example, you check for the same four situations,
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but this time you stack if statements by placing a new if declaration immedi-
ately following an else declaration:

if(a<=mynumber && mynumber>3){
cat("Same as 'first condition TRUE and second TRUE'")
a <- a2
b <- seq(1,a,length=mynumber)

} else if(a<=mynumber &3 mynumber<=3){
cat("Same as 'first condition TRUE and second FALSE'")
a <- a2
b <- asmynumber

} else if(mynumber>=4){
cat("Same as 'first condition FALSE and second TRUE'")
a <- a-3.5
b <- a”(3-mynumber)

} else {
cat("Same as 'first condition FALSE and second FALSE'")
a <- a-3.5
b <- rep(a+mynumber,times=3)

Just as before, only one of the four braced areas will end up being exe-
cuted. Comparing this to the nested version, the first two braced areas cor-
respond to what was originally the first condition (a<=mynumber) being satis-
fied, but this time you use 88 to check two expressions at once. If neither of
those two situations is met, this means the first condition is false, so in the
third statement, you just have to check whether mynumber>=4. For the final
else statement, you don’t need to check any conditions because that state-
ment will be executed only if all the previous conditions were not met.

If you again reset a and mynumber to 3 and 4, respectively, and execute the
stacked statements shown earlier, you get the following result:

Same as 'first condition TRUE and second TRUE'
R> a

[1] 9

R> b

[1] 1.000000 3.666667 6.333333 9.000000

This produces the same values for a and b as earlier. If you execute the
code again using the second set of initial values (a as 6 and mynumber as 4),
you get the following:

Same as 'first condition FALSE and second TRUE'
R> a
[1] 2.5



R> b
[1] 0.4

This again matches the results of using the nested version of the code.

10.1.5 The switch Function

Let’s say you need to choose which code to run based on the value of a
single object (a common scenario). One option is to use a series of if state-
ments, where you compare the object with various possible values to pro-
duce a logical value for each condition. Here’s an example:

if(mystring=="Homer"){
foo <- 12

} else if(mystring=="Marge"){
foo <- 34

} else if(mystring=="Bart"){
foo <- 56

} else if(mystring=="Lisa"){
foo <- 78

} else if(mystring=="Maggie"){
foo <- 90

} else {
foo <- NA

The goal of this code is simply to assign a numeric value to an object
foo, where the exact number depends on the value of mystring. The mystring
object can take one of the five possibilities shown, or if mystring doesn’t
match any of these, foo is assigned NA.

This code works just fine as it is. For example, setting

R> mystring <- "Lisa"

and executing the chunk, you'll see this:

R> foo
[1] 78

Setting the following

R> mystring <- "Peter"

and executing the chunk again, you’ll see this:

R> foo
[1] NA
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This setup using if-else statements is quite cumbersome for such a basic
operation, though. R can handle this type of multiple-choice decision in
a far more compact form via the switch function. For example, you could
rewrite the stacked if statements as a much shorter switch statement as
follows:

R> mystring <- "Lisa"

R> foo <- switch(EXPR=mystring,Homer=12,Marge=34,Bart=56,Lisa=78,Maggie=90,NA)
R> foo

[1] 78

and

R> mystring <- "Peter"

R> foo <- switch(EXPR=mystring,Homer=12,Marge=34,Bart=56,Lisa=78,Maggie=90,NA)
R> foo

[1] NA

The first argument, EXPR, is the object of interest and can be either a
numeric or a character string. The remaining arguments provide the val-
ues or operations to carry out based on the value of EXPR. If EXPR is a string,
these argument tags must exactly match the possible results of EXPR. Here, the
switch statement evaluates to 12 if mystring is "Homer", 34 if mystring is "Marge",
and so on. The final, untagged value, NA, indicates the result if mystring
doesn’t match any of the preceding items.

The integer version of switch works in a slightly different way. Instead
of using tags, the outcome is determined purely with positional matching.
Consider the following example:

R> mynum <- 3

R> foo <- switch(mynum,12,34,56,78,NA)
R> foo

[1] 56

Here, you provide an integer mynum as the first argument, and it’s posi-
tionally matched to EXPR. The example code then shows five untagged argu-
ments: 12 to NA. The switch function simply returns the value in the specific
position requested by mynum. Since mynum is 3, the statement assigns 56 to
foo. Had mynum been 1, 2, 4, or 5, foo would’ve been assigned 12, 34, 78, or
NA, respectively. Any other value of mynum (less than 1 or greater than 5) will
return NULL.

R> mynum <- 0

R> foo <- switch(mynum,12,34,56,78,NA)
R> foo

NULL




In these types of situations, the switch function behaves the same way
as a set of stacked if statements, so it can serve as a convenient shortcut.
However, if you need to examine multiple conditions at once or you need
to execute a more complicated set of operations based on this decision,
you’ll need to use the explicit if and else control structures.

Exercise 10.2

a.  Write an explicit stacked set of if statements that does the same
thing as the integer version of the switch function illustrated
earlier. Test it with mynum <- 3 and mynum <- 0, as in the text.

b. Suppose you are tasked with computing the precise dosage
amounts of a certain drug in a collection of hypothetical sci-
entific experiments. These amounts depend upon some pre-
determined set of “dosage thresholds” (lowdose, meddose, and
highdose), as well as a predetermined dose level factor vector
named doselevel. Look at the following items (i-iv) to see the
intended form of these objects. Then write a set of nested if
statements that produce a new numeric vector called dosage,
according to the following rules:

—  First, if there are any instances of "High" in doselevel, per-
form the following operations:

%  Check if lowdose is greater than or equal to 10. If so,
overwrite lowdose with 10; otherwise, overwrite lowdose by
itself divided by 2.

*  Check if meddose is greater than or equal to 26. If so,
overwrite meddose by 26.

%  Check if highdose is less than 60. If so, overwrite highdose
with 60; otherwise, overwrite highdose by itself multiplied
by 1.5.

%  Create a vector named dosage with the value of lowdose
repeated (rep) to match the length of doselevel.

*  Overwrite the elements in dosage corresponding to the
index positions of instances of "Med" in doselevel by
meddose.

*  Overwrite the elements in dosage corresponding to the
index positions of instances of "High" in doselevel by
highdose.

—  Otherwise (in other words, if there are no instances of "High"
in doselevel), perform the following operations:

%  Create a new version of doselevel, a factor vector with
levels "Low" and "Med" only, and label these with "Small"
and "Large", respectively (refer to Section 4.3 for details
or see ?factor).
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ii.

iii.

%  Check to see if lowdose is less than 15 AND meddose is less
than 35. If so, overwrite lowdose by itself multiplied by 2
and overwrite meddose by itself plus highdose.

%  Create a vector named dosage, which is the value of
lowdose repeated (rep) to match the length of doselevel.

*  Overwrite the elements in dosage corresponding to the
index positions of instances of "Large" in doselevel by
meddose.

Now, confirm the following:

Given

lowdose <- 12.5

meddose <- 25.3

highdose <- 58.1

doselevel <- factor(c("Low","High","High","High","Low","Med",
"Med"),levels=c("Low","Med","High"))

the result of dosage after running the nested if statements is
as follows:

R> dosage
[1] 10.0 60.0 60.0 60.0 10.0 25.3 25.3

Using the same lowdose, meddose, and highdose thresholds as in
(i), given

doselevel <- factor(c("Low","Low","Low","Med","Low","Med",
"Med"),levels=c("Low","Med","High"))

the result of dosage after running the nested if statements is
as follows:

R> dosage
[1] 25.0 25.0 25.0 83.4 25.0 83.4 83.4

Also, doselevel has been overwritten as follows:

R> doselevel
[1] Small Small Small Large Small Large Large
Levels: Small Large

Given

lowdose <- 9

meddose <- 49

highdose <- 61

doselevel <- factor(c("Low","Med","Med"),
levels=c("Low","Med","High"))




the result of dosage after running the nested if statements is
as follows:

R> dosage
[1] 9 49 49

Also, doselevel has been overwritten as follows:

R> doselevel
[1] Small Large Large
Levels: Small Large

iv. Using the same lowdose, meddose, and highdose thresholds as
(iii), as well as the same doselevel as (i), the result of dosage
after running the nested if statements is as follows:

R> dosage
[1] 4.5 91.5 91.5 91.5 4.5 26.0 26.0

c.  Assume the object mynum will only ever be a single integer between
0 and 9. Use ifelse and switch to produce a command that takes
in mynum and returns a matching character string for all possible
values 0, 1, ..., 9. Supplied with 3, for example, it should return
"three"; supplied with o, it should return "zero".

10.2 Coding Loops

Another core programming mechanism is the loop, which repeats a specified
section of code, often while incrementing an index or counter. There are
two styles of looping: the for loop repeats code as it works its way through a
vector, element by element; the while loop simply repeats code until a spe-
cific condition evaluates to FALSE. Looplike behavior can also be achieved
with R’s suite of apply functions, which are discussed in Section 10.2.3.

10.2.1 for Loops

The R for loop always takes the following general form:

for(loopindex in loopvector){
do any code in here

}

Here, the Ioopindex is a placeholder that represents an element in the
loopvector—it starts off as the first element in the vector and moves to the
next element with each loop repetition. When the for loop begins, it runs
the code in the braced area, replacing any occurrence of the Ioopindex
with the first element of the loopvector. When the loop reaches the closing
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brace, the Ioopindex is incremented, taking on the second element of the
loopvector, and the braced area is repeated. This continues until the loop
reaches the final element of the Ioopvector, at which point the braced code
is executed for the final time, and the loop exits.

Here’s a simple example written in the editor:

for(myitem in 5:7){
cat("--BRACED AREA BEGINS--\n")
cat("the current item is",myitem,"\n")
cat("--BRACED AREA ENDS--\n\n")

This loop prints the current value of the Ioopindex (which I’'ve named
myitem here) as it increments from 5 to 7. Here’s the output after sending to
the console:

--BRACED AREA BEGINS--
the current item is 5
--BRACED AREA ENDS--

--BRACED AREA BEGINS--
the current item is 6
--BRACED AREA ENDS--

--BRACED AREA BEGINS--
the current item is 7
--BRACED AREA ENDS--

You can use loops to manipulate objects that exist outside the loop.
Consider the following example:

R> counter <- 0

R> for(myitem in 5:7){

+ counter <- counter+i

+ cat("The item in run",counter,"is",myitem,"\n")
+}

The item in run 1 is 5

The item in run 2 is 6

The item in run 3 is 7

Here, I've initially defined an object, counter, and set it to zero in the
workspace. Then, inside the loop, counter is overwritten by itself plus 1. Each
time the loop repeats, counter increases, and the current value is printed to
the console.

Looping via Index or Value

Note the difference between using the loopindex to directly represent ele-
ments in the Ioopvector and using it to represent indexes of a vector. The



following two loops use these two different approaches to print double each
number in myvec:

R> myvec <- c(0.4,1.1,0.34,0.55)
R> for(i in myvec){

+  print(2xi)

+}

[1] 0.8

[1] 2.2

[1] o0.68

[1] 1.2

R> for(i in 1:length(myvec)){
print(2xmyvec[i])

1
1

0.68

"
¥
[1] 0.8
[
[
[1] 1.1

}
1
1] 2.2
]
]

The first loop uses the loopindex i to directly represent the elements in
myvec, printing the value of each element times 2. In the second loop, on the
other hand, you use i to represent integers in the sequence 1:1length(myvec).
These integers form all the possible index positions of myvec, and you use
these indexes to extract myvec’s elements (once again multiplying each ele-
ment by 2 and printing the result). Though it takes a slightly longer form,
using vector index positions provides more flexibility in terms of how you
can use the Ioopindex. This will become clearer when your needs demand
more complicated for loops, such as in the next example.

Suppose you want to write some code that will inspect any list object and
gather information about any matrix objects stored as members in the list.
Consider the following list:

R> foo <- list(aa=c(3.4,1),bb=matrix(1:4,2,2),cc=matrix(c(T,T,F,T,F,F),3,2),
dd="string here",ee=matrix(c("red","green","blue","yellow")))

R> foo

$aa

[1] 3.4 1.0

$bb

$cc

[1] [,2]
[1,] TRUE TRUE
[2,] TRUE FALSE
[3,] FALSE FALSE
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$dd
[1] "string here"

$ee

[,1]
[1,] "red"
[2,] "green"
[3,]1 "blue"
[4,] "yellow"

Here you’ve created foo, which contains three matrices of varying
dimensions and data types. You’ll write a for loop that goes through each
member of a list like this one and checks whether the member is a matrix.
If it is, the loop will retrieve the number of rows and columns and the data
type of the matrix.

Before you write the for loop, you should create some vectors that will
store information about the list members: name for the list member names,
is.mat to indicate whether each member is a matrix (with "Yes" or "No"),
nc and nr to store the number of rows and columns for each matrix, and
data.type to store the data type of each matrix.

R> name <- names(foo)

R> name

[1] "aa" "bb" "cc" "dd" "ee"

R> is.mat <- rep(NA,length(foo))
R> is.mat

[1] NA NA NA NA NA

R> nr <- is.mat

R> nc <- is.mat

R> data.type <- is.mat

Here, you store the names of the members of foo as name. You also set
up is.mat, nr, nc, and data.type, which are all assigned vectors of length
length(foo) filled with NAs. These values will be updated as appropriate by
your for loop, which you’re now ready to write. Enter the following code in
the editor:

for(i in 1:length(foo)){
member <- foo[[i]]
if(is.matrix(member)){
is.mat[i] <- "Yes"
nr[i] <- nrow(member)
nc[i] <- ncol(member)
data.type[i] <- class(as.vector(member))
} else {
is.mat[i] <- "No"



}

bar <- data.frame(name,is.mat,nr,nc,data.type,stringsAsFactors=FALSE)

Initially, set up the Ioopindex i so that it will increment through the
index positions of foo (the sequence 1:1ength(foo)). In the braced code,
the first command is to write the member of foo at position i to an object
member. Next, you can check whether that member is a matrix using is.matrix
(refer to Section 6.2.3). If TRUE, you do the following: the ith position of
is.mat vector is set as "Yes"; the ith element of nr and nc is set as the num-
ber of rows and number of columns of member, respectively; and the ith ele-
ment of data.type is set as the result of class(as.vector(member)). This final
command first coerces the matrix into a vector with as.vector and then uses
the class function (covered in Section 6.2.2) to find the data type of the
elements.

If member isn’t a matrix and the if condition fails, the corresponding
entry in is.mat is set to "No", and the entries in the other vectors aren’t
changed (so they will remain NA).

After the loop is run, a data frame bar is created from the vectors (note
the use of stringsAsFactors=FALSE in order to prevent the character string vec-
tors in bar being automatically converted to factors; see Section 5.2.1). After
executing the code, bar looks like this:

R> bar

name is.mat nr nc data.type
1 aa No NA NA <NA>
2 bb Yes 2 2 integer
3 cc Yes 3 2 logical
4 dd No NA NA <NA>
5 ee Yes 4 1 character

As you can see, this matches the nature of the matrices present in the
list foo.

Nesting for Loops

You can also nest for loops, just like if statements. When a for loop is nested
in another for loop, the inner loop is executed in full before the outer loop
loopindex is incremented, at which point the inner loop is executed all over
again. Create the following objects in your R console:

R> loopveci <- 5:7

R> loopveci

[1] 567

R> loopvec2 <- 9:6

R> loopvec2

[1]9876

R> foo <- matrix(NA,length(loopveci),length(loopvec2))
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[,1] [,2] [,3] [,4]
[1,] NA NA NA NA
[2,] NA NA NA NA
[3,] NA NA NA NA

The following nested loop fills foo with the result of multiplying each
integer in loopvecl by each integer in loopvec2:

R> for(i in 1:length(loopveci)){
+ for(j in 1:length(loopvec2)){

+ foo[i,j] <- loopveci[i]xloopvec2[]j]
+ }

+}

R> foo

Note that nested loops require a unique loopindex for each use of for.
In this case, the loopindex is i for the outer loop and j for the inner loop.
When the code is executed, i is first assigned 1, the inner loop begins, and
then j is also assigned 1. The only command in the inner loop is to take the
product of the ith element of loopvec1 and the jth element of loopvec2 and
assign it to row i, column j of foo. The inner loop repeats until j reaches
length(loopvec2) and fills the first row of foo; then i increments, and the
inner loop is started up again. The entire procedure is complete after i
reaches length(loopvec1) and the matrix is filled.

Inner loopvectors can even be defined to match the current value of the
loopindex of the outer loop. Using loopveci and loopvec2 from earlier, here’s
an example:

R> foo <- matrix(NA,length(loopveci),length(loopvec2))

R> foo
[,1] [,2] [,3] [,4]
[1,] NA NA NA NA
[2,] NA NA NA NA
[3,] NA NA NA NA
R> for(i in 1:length(loopveci)){
+  for(j in 1:i){
+ foo[i,j] <- loopveci[i]+loopvec2[]j]
+ }
+}
R> foo

[,1] [,2]1 [,3] [,4]
[1,] 14 NA NA NA



[2,] 15 14 NA NA
[3,] 16 15 14 NA

Here, the ith row, jth column element of foo is filled with the sum
of loopvec1[i] and loopvec2[j]. However, the inner loop values for j are
now decided based on the value of i. For example, when i is 1, the inner
loopvector is 1:1, so the inner loop executes only once before returning
to the outer loop. With i as 2, the inner loopvector is then 1:2, and so on.
This makes it so each row of foo is only partially filled. Extra care must be
taken when programming loops this way. Here, for example, the values for j
depend on the length of loopveci, so an error will occur if length(loopveci) is
greater than length(loopvec2).

Any number of for loops can be nested, but the computational expense
can become a problem if nested loops are used unwisely. Loops in general
add some computational cost, so to produce more efficient code in R, you
should always ask “Can I do this in a vector-oriented fashion?” Only when
the individual operations are not possible or straightforward to achieve en
masse should you explore an iterative, looped approach. You can find some
relevant and valuable comments on R loops and associated best-practice cod-
ing in the “R Help Desk” article by Ligges and Fox (2008).

Exercise 10.3

a. In the interests of efficient coding, rewrite the nested loop
example from this section, where the matrix foo was filled with
the multiples of the elements of loopveci and loopvec2, using only
a single for loop.

b. In Section 10.1.5, you used the command

switch(EXPR=mystring,Homer=12,Marge=34,Bart=56,Lisa=78,Maggie=90,
NA)

to return a number based on the supplied value of a single
character string. This line won’t work if mystring is a character
vector. Write some code that will take a character vector and
return a vector of the appropriate numeric values. Test it on the
following vector:

c("Peter","Homer","Lois","Stewie", "Maggie", "Bart")

c.  Suppose you have a list named mylist that can contain other lists
as members, but assume those “member lists” cannot themselves
contain lists. Write nested loops that can search any possible
mylist defined in this way and count how many matrices are
present. Hint: Simply set up a counter before commencing the
loops that is incremented each time a matrix is found, regardless
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of whether it is a straightforward member of mylist oritis a
member of a member list of mylist.
Then confirm the following:

i.  That the answer is 4 if you have the following:

mylist <- list(aa=c(3.4,1),bb=matrix(1:4,2,2),
cc=matrix(c(T,T,F,T,F,F),3,2),dd="string here",
ee=list(c("hello","you"),matrix(c("hello",
"there"))),
ff=matrix(c("red","green","blue","yellow")))

ii. That the answer is 0 if you have the following:

mylist <- list("tricked you",as.vector(matrix(1:6,3,2)))

iii. That the answer is 2 if you have the following:

mylist <- list(list(1,2,3),list(c(3,2),2),
list(c(1,2),matrix(c(1,2))),
rbind(1:10,100:91))

10.2.2 while Loops

To use for loops, you must know, or be able to easily calculate, the number
of times the loop should repeat. In situations where you don’t know how
many times the desired operations need to be run, you can turn to the while
loop. A while loop runs and repeats while a specified condition returns TRUE,
and takes the following general form:

while(loopcondition){
do any code in here

}

A while loop uses a single logical-valued loopcondition to control how
many times it repeats. Upon execution, the loopcondition is evaluated. If the
condition is found to be TRUE, the braced area code is executed line by line as
usual until complete, at which point the Ioopcondition is checked again. The
loop terminates only when the condition evaluates to FALSE, and it does so
immediately—the braced code is not run one last time.

This means the operations carried out in the braced area must some-
how cause the loop to exit, either by affecting the loopcondition somehow or
by declaring break, which you’ll see a little later. If not, the loop will keep
repeating forever, creating an infinite loop, which will freeze the console
(and, depending on the operations specified inside the braced area, R can
crash because of memory constraints). If that occurs, you can terminate the
loop in the R user interface by clicking the Stop button in the top menu or
by pressing ESC.



As a simple example of a while loop, consider the following code:

myval <- 5

while(myval<10){
myval <- myval+l
cat("\n'myval' is now",myval,"\n")
cat("'mycondition' is now",myval<10,"\n")

Here, you set a new object myval to 5. Then you start a while loop with
the condition myval<10. Since this is TRUE to begin with, you enter the braced
area. Inside the loop you increment myval by 1, print its current value, and
print the logical value of the condition myval<5. The loop continues until the
condition myval<10 is FALSE at the next evaluation. Execute the code chunk,
and you see the following:

‘myval’ is now 6
‘mycondition’ is now TRUE

‘myval’ is now 7
'mycondition' is now TRUE

‘myval’ is now 8
‘mycondition’ is now TRUE

‘myval’ is now 9
'mycondition' is now TRUE

‘myval’ is now 10
‘mycondition' is now FALSE

As expected, the loop repeats until myval is set to 10, at which point
myval<10 returns FALSE, causing the loop to exit because the initial condition
is no longer TRUE.

In more complicated settings, it’s often useful to set the loopcondition to
be a separate object so that you can modify it as necessary within the braced
area. For the next example, you’ll use a while loop to iterate through an inte-
ger vector and create an identity matrix (see Section 3.3.2) with the dimen-
sion matching the current integer. This loop should stop when it reaches a
number in the vector that’s greater than 5 or when it reaches the end of the
integer vector.

In the editor, define some initial objects, followed by the loop itself.

mylist <- list()

counter <- 1

mynumbers <- c(4,5,1,2,6,2,4,6,6,2)
mycondition <- mynumbers[counter]<=5
while(mycondition){
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mylist[[counter]] <- diag(mynumbers[counter])
counter <- counter+i
if(counter<=length(mynumbers)){

mycondition <- mynumbers[counter]<=5
} else {

mycondition <- FALSE

The first object, mylist, will store all the matrices that the loop creates.
You’ll use the vector mynumbers to provide the matrix sizes, and you’ll use
counter and mycondition to control the loop.

The loopcondition, mycondition, is initially set to TRUE since the first ele-
ment of mynumbers is less than or equal to 5. Inside the loop beginning at
while, the first line uses double square brackets and the value of counter to
dynamically create a new entry at that position in mylist (you did this ear-
lier with named lists in Section 5.1.3). This entry is assigned an identity
matrix whose size matches the corresponding element of mynumbers. Next,
the counter is incremented, and now you have to update mycondition. Here
you want to check whether mynumbers[counter]<=5, but you also need to check
whether you’ve reached the end of the integer vector (otherwise, you can
end up with an error by trying to retrieve an index position outside the
range of mynumbers). So, you can use an if statement to first check the condi-
tion counter<=length(mynumbers). If TRUE, then set mycondition to the outcome of
mynumbers[counter]<=5. If not, this means you’ve reached the end of mynumbers,
so you make sure the loop exits by setting mycondition <- FALSE.

Execute the loop with those predefined objects, and it will produce the
mylist object shown here:

R> mylist
[[1]1]

[,1] [,2] [,3] [,4]
[1,] 1 0 0 0
[2,] 0 1 0 0
[3,] 0 o0 1 o0
[4,] 0 0 0 1
[[2]]

[,1] [,2] [,3]1 [,4] [,5]
[1,] 1 0 0 0
[2,] 0 1 0 0 0
[3,] 0 0 1 0 o0
[4,] o 0 o0 1 o0
[5,] 0o 0 o0 0 1
[[3]]
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As expected, you have a list with four members—identity matrices of size
4%x4,5x%x5,1x1,and 2 X 2—matching the first four elements of mynumbers.
The loop stopped executing when it reached the fifth element of mynumbers
(6) since that’s greater than 5.

Exercise 10.4

a.

Based on the most recent example of storing identity matrices
in a list, determine what the resulting mylist would look like
for each of the following possible mynumbers vectors, without
executing anything:
i.  mynumbers <- c(2,2,2,2,5,2)
ii. mynumbers <- 2:20
iii. mynumbers <- c(10,1,10,1,2)

Then, confirm your answers in R (note you’ll also have to
reset the initial values of mylist, counter, and mycondition each
time, just as in the text).

For this problem, I'll introduce the factorial operator. The fac-
torial of a non-negative integer x, expressed as x!, refers to x
multiplied by the product of all integers less than x, down to 1.
Formally, it is written like this:

“xfactorial”’ = x! =x X (x—-1) X (x-2)x...x1

Note that there is a special case of zero factorial, which is
always 1. That is:

0or=1

For example, to work out 3 factorial, you compute the
following:

I3x2x1=6

To work out 7 factorial, you compute the following:

TX6XxHhx4x3x2x1=>5040

Write a while loop that computes and stores as a new object
the factorial of any non-negative integer mynum by decrementing
mynum by 1 at each repetition of the braced code.
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Using your loop, confirm the following:
i.  That the result of using mynum <- 5 is 120
ii. That using mynum <- 12 yields 479001600
iii. That having mynum <- 0 correctly returns 1

c. Consider the following code, where the operations in the braced
area of the while loop have been omitted:

mystring <- "R fever"

index <- 1

ecount <- 0

result <- mystring

while(ecount<2 && index<=nchar(mystring)){
# several omitted operations #

}

result

Your task is to complete the code in the braced area so
it inspects mystring character by character until it reaches
the second instance of the letter ¢ or the end of the string,
whichever comes first. The result object should be the entire
character string if there is no second e or the character string
made up of all the characters up to, but not including, the sec-
ond ¢ if there is one. For example, mystring <- "R fever" should
provide result as "R fev". This must be achieved by following
these operations in the braces:

1. Use substr (Section 4.2.4) to extract the single character of
mystring at position index.

2. Use a check for equality to determine whether this single-
character string is either "e" OR "E". If so, increase ecount
by 1.

3. Next, perform a separate check to see whether ecount is equal
to 2. If so, use substr to set result equal to the characters
between 1 and index-1 inclusive.

4. Increment index by 1.

Test your code—ensure the previous result for
mystring <- "R fever". Furthermore, confirm the following:
— Using mystring <- "beautiful" provides result as "beautiful"
— Using mystring <- "ECCENTRIC" provides result as "ECC"
— Using mystring <- "E1AbOrAte" provides result as "E1AbOrAt"
— Using mystring <- "eeeeek!" provides result as "e"

10.2.3 Implicit Looping with apply
In some situations, especially for relatively routine for loops (such as exe-

cuting some function on each member of a list), you can avoid some of the
details associated with explicit looping by using the apply function. The apply



function is the most basic form of implicit looping—it takes a function and
applies it to each margin of an array.
For a simple illustrative example, let’s say you have the following matrix:

R> foo <- matrix(1:12,4,3)

R> foo

[,1] [,2] [,3]
[,L] 1 5 9
[2,] 2 6 10
[3,] 3 7 11
[4,] 4 8 12

Say you want to find the sum of each row. If you call the following, you
just get the grand total of all elements, which is not what you want.

R> sum(foo)
[1] 78

Instead, you could use a for loop like this one:

R> row.totals <- rep(NA,times=nrow(foo))
R> for(i in 1:nrow(foo)){

+ row.totals[i] <- sum(foo[i,])

+}

R> row.totals

[1] 15 18 21 24

This cycles through each row and stores the sum in row.totals. But you
can use apply to get the same result in a more compact form. To call apply,
you have to specify at least three arguments. The first argument, X, is the
object you want to cycle through. The next argument, MARGIN, takes an inte-
ger that flags which margin of X to operate on (rows, columns, etc.). Finally,
FUN provides the function you want to perform on each margin. With the
following call, you get the same result as the earlier for loop.

R> row.totals2 <- apply(X=foo,MARGIN=1,FUN=sum)
R> row.totals2
[1] 15 18 21 24

The MARGIN index follows the positional order of the dimension for
matrices and arrays, as discussed in Chapter 3—1 always refers to rows, 2 to
columns, 3 to layers, 4 to blocks, and so on. To instruct R to sum each col-
umn of foo instead, simply change the MARGIN argument to 2.

R> apply(X=foo,MARGIN=2, FUN=sum)
[1] 10 26 42
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The operations supplied to FUN should be appropriate for the MARGIN
selected. So, if you select rows or columns with MARGIN=1 or MARGIN=2, make
sure the FUN function is appropriate for vectors. Or if you have a three-
dimensional array and use apply with MARGIN=3, be sure to set FUN to a func-
tion appropriate for matrices. Here’s an example for you to enter:

R> bar <- array(1:18,dim=c(3,3,2))
R> bar
) 1

[,1] [,2] [,3]

[1,] 10 13 16
[2,] 112 14 17
[3,] 12 15 18

Then, make the following call:

R> apply(bar,3,FUN=diag)
[,1] [,2]

[1,] 1 10

[2,] 5 14

3] 9 18

This extracts the diagonal elements of each of the matrix layers of bar.
Each call to diag on a matrix returns a vector, and these vectors are returned
as columns of a new matrix. The FUN argument can also be any appropriate
user-defined function, and you’ll look at some examples of using apply with
your own functions in Chapter 11.

Other apply Functions

There are different flavors of the basic apply function. The tapply function,
for example, performs operations on subsets of the object of interest, where
those subsets are defined in terms of one or more factor vectors. As an
example, let’s return to the code from Section 8.2.3, which reads in a web-
based data file on diamond pricing, sets appropriate variable names of the
data frame, and displays the first five records.

R> dia.url <- "http://www.amstat.org/publications/jse/v9n2/4cdata.txt"
R> diamonds <- read.table(dia.url)

R> names(diamonds) <- c("Carat","Color","Clarity","Cert","Price")
R> diamonds[1:5,]



Carat Color Clarity Cert Price

1 0.30 D VS2 GIA 1302
2 0.30 E VS1 GIA 1510
3 0.30 G VS1 GIA 1510
4 0.30 G VS1 GIA 1260
5 0.31 D VS1 GIA 1641

To add up the total value of the diamonds present for the full data set
but separated according to Color, you can use tapply like this:

R> tapply(diamonds$Price, INDEX=diamonds$Color, FUN=sum)
D E F G H I
113598 242349 392485 287702 302866 207001

This sums the relevant elements of the target vector diamonds$Price. The
corresponding factor vector diamonds$Color is passed to INDEX, and the func-
tion of interest is specified with FUN=sum exactly as earlier.

Another particularly useful alternative is lapply, which can operate
member by member on a list. In Section 10.2.1, recall you wrote a for loop
to inspect matrices in the following list:

R> baz <- list(aa=c(3.4,1),bb=matrix(1:4,2,2),cc=matrix(c(T,T,F,T,F,F),3,2),
dd="string here",ee=matrix(c("red","green","blue","yellow")))

Using lapply, you can check for matrices in the list with a single short
line of code.

R> lapply(baz,FUN=is.matrix)
$aa
[1] FALSE

$bb
[1] TRUE

$cc
[1] TRUE

$dd
[1] FALSE

$ee
[1] TRUE

Note that no margin or index information is required for lapply; R
knows to apply FUN to each member of the specified list. The returned value
is itself a list. Another variant, sapply, returns the same results as lapply but in
an array form.
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R> sapply(baz,FUN=is.matrix)
aa bb cc dd ee
FALSE TRUE TRUE FALSE TRUE

Here, the result is provided as a vector. In this example, baz has a names
attribute that is copied to the corresponding entries of the returned object.

Other variants of apply include vapply, which is similar to sapply albeit
with some relatively subtle differences, and mapply, which can operate on
multiple vectors or lists at once. To learn more about mapply, see the ?mapply
help file; vapply and sapply are both covered in the ?1apply help file.

All of R’s apply functions allow for additional arguments to be passed to
FUN; most of them do this via an ellipsis. For example, take another look at
the matrix foo:

R> apply(foo,1,sort,decreasing=TRUE)
(1] [,2] [,3] [,4]

[1,] 9 10 11 12
[2,] 5 6 7 8
[3,] 1 3

Here you’ve applied sort to each row of the matrix and supplied the
additional argument decreasing=TRUE to sort the rows from largest to smallest.

Some programmers prefer using the suite of apply functions wherever
possible to improve the compactness and neatness of their code. However,
note that these functions generally do not offer any substantial improvement
in terms of computational speed or efficiency over an explicit loop (this is
particularly the case with more recent versions of R). Plus, when you’re first
learning the R language, explicit loops can be easier to read and follow since
the operations are laid out clearly line by line.

Exercise 10.5

a. Continuing on from the most recent example in the text,
write an implicit loop that calculates the product of all
the column elements of the matrix returned by the call to
apply(foo,1,sort,decreasing=TRUE).

b. Convert the following for loop to an implicit loop that does
exactly the same thing:

matlist <- list(matrix(c(T,F,T,T),2,2),
matrix(c("a”,"c","b","2","p","q"),3,2),
matrix(1:8,2,4))
matlist
for(i in 1:length(matlist)){
matlist[[i]] <- t(matlist[[i]])




}
matlist

c. InR, store the following 4 X 4 X 2 X 3 array as the object qux:

R> qux <- array(96:1,dim=c(4,4,2,3))

That is, it is a four-dimensional array comprised of three
blocks, with each block being an array made up of two layers of
4 x 4 matrices. Then, do the following:

i.  Write an implicit loop that obtains the diagonal elements
of all second-layer matrices only to produce the following
matrix:

[>11 [,2] [,3]
[1,] 80 48 16
[2,] 75 43 11

70 38
[4,] 65 33

ii. Write an implicit loop that will return the dimensions of each
of the three matrices formed by accessing the fourth column
of every matrix in qux, regardless of layer or block, wrapped
by another implicit loop that finds the row sums of that
returned structure, resulting simply in the following vector:

[1] 12 6

10.3 Other Control Flow Mechanisms

To round off this chapter, you’ll look at three more control flow mecha-
nisms: break, next, and repeat. These mechanisms are often used in conjunc-
tion with the loops and if statements you’ve seen already.

10.3.1 Declaring break or next

Normally a for loop will exit only when the loopindex exhausts the Ioopvector,
and a while loop will exit only when the Ioopcondition evaluates to FALSE. But
you can also preemptively terminate a loop by declaring break.

For example, say you have a number, foo, that you want to divide by each
element in a numeric vector bar.

R> foo <- 5
R> bar <- c(2,3,1.1,4,0,4.1,3)

Furthermore, let’s say you want to divide foo by bar element by element
but want to halt execution if one of the results evaluates to Inf (which will
result if dividing by zero). To do this, you can check each iteration with the
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is.finite function (Section 6.1.1), and you can issue a break command to
terminate the loop if it returns FALSE.

R> loopl.result <- rep(NA,length(bar))
R> loopi.result

[1] NA NA NA NA NA NA NA

R> for(i in 1:length(bar)){

+ temp <- foo/bar[i]

+ if(is.finite(temp)){

+ loopi.result[i] <- temp

+ } else {

+ break

+ )

+}

R> loopl.result

[1] 2.500000 1.666667 4.545455 1.250000 NA NA NA

Here, the loop divides the numbers normally until it reaches the fifth
element of bar and divides by zero, resulting in Inf. Upon the resulting con-
ditional check, the loop ends immediately, leaving the remaining entries of
loop1.result as they were originally set—NAs.

Invoking break is a fairly drastic move. Often, a programmer will include
it only as a safety catch that’s meant to highlight or prevent unintended cal-
culations. For more routine operations, it’s best to use another method. For
instance, the example loop could easily be replicated as a while loop or the
vector-oriented ifelse function, rather than relying on a break.

Instead of breaking and completely ending a loop, you can use next to
simply advance to the next iteration and continue execution. Consider the
following, where using next avoids division by zero:

R> loop2.result <- rep(NA,length(bar))
R> loop2.result

[1] NA NA NA NA NA NA NA

R> for(i in 1:length(bar)){

+ if(bar[i]==0){

+ next

+ 1}

+ loop2.result[i] <- foo/bar[i]

+}

R> loop2.result

[1] 2.500000 1.666667 4.545455 1.250000 NA 1.219512 1.666667

First, the loop checks to see whether the ith element of bar is zero. If it
is, next is declared, and as a result, R ignores any subsequent lines of code in
the braced area of the loop and returns to the top, automatically advancing
to the next value of the loopindex. In the current example, the loop skips the
fifth entry of bar (leaving the original NA value for that place) and continues
through the rest of bar.



Note that if you use either break or next in a nested loop, the command
will apply only to the innermost loop. Only that inner loop will exit or
advance to the next iteration, and any outer loops will continue as normal.
For example, let’s return to the nested for loops from Section 10.2.1 that
you used to fill a matrix with multiples of two vectors. This time you’ll use
next in the inner loop to skip certain values.

R> loopvecl <- 5:7
R> loopveci

[1]1 567

R> loopvec2 <- 9:6
R> loopvec2

[1]9876
R> baz <- matrix(NA,length(loopveci),length(loopvec2))
R> baz

[,1] [,2] [,3] [,4]
[1,] NA NA NA NA
[2,] NA NA NA NA
[3,] NA NA NA NA
R> for(i in 1:length(loopveci)){
+ for(j in 1:length(loopvec2)){

+ temp <- loopveci[i]*loopvec2[j]
+ if(temp>=54){

+ next

+ }

+ baz[i,]j] <- temp

+ )

+}

R> baz

[,1] [,2] [,3] [,4]
[1,] 45 40 35 30
[2,] NA 48 42 36
[3,] NA NA 49 42

The inner loop skips to the next iteration if the product of the current
elements is greater than or equal to 54. Note the effect applies only to that
innermost loop—that is, only the j loopindex is preemptively incremented,
while i is left untouched, and the outer loop continues normally.

I’ve been using for loops to illustrate next and break, but they behave the
same way inside while loops.

10.3.2 The repeat Statement

Another option for repeating a set of operations is the repeat statement. The
general definition is simple.
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repeat{
do any code in here

Notice that a repeat statement doesn’t include any kind of loopindex or
loopcondition. To stop repeating the code inside the braces, you must use
a break declaration inside the braced area (usually within an if statement);
without it, the braced code will repeat without end, creating an infinite loop.
To avoid this, you must make sure the operations will at some point cause
the loop to reach a break.

To see repeat in action, you'll use it to calculate the famous mathemati-
cal series the Fibonacci sequence. The Fibonacci sequence is an infinite series
of integers beginning with 1,1,2,3,5,8,13,. .. where each term in the series
is determined by the sum of the two previous terms. Formally, if F,, repre-
sents the nth Fibonacci number, then you have:

Fn+1=Fn+Fn—1; n=2,8,4,5,...,

where
Fi=F=1.

The following repeat statement computes and prints the Fibonacci
sequence, ending when it reaches a term greater than 150:

R> fib.a <- 1

R> fib.b <- 1

R> repeat{

+ temp <- fib.a+fib.b
+ fib.a <- fib.b

+ fib.b <- temp

+ cat(fib.b,", ",sep="")
+ if(fib.b>150){

+ cat("BREAK NOW...\n")
+ break

+ 1}

+

2!

}
3, 5, 8, 13, 21, 34, 55, 89, 144, 233, BREAK NOW...

First, the sequence is initialized by storing the first two terms, both 1,
as fib.a and fib.b. Then, the repeat statement is entered, and it uses fib.a
and fib.b to compute the next term in the sequence, stored as temp. Next,
fib.a is overwritten to be fib.b, and fib.b is overwritten to be temp so that the
two variables move forward through the series. That is, fib.b becomes the
newly calculated Fibonacci number, and fib.a becomes the second-to-last
number in the series so far. Use of cat then prints the new value of fib.b to
the console. Finally, a check is made to see whether the latest term is greater
than 150, and if it is, break is declared.
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When you run the code, the braced area is repeated over and over
until fib.b reaches the first number that is greater than 150, namely,

89 + 144 = 233. Once that happens, the if statement condition evaluates
as TRUE, and R runs into break, terminating the loop.

The repeat statement is not as commonly used as the standard while or
for loops, but it’s useful if you don’t want to be bound by formally specifying
the loopindex and loopvector of a for loop or the loopcondition of a while loop.
However, with repeat, you have to take a bit more caution to prevent infinite
loops.

Exercise 10.6

a. Using the same objects from Section 10.3.1,

foo <- 5
bar <- c(2,3,1.1,4,0,4.1,3)

do the following:

i.  Write a while loop—without using break or next—that will
reach exactly the same result as the break example in Sec-
tion 10.3.1. That is, produce the same vector as loop2.result
in the text.

ii. Obtain the same result as loop3.result, the example concern-
ing next, using an ifelse function instead of a loop.

b. To demonstrate while loops in Section 10.2.2, you used the vector

mynumbers <- c(4,5,1,2,6,2,4,6,6,2)

to progressively fill mylist with identity matrices whose dimen-

sions matched the values in mynumbers. The loop was instructed to

stop when it reached the end of the numeric vector or a number

that was greater than 5.

i.  Write a for loop using a break declaration that does the same
thing.

ii. Write a repeat statement that does the same thing.

c. Suppose you have two lists, matlist1 and matlist2, both filled

with numeric matrices as their members. Assume that all mem-

bers have finite, nonmissing values, but do not assume that the

dimensions of the matrices are the same throughout. Write a

nested pair of for loops that aim to create a result list, reslist,

of all possible matrix products (refer to Section 3.3.5) of the

members of the two lists according to the following guidelines:

— The matlist1 object should be indexed/searched in the outer
loop, and the matlist2 object should be indexed/searched in
the inner loop.
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— You're interested only in the possible matrix products of the
members of matlist1 with the members of matlist2 in that
order.

— Ifa particular multiple isn’t possible (that is, if the ncol of a
member of matlist1 doesn’t match the nrow of a member of
matlist2), then you should skip that multiplication, store the
string "not possible" at the relevant position in reslist, and
proceed directly to the next matrix multiplication.

— You can define a counter that is incremented at each com-
parison (inside the inner loop) to keep track of the current
position of reslist.

Note, therefore, that the length of reslist will be equal to
length(matlist1)+length(matlist2). Now, confirm the following
results:

i. Ifyou have

matlist1 <- list(matrix(1:4,2,2),matrix(1:4),matrix(1:8,4,2))
matlist2 <- matlist1

then all members of reslist should be "not possible" apart
from members [[1]] and [[7]].
ii. Ifyou have

matlistl <- list(matrix(1:4,2,2),matrix(2:5,2,2),
matrix(1:16,4,2))

matlist2 <- list(matrix(1:8,2,4),matrix(10:7,2,2),
matrix(9:2,4,2))

then only the "not possible” members of reslist should be

(311, [[6]], and [[9]].

Important Code in This Chapter

Function/operator  Brief description First occurrence

if( ){} Conditional check Section 10.1.1, p. 180
if( ){ } else { } Check and alternative Section 10.1.2, p. 183
ifelse Element-wise if-else check  Section 10.1.3, p. 185
switch Multiple if choices Section 10.1.5, p. 190
for( ){ } Iterative loop Section 10.2.1, p. 194
while( ){ } Conditional loop Section 10.2.2, p. 200
apply Implicit loop by margin Section 10.2.3, p. 205
tapply Implicit loop by factor Section 10.2.3, p. 207
Lapply Implicit loop by member Section 10.2.3, p. 207
sapply As lapply, array returned Section 10.2.3, p. 207
break Exit explicit loop Section 10.3.1, p. 210
next Skip to next loop iteration  Section 10.3.1, p. 210
repeat{ } Repeat code until break Section 10.3.2, p. 212




WRITING FUNCTIONS

Defining a function allows you to reuse a

chunk of code without endlessly copying
and pasting. It also allows other users to use

your functions to carry out the same compu-

tations on their own data or objects. In this chapter,
you’ll learn about writing your own R functions. You’ll
learn how to define and use arguments, how to return
output from a function, and how to specialize your
functions in other ways.

11.1 The function Command

To define a function, use the function command and assign the results to

an object name. Once you’ve done this, you can call the function using

that object name just like any other built-in or contributed function in the
workspace. This section will walk you through the basics of function creation
and discuss some associated issues, such as returning objects and specifying
arguments.
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11.1.1 Function Creation

A function definition always follows this standard format:

functionname <- function(argi1,arg2,arg3,...){
do any code in here when called
return(zreturnobject)

The functionname placeholder can be any valid R object name, which is
what you’ll ultimately use to call the function. Assign to this functionname
a call to function, followed by parentheses with any arguments you want
the function to have. The pseudocode includes three argument place-
holders plus an ellipsis. Of course, the number of arguments, their tags,
and whether to include an ellipsis all depend on the particular function
you're defining. If the function does not require any arguments, simply
include empty parentheses: (). If you do include arguments in this defini-
tion, note that they are not objects in the workspace and they do not have
any type or class attributes associated with them—they are merely a declara-
tion of argument names that will be required by functionname.

When the function is called, it runs the code in the braced area (also
called the function body or body code). It can include if statements, loops,
and even other function calls. When encountering an internal function call
during execution, R follows the search rules discussed in Chapter 9. In the
braced area, you can use arg1, arg2, and arg3, and they are treated as objects
in the function’s lexical environment.

Depending on how those declared arguments are used in the body
code, each argument may require a certain data type and object structure.
If you’re writing functions that you intend for others to use, it’s important to
have sound documentation to say what the function expects.

Often, the function body will include one or more calls to the return
command. When R encounters a return statement during execution, the
function exits, returning control to the user at the command prompt. This
mechanism is what allows you to pass results from operations in the function
back to the user. This output is denoted in the pseudocode by returnobject,
which is typically assigned an object created or calculated earlier in the func-
tion body. If there is no return statement, the function will simply return the
object created by the last executed expression (I'll discuss this feature more
in Section 11.1.2).

It’s time for an example. Let’s take the Fibonacci sequence generator
from Section 10.3.2 and turn it into a function in the editor.

myfib <- function(){

fib.a <- 1

fib.b <- 1

cat(fib.a,", ",fib.b,", ",sep="")
repeat{

temp <- fib.a+fib.b



fib.a <- fib.b

fib.b <- temp

cat(fib.b,", ",sep="")

if(fib.b>150){
cat("BREAK NOW...")
break

I've named the function myfib, and it doesn’t use or require any argu-
ments. The body code is identical to the example in Section 10.3.2, except
I've added the third line, cat(fib.a,", ",fib.b,", ",sep=""), to ensure the first
two terms, 1 and 1, are also printed to the screen.

Before you can call myfib from the console, you have to send the func-
tion definition there. Highlight the code in the editor and press CTRL-R or
$6-RETURN.

R> myfib <- function(){

fib.a <- 1
fib.b <- 1
cat(fib.a,", ",fib.b,", ",sep="")
repeat{
temp <- fib.a+fib.b
fib.a <- fib.b
fib.b <- temp

cat(fib.b,", ",sep="")

if(fib.b>150){
cat("BREAK NOW...")
break

+ + 4+ + 4+ 4+ + + o+ o+

This imports the function into the workspace (if you enter 1s() at the
command prompt, "myfib" will now appear in the list of present objects).
This step is required anytime you create or modify a function and want to
use it from the command prompt.

Now you can call the function from the console.

R> myfib()
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, BREAK NOW...

It computes and prints the Fibonacci sequence up to 250, just as
instructed.

Writing Functions 217



218

Chapter 11

Adding Arguments

Rather than printing a fixed set of terms, let’s add an argument to control
how many Fibonacci numbers are printed. Consider the following new func-
tion, myfib2, with this modification:

myfib2 <- function(thresh){

fib.a <- 1
fib.b <- 1
cat(fib.a,", ",fib.b,", ",sep="")
repeat{
temp <- fib.a+fib.b
fib.a <- fib.b
fib.b <- temp

cat(fib.b,", ",sep="")

if(fib.b>thresh){
cat("BREAK NOW...")
break

This version now takes a single argument, thresh. In the body code,
thresh acts as a threshold determining when to end the repeat procedure,
halt printing, and complete the function—once a value of fib.b that is
greater than thresh is calculated, the repeat statement will exit after encoun-
tering the call to break. Therefore, the output printed to the console will be
the Fibonacci sequence up to and including the first fib.b value bigger than
thresh. This means that thresh must be supplied as a single numeric value—
supplying a character string, for example, would make no sense.

After importing the definition of myfib2 into the console, note the same
results as given by the original myfib when you set thresh=150.

R> myfib2(thresh=150)
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, BREAK NOW...

But now you can print the sequence to any limit you want (this time
using positional matching to specify the argument):

R> myfib2(1000000)

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584,
4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811,
514229, 832040, 1346269, BREAK NOW...

Returning Results

If you want to use the results of a function in future operations (rather than
just printing output to the console), you need to return content to the user.



Continuing with the current example, here’s a Fibonacci function that stores
the sequence in a vector and returns it:

myfib3 <- function(thresh){
fibseq <- c(1,1)
counter <- 2
repeat{
fibseq <- c(fibseq,fibseq[counter-1]+fibseq[counter])
counter <- counter+i
if(fibseq[counter]>thresh){
break

}
return(fibseq)

First you create the vector fibseq and assign it the first two terms of
the sequence. This vector will ultimately become the returnobject. You also
create a counter initialized to 2 to keep track of the current position in fibseq.
Then the function enters a repeat statement, which overwrites fibseq with
c(fibseq, fibseq[counter-1]+fibseq[counter]). That expression constructs a new
fibseq by appending the sum of the most recent two terms to the contents of
what is already stored in fibseq. For example, with counter starting at 2, the
first run of this line will sum fibseq[1] and fibseq[2], appending the result as
a third entry onto the original fibseq.

Next, counter is incremented, and the condition is checked. If the most
recent value of fibseq[counter] is not greater than thresh, the loop repeats. If
it is greater, the loop breaks, and you reach the final line of myfib3. Calling
return ends the function and passes out the specified returnobject (in this
case, the final contents of fibseq).

After importing myfib3, consider the following code:

R> myfib3(150)
[1] 12 1 2 3 5 8 13 21 34 55 89 144 233
R> foo <- myfib3(10000)
R> foo
[1] 1 1 2 3 5 8 13 21 34 55 89 144
[13] 233 377 610 987 1597 2584 4181 6765 10946
R> bar <- foo[1:5]
R> bar
[1111235

Here, the first line calls myfib3 with thresh assigned 150. The output is still
printed to the screen, but this isn’t the result of the cat command as it was
earlier; it is the returnobject. You can assign this returnobject to a variable,
such as foo, and foo is now just another R object in the global environment
that you can manipulate. For example, you use it to create bar with a simple
vector subset. This would not have been possible with either myfib or myfib2.
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11.1.2  Using return

If there’s no return statement inside a function, the function will end

when the last line in the body code has been run, at which point it will
return the most recently assigned or created object in the function. If noth-
ing is created, such as in myfib and myfib2 from earlier, the function returns
NULL. To demonstrate this point, enter the following two dummy functions in
the editor:

dummy1 <- function(){
aa <- 2.5
bb <- "string me along"
cc <- "string 'em up"
dd <- 4:8

dummy2 <- function(){
aa <- 2.5
bb <- "string me along"
cc <- "string 'em up"
dd <- 4:8
return(dd)

The first function, dummy1, simply assigns four different objects in its
lexical environment (not the global environment) and doesn’t explicitly
return anything. On the other hand, dummy2 creates the same four objects
and explicitly returns the last one, dd. If you import and run the two func-
tions, both provide the same return object.

R> foo <- dummy()
R> foo
[1]45678

R> bar <- dummy2()
R> bar
[1]456738

A function will end as soon as it evaluates a return command, without
executing any remaining code in the function body. To emphasize this, con-
sider one more version of the dummy function:

dummy3 <- function(){

aa <- 2.5

bb <- "string me along"
return(aa)

cc <- "string ‘em up"
dd <- 4:8



return(bb)

Here, dummy3 has two calls to return: one in the middle and one at the
end. But when you import and execute the function, it returns only one
value.

R> baz <- dummy3()
R> baz
[1] 2.5

Executing dummy3 returns only the object aa because only the first
instance of return is executed and the function exits immediately at that
point. In the current definition of dummy3, the last three lines (the assign-
ment of cc and dd and the return of bb) will never be executed.

Using return adds another function call to your code, so technically, it
introduces a little extra computational expense. Because of this, some argue
that return statements should be avoided unless absolutely necessary. But
the additional computational cost of the call to return is small enough to be
negligible for most purposes. Plus, return statements can make code more
readable, making it easier to see where the author of a function intends it
to complete and precisely what is intended to be supplied as output. I'll use
return throughout the remainder of this work.

Exercise 11.1

a.  Write another Fibonacci sequence function, naming it myfib4.
This function should provide an option to perform either the
operations available in myfib2, where the sequence is simply
printed to the console, or the operations in myfib3, where a vec-
tor of the sequence is formally returned. Your function should
take two arguments: the first, thresh, should define the limit of
the sequence (just as in myfib2 or myfib3); the second, printme,
should be a logical value. If TRUE, then myfib4 should just print;
if FALSE, then myfib4 should return a vector. Confirm the correct
results arise from the following calls:

myfib4 (thresh=150,printme=TRUE)

myfib4 (1000000, T)

myfib4 (150, FALSE)

my+ib4 (1000000, printme=F)

b. In Exercise 10.4 on page 203, you were tasked with writing a while
loop to perform integer factorial calculations.
i.  Using your factorial while loop (or writing one if you didn’t
do so earlier), write your own R function, myfac, to compute
the factorial of an integer argument int (you may assume int
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will always be supplied as a non-negative integer). Perform
a quick test of the function by computing 5 factorial, which
is 120; 12 factorial, which is 479,001, 600; and 0 factorial,
which is 1.

ii. Write another version of your factorial function, naming it
myfac2. This time, you may still assume int will be supplied
as an integer but not that it will be non-negative. If negative,
the function should return NaN. Test myfac2 on the same three
values as previously, but also try using int=-6.

11.2 Arguments

Chapter 11

Arguments are an essential part of most R functions. In this section, you’ll
consider how R evaluates arguments. You’ll also see how to write functions
that have default argument values, how to make functions handle missing
argument values, and how to pass extra arguments into an internal function
call with ellipses.

11.2.1 lazy Evaluation

An important concept related to handling arguments in many high-level
programming languages is lazy evaluation. Generally, this refers to the fact
that expressions are evaluated only when they are needed. This applies to
arguments in the sense that they are accessed and used only at the point
they appear in the function body.

Let’s see exactly how R functions recognize and use arguments dur-
ing execution. As a working example to be used throughout this section,
you’ll write a function to search through a specified list for matrix objects
and attempt to post-multiply each with another matrix specified as a second
argument (refer back to Section 3.3.5 for details on matrix multiplication).
The function will store and return the result in a new list. If no matrices are
in the supplied list or if no appropriate matrices (given the dimensions of
the multiplying matrix) are present, the function should return a character
string informing the user of these facts. You can assume that if there are
matrices in the specified list, they will be numeric. Consider the following
function, which I'll call multiplesi:

multiples1 <- function(x,mat,str1,str2){
matrix.flags <- sapply(x,FUN=is.matrix)

if(lany(matrix.flags)){

return(str1)

indexes <- which(matrix.flags)
counter <- 0



result <- list()
for(i in indexes){
temp <- x[[1]]
if(ncol(temp)==nrow(mat)){
counter <- counter+1
result[[counter]] <- temp%+%mat

if(counter==0){
return(str2)

} else {
return(result)

This function takes four arguments, with no default values assigned.
The target list to search is intended to be supplied to x; the post-multiplying
matrix is supplied to mat; and two other arguments, stri and str2, take char-
acter strings to return if x has no suitable members.

Inside the body code, a vector called matrix.flags is created with the
sapply implicit looping function. This applies the function is.matrix to the
list argument x. The result is a logical vector of equal length as x, with TRUE
elements where the corresponding member of x is in fact a matrix. If there
are no matrices in x, the function hits a return statement, which exits the
function and outputs the argument stri.

If the function did not exit at that point, this means there are indeed
matrices in x. The next step is to retrieve the matrix member indexes by
applying which to matrix.flags. A counter is initialized to 0 to keep track of
how many successful matrix multiplications are carried out, and an empty
list (result) is created to store any results.

Next, you enter a for loop. For each member of indexes, the loop stores
the matrix member at that position as temp and checks to see whether it’s
possible to perform post-multiplication of temp by the argument mat (to per-
form the operation, ncol(temp) must equal nrow(mat)). If the matrices are
compatible, counter is incremented, and this position of result is filled with
the relevant calculation. If FALSE, nothing is done. The indexer, i, then takes
on the next value of indexes and repeats until completion.

The final procedure in multiplesi checks whether the for loop actu-
ally found any compatible matrix products. If no compatibility existed, the
braced if statement code inside the for loop would never have been exe-
cuted, and the counter would remain set to zero. So, if counter is still equal
to zero upon completion of the loop, the function simply returns the str2
argument. Otherwise, if compatible matrices were found, appropriate results
will have been computed, and multiplesi returns the result list, which would
have at least one member.
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It’s time to import and then test the function. You'll use the following
three list objects:

R> foo <- list(matrix(1:4,2,2),"not a matrix",

"definitely not a matrix",matrix(1:8,2,4),matrix(1:8,4,2))
R> bar <- list(1:4,"not a matrix",c(F,T,T,T),"?2?"
R> baz <- list(1:4,"not a matrix",c(F,T,T,T),"??",matrix(1:8,2,4))

You’ll set the argument mat to the 2 X 2 identity matrix (post-multiplying
any appropriate matrix by this will simply return the original matrix), and
you’ll pass in appropriate string messages for str1 and str2. Here’s how the
function works on foo:

R> multiplesi(x=foo,mat=diag(2),stri="no matrices in 'x'",
str2="matrices in 'x' but none of appropriate dimensions given

"mat'")

[[1]]

[,1] [,2]
[1,] 1 3
[2,] 4
[[2]]

[,1] [,2]
[1,] 1 5
[2,] 2 6
3,1 3 7
[4,] 4 8

The function has returned result with the two compatible matrices
of foo (members [[1]] and [[5]]). Now let’s try it on bar using the same
arguments.

R> multiplesi(x=bar,mat=diag(2),stri="no matrices in 'x'",
str2="matrices in 'x' but none of appropriate dimensions given
Imatl ll)

[1] "no matrices in 'x

This time, the value of str1 has been returned. The initial check identi-
fied that there are no matrices in the list supplied to x, so the function has
exited before the for loop. Finally, let’s try baz.

R> multiplesi(x=baz,mat=diag(2),stri="no matrices in 'x'",
str2="matrices in 'x' but none of appropriate dimensions given
‘mat'")

[1] "matrices in 'x' but none of appropriate dimensions given 'mat
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Here the value of str2 was returned. Though there is a matrix in baz and
the for loop in the body code of multiples1 has been executed, the matrix is
not compatible for post-multiplication by mat.

Notice that the string arguments str1 and str2 are used only when the
argument x does not contain a matrix with the appropriate dimensions.
When you applied multiplesi to x=foo, for example, there was no need to
use str1 or str2. R evaluates the defined expressions lazily, dictating that
argument values are sought only at the moment they are required during
execution. In this function, str1 and str2 are required only when the input
list doesn’t have suitable matrices, so you could lazily ignore providing values
for these arguments when x=foo.

R> multiplesi(x=foo,mat=diag(2))
[[1]]

00 N O VI

This returns the same results as before with no problem whatsoever.
Attempting this with bar, on the other hand, doesn’t work.

R> multiplesi(x=bar,mat=diag(2))
Error in multiplesi(x = bar, mat = diag(2)) :
argument "str1" is missing, with no default

Here we are quite rightly chastised by R because it requires the value for
str1. It informs us that the value is missing and there is no default.

11.2.2 Setting Defaults

The previous example shows one case where it’s useful to set default values
for certain arguments. Default argument values are also sensible in many
other situations, such as when the function has a large number of arguments
or when arguments have natural values that are used more often than not.
Let’s write a new version of the multiples1 function from Section 11.2.1,
multiples2, which now includes default values for str1 and str2.

multiples2 <- function(x,mat,stri="no valid matrices",str2=str1){
matrix.flags <- sapply(x,FUN=is.matrix)

if(lany(matrix.flags)){
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return(str1)

}

indexes <- which(matrix.flags)
counter <- 0
result <- list()
for(i in indexes){
temp <- x[[1]]
if(ncol(temp)==nrow(mat)){
counter <- counter+1
result[[counter]] <- temp%+%mat

}

if(counter==0){
return(str2)

} else {
return(result)

}

Here, you have given stri a default value of "no valid matrices" by assign-
ing the string value in the formal definition of the arguments. You’ve also
set a default for str2 by assigning str1 to it. If you import and execute this
function again on the three lists, you no longer need to explicitly provide
values for those arguments.

R> multiples2(foo,mat=diag(2))
[[1]]

[[2]]

[,1] [,2]
[1,] 1 5
[2,] 2 6
[3,] 3 7
[4,] 4 8

R> multiples2(bar,mat=diag(2))
[1] "no valid matrices"
R> multiples2(baz,mat=diag(2))
[1] "no valid matrices"

You can now call the function, whatever the outcome, without being
required to specify every argument in full. If you don’t want to use the



default arguments in a specific call, you can still specify different values for
those arguments when calling the function, and those values will overwrite
the defaults.

11.2.3 Checking for Missing Arguments

The missing function checks the arguments of a function to see if all
required arguments have been supplied. It takes an argument tag and
returns a single logical value of TRUE if the specified argument isn’t found.
You can use missing to avoid the error you saw in an earlier call to multiples1,
when str1 was required but not supplied.

In some situations, the missing function can be particularly useful in the
body code. Consider another modification to the example function:

multiples3 <- function(x,mat,str1,str2){
matrix.flags <- sapply(x,FUN=is.matrix)

if(lany(matrix.flags)){
if(missing(str1)){
return("'str1’ was missing, so this is the message")
} else {
return(str1)

indexes <- which(matrix.flags)
counter <- 0
result <- list()
for(i in indexes){
temp <- x[[1]]
if(ncol(temp)==nrow(mat)){
counter <- counter+i
result[[counter]] <- temp%+%mat

}
}
if(counter==0){
if(missing(str2)){
return("'str2' was missing, so this is the message")
} else {
return(str2)
}
} else {
return(result)
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The only differences between this version and multiplesi are in the
first and last if statements. The first if statement checks whether there are
no matrices in x, in which case it returns a string message. In multiplesa,
that message was always str1, but now you use another if statement with
missing(str1) to see whether the stri argument actually has a value first.

If not, the function returns another character string saying that str1 was
missing. A similar alternative is defined for str2. Here it is once more
importing the function and using foo, bar, and baz:

R> multiples3(foo,diag(2))
([1]]

[1,] 1 3
[2,] 2
[[2]]

[,1] [,2]
[1,] 1 5
[2,] 2 6
[3,] 3 7
[4,] 4 8

R> multiples3(bar,diag(2))
[1] "'str1' was missing, so this is the message"
R> multiples3(baz,diag(2))
[1] "'str2' was missing, so this is the message"

Using missing this way permits arguments to be left unsupplied in a given
function call. It is primarily used when it’s difficult to choose a default value
for a certain argument, yet the function still needs to handle cases when that
argument isn’t provided. In the current example, it makes more sense to
define defaults for str1 and str2, as you did for multiples2, and avoid the
extra code required to implement missing.

11.2.4  Dealing with Ellipses

In Section 9.2.5, I introduced the ellipsis, also called dot-dot-dot notation.
The ellipsis allows you to pass in extra arguments without having to first
define them in the argument list, and these arguments can then be passed
to another function call within the code body. When included in a function
definition, the ellipsis is often (but not always) placed in the last position
because it represents a variable number of arguments.

Building on the myfib3 function from Section 11.1.1, let’s use the ellipsis
to write a function that can plot the specified Fibonacci numbers.

myfibplot <- function(thresh,plotit=TRUE,...){
fibseq <- c(1,1)
counter <- 2



repeat{
fibseq <- c(fibseq,fibseq[counter-1]+fibseq[counter])
counter <- counter+1i
if(fibseq[counter]>thresh){
break
}
}

if(plotit){
plot(1:length(fibseq),fibseq,...)
} else {
return(fibseq)
}

In this function, an if statement checks to see whether the plotit argu-
ment is TRUE (which is the default value). If so, then you call plot, passing in
1:1length(fibseq) for the x-axis coordinates and the Fibonacci numbers them-
selves for the y-axis. After these coordinates, you also pass the ellipsis directly
into plot. In this case, the ellipsis represents any additional arguments a user
might pass in to control the execution of plot.

Importing myfibplot and executing the following line, the plot in Fig-
ure 11-1 pops up in a graphics device.

R> myfibplot(150)

Here you used positional matching to assign 150 to thresh, leaving the
default value for the plotit argument. The ellipsis is empty in this call.
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Figure 11-1: The default plot produced by a call to myfibplot,
with thresh=150
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Since you didn’t specify otherwise, R has simply followed the default
behavior of plot. You can spruce things up by specifying more plotting
options. The following line produces the plot in Figure 11-2:

R> myfibplot(150,type="b",pch=4,1ty=2,main="Terms of the Fibonacci sequence",
ylab="Fibonacci number",xlab="Term (n)")

Terms of the Fibonacci sequence
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Figure 11-2: A plot produced by a call to myfibplot with
graphical parameters passed in using the ellipsis

Here the ellipsis allows you to pass arguments to plot through the call to
myfibplot, even though the particular graphical parameters are not explicitly
defined arguments of myfibplot.

Ellipses can be convenient, but they require care. The ambiguous ...
can represent any number of mysterious arguments. Good function docu-
mentation is key to indicate the appropriate usage.

If you want to unpack the arguments passed in through an ellipsis, you
can use the list function to convert those arguments into a list. Here’s an
example:

unpackme <- function(...){

x <- list(...)

cat("Here is ... in its entirety as a list:\n")
print(x)

cat("\nThe names of ... are:",names(x),"\n\n")

cat("\nThe classes of ... are:",sapply(x,class))




This dummy function simply takes an ellipsis and converts it to a list with
x <- list(...). This subsequently allows the object x to be treated the same
way as any other list. In this case, you can summarize the object by providing
its names and class attributes. Here’s a sample run:

R> unpackme(aa=matrix(1:4,2,2),bb=TRUE,cc=c("two","strings"),
dd=factor(c(1,1,2,1)))

Here is ... in its entirety as a list:

$aa

$bb
[1] TRUE

$cc
[1] "two" "strings"

$dd
[1] 1121
Levels: 1 2

The names of ... are: aa bb cc dd

The classes of ... are: matrix logical character factor

Four tagged arguments, aa, bb, cc, and dd, are provided as the contents
of the ellipsis, and they are explicitly identified within unpackme by using the
simple list(...) operation. This construction can be useful for identifying
or extracting specific arguments supplied through ... in a given call.

Exercise 11.2

a. Accruing annual compound interest is a common financial
benefit for investors. Given a principal investment amount P,
an interest rate per annum i (expressed as a percentage), and a
frequency of interest paid per year ¢, the final amount F after y
years is given as follows:

i \"
F=P|1+ —
100z
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Write a function that can compute F as per the following
notes:

— Arguments must be present for P, i, t, and y. The argument
for t should have a default value of 12.

— Another argument giving a logical value that determines
whether to plot the amount F at each integer time should be
included. For example, if plotit=TRUE (the default) and y is 5
years, the plot should show the amount F aty = 1,2,3,4,5.

— If this function is plotted, the plot should always be a step-
plot, so plot should always be called with type="s".

— If plotit=FALSE, the final amount F should be returned as a
numeric vector corresponding to the same integer times, as
shown earlier.

— An ellipsis should also be included to control other details of
plotting, if it takes place.

Now, using your function, do the following:

i.  Work out the final amount after a 10-year investment of
a principal of $5000, at an interest rate of 4.4 percent per
annum compounded monthly.

ii. Re-create the following step-plot, which shows the result
of $100 invested at 22.9 percent per annum, compounded
monthly, for 20 years:

Compound interest calculator

Balance (F)
2000 6000

—
_,_,—-—’_'_'—
(=]
T T T
5 10 15 20
Year (y)

iii. Perform another calculation based on the same parameters
as in (ii), but this time, assume the interest is compounded
annually. Return and store the results as a numeric vector.
Then, use lines to add a second step-line, corresponding to
this annually accrued amount, to the plot created previously.
Use a different color or line type and make use of the legend
function so the two lines can be differentiated.

b. A quadratic equation in the variable x is often expressed in the

following form:
k1x2 + kQ)C +ks =0




Here, k1, k9, and k5 are constants. Given values for these
constants, you can attempt to find up to two real roots—values
of x that satisfy the equation. Write a function that takes k1, kg,
and k3 as arguments and finds and returns any solutions (as a
numeric vector) in such a situation. This is achieved as follows:

—  Evaluate k; — 4kyks. If this is negative, there are no solu-
tions, and an appropriate message should be printed to the
console.

- If k; — 4k ks is zero, then there is one solution, computed by
—ko/2ky.

- If k; — 4k ks is positive, then there are two solutions, given by
(—kg — (k§ — 4k1ks)"5)/2k1 and (—kg + (kj — 4k1ks)"-5)/2k.

— No default values are needed for the three arguments, but
the function should check to see whether any are missing.

If so, an appropriate character string message should be
returned to the user, informing the user that the calcula-
tions are not possible.

Now, test your function.

i.  Confirm the following:
% 2x%2 — x — 5 has roots 1.850781 and —1.350781.
%  x2+ x + 1 has no real roots.

ii. Attempt to find solutions to the following quadratic
equations:
x+  1.3x2-8x-3.13
x  2.95x2 - 3x +1
x 1.4x?-22x-5.1
% —bx?+10.11x - 9.9

iii. Test your programmed response in the function if one of the
arguments is missing.

11.3 Specialized Functions

In this section, you’ll look at three kinds of specialized user-defined R func-
tions. First, you’ll look at helper functions, which are designed to be called
multiple times by another function (and they can even be defined inside the
body of a parent function). Next, you’ll look at disposable functions, which
can be directly defined as an argument to another function call. Finally,
you’ll look at recursive functions, which call themselves.

11.3.1 Helper Functions

Itis common for R functions to call other functions from within their body
code. A helper function is a general term used to describe functions written
and used specifically to facilitate the computations carried out by another
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function. They’re a good way to improve the readability of complicated
functions.

A helper function can be either defined internally (within another func-
tion definition) or externally (within the global environment). In this sec-
tion, you’ll see an example of each.

Externally Defined

Building on the multiples2 function from Section 11.2.2, here’s a new version
that splits the functionality over two separate functions, one of which is an
externally defined helper function:

multiples_helper_ext <- function(x,matrix.flags,mat){
indexes <- which(matrix.flags)
counter <- 0
result <- list()
for(i in indexes){
temp <- x[[1]]
if(ncol(temp)==nrow(mat)){
counter <- counter+1
result[[counter]] <- temp%s%mat

}

return(list(result,counter))

multiples4 <- function(x,mat,stri="no valid matrices",str2=str1){
matrix.flags <- sapply(x,FUN=is.matrix)

if(lany(matrix.flags)){
return(str1)

}

helper.call <- multiples_helper ext(x,matrix.flags,mat)
result <- helper.call[[1]]
counter <- helper.call[[2]]

if(counter==0){
return(str2)

} else {
return(result)

If you import and execute this code on the sample lists from earlier,
it behaves the same way as the previous version. All you’ve done here is
moved the matrix-checking loop to an external function. The multiples4
function now calls a helper function named multiples_helper_ext. Once the



code in multiples4 makes sure that there are in fact matrices in the list x to
be checked, it calls multiples_helper_ext to execute the required loop. This
helper function is defined externally, meaning that it exists in the global
environment for any other function to call, making it easier to reuse.

Internally Defined

If the helper function is intended to be used for only one particular func-
tion, it makes more sense to define the helper function internally, within

the lexical environment of the function that calls it. The fifth version of the

matrix multiplication function does just that, shifting the definition to
within the body code.

multiples5 <- function(x,mat,stri="no valid matrices",str2=str1){
matrix.flags <- sapply(x,FUN=is.matrix)

if(lany(matrix.flags)){
return(str1)

}

multiples helper_int <- function(x,matrix.flags,mat){
indexes <- which(matrix.flags)
counter <- 0
result <- list()
for(i in indexes){
temp <- x[[i]]
if(ncol(temp)==nrow(mat)){
counter <- counter+1
result[[counter]] <- tempZ%s%mat

}

return(list(result,counter))

helper.call <- multiples_helper int(x,matrix.flags,mat)
result <- helper.call[[1]]
counter <- helper.call[[2]]

if(counter==0){
return(str2)

} else {
return(result)

Now the helper function multiples_helper_int is defined within
multipless. That means it’s visible only within the lexical environment as

opposed to residing in the global environment like multiples_helper_ext. It
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makes sense to internally define a helper function when (a) it’s used only by
a single parent function, and (b) it’s called multiple times within the parent
function. (Of course, multipless satisfies only (a), and it’s provided here just
for the sake of illustration.)

11.3.2 Disposable Functions

Often, you may need a function that performs a simple, one-line task. For
example, when you use apply, you’ll typically just want to pass in a short,
simple function as an argument. That’s where disposable (or anonymous)
functions come in—they allow you to define a function intended for use
in a single instance without explicitly creating a new object in your global
environment.

Say you have a numeric matrix whose columns you want to repeat twice
and then sort.

R> foo <- matrix(c(2,3,3,4,2,4,7,3,3,6,7,2),3,4)
R> foo

]
7
3
3

This is a perfect task for apply, which can apply a function to each col-
umn of the matrix. This function simply has to take in a vector, repeat it,
and sort the result. Rather than define that short function separately, you
can define a disposable function right in the argument of apply using the
function command.

R> apply(foo,MARGIN=2,FUN=function(x){sort(rep(x,2))})
[,1] [,2] [,3] [,4]

[1,] 2 2 3 2
[2,] 2 2 3 2
[3,] 3 4 3 6
[4,] 3 4 3 6
[5,] 3 4 7 7
[6)] 3 4 7 7

The function is defined in the standard format directly in the call to
apply. This function is defined, called, and then immediately forgotten once
apply is complete. It is disposable in the sense that it exists only for the one
instance where it is actually used.

Using the function command this way is a shortcut more than anything
else; plus, it avoids the unnecessary creation and storage of a function object
in the global environment.



11.3.3 Recursive Functions

Recursion is when a function calls itself. This technique isn’t commonly used
in statistical analyses, but it pays to be aware of it. This section will briefly
illustrate what it means for a function to call itself.

Suppose you want to write a function that takes a single positive inte-
ger argument n and returns the corresponding nth term of the Fibonacci
sequence (where n = 1 and n = 2 correspond to the initial two terms 1 and 1,
respectively). Earlier you built up the Fibonacci sequence in an iterative fash-
ion by using a loop. In a recursive function, instead of using a loop to repeat
an operation, the function calls itself multiple times. Consider the following:

myfibrec <- function(n){
if(n==1] |n==2){
return(1)
} else {
return(myfibrec(n-1)+myfibrec(n-2))

The recursive myfibrec checks a single if statement that defines a stopping
condition. If either 1 or 2 is supplied to the function (requesting the first or
second Fibonacci number), then myfibrec directly returns 1. Otherwise, the
function returns the sum of myfibrec(n-1) and myfibrec(n-2). That means if
you call myfibrec with n greater than 2, the function generates two more calls
to myfibrec, using n-1 and n-2. The recursion continues until it reaches a call
for the 1st or 2nd term, triggering the stopping condition, if(n==1] |n==2),
which simply returns 1. Here’s a sample call that retrieves the fifth Fibonacci
number:

R> myfibrec(5)
[1] 5

Figure 11-3 shows the structure of this recursive call.

Note that an accessible stopping rule is critical to any recursive function.
Without one, recursion will continue indefinitely. For example, the current
definition of myfibrec works as long as the user supplies a positive integer for
the argument n. But if n is negative, the stopping rule condition will never
be satisfied, and the function will recur indefinitely (though R has some
automated safeguards to help prevent this and should just return an error
message rather than getting stuck in an infinite loop).

Recursion is a powerful approach, especially when you don’t know
ahead of time how many times a function needs be called to complete a
task. For many sort and search algorithms, recursion provides the speedi-
est and most efficient solution. But in simpler cases, such as the Fibonacci
example here, the recursive approach often requires more computational
expense than an iterative looping approach. For beginners, I recommended
sticking with explicit loops unless recursion is strictly required.
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myfibrec(5)
myfibrec(4) myfibrec(3)

my'Flbrec(3) + myfibrec(2) myfibrec(2) + myfibrec(1)

my-Fibrec(Z) + my-Flbrec(l)

Figure 11-3: A visualization of the recursive calls made to myfibrec with n=5

Exercise 11.3

a. Given a list whose members are character string vectors of vary-
ing lengths, use a disposable function with lapply to paste an
exclamation mark onto the end of each element of each mem-
ber, with an empty string as the separation character (note that
the default behavior of paste when applied to character vectors
is to perform the concatenation on each element). Execute your
line of code on the list given by the following:

'FOO <- 1lst(" ",C("b","C“,"d","e"),"f",c(“g","h","i"))

b. Write a recursive version of a function implementing the
non-negative integer factorial operator (see Exercise 10.4 on
page 203 for details of the factorial operator). The stopping rule
should return the value 1 if the supplied integer is 0. Confirm
that your function produces the same results as earlier.

i.  bfactorial is 120.
ii. 120 factorial is 479,001, 600.
iii. 0 factorial is 1.

c. For this problem, I’ll introduce the geometric mean. The geometric
mean is a particular measure of centrality, different from the
more common arithmetic mean. Given n observations denoted
X1, X2, ..., X, their geometric mean g is computed as follows:

n 1/n
g=(x1 Xx9X%...Xxp)l" =(1—[Xi)

i=1
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For example, to find the geometric mean of the data 4.3, 2.1,
2.2, 3.1, calculate the following:

g=(43x21x22x3.1)*=61.5846"% =28

(This is rounded to 1 d.p.)

Write a function named geolist that can search through a
specified list and compute the geometric means of each member
per the following guidelines:

—  Your function must define and use an internal helper func-
tion that returns the geometric mean of a vector argument.

— Assume the list can only have numeric vectors or numeric
matrices as its members. Your function should contain an
appropriate loop to inspect each member in turn.

— If the member is a vector, compute the geometric mean of
that vector, overwriting the member with the result, which
should be a single number.

— If the member is a matrix, use an implicit loop to compute
the geometric mean of each row of the matrix, overwriting the
member with the results.

— The final list should be returned to the user.

Now, as a quick test, check that your function matches the
following two calls:

i.

R> foo <- list(1:3,matrix(c(3.3,3.2,2.8,2.1,4.6,4.5,3.1,9.4),4,2),
matrix(c(3.3,3.2,2.8,2.1,4.6,4.5,3.1,9.4),2,4))
R> geolist(foo)

([1]]

[1] 1.817121

([2]]
[1] 3.896152 3.794733 2.946184 4.442972

[[31]
[1] 3.388035 4.106080

ii.

R> bar <- list(1:9,matrix(1:9,1,9),matrix(1:9,9,1),matrix(1:9,3,3))
R> geolist(bar)
[[1]]

[1] 4.147166
[[2]]
[1] 4.147166
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[[31]

[11123456789

[[4]]

[1] 3.036589 4.308869 5.451362

Important Code in This Chapter

Function/operator  Brief description First occurrence

function Function creation Section 11.1.1, p. 216

return Function return objects ~ Section 11.1.1, p. 219

missing Argument check Section 11.2.3, p. 227
2.4, p.

Ellipsis (as argument)

Section 11
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EXCEPTIONS, TIMINGS,
AND VISIBILITY

Now that you’ve seen how to write your
own functions in R, let’s examine some
common function augmentations and
behaviors. In this chapter, you’ll learn how
to make your functions throw an error or warning

when they receive unexpected input. You'll also

see some simple ways to measure completion time and check progress
for computationally expensive functions. Finally, you’ll see how R masks
functions when two have the same name but reside in different packages.

12.1 Exception Handling

When there’s an unexpected problem during execution of a function, R will
notify you with either a warning or an error. In this section, I’'ll demonstrate
how to build these constructs into your own functions where appropriate.
I'll also show how to #ry a calculation to check whether it’s possible without
an error (that is, to see whether it’ll even work).
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12.1.1 Formal Notifications: Errors and Warnings

In Chapter 11, you made your functions print a string (for example,

"no valid matrices") when they couldn’t perform certain operations. Warn-
ings and errors are more formal mechanisms designed to convey these types
of messages and handle subsequent operations. An error forces the function
to immediately terminate at the point it occurs. A warning is less severe. It
indicates that the function is being run in an atypical way but tries to work
around the issue and continue executing. In R, you can issue warnings with
the warning command, and you can throw errors with the stop command.
The following two functions show an example of each:

warn_test <- function(x){
if(x<=0){
warning("'x' is less than or equal to 0 but setting it to 1 and
continuing")
X <-1
}
return(5/x)

error_test <- function(x){
if(x<=0){
stop("'x" is less than or equal to 0... TERMINATE")

}
return(5/x)

Both warn_test and error_test divide 5 by the argument x. They also both
expect x to be positive. In warn_test, if x is nonpositive, the function issues a
warning, and x is overwritten to be 1. In error_test, on the other hand, if x is
nonpositive, the function throws an error and terminates immediately. The
two commands warning and stop are used with a character string argument,
which becomes the message printed to the console.

You can see these notifications by importing and calling the functions as
follows:

R> warn_test(0)

[1] 5

Warning message:

In warn_test(0) :
'x" is less than or equal to 0 but setting it to 1 and continuing

R> error test(0)

Error in error test(0) : 'x

is less than or equal to 0... TERMINATE

Notice that warn_test has continued to execute and returned the
value 5—the result of 5/1 after setting x to 1. The call to error_test did not
return anything because R exited the function at the stop command.



Warnings are useful when there’s a natural way for a function to try
to save itself even when it doesn’t get the input it expects. For example, in
Section 10.1.3, R issued a warning when you supplied a logical vector of ele-
ments to the if statement. Remember that the if statement expects a single
logical value, but rather than quit when a logical vector is provided instead,
it continues execution using just the first entry in the supplied vector. That
said, sometimes it’s more appropriate to actually throw an error and stop
execution altogether.

Let’s go back to myfibrec from Section 11.3.3. This function expects a
positive integer (the position of the Fibonacci number it should return).
Suppose you assume that if the user supplies a negative integer, the user
actually means the positive version of that term. You can add a warning to
handle this situation. Meanwhile, if the user enters 0, which doesn’t corre-
spond to any position in the Fibonacci series, the code will throw an error.
Consider these modifications:

myfibrec2 <- function(n){

if(n<0){
warning("Assuming you meant 'n' to be positive -- doing that instead")
n <- nx-1
} else if(n==0){
stop("'n' is uninterpretable at 0")
}
if(n==1||n==2){
return(1)
} else {

return(myfibrec2(n-1)+myfibrec2(n-2))

In myfibrec2, you now check whether n is negative or zero. If it’s negative,
the function issues a warning and continues executing after swapping the
argument’s sign. If n is zero, an error halts execution with a corresponding
message. Here you can see the responses for a few different arguments:

R> myfibrec2(6)

[1] 8

R> myfibrec2(-3)

[1] 2

Warning message:

In myfibrec2(-3) :
Assuming you meant 'n' to be positive -- doing that instead

R> myfibrec2(0)

Error in myfibrec2(0) : 'n

is uninterpretable at o

Note that the call to myfibrec2(-3) has returned the third Fibonacci
number.
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Broadly speaking, both errors and warnings signal that something has
gone wrong. If you're using a certain function or running chunks of code
and you encounter these kinds of messages, you should look carefully at
what has been run and what may have occurred to spark them.

Identifying and repairing erroneous code is referred to as debugging, for which there
are various strategies. One of the most basic strategies involves including print or cat
commands to inspect various quantities as they are calculated during live execution.

R does have some more sophisticated debugging tools; if youre interested, check out the
excellent discussion of them provided in Chapter 13 of The Art of R Programming
by Matloff (2011). A more general discussion can be found in The Art of Debug-
ging by Matloff and Salzman (2008). As you gain more experience in R, understand-
ing error messages or locating potential problems in code before they arise becomes easier
and easier, a benefit you get partly because of R’s interpretative style.

12.1.2  Catching Errors with try Statements

When a function terminates from an error, it also terminates any parent
functions. For example, if function A calls function B and function B halts
because of an error, this halts execution of A at the same point. To avoid
this severe consequence, you can use a try statement to attempt a function
call and check whether it produces an error. You can also use an if state-
ment to specify alternative operations, rather than allowing all processes to
cease.

For example, if you call the myfibrec2 function from earlier and pass it 0,
the function throws an error and terminates. But watch what happens when
you pass that function call as the first argument to try:

R> attemptl <- try(myfibrec2(0),silent=TRUE)

Nothing seems to happen. What’s happened to the error? In fact, the
error has still occurred, but try has suppressed the printing of an error mes-
sage to the console because you passed it the argument silent set to TRUE.
The error information is now stored in the object attempt1, which is of class
"try-error". To see the error, simply print attempt1 to the console:

R> attempt1
[1] "Error in myfibrec2(0) : 'n' is uninterpretable at o\n"
attr(,"class")

[1] "try-error"
attr(,"condition")

<simpleError in myfibrec2(0): 'n

is uninterpretable at 0>

You would have seen this printed to the console if you’d left silent set
to FALSE. Catching an error this way can be really handy, especially when a
function produces the error in the body code of another function. Using
try, you can handle the error without terminating that parent function.



Meanwhile, if you pass a function to try and it doesn’t throw an error,
then try has no effect, and you simply get the normal return value.

R> attempt2 <- try(myfibrec2(6),silent=TRUE)
R> attempt2
[1] 8

Here, you executed myfibrec2 with a valid argument, n=6. Since this call
doesn’t result in an error, the result passed to attempt2 is the normal return
value from myfibrec2, in this case 8.

Using try in the Body of a Function

Let’s see a more complete example of how you could use try in a larger
function. The following myfibvector function takes a vector of indexes as the
argument nvec and provides the corresponding terms from the Fibonacci
sequence:

myfibvector <- function(nvec){
nterms <- length(nvec)
result <- rep(0,nterms)
for(i in 1:nterms){
result[i] <- myfibrec2(nvec[i])
}

return(result)

This function uses a for loop to work through nvec element by element,
computing the corresponding Fibonacci number with the earlier function,
myfibrec2. As long as all the values in nvec are nonzero, myfibvector works just
fine. For example, the following call obtains the first, the second, the tenth,
and the eighth Fibonacci number:

R> foo <- myfibvector(nvec=c(1,2,10,8))
R> foo
[1] 12 15521

Suppose, however, there’s a mistake and one of the entries in nvec ends
up being zero.

R> bar <- myfibvector(nvec=c(3,2,7,0,9,13))

Error in myfibrec2(nvec[i]) : 'n' is uninterpretable at 0

The internal call to myfibrec2 has thrown an error when it’s called on n=0,
and this has terminated execution of myfibvector. Nothing is returned, and
the entire call has failed.

You can prevent this outright failure by using try within the for loop
to check each call to myfibrec2 and have it catch any errors. The following
function, myfibvectorTRY, does just that.
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myfibvectorTRY <- function(nvec){
nterms <- length(nvec)
result <- rep(0,nterms)
for(i in 1:nterms){
attempt <- try(myfibrec2(nvec[i]),silent=T)
if(class(attempt)=="try-error"){
result[i] <- NA
} else {
result[i] <- attempt

}

return(result)

Here, within the for loop, you use attempt to store the result of trying
each call to myfibrec2. Then, you inspect attempt. If this object’s class is
"try-error", that means myfibrec2 produced an error, and you fill the corre-
sponding slot in the result vector with NA. Otherwise, attempt will represent a
valid return value from myfibrec2, so you place it in the corresponding slot of
the result vector. Now if you import and call myfibvectorTRY on the same nvec,
you see a complete set of results.

R> baz <- myfibvectorTRY(nvec=c(3,2,7,0,9,13))
R> baz
[1] 2 1 13 NA 34 233

The error that would have otherwise terminated everything was silently
caught, and the alternative response in this situation, NA, was inserted into
the result vector.

The try command is a simplification of R’s more complex tryCatch function, which is
beyond the scope of this book, but it provides more precise control over how you test and
execute chunks of code. If you’re interested in learning more, enter ?tryCatch in the
console.

Suppressing Warning Messages
In all the try calls I've shown so far, I've set the silent argument to TRUE,
which stops any error messages from being printed. If you leave silent set
to FALSE (the default value), the error message will be printed, but the error
will still be caught without terminating execution.

Note that setting silent=TRUE only suppresses error messages, not warn-
ings. Observe the following:

R> attempt3 <- try(myfibrec2(-3),silent=TRUE)
Warning message:
In myfibrec2(-3) :



Assuming you meant 'n' to be positive -- doing that instead
R> attempt3
(1] 2

Although silent was TRUE, the warning (for negative values of n in this
example) is still issued and printed. Warnings are treated separately from
errors in this type of situation, as they should be—they can highlight other
unforeseen issues with your code during execution. If you are absolutely
sure you don’t want to see any warnings, you can use suppressharnings.

R> attempt4 <- suppressWarnings(myfibrec2(-3))
R> attempt4
(1] 2

The suppressWarnings function should be used only if you are certain that
every warning in a given call can be safely ignored and you want to keep the
output tidy.

Exercise 12.1

a. In Exercise 11.3 (b) on page 238, your task was to write a recur-
sive R function to compute integer factorials, given some sup-
plied non-negative integer x. Now, modify your function so that
it throws an error (with an appropriate message) if x is negative.
Test your new function responses by using the following:

i. xass
. xas$
iii. xas -8

b. The idea of matrix inversion, briefly discussed in Section 3.3.6, is
possible only for certain square matrices (those with an equal
number of columns as rows). These inversions can be computed
using the solve function, for example:

R> solve(matrix(1:4,2,2))
1] [,2]

[1,] -2 1.5

[2,] 1 -0.5

Note that solve throws an error if the supplied matrix can-
not be inverted. With this in mind, write an R function that
attempts to invert each matrix in a list, according to the follow-
ing guidelines:

— The function should take four arguments.

%  The list x whose members are to be tested for matrix

inversion
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% A value noninv to fill in results where a given matrix
member of x cannot be inverted, defaulting to NA

* A character string nonmat to be the result if a given mem-
ber of x is not a matrix, defaulting to "not a matrix"

*  Alogical value silent, defaulting to TRUE, to be passed to
try in the body code

— The function should first check whether x is in fact a list. If
not, it should throw an error with an appropriate message.

— Then, the function should ensure that x has at least one
member. If not, it should throw an error with an appropriate
message.

— Next, the function should check whether nonmat is a character
string. If not, it should try to coerce it to a character string
using an appropriate “as-dot” function (see Section 6.2.4),
and it should issue an appropriate warning.

— After these checks, a loop should search each member i of
the list x.

*  If member i is a matrix, attempt to invert it with try. If
it’s invertible without error, overwrite member i of x
with the result. If an error is caught, then member i of x
should be overwritten with the value of noninv.

% If member i is not a matrix, then member i of x should
be overwritten with the value of nonmat.

—  Finally, the modified list x should be returned.

Now, test your function using the following argument values
to make sure it responds as expected:

i. xas

list(1:4,matrix(1:4,1,4),matrix(1:4,4,1),matrix(1:4,2,2))

and all other arguments at default.

ii. xasin (i), noninv as Inf, nonmat as 666, silent at default.
iii. Repeat (ii), but now with silent=FALSE.
iv. xas

list(diag(9),matrix(c(0.2,0.4,0.2,0.1,0.1,0.2),3,3),
rbind(C(S)5:112)JC(2)211J8)JC(6)115) 5),C(1,0,2,0)),
matrix(1:6,2,3),cbind(c(3,5),c(6,5)),as.vector(diag(2)))

and noninv as "unsuitable matrix"; all other values at default.

Finally, test the error messages by attempting calls to your
function with the following:
v. xas "hello"
vi. xas list()




12.2 Progress and Timing

R is often used for lengthy numeric exercises, such as simulation or random
variate generation. For these complex, time-consuming operations, it’s often
useful to keep track of progress or see how long a certain task took to com-
plete. For example, you may want to compare the speed of two different
programming approaches to a given problem. In this section, you’ll look

at ways to time code execution and show its progress.

12.2.1 Textuval Progress Bars: Are We There Yet?

A progress bar shows how far along R is as it executes a set of operations. To
show how this works, you need to run code that takes a while to execute,
which you’ll do by making R sleep. The Sys.sleep command makes R pause
for a specified amount of time, in seconds, before continuing.

R> Sys.sleep(3)

If you run this code, R will pause for three seconds before you can con-
tinue using the console. Sleeping will be used in this section as a surrogate
for the delay caused by computationally expensive operations, which is
where progress bars are most useful.

To use Sys.sleep in a more common fashion, consider the following:

sleep_test <- function(n){
result <- 0
for(i in 1:n){
result <- result + 1
Sys.sleep(0.5)
}

return(result)

The sleep_test function is basic—it takes a positive integer n and adds
1 to the result value for n iterations. At each iteration, you also tell the loop
to sleep for a half second. Because of that sleep command, executing the
following code takes about four seconds to return a result:

R> sleep_test(8)
[1] 8

Now, say you want to track the progress of this type of function as it exe-
cutes. You can implement a textual progress bar with three steps: initialize
the bar object with txtProgressBar, update the bar with setTxtProgressBar,
and terminate the bar with close. The next function, prog_test, modifies
sleep_test to include those three commands.
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prog_test <- function(n){
result <- 0
progbar <- txtProgressBar(min=0,max=n,style=1,char=
for(i in 1:n){
result <- result + 1
Sys.sleep(0.5)
setTxtProgressBar (progbar,value=i)

}
close(progbar)

return(result)

Before the for loop, you create an object named progbar by call-
ing txtProgressBar with four arguments. The min and max arguments are
numeric values that define the limits of the bar. In this case, you set max=n,
which matches the number of iterations of the impending for loop. The
style argument (integer, either 1, 2, or 3) and the char argument (character
string, usually a single character) govern the appearance of the bar. Setting
style=1 means the bar will simply display a line of char; with char="="it’ll be a
series of equal signs.

Once this object is created, you have to instruct the bar to actually
progress during execution with a call to setTxtProgressBar. You pass in the
bar object to update (progbar) and the value it should update to (in this
case, 1). Once complete (after exiting the loop), the progress bar must be
terminated with a call to close, passing in the bar object of interest. Import
and execute prog_test, and you’ll see the line of "=" drawn in steps as the
loop completes.

R> prog test(8)

The width of the bar is, by default, determined by the width of the R
console pane upon execution of the txtProgressBar command. You can cus-
tomize the bar a bit by changing the style and char arguments. Choosing
style=3, for example, shows the bar as well as a “percent completed” counter.
Some packages offer more elaborate options too, such as pop-up widgets,
but the textual version is the simplest and most universally compatible ver-
sion across different systems.

12.2.2 Measuring Completion Time: How Long Did It Take?

If you want to know how long a computation takes to complete, you can use
the Sys.time command. This command outputs an object that details current
date and time information based on your system.



R> Sys.time()
[1] "2016-03-06 16:39:27 NZDT"

You can store objects like these before and after some code and then
compare them to see how much time has passed. Enter this in the editor:

t1 <- Sys.time()
Sys.sleep(3)

t2 <- Sys.time()
t2-t1

Now highlight all four lines and execute them in the console.

R> t1 <- Sys.time()

R> Sys.sleep(3)

R> t2 <- Sys.time()

R> t2-t1

Time difference of 3.012889 secs

By executing this entire code block together, you get an easy measure of
the total completion time in a nicely formatted string printed to the console.
Note that there’s a small time cost for interpreting and invoking any com-
mands, in addition to the three seconds you tell R to sleep. This time will
vary between computers.

If you need more detailed timing reports, there are more sophisticated
tools. For example, you can use proc.time() to receive not just the total
elapsed “wall clock” time but also computer-related CPU timings (see the
definitions in the help file ?proc.time). To time a single expression, you can
also use the system.time function (which uses the same detail of output as
proc.time). There are also benchmarking tools (formal or systematic compar-
isons of different approaches) for timing your code; see, for example, the
rbenchmark package (Kusnierczyk, 2012). However, for everyday use, the time-
object differencing approach used here is easy to interpret and provides a
good indication of the computational expense.

Exercise 12.2

a. Modify prog_test from Section 12.2.1 to include an ellipsis in its
argument list, intended to take values for the additional argu-
ments in txtProgressBar; name the new function prog_test_fancy.
Time how long it takes a call to prog_test_fancy to execute. Set
50 as n, instruct the progress bar (through the ellipsis) to use

style=3, and set the bar character to be "r".
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b. In Section 12.1.2, you defined a function named myfibvectorTRY
(which itself calls myfibrec2 from Section 12.1.1) to return mul-
tiple terms from the Fibonacci sequence based on a supplied
“term vector” nvec. Write a new version of myfibvectorTRY that
includes a progress bar of style=3 and a character of your choos-
ing that increments at each pass of the internal for loop. Then,
do the following:

i.  Use your new function to reproduce the results from the text
where nvec=c(3,2,7,0,9,13).

ii. Time how long it takes to use your new function to return
the first 35 terms of the Fibonacci sequence. What do you
notice, and what does this say about your recursive Fibonacci
functions?

c.  Remain with the Fibonacci sequence. Write a stand-alone for
loop that can compute, and store in a vector, the same first 35
terms as in (b) (ii). Time it. Which approach would you prefer?

12.3 Masking

Chapter 12

With the plethora of built-in and contributed data and functionality avail-
able for R, it is virtually inevitable that at some point you will come across
objects, usually functions, that share the same name in distinctly different
loaded packages.

So, what happens in those instances? For example, say you define a func-
tion with the same name as a function in an R package that you have already
loaded. R responds by masking one of the objects—that is, one object or
function will take precedence over the other and assume the object or func-
tion name, while the masked function must be called with an additional
command. This protects objects from overwriting or blocking one another.
In this section, you’ll look at the two most common masking situations in R.

12.3.1 Function and Object Distinction

When two functions or objects in different environments have the same
name, the object that comes earlier in the search path will mask the later
one. That is, when the object is sought, R will use the object or function it
finds first, and you’ll need extra code to access the other, masked version.
Remember, you can see the current search path by executing search().

R> search()

[1] ".GlobalEnv" "tools:RGUI" "package:stats"
[4] "package:graphics" “package:grDevices" "package:utils"
[7] "package:datasets" "package:methods" "Autoloads"
[10] "package:base"




When R searches, the function or object that falls closest to the start
of the search path (the global environment) is reached first and masks the
function or object of the same name that occurs somewhere later in the
search path. To see a simple example of masking, you’ll define a function
with the same name as a function in the base package: sum. Here’s how sum
works normally, adding up all the elements in the vector foo:

R> foo <- c(4,1.5,3)
R> sum(foo)
[1] 8.5

Now, suppose you were to enter the following function:

sum <- function(x){
result <- 0
for(i in 1:1length(x)){
result <- result + x[i]~2

}

return(result)

This version of sum takes in a vector x and uses a for loop to square
each element before summing them and returning the result. This can be
imported into the R console without any problem, but clearly, it doesn’t
offer the same functionality as the (original) built-in version of sum. Now,
after importing the function, if you make a call to sum, your version is used.

R> sum(foo)
[1] 27.25

This happens because the user-defined function is stored in the global
environment (.GlobalEnv), which always comes first in the search path. R’s
built-in function is part of the base package, which comes at the end of the
search path. In this case, the user-defined function is masking the original.

Now, if you want R to run the base version of sum, you have to include the
name of its package in the call, with a double colon.

R> base::sum(foo)
[1] 8.5

This tells R to use the version in base, even though there’s another ver-
sion of the function in the global environment.

To avoid any confusion, let’s remove the sum function from the global
environment.

R> rm(sum)
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When Package Objects Clash

When you load a package, R will notify you if any objects in the package
clash with other objects that are accessible in the present session. To illus-
trate this, I'll make use of two contributed packages: the car package (you
saw this earlier in Exercise 8.1 (b) on page 162) and the spatstat package
(you’ll use this in Part V). After ensuring these two packages are installed,
when I load them in the following order, I see this message:

R> library("spatstat")

spatstat 1.40-0 (nickname: 'Do The Maths')
For an introduction to spatstat, type 'beginner'
R> library("car"

Attaching package: 'car’

The following object is masked from 'package:spatstat':

ellipse

This indicates that the two packages each have an object with the same
name—ellipse. R has automatically notified you that this object is being
masked. Note that the functionality of both car and spatstat remains com-
pletely available; it’s just that the ellipse objects require some distinction
should they be needed. Using ellipse at the prompt will access car’s object
since that package was loaded more recently. To use spatstat’s version, you
must type spatstat::ellipse. These rules also apply to accessing the respec-
tive help files.

A similar notification occurs when you load a package with an object
that’s masked by a global environment object (a global environment object
will always take precedence over a package object). To see an example, you
can load the MASS package (Venables and Ripley, 2002), which is included
with R but isn’t automatically loaded. Continuing in the current R session,
create the following object:

R> cats <- "meow"

Now, suppose you need to load MASS.

R> library("MASS")
Attaching package: 'MASS'
The following object is masked _by '.GlobalEnv':

cats



The following object is masked from 'package:spatstat’:

area

Upon loading the package, you’re informed that the cats object you've
just created is masking an object of the same name in MASS. (As you can see
with ?MASS: :cats, this object is a data frame with weight measurements of
household felines.) Furthermore, it appears MASS also shares an object name
with spatstat—area. The same kind of “package masking” message as shown
earlier is also displayed for that particular item.

Unmounting Packages

You can unmount loaded packages from the search path. With the packages
loaded in this discussion, my current search path looks like this:

R> search()
[1] ".GlobalEnv" "package:MASS" "package:car"”
[4] "package:spatstat” "tools:RGUI" "package:stats"
[7] "package:graphics" "package:grDevices" "package:utils"
[10] "package:datasets" "package:methods"  "Autoloads"
[13] "package:base"

Now, suppose you don’t need car anymore. You can remove it with the
detach function as follows.

R> detach("package:car",unload=TRUE)
R> search()

[1] ".GlobalEnv" "package:MASS" "package:spatstat”

[4] "tools:RGUI" "package:stats" "package:graphics"

[7] "package:grDevices" "package:utils" "package:datasets”
ge:g g g8

[10] "package:methods"  "Autoloads" "package:base"

This removes the elected package from the path, unloading its name-
space. Now, the functionality of car is no longer immediately available, and
spatstat’s ellipsis function is no longer masked.

NOTE  As contributed packages get updated by their maintainers, they may include new
objects that spark new maskings or remove or rename objects that previously caused
maskings (when compared with other contributed packages). The specific maskings
Wlustrated here among car, spatstat, and MASS occur at the time of writing with the
versions available and may change in the future.

12.3.2 Data Frame Variable Distinction

There’s one other common situation in which you’ll be explicitly notified
of masking: when you add a data frame to the search path. Let’s see how
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this works. Continuing in the current workspace, define the following data
frame:

R> foo <- data.frame(surname=c("a","b","c","d"),
sex=c(0,1,1,0),height=c(170,168,181,180),
stringsAsFactors=F)

R> foo

surname sex height
1 a o0 170
2 b 1 168
3 c 1 181
4 d o 180

The data frame foo has three column variables: person, sex, and height.
To access one of these columns, normally you need to use the $ operator
and enter something like foo$surname. However, you can attach a data frame
directly to your search path, which makes it easier to access a variable.

R> attach(foo)
R> search()
[1] ".GlobalEnv" "foo" "package :MASS"
[4] "package:spatstat” "tools:RGUI" "package:stats"
[7] "package:graphics" "package:grDevices" "package:utils"
[10] "package:datasets" "package:methods"  "Autoloads"
[13] "package:base"

Now the surname variable is directly accessible.

R> surname
[1] Ilall llbll Ilcll lldll

This saves you from having to enter foo$ every time you want to access
a variable, which can be a handy shortcut if your analysis deals exclusively
with one static, unchanging data frame. However, if you forget about your
attached objects, they can cause problems later, especially if you continue to
mount more objects onto the search path in the same session. For example,
say you enter another data frame.

R> bar <- data.frame(surname=c("e","f","g","h"),
sex=c(1,0,1,0),weight=c(55,70,87,79),
stringsAsFactors=F)

R> bar

surname sex weight
1 e 1 55
2 f 0 70
3 g 1 87
4 h o 79




Then add it to the search path too.

R> attach(bar)
The following objects are masked from foo:

Sex, Ssurname

The notification tells you that the bar object now precedes foo in the
search path.

R> search()

[1] ".GlobalEnv" "bar" "foo"

[4] "package:MASS" "package:spatstat" "tools:RGUI"

[7] "package:stats" "package:graphics" "package:grDevices"
[10] "package:utils" "package:datasets” "package:methods"
[13] "Autoloads" "package:base"

As a result, any direct use of either sex or surname will now access bar’s
contents, not foo’s. Meanwhile, the unmasked variable height from foo is still
directly accessible.

R> height
[1] 170 168 181 180

This is a pretty simple example, but it highlights the potential for con-
fusion when data frames, lists, or other objects are added to the search path.
Mounting objects this way can quickly become difficult to track, especially
for large data sets with many different variables. For this reason, it’s best
to avoid attaching objects this way as a general guideline—unless, as stated
earlier, you’re working exclusively with one data frame.

Note that detach can be used to remove objects from the search path, in
a similar way as you saw with packages. In this case, you can simply enter the
object name itself.

R> detach(foo)
R> search()
[1] ".GlobalEnv" "bar" "package:MASS"
[4] "package:spatstat” "tools:RGUI" "package:stats"
[7] "package:graphics" "package:grDevices" "package:utils"
[10] "package:datasets" "package:methods" "Autoloads"
[13] "package:base"
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Important Code in This Chapter

Function/operator  Brief description First occurrence

warning Issue warning Section 12.1.1, p. 242
stop Throw error Section 12.1.1, p. 242
try Attempt error catch Section 12.1.2, p. 244
Sys.sleep Sleep (pause) execution Section 12.2.1, p. 249
txtProgressBar Initialize progress bar Section 12.2.1, p. 249
setTxtProgressBar Increment progress bar Section 12.2.1, p. 249
close Close progress bar Section 12.2.1, p. 249
Sys.time Get local system time Section 12.2.2, p. 250
detach Remove library/object from path  Section 12.3.1, p. 255
attach Attach object to search path Section 12.3.2, p. 256




PART i

STATISTICS AND PROBABILITY






ELEMENTARY STATISTICS

Statistics is the practice of turning data
into information to identify trends and
understand features of populations. This
chapter will cover some basic definitions and
use R to demonstrate their application.

13.1 Describing Raw Data

Often, the first thing statistical analysts are faced with is raw data—in other
words, the records or observations that make up a sample. Depending on
the nature of the intended analysis, these data could be stored in a special-
ized R object, often a data frame (Chapter 5), possibly read in from an exter-
nal file using techniques from Chapter 8. Before you can begin summarizing
or modeling your data, however, it is important to clearly identify your avail-
able variables.

A variable is a characteristic of an individual in a population, the value
of which can differ between entities within that population. For example,
in Section 5.2, you experimented with an illustrative data frame mydata.
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You recorded the age, sex, and humor level for a sample of people. These
characteristics are your variables; the values measured will differ between the
individuals.

Variables can take on a number of forms, determined by the nature of
the values they may take. Before jumping into R, you’ll look at some stan-
dard ways in which variables are described.

13.1.1 Numeric Variables

A numeric variable is one whose observations are naturally recorded as num-
bers. There are two types of numeric variables: continuous and discrete.

A continuous variable can be recorded as any value in some interval, up
to any number of decimals (which technically gives an infinite number of
possible values, even if the continuum is restricted in range). For example,
if you were observing rainfall amount, a value of 15 mm would make sense,
but so would a value of 15.42135 mm. Any degree of measurement precision
gives a valid observation.

A discrete variable, on the other hand, may take on only distinct numeric
values—and if the range is restricted, then the number of possible values is
finite. For example, if you were observing the number of heads in 20 flips of
a coin, only whole numbers would make sense. It would not make sense to
observe 15.42135 heads; the possible outcomes are restricted to the integers
from 0 to 20 (inclusive).

13.1.2  Categorical Variables

Though numeric observations are common for many variables, it’s also
important to consider categorical variables. Like some discrete variables, cate-
gorical variables may take only one of a finite number of possibilities. Unlike
discrete variables, however, categorical observations are not always recorded
as numeric values.

There are two types of categorical variables. Those that cannot be log-
ically ranked are called nominal. A good example of a categorical-nominal
variable is sex. In most data sets, it has two fixed possible values, male and
female, and the order of these categories is irrelevant. Categorical variables
that can be naturally ranked are called ordinal. An example of a categorical-
ordinal variable would be the dose of a drug, with the possible values low,
medium, and high. These values can be ordered in either increasing or
decreasing amounts, and the ordering might be relevant to the research.

Some statistical texts blur the definitions of discrete and categorical variables or even
use them interchangeably. While this practice is not necessarily incorrect, I prefer to
keep the definitions separate, for clarity. That is, I'll say “discrete” when referring to a
naturally numeric variable that cannot be expressed on a continuous scale (such as a
count), and I'll say “categorical” when the possible outcomes for a given individual
are not necessarily numeric and the number of possible values is always finite.



Once you know what to look for, identifying the types of variables in a
given data set is straightforward. Take the data frame chickwts, which is avail-
able in the automatically loaded datasets package. At the prompt, directly
entering the following gives you the first five records of this data set.

R> chickwts[1:5,]

weight feed
179 horsebean
160 horsebean
136 horsebean
227 horsebean
217 horsebean

[ B e N S A

R’s help file (?chickwts) describes these data as comprising the weights
of 71 chicks (in grams) after six weeks, based on the type of food provided to
them. Now let’s take a look at the two columns in their entirety as vectors:

R> chickwts$weight

[1] 179 160 136 227 217 168 108 124 143 140 309 229 181 141 260 203 148 169
[19] 213 257 244 271 243 230 248 327 329 250 193 271 316 267 199 171 158 248
[37] 423 340 392 339 341 226 320 295 334 322 297 318 325 257 303 315 380 153
[55] 263 242 206 344 258 368 390 379 260 404 318 352 359 216 222 283 332
R> chickwts$feed

[1] horsebean horsebean horsebean horsebean horsebean horsebean horsebean
[8] horsebean horsebean horsebean linseed linseed linseed linseed
15] linseed linseed linseed 1linseed linseed linseed linseed
22] linseed soybean soybean soybean soybean soybean  soybean
29] soybean soybean soybean soybean soybean soybean soybean
36] soybean  sunflower sunflower sunflower sunflower sunflower sunflower
[43] sunflower sunflower sunflower sunflower sunflower sunflower meatmeal
[50] meatmeal meatmeal meatmeal meatmeal meatmeal meatmeal meatmeal
[57] meatmeal meatmeal meatmeal casein casein casein casein
[64] casein casein casein casein casein casein casein
[71] casein
Levels: casein horsebean linseed meatmeal soybean sunflower

weight is a numeric measurement that can fall anywhere on a con-
tinuum, so this is a numeric-continuous variable. The fact that the chick
weights appear to have been rounded or recorded to the nearest gram does
not affect this definition because in reality the weights can be any figure
(within reason). feed is clearly a categorical variable because it has only six
possible outcomes, which aren’t numeric. The absence of any natural or
easily identifiable ordering leads to the conclusion that feed is a categorical-
nominal variable.
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13.1.3 Univariate and Multivariate Data

When discussing or analyzing data related to only one dimension, you’re
dealing with univariate data. For example, the weight variable in the earlier
example is univariate since each measurement can be expressed with one
component—a single number.

When it’s necessary to consider data with respect to variables that
exist in more than one dimension (in other words, with more than one
component or measurement associated with each observation), your data
are considered multivariate. Multivariate measurements are arguably most
relevant when the individual components aren’t as useful when considered
on their own (in other words, as univariate quantities) in any given statistical
analysis.

An ideal example is that of spatial coordinates, which must be consid-
ered in terms of at least two components—a horizontal x-coordinate and a
vertical y-coordinate. The univariate data alone—for example, the x-axis val-
ues only—aren’t especially useful. Consider the quakes data set (like chickwts,
this is automatically available through the datasets package), which con-
tains observations on 1,000 seismic events recorded off the coast of Fiji. If
you look at the first five records and read the descriptions in the help file
?quakes, you quickly get a good understanding of what’s presented.

R> quakes[1:5,]
lat  long depth mag stations

1 -20.42 181.62 562 4.8 41
2 -20.62 181.03 650 4.2 15
3 -26.00 184.10 42 5.4 43
4 -17.97 181.66 626 4.1 19
5 -20.42 181.96 649 4.0 11

The columns lat and long provide the latitude and longitude of the
event, depth provides the depth of the event (in kilometers), mag provides
the magnitude on the Richter scale, and stations provides the number of
observation stations that detected the event. If you're interested in the spa-
tial dispersion of these earthquakes, then examining only the latitude or the
longitude is rather uninformative. The location of each event is described
with two components: a latitude and a longitude value. You can easily plot
these 1,000 events; Figure 13-1 shows the result of the following code:

R> plot(quakes$long,quakes$lat,xlab="Longitude",ylab="Latitude")
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Figure 13-1: Plotting the spatial locations of earthquakes using
a bivariate (multivariate with two components) variable

13.1.4 Parameter or Statistic?

As already noted, statistics as a discipline is concerned with understand-

ing features of an overall population, defined as the entire collection of
individuals or entities of interest. The characteristics of that population are
referred to as parameters. Because researchers are rarely able to access rele-
vant data on every single member of the population of interest, they typically
collect a sample of entities to represent the population and record relevant
data from these entities. They may then estimate the parameters of interest
using the sample data—and those estimates are the statistics.

For example, if you were interested in the average age of women in the
United States who own cats, the population of interest would be all women
residing in the United States who own at least one cat. The parameter of
interest is the true mean age of women in the United States who own at least
one cat. Of course, obtaining the age of every single female American with
a cat would be a difficult feat. A more feasible approach would be to ran-
domly identify a smaller number of cat-owning American women and take
data from them—this is your sample, and the mean age of the women in the
sample is your statistic.

Thus, the key difference between a statistic and a parameter is whether
the characteristic refers to the sample you drew your data from or the wider
population. Figure 13-2 illustrates this, with the mean u of a measure for
individuals in a population as the parameter and with the mean x of a
sample of individuals taken from that population as the statistic.

Elementary Statistics 265



POPULATION

/r{ True mean u (parameter) ’\

Make inference Collect data

SAMPLE

Sample mean X (statistic)

Figure 13-2: A conceptualization of statistical practice
to illustrate the definitions of parameter and statistic,
using the mean as an example

Exercise 13.1

a. For each of the following, identify the type of variable described:
numeric-continuous, numeric-discrete, categorical-nominal, or
categorical-ordinal:

i.  The number of blemishes on the hood of a car coming off a
production line

ii. A survey question that asks the participant to select from
Strongly agree, Agree, Neutral, Disagree, and Strongly
disagree

iii. The noise level (in decibels) at a concert

iv. The noise level out of three possible choices: high,
medium, low

v. A choice of primary color

vi. The distance between a cat and a mouse

b. For each of the following, identify whether the quantity discussed
is a population parameter or a sample statistic. If the latter, also
identify what the corresponding population parameter is.

i. The percentage of 50 New Zealanders who own a gaming
console

ii. The average number of blemishes found on the hoods of
three cars in the No Dodgy Carz yard

iii. The proportion of domestic cats in the United States that
wear a collar

iv. The average number of times per day a vending machine is
used in a year

v. The average number of times per day a vending machine is
used in a year, based on data collected on three distinct days
in that year
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13.2 Summary Statistics

Now that you’ve learned the basic terminology, you’re ready to calculate
some statistics with R. In this section, you’ll look at the most common types
of statistics used to summarize the different types of variables I’ve discussed.

13.2.1 Centrality: Mean, Median, Mode

Measures of centrality are commonly used to explain large collections of data
by describing where numeric observations are centered. One of the most
common measures of centrality is of course the arithmetic mean. It’s consid-
ered to be the central “balance point” of a collection of observations.

For a set of n numeric measurements labeled x = {x1,x9,...,x,}, you
find the sample mean x as follows:
(x1+x9+...+x,) lix

- L

n n
i=1

_)E:

(13.1)

So, for example, if you observe the data 2,4.4,3,3,2,2.2,2,4, the mean is
calculated like this:

2+44+3+3+2+22+2+4
8

=2.825

The median is the “middle magnitude” of your observations, so if you
place your observations in order from smallest to largest, you can find the
median by either taking the middle value (if there’s an odd number of
observations) or finding the mean of the two middle values (if there’s an
even number of observations). Using the notation for » measurements
labeled x = {x1,x9,...,x,}, you find the sample median m, as follows:

® Sort the observations from smallest to largest to give the “order statistics”

El),x;?),. .. ,x](("), where xl(.t) denotes the rth smallest observation, regard-

less of observation number i, j,k, . . . .

X

* Then, do the following:

(=4 e
X, , if n is odd

my = n nq o
(x$2)+x;2+ ))/2, if n is even

(13.2)

For the same data, sorting them from smallest to largest yields 2, 2, 2,
2.2,3,3,4,4.4. With n = 8 observations, you have n/2 = 4. The median is
therefore as follows:

(xfV +x7) /2= (22+3)/2=26

The mode is simply the “most common” observation. This statistic is
more often used with numeric-discrete data than with numeric-continuous,
though it is used with reference to intervals of the latter (commonly when
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discussing probability density functions—see Chapters 15 and 16). It’s pos-
sible for a collection of n numeric measurements x1, Xo,. .., X, to have no
mode (where each observation is unique) or to have more than one mode
(where more than one particular value occurs the largest number of times).
To find the mode d, simply tabulate the frequency of each measurement.

Again using the eight observations from the example, you can see the
frequencies here:

Obsewation‘2‘2.2‘3‘4‘4.4
s v 21 ]

The value 2 occurs three times, which is more frequent than any other
value, so the single mode for these data is the value 2.

In R, it’s easy to compute the arithmetic mean and the median with
built-in functions of the same names. First, store the eight observations as
the numeric vector xdata.

Frequency ‘

R> xdata <- c(2,4.4,3,3,2,2.2,2,4)

Then compute the statistics.

R> x.bar <- mean(xdata)
R> x.bar

[1] 2.825

R> m.bar <- median(xdata)
R> m.bar

[1] 2.6

Finding a mode is perhaps most easily achieved by using R’s table func-
tion, which gives you the frequencies you need.

R> xtab <- table(xdata)
R> xtab
xdata

22.2 3 44.4

3 1 2 1 1

Though this clearly shows the mode for a small data set, it’s good prac-
tice to write code that can automatically identify the most frequent obser-
vations for any table. The min and max functions will report the smallest and
largest values, with range returning both in a vector of length 2.

R> min(xdata)
[1] 2

R> max(xdata)
[1] 4.4

R> range(xdata)
[1] 2.0 4.4




NOTE

When applied to a table, these commands operate on the reported
frequencies.

R> max(xtab)
[1] 3

Finally, therefore, you can construct a logical flag vector to get the mode
from table.

R> d.bar <- xtab[xtab==max(xtab)]
R> d.bar

2

3

Here, 2 is the value and 3 is the frequency of that value.
Let’s return to the chickwts data set explored earlier in Section 13.1.2.
The mean and median weights of the chicks are as follows:

R> mean(chickwts$weight)
[1] 261.3099

R> median(chickwts$weight)
[1] 258

You can also look at the quakes data set explored in Section 13.1.3. The
most common magnitude of earthquake in the data set is identified with the
following, which indicates that there were 107 occurrences of a 4.5 magni-
tude event:

R> Qtab <- table(quakes$mag)
R> Qtab[Qtab==max(Qtab)]

4.5

107

Several methods are available to compute medians, though the impact on results
is usually negligible for most practical purposes. Here I've simply used the default
“sample” version used by R.

Many of the functions R uses to compute statistics from a numeric struc-
ture will not run if the data set includes missing or undefined values (NAs or
NaNs). Here’s an example:

R> mean(c(1,4,NA))
[1] NA
R> mean(c(1,4,NaN))
[1] NaN

To prevent unintended NaNs or forgotten NAs being ignored without the
user’s knowledge, R does not by default ignore these special values when
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running functions such as mean—and therefore will not return the intended
numeric results. You can, however, set an optional argument na.rm to TRUE,
which will force the function to operate only on the numeric values that are
present.

R> mean(c(1,4,NA),na.rm=TRUE)
[1] 2.5
R> mean(c(1,4,NaN),na.rm=TRUE)
[1] 2.5

You should use this argument only if you’re aware there might be miss-
ing values and that the result will be computed based on only those values
that have been observed. Functions that I've discussed already such as sum,
prod, mean, median, max, min, and range—essentially anything that calculates a
numeric statistic based on a numeric vector—all have the na.rm argument
available to them.

Lastly, in calculating simple summary statistics, it’s useful to remind
yourself of the tapply function (see Section 10.2.3), used to compute statis-
tics grouped by a specific categorical variable. Suppose, for example, you
wanted to find the mean weight of the chicks grouped by feed type. One
solution would be to use the mean function on each specific subset.

R> mean(chickwts$weight[chickwts$feed=="casein"])
[1] 323.5833

R> mean(chickwts$weight[chickwts$feed=="horsebean"])
[1] 160.2

R> mean(chickwts$weight[chickwts$feed=="1linseed"])
[1] 218.75

R> mean(chickwts$weight[chickwts$feed=="meatmeal"])
[1] 276.9091

R> mean(chickwts$weight[chickwts$feed=="soybean"])
[1] 246.4286

R> mean(chickwts$weight[chickwts$feed=="sunflower"])
[1] 328.9167

This is cambersome and lengthy. Using tapply, however, you can calcu-
late the same values by category using just one line of code.

R> tapply(chickwts$weight, INDEX=chickwts$feed, FUN=mean)
casein horsebean linseed meatmeal soybean sunflower
323.5833 160.2000 218.7500 276.9091 246.4286 328.9167

Here, the first argument is the numeric vector upon which to operate,
the INDEX argument specifies the grouping variable, and the FUN argument
gives the name of the function to be performed on the data in the first argu-
ment as per the subsets defined by INDEX. Like other functions you’ve seen
that request the user to specify another function to govern operations, tapply



includes an ellipsis (see Sections 9.2.5 and 11.2.4) to allow the user to supply
further arguments directly to FUN if required.

13.2.2 Counts, Percentages, and Proportions

In this section, you’ll look at the summary of data that aren’t necessarily
numeric. It makes little sense, for example, to ask R to compute the mean
of a categorical variable, but it is sometimes useful to count the number of
observations that fall within each category—these counts or frequencies repre-
sent the most elementary summary statistic of categorical data.

This uses the same count summary that was necessary for the mode cal-
culation in Section 13.2.1, so again you can use the table command to obtain
frequencies. Recall there are six feed types making up the diet of the chicks
in the chickwts data frame. Getting these factor-level counts is as straightfor-
ward as this:

R> table(chickwts$feed)

casein horsebean linseed meatmeal soybean sunflower
12 10 12 11 14 12

You can gather more information from these counts by identifying the
proportion of observations that fall into each category. This will give you
comparable measures across multiple data sets. Proportions represent the
fraction of observations in each category, usually expressed as a decimal
(floating-point) number between 0 and 1 (inclusive). To calculate propor-
tions, you only need to modify the previous count function by dividing the
count (or frequency) by the overall sample size (obtained here by using nrow
on the appropriate data frame object; see Section 5.2).

R> table(chickwts$feed)/nrow(chickwts)

casein horsebean linseed meatmeal soybean sunflower
0.1690141 0.1408451 0.1690141 0.1549296 0.1971831 0.1690141

Of course, you needn’t do everything associated with counts via table. A
simple sum of an appropriate logical flag vector can be just as useful—recall
that TRUEs are automatically treated as 1 and FALSEs as 0 in any arithmetic
treatment of logical structures in R (refer to Section 4.1.4). Such a sum will
provide you with the desired frequency, but to get a proportion, you still
need to divide by the total sample size. Furthermore, this is actually equiv-
alent to finding the mean of a logical flag vector. For example, to find the
proportion of chicks fed soybean, note that the following two calculations
give identical results of around 0.197:

R> sum(chickwts$feed=="soybean")/nrow(chickwts)
[1] 0.1971831
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R> mean(chickwts$feed=="soybean")
[1] 0.1971831

You can also use this approach to calculate the proportion of entities
in combined groups, achieved easily through logical operators (see Sec-
tion 4.1.3). The proportion of chicks fed either soybean or horsebean is as
follows:

R> mean(chickwts$feed=="soybean" |chickwts$feed=="horsebean")
[1] 0.3380282

Yet again, the tapply function can prove useful. This time, to get the
proportions of chicks on each diet, you’ll define the FUN argument to be an
anonymous function (refer to Section 11.3.2) that performs the required
calculation.

R> tapply(chickwts$weight, INDEX=chickwts$feed,
FUN=function(x) length(x)/nrow(chickwts))
casein horsebean linseed meatmeal soybean sunflower
0.1690141 0.1408451 0.1690141 0.1549296 0.1971831 0.1690141

The disposable function here is defined with a dummy argument
x, which you’re using to represent the vector of weights in each feed
group to which FUN applies. Finding the desired proportion is therefore
a case of dividing the number of observations in x by the total number of
observations.

The last function to note is the round function, which rounds numeric
data output to a certain number of decimal places. You need only supply to
round your numeric vector (or matrix or any other appropriate data struc-
ture) and however many decimal places (as the argument digits) you want
your figures rounded to.

R> round(table(chickwts$feed)/nrow(chickwts),digits=3)

casein horsebean linseed meatmeal soybean sunflower
0.169 0.141 0.169 0.155 0.197 0.169

This provides output that’s easier to read at a glance. If you set digits=0
(the default), output is rounded to the nearest integer.

Before the next exercise, it’s worth briefly remarking on the relation-
ship between a proportion and a percentage. The two represent the same
thing. The only difference is the scale; the percentage is merely the propor-
tion multiplied by 100. The percentage of chicks on a soybean diet is there-
fore approximately 19.7 percent.

R> round(mean(chickwts$feed=="soybean")*100,1)
[1] 19.7




Since proportions always lie in the interval [0,1], percentages always lie
within [0,100].

Most statisticians use proportions over percentages because of the role
proportions play in the direct representation of probabilities (discussed in
Chapter 15). However, there are situations in which percentages are pre-
ferred, such as basic data summaries or in the definition of percentiles, which
will be detailed in Section 13.2.3.

Exercise 13.2

a. Obtain, rounded to two decimal places, the proportion of seis-
mic events in the quakes data frame that occurred at a depth of
300 km or deeper.

b. Remaining with the quakes data set, calculate the mean and
median magnitudes of the events that occurred at a depth of
300 km or deeper.

c. Using the chickwts data set, write a for loop that gives you the
mean weight of chicks for each feed type—the same as the results
given by the tapply function in Section 13.2.1. Display the results
rounded to one decimal place and, when printing, ensure each
mean is labeled with the appropriate feed type.

Another ready-to-use data set (in the automatically loaded datasets
package) is InsectSprays. It contains data on the number of insects
found on various agricultural units, as well as the type of insect spray
that was used on each unit. Ensure you can access the data frame at
the prompt; then study the help file ?InsectSprays to get an idea of R’s
representation of the two variables.

d. Identify the two variable types in InsectSprays (as per the defini-
tions in Section 13.1.1 and Section 13.1.2).

e. Calculate the modes of the distribution of insect counts, regard-
less of spray type.

f.  Use tapply to report the total insect counts by each spray type.

g. Using the same kind of for loop as in (c), compute the percent-
age of agricultural units in each spray type group that had at
least five bugs on them. When printing to the screen, round the
percentages to the nearest whole number.

h. Obtain the same numeric results as in (g), with rounding, but
use tapply and a disposable function.
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13.2.3 Quantiles, Percentiles, and the Five-Number Summary

Let’s return, once more, to thinking about raw numeric observations. An
understanding of how observations are distributed is an important statisti-
cal concept, and this will form a key feature of discussions in Chapter 15

onward.

You can gain more insight into the distribution of a set of observations
by examining quantiles. A guantile is a value computed from a collection
of numeric measurements that indicates an observation’s rank when com-
pared to all the other present observations. For example, the median (Sec-
tion 13.2.1) is itself a quantile—it gives you a value below which half of the
measurements lie—it’s the 0.5th quantile. Alternatively, quantiles can be
expressed as a percentile—this is identical but on a “percent scale” of 0 to 100.
In other words, the pth quantile is equivalent to the 100 X pth percentile.
The median, therefore, is the 50th percentile.

There are a number of different algorithms that can be used to com-
pute quantiles and percentiles. They all work by sorting the observations
from smallest to largest and using some form of weighted average to find the
numeric value that corresponds to p, but results may vary slightly in other
statistical software.

Obtaining quantiles and percentiles in R is done with the quantile func-
tion. Using the eight observations stored as the vector xdata, the 0.8th quan-
tile (or 80th percentile) is confirmed as 3.6:

R> xdata <- c(2,4.4,3,3,2,2.2,2,4)
R> quantile(xdata,prob=0.8)

80%

3.6

As you can see, quantile takes the data vector of interest as its first argu-
ment, followed by a numeric value supplied to prob, giving the quantile of
interest. In fact, prob can take a numeric vector of quantile values. This is
convenient when multiple quantiles are desired.

R> quantile(xdata,prob=c(0,0.25,0.5,0.75,1))
0% 25% 50% 75% 100%
2.00 2.00 2.60 3.25 4.40

Here, you’ve used quantile to obtain what’s called the five-number sum-
mary of xdata, comprised of the Oth percentile (the minimum), the 25th per-
centile, the 50th percentile, the 75th percentile, and the 100th percentile
(the maximum). The 0.25th quantile is referred to as the first or lower quar-
tile, and the 0.75th quantile is referred to as the third or upper quartile. Also
note that the 0.5th quantile of xdata is equivalent to the median (2.6, calcu-
lated in Section 13.2.1 using median). The median is the second quartile, with
the maximum value being the fourth quartile.



There are ways to obtain the five-number summary other than using
quantile; when applied to a numeric vector, the summary function also pro-
vides these statistics, along with the mean, automatically.

R> summary(xdata)
Min. 1st Qu. Median Mean 3rd Qu. Max.
2.000 2.000 2.600 2.825 3.250 4.400

To look at some examples using real data, let’s compute the lower and
upper quartiles of the weights of the chicks in the chickwts.

R> quantile(chickwts$weight,prob=c(0.25,0.75))
25%  75%
204.5 323.5

This indicates that 25 percent of the weights lie at or below 204.5 grams
and that 75 percent of the weights lie at or below 323.5 grams.

Let’s also compute the five-number summary (along with the mean) of
the magnitude of the seismic events off the coast of Fiji that occurred at a
depth of less than 400 km, using the quakes data frame.

R> summary(quakes$mag[quakes$depth<400])
Min. 1st Qu. Median Mean 3rd Qu. Max.
4.00 4.40 4.60 4.67 4.90 6.40

This begins to highlight how useful quantiles are for interpreting the
distribution of numeric measurements. From these results, you can see that
most of the magnitudes of events at a depth of less than 400 km lie around
4.6, the median, and the first and third quartiles are just 4.4 and 4.9, respec-
tively. But you can also see that the maximum value is much further away
from the upper quartile than the minimum is from the lower quartile, sug-
gesting a skewed distribution, one that stretches more positively (in other
words, to the right) from its center than negatively (in other words, to the
left). This notion is also supported by the fact that the mean is greater than
the median—the mean is being “dragged upward” by the larger values.

You’ll explore this further in Chapter 14 when you investigate data sets
using basic statistical plots, and some of the associated terminology will be
formalized in Chapter 15.

13.2.4 Spread: Variance, Standard Deviation, and the Interquartile Range

The measures of centrality explored in Section 13.2.1 offer a good indi-
cation of where your numeric measurements are massed, but the mean,
median, and mode do nothing to describe how dispersed your data are. For
this, measures of spread are needed.
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In addition to your vector of eight hypothetical observations, given
again here,

R> xdata <- c(2,4.4,3,3,2,2.2,2,4)

you’ll also look at another eight observations stored as follows:

R> ydata <- c(1,4.4,1,3,2,2.2,2,7)

Although these are two different collections of numbers, note that they
have an identical arithmetic mean.

R> mean(xdata)
[1] 2.825
R> mean(ydata)
[1] 2.825

Now let’s plot these two data vectors side by side, each one on a horizon-
tal line, by executing the following:

R> plot(xdata,type="n",xlab="",ylab="data vector",yaxt="n",bty="n")

R> abline(h=c(3,3.5),1ty=2,col="gray")

R> abline(v=2.825,lwd=2,1ty=3)

R> text(c(0.8,0.8),c(3,3.5),1labels=c("x","y"))

R> points(jitter(c(xdata,ydata)),c(rep(3,length(xdata)),
rep(3.5,1length(ydata))))

You saw how to use these base R graphics functions in Chapter 7,
though it should be explained that because some of the observations in
xdata and in ydata occur more than once, you can randomly alter them
slightly to prevent overplotting, which aids in the visual interpretation.

This step is known as jittering and is achieved by passing the numeric vec-
tor of interest to the jitter function prior to plotting with points. Addition-
ally, note that you can use yaxt="n" in any call to plot to suppress the y-axis;
similarly, bty="n" removes the typical box that’s placed around a plot (you’ll
focus more on this type of plot customization in Chapter 23).

The result, shown in Figure 13-3, provides you with valuable informa-
tion. Though the mean is the same for both xdata and ydata, you can easily
see that the observations in ydata are more “spread out” around the mea-
sure of centrality than the observations in xdata. To quantify spread, you use
values such as the variance, the standard deviation, and the interquartile
range.
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Figure 13-3: Comparing two hypothetical data vectors that share
an identical arithmetic mean (marked by the vertical dotted line)
but have different magnitudes of spread. Identical observations
are jittered slightly.

The sample variance measures the degree of the spread of numeric
observations around their arithmetic mean. The variance is a particular
representation of the average squared distance of each observation when
compared to the mean. For a set of n numeric measurements labeled
x = {x1,x2,...,X,}, the sample variance S;ZC is given by the following,
where X is the sample mean described in Equation (13.1):

€ kA € Tk ) o SEPL i nili(x,-—fcf (13.3)
i=1

n-1
For example, if you take the eight illustrative observations 2, 4.4, 3, 3, 2,

2.2,2, 4, their sample variance is as follows when rounded to three decimal
places (some terms are hidden with . .. for readability):

(2 -2.825)2 + (4.4 - 2.825)? + ... + (4 — 2.825)2

7
_ (—0.825)% + (1.575)% + ... + (1.175)?
- 7
= @ =0.908

The standard deviation is simply the square root of the variance. Since
the variance is a representation of the average squared distance, the stan-
dard deviation provides a value interpretable with respect to the scale of the
original observations. With the same notation for a sample of n observations,
the sample standard deviation s is found by taking the square root of Equa-
tion (13.3).

s, = V2 = J ﬁ Z (x; — ©)2 (13.4)
i=1

Elementary Statistics 277



278

Chapter 13

For example, based on the sample variance calculated earlier, the stan-
dard deviation of the eight hypothetical observations is as follows (to three

decimal places):
v0.908 = 0.953

Thus, a rough way to interpret this is that 0.953 represents the average
distance of each observation from the mean.

Unlike the variance and standard deviation, the interquartile range (IQR)
is not computed with respect to the sample mean. The IQR measures the
width of the “middle 50 percent” of the data, that is, the range of values that
lie within a 25 percent quartile on either side of the median. As such, the
IQR is computed as the difference between the upper and lower quartiles of
your data. Formally, where Q(-) denotes the quantile function (as defined
in Section 13.2.3), the IQR is given as

IQR, = 0«(0.75) — 0,(0.25) (13.5)

The direct R commands for computing these measures of spread are var
(variance), sd (standard deviation), and IQR (interquartile range).

R> var(xdata)
[1] 0.9078571
R> sd(xdata)

[1] 0.9528154
R> IQR(xdata)
[1] 1.25

You can confirm the relationship between the sample variance and stan-
dard deviation using the square root function sqrt on the result from var,
and you can reproduce the IQR by calculating the difference between the
third and first quartiles.

R> sqrt(var(xdata))

[1] 0.9528154

R> as.numeric(quantile(xdata,0.75)-quantile(xdata,0.25))
[1] 1.25

Note that as.numeric (see Section 6.2.4) strips away the percentile
annotations (that label the results by default) from the returned object
of quantile.

Now, do the same with the ydata observations that had the same arith-
metic mean as xdata. The calculations give you the following:

R> sd(ydata)

[1] 2.012639

R> IQR(ydata)
[1] 1.6




NOTE

ydata is on the same scale as xdata, so the results confirm what you can
see in Figure 13-3—that the observations in the former are more spread out
than in the latter.

For two quick final examples, let’s return again to the chickwts and
quakes data sets. In Section 13.2.1, you saw that the mean weight of all the
chicks is 261.3099 grams. You can now find that the standard deviation of
the weights is as follows:

R> sd(chickwts$weight)
[1] 78.0737

Informally, this implies that the weight of each chick is, on average,
around 78.1 grams away from the mean weight (technically, though, remem-
ber it is merely the square root of a function of the squared distances—see
the following note).

In Section 13.2.3, you used summary to obtain the five-number sum-
mary of the magnitudes of some of the earthquakes in the quakes data set.
Looking at the first and third quartiles in these earlier results (4.4 and 4.9,
respectively), you can quickly determine that the IQR of this subset of the
events is 0.5. This can be confirmed using I0R.

R> IQR(quakes$mag[quakes$depth<400])
[1] 0.5

This gives you the width, in units of the Richter scale, of the middle
50 percent of the observations.

The definition of the variance (and hence the standard deviation) here has referred
exclusively to the “sample estimator,” the default in R, which uses the divisor of n — 1
in the formula. This is the formula used when the observations at hand represent a
sample of an assumed larger population. In these cases, use of the divisor n — 1 is
more accurate, providing what’s known as an unbiased estimate of the true popu-
lation value. Thus, you aren’t exactly calculating the “average squared distance,”
though it can loosely be thought of as such and does indeed approach this as the
sample size n increases.

a. Using the chickwts data frame, compute the 10th, 30th, and
90th percentiles of all the chick weights and then use tapply to
determine which feed type is associated with the highest sample
variance of weights.

Elementary Statistics 279



280

Chapter 13

b. Turn to the seismic event data in quakes and complete the follow-
ing tasks:

i.  Find the IQR of the recorded depths.

ii. Find the five-number summary of all magnitudes of seismic
events that occur at a depth of 400 km or deeper. Compare
this to the summary values found in Section 13.2.3 of those
events occurring at less than 400 km and briefly comment
on what you notice.

iii. Use your knowledge of cut (Section 4.3.3) to create a new
factor vector called depthcat that identifies four evenly
spaced categories of quakes$depth so that when you use
levels(depthcat), it gives the following:

R> levels(depthcat)
[1] "[40,200)" "[200,360)" "[360,520)" "[520,680]"

iv. Find the sample mean and standard deviation of the mag-
nitudes of the events associated with each category of depth
according to depthcat.

v.  Use tapply to compute the 0.8th quantile of the magnitudes
of the seismic events in quakes, split by depthcat.

13.2.5 Covariance and Correlation

When analyzing data, it’s often useful to be able to investigate the rela-
tionship between two numeric variables to assess trends. For example, you
might expect height and weight observations to have a noticeable positive
relationship—taller people tend to weigh more. Conversely, you might imag-
ine that handspan and length of hair would have less of an association. One
of the simplest and most common ways such associations are quantified

and compared is through the idea of correlation, for which you need the
covariance.

The covariance expresses how much two numeric variables “change
together” and the nature of that relationship, whether it is positive or neg-
ative. Suppose for n individuals you have a sample of observations for two
variables, labeled x = {x1,x9,...,x,}and y = {y1,y9,...,V,}, where x; corre-
sponds to y; fori = 1,...,n. The sample covariance ryy is computed with the
following, where x and y represent the respective sample means of both sets
of observations:

1
n—-1

n
Fay = Dk = D - ¥) (13.6)
i-1
When you get a positive result for ry, it shows that there is a positive lin-
ear relationship—as x increases, y increases. When you get a negative result,
it shows a negative linear relationship—as x increases, y decreases, and
vice versa. When r,, = 0, this indicates that there is no linear relationship



between the values of x and y. It is useful to note that the order of the vari-
ables in the formula itself doesn’t matter; in other words, ryy = ryx.

To demonstrate, let’s use the original eight illustrative observations,
which I'll denote here with x = {2,4.4,3,3,2,2.2,2,4}, and the additional
eight observations denoted with y = {1,4.4,1,3,2,2.2,2,7}. Remember that
both x and y have sample means of 2.825. The sample covariance of these
two sets of observations is as follows (rounded to three decimal places):

(2 - 2.825) x (1 —2.285) + ... + (4 — 2.825) x (7 — 2.825)
7

(=0.825)(~1.825) + ... + (1.175)(4.175)

- 7

_ 10.355 —1.479

The figure is a positive number, so this suggests there is a positive rela-
tionship based on the observations in x and y.

Correlation allows you to interpret the covariance further by identifying
both the direction and the strength of any association. There are different
types of correlation coefficients, but the most common of these is Pearson’s
product-moment correlation coefficient, the default implemented by R (this is
the estimator I will use in this chapter). Pearson’s sample correlation coef-
ficient py, is computed by dividing the sample covariance by the product of
the standard deviation of each data set. Formally, where r, corresponds to
Equation (13.6) and sy and s, to Equation (13.4),

Txy

Pxy = (137)

SxSy
which ensures that -1 < p,y, < 1.

When py, = —1, a perfect negative linear relationship exists. Any result
less than zero shows a negative relationship, and the relationship gets weaker
the nearer to zero the coefficient gets, until p,, = 0, showing no relation-
ship at all. As the coefficient increases above zero, a positive relationship is
shown, until py, = 1, which is a perfect positive linear relationship.

If you take the standard deviations already computed for x and y in Sec-
tion 13.2.4 (sx = 0.953 and s, = 2.013 to three decimal places), you find the
following to three decimal places:

1.479

— = (.771
0.953 x2.013 0.77

Pxy 1s positive just like r,; the value of 0.771 indicates a moderate-
to-strong positive association between the observations in x and y. Again,
Pxy = Pyx-:

The R commands cov and cor are used for the sample covariance and
correlation; you need only to supply the two corresponding vectors of data.

R> xdata <- c(2,4.4,3,3,2,2.2,2,4)
R> ydata <- c(1,4.4,1,3,2,2.2,2,7)
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R> cov(xdata,ydata)

[1] 1.479286

R> cov(xdata,ydata)/(sd(xdata)xsd(ydata))
[1] 0.7713962

R> cor(xdata,ydata)

[1] 0.7713962

You can plot these bivariate observations as a coordinate-based plot (a
scatterplot—see more examples in Section 14.4). Executing the following
gives you Figure 13-4:

R> plot(xdata,ydata,pch=13,cex=1.5)
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Figure 13-4: Plotting the xdata and ydata observations
as bivariate data points fo illustrate the interpretation
of the correlation coefficient

As discussed earlier, the correlation coefficient estimates the nature
of the linear relationship between two sets of observations, so if you look at
the pattern formed by the points in Figure 13-4 and imagine drawing a per-
fectly straight line that best represents all the points, you can determine the
strength of the linear association by how close those points are to your line.
Points closer to a perfect straight line will have a value of p,, closer to either
—1 or 1. The direction is determined by how the line is sloped—an increas-
ing trend, with the line sloping upward toward the right, indicates positive
correlation; a negative trend would be shown by the line sloping downward
toward the right. Considering this, you can see that the estimated correla-
tion coefficient for the data plotted in Figure 13-4 makes sense according
to the previous calculations. The points do appear to increase together as
arough straight line in terms of the values in xdata and ydata, but this lin-
ear association is by no means perfect. How you can compute the “ideal” or
“best” straight line to fit such data is discussed in Chapter 20.



To aid your understanding of the idea of correlation, Figure 13-5 dis-
plays different scatterplots, each showing 100 points. These observations
have been randomly and artificially generated to follow preset “true” values
of pxy, labeled above each plot.
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Figure 13-5: Artificial x and y observations, generated fto illustrate a given value of the
correlation coefficient

The first row of scatterplots shows negatively correlated data; the sec-
ond shows positively correlated data. These match what you would expect to
see—the direction of the line shows the negative or positive correlation of
the trend, and the extremity of the coefficient corresponds to the closeness
to a “perfect line.”

The third and final row shows data sets generated with a correlation
coefficient set to zero, implying no linear relationship between the observa-
tions in x and y. The middle and rightmost plots are particularly important
because they highlight the fact that Pearson’s correlation coefficient identi-
fies only “straight-line” relationships; these last two plots clearly show some
kind of trend or pattern, but this particular statistic cannot be used to detect
such a trend.
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To wrap up this section, look again at the quakes data. Two of the vari-
ables are mag (the magnitude of each event) and stations (the number of
stations that reported detection of the event). A plot of stations on the y-axis
against mag on the x-axis can be produced with the following:

R> plot(quakes$mag,quakes$stations,xlab="Magnitude",ylab="No. of stations")

Figure 13-6 shows this image.
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Figure 13-6: Plotting the number of stations reporting
the event (y) and the magnitude (x) of each event
in the quakes data frame

You can see by the vertical patterning that the magnitudes appear to
have been recorded to a certain specific level of precision (this is owed to
the difficulty associated with measuring earthquake magnitudes exactly).
Nevertheless, a positive relationship (more stations tend to detect events of
higher magnitude) is clearly visible in the scatterplot, a feature that is con-
firmed by a positive covariance.

R> cov(quakes$mag,quakes$stations)
[1] 7.508181

As you might expect from examining the pattern, Pearson’s correlation
coefficient confirms that the linear association is quite strong.

R> cor(quakes$mag,quakes$stations)
[1] 0.8511824

1t is important to remember that correlation does not imply causation. When

you detect a high correlative effect between two variables, this does not mean that one
causes the other. Causation is difficult to prove in even the most controlled situations.
Correlation merely allows you to measure association.



As mentioned earlier, there are other representations of correlation that
can be used; rank coefficients, such as Spearman’s and Kendall’s correlation
coefficients, differ from Pearson’s estimate in that they do not require the
relationship to be linear. These are also available through the cor function
by accessing the optional method argument (see ?cor for details). Pearson’s
correlation coefficient is the most commonly used, however, and is related
to linear regression methods, which you’ll start to examine in Chapter 20.

13.2.6 Ovtliers

An outlier is an observation that does not appear to “fit” with the rest of the
data. Itis a noticeably extreme value when compared with the bulk of the
data, in other words, an anomaly. In some cases, you might suspect that such
an extreme observation has not actually come from the same mechanism
that generated the other observations, but there is no hard-and-fast numeric
rule as to what constitutes an outlier. For example, consider the 10 hypo-
thetical data points in foo.

R> foo <- c¢(0.6,-0.6,0.1,-0.2,-1.0,0.4,0.3,-1.8,1.1,6.0)

Using skills from Chapter 7 (and from creating Figure 13-3), you can
plot foo on a line as follows.

R> plot(foo,rep(0,10),yaxt="n",ylab="",bty="n",cex=2,cex.axis=1.5,cex.lab=1.5)
R> abline(h=0,col="gray",1ty=2)

R> arrows(5,0.5,5.9,0.1,1wd=2)

R> text(5,0.7,labels="outlier?",cex=3)

The result is given on the left of Figure 13-7.
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Figure 13-7: lllustrating the definition of outliers for univariate (left] and bivariate (right)
data. Should you include such values in your statistical analysis2 The answer can be
difficult to determine.
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From this plot, you see that most of the observations are centered
around zero, but one value is way out at 6. To give a bivariate example, I'll
use two further vectors, bar and baz, shown here:

R> bar <- c(0.1,0.3,1.3,0.6,0.2,-1.7,0.8,0.9,-0.8,-1.0)
R> baz <- ¢(-0.3,0.9,2.8,2.3,1.2,-4.1,-0.4,4.1,-2.3,-100.0)

I'll plot these data using the following code; the result is on the right of
Figure 13-7.

R> plot(bar,baz,axes=T,cex=2,cex.axis=1.5,cex.lab=1.5)
R> arrows(-0.5,-80,-0.94,-97,1wd=2)
R> text(-0.45,-74,labels="outlier?",cex=3)

It’s important to identify outliers because of the potential impact they
can have on any statistical calculations or model fitting. For this reason,
many researchers will try to identify possible outliers before computing
results by conducting an “exploratory” analysis of their data using basic
summary statistics and data visualization tools (like those you’ll look at in
Chapter 14).

Outliers can occur naturally, where the outlier is a “true” or accurate
observation recorded from the population, or unnaturally, where something
has “contaminated” that particular contribution to the sample, such as incor-
rectly inputting data. As such, it is common to omit any outliers occurring
through unnatural sources prior to analysis, but in practice this is not always
easy because the cause of an outlier can be difficult to determine. In some
cases, researchers conduct their analysis both ways—presenting results
including and excluding any perceived outliers.

With this in mind, if you return to the example shown on the left in
Figure 13-7, you can see that when you include all observations, you get the
following:

R> mean(foo)
[1] 0.49

However, when the possible outlier of 6 (the 10th observation) is
deleted, you get the following:

R> mean(foo[-10])
[1] -0.1222222

This highlights the impact a single extreme observation can have. With-
out any additional information about the sample, it would be difficult to
say whether it’s sensible to exclude the outlier 6. The same kind of effect
is noticeable if you compute, say, the correlation coefficient of bar with baz,
shown on the right in Figure 13-7 (again, it’s the 10th observation that is the
possible outlier).



NOTE

R> cor(bar,baz)

[1] 0.4566361

R> cor(bar[-10],baz[-10])
[1] 0.8898639

You see the correlation becomes much stronger without that outlier.

Again, knowing whether to delete the outlier can be hard to correctly
gauge in practice. At this stage, it’s important simply to be aware of the
impact outliers can have on an analysis and to perform at least a cursory
inspection of the raw data before beginning more rigorous statistical
investigations.

The extent of the effect that extreme observations have on your data analysis depends
not only on their extremity but on the statistics you intend to calculate. The sample
mean, for example, is highly sensitive to outliers and will differ greatly when includ-
ing or excluding them, so any statistic that depends on the mean, like the variance or
covariance, will be affected too. Quantiles and related statistics, such as the median
or IQR, are relatively unaffected by outliers. In statistical parlance this property is
referred to as robustness.

Exercise 13.4

a. In Exercise 7.1 (b) on page 139, you plotted height against
weight measurements. Compute the correlation coefficient
based on the observed data of these two variables.

b. Another of R’s built-in, ready-to-use data sets is mtcars, contain-
ing a number of descriptive details on performance aspects of
32 automobiles.

i.  Ensure you can access this data frame by entering mtcars at
the prompt. Then inspect its help file to get an idea of the
types of data present.

ii. Two of the variables describe a vehicle’s horsepower and
shortest time taken to travel a quarter-mile distance. Using
base R graphics, plot these two data vectors with horsepower
on the x-axis and compute the correlation coefficient.

iii. Identify the variable in mtcars that corresponds to transmis-
sion type. Use your knowledge of factors in R to create a new
factor from this variable called tranfac, where manual cars
should be labeled "manual" and automatic cars "auto".

iv. Now, use gplot from ggplot2 in conjunction with tranfac to
produce the same scatterplot as in (ii) so that you’re able to
visually differentiate between manual and automatic cars.
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Finally, compute separate correlation coefficients for horse-
power and quarter-mile time based on the transmission of
the vehicles and, comparing these estimates with the overall
value from (ii), briefly comment on what you note.

Return to chickwts to complete the following tasks:

1.

1.

iii.

Produce a plot like the left panel of Figure 13-7, based on the
weights of chicks on the sunflower diet only. Note that one
of the sunflower-fed chicks has a far lower weight than the
others.

Compute the standard deviation and IQR of the weights of
the sunflower-fed chicks.

Now, suppose you're told that the lowest weight of the
sunflower-fed chicks was caused by a certain illness, irrele-
vant to your research. Delete this observation and recalculate
the standard deviation and IQR of the remaining sunflower
chicks. Briefly comment on the difference in calculated
values.

Important Code in This Chapter

Function/operator  Brief description First occurrence

mean Arithmetic mean Section 13.2.1, p. 268
median Median Section 13.2.1, p. 268
table Tabulate frequencies Section 13.2.1, p. 268
min, max, range Minimum and maximum Section 13.2.1, p. 268
round Round numeric values Section 13.2.2, p. 272
quantile Quantiles/percentiles Section 13.2.3, p. 274
summary Five-number summary Section 13.2.3, p. 275
jitter Jitter points in plotting Section 13.2.4, p. 276
var, sd Variance, standard deviation ~ Section 13.2.4, p. 278
I0R Interquartile range Section 13.2.4, p. 278
cov, cor Covariance, correlation Section 13.2.5, p. 281




BASIC DATA VISUALIZATION

Data visualization is an important part of

a statistical analysis. The visualization tools
appropriate for a given data set are depen-

dent upon the types of variables (as per the def-

initions in Sections 13.1.1 and 13.1.2) for which you’ve
made observations. In this chapter, you’ll look at the
most commonly used data plots in statistical analy-
ses and see examples using both base R graphics and
ggplot2 functionality.

14.1 Barplots and Pie Charts

Barplots and pie charts are commonly used to visualize qualitative data
by category frequency. In this section you’ll learn how to generate both
using R.

14.1.1 Building a Barplot

A barplot draws either vertical or horizontal bars, typically separated by white
space, to visualize frequencies according to the relevant categories. Though
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the raw frequencies themselves are usually displayed, a barplot can also
be used to visualize other quantities, such as means or proportions, which
directly depend upon these frequencies.

As an example, let’s use the mtcars data set from Exercise 13.4 (b) on
page 287. Detailing various characteristics of 32 classic performance cars in
the mid-1970s, the first five records can be viewed directly from the prompt.

R> mtcars[1:5,]
mpg cyl disp hp drat wt gsec vs am gear carb

Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 O 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 O 3 2

The documentation in ?mtcars explains the variables that have been
recorded. Of these, cyl provides the number of cylinders in each engine—
four, six, or eight. To find out how many cars were observed with each num-
ber of cylinders, you can use table, as shown here:

R> cyl.freq <- table(mtcars$cyl)
R> cyl.freq

4 6 8

11 7 14

The result is easily displayed as a barplot, as shown here:

R> barplot(cyl.freq)

You can find the resulting barplot on the left of Figure 14-1.
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Figure 14-1: Two examples of barplots of data from mtcars using base R graphics.
Left: The simplest, default version, using one categorical variable. Right: A “dodged”
barplot illustrating various visual options and using two categorical variables.



This plot displays the number of four-, six-, and eight-cylinder cars in the
data set but is admittedly rather uninteresting, and without annotations it’s
not clear what’s being summarized. Fortunately, it’s easy to annotate such
plots and further split up the frequencies of each bar according to an addi-
tional categorical variable. Consider the following code where, this time,
you’re finding the counts associated with cyl by transmission (am):

R> table(mtcars$cyl[mtcars$am==0])
4 6 8
3 412

R> table(mtcars$cyl[mtcars$am==1])
468
832

If you aim to produce a barplot that’s stacked (where bars are split up
vertically) or dodged (where bars are broken up and placed beside each
other), barplot requests its first argument as a suitably arranged matrix. You
could construct it from the previous two vectors using matrix, but it’s easier
to just continue using table.

R> cyl.freq.matrix <- table(mtcars$am,mtcars$cyl)
R> cyl.freq.matrix

4 6 8
0 3 412
18 3 2

As you can see, you can cross-tabulate counts by supplying two categor-
ical or discrete vectors of equal length to table; the first vector stipulates
row counts, and the second defines the columns. The outcome is a matrix
object; here it’s a 2 X 3 structure providing the quantities of the four-, six-,
and eight-cylinder automatic cars in the first row and the quantities of the
manual cars in the second. The rule is that each column of the barplot will
correspond to a column of the supplied matrix; these will be further split
with respect to each row of the supplied matrix. The plot on the right of
Figure 14-1 is the result of the following code:

R> barplot(cyl.freq.matrix,beside=TRUE,horiz=TRUE,las=1,
main="Performance car counts\nby transmission and cylinders",

names.arg=c("V4","V6","V8"),legend.text=c("auto", "manual"),
args.legend=list(x="bottomright"))

The help file ?barplot explains the options here in detail. To label the
bars according to the categories of the column variable of the matrix that
was initially passed to barplot, you use a character vector of the appropriate
length passed to names.arg. The options beside=TRUE and horiz=TRUE select a
dodged, horizontal barplot. If both options were FALSE, a stacked, vertical
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barplot would be selected. The argument las=1 forces the labels on the verti-
cal axis to appear horizontally, rather than parallel to it. The final two argu-
ments, legend.text and args.legend, are used for the legend—you could have
drawn a legend separately as in Section 7.3 via legend, but this way automates
the color assignment to ensure the reference keys match the precise shading
of the bars themselves.

Similar plots may be produced using ggplot2. If you load the installed
package with library("ggplot2") and enter the following, it will produce the
most basic barplot, given on the left of Figure 14-2:

R> gplot(factor(mtcars$cyl),geom="bar")

Note here that the relevant geom is "bar" (or geom_bar if used separately,
as you’ll see in a moment) and that the default mapping variable in gplot
must be supplied as a factor (in mtcars the vector mtcars$cyl is just numeric,
which is fine for barplot, but ggplot2 functionality is a bit more strict).

Performance car counts
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Figure 14-2: Two examples of barplots of data from mtcars using ggplot2 functionality.
Left: The most simple gplot version, using one categorical variable. Right: A “dodged”
barplot, the same as in Figure 14-1, based on the supply of various additional geoms and
scaling options.

Again, you can create far more complicated images depending upon
what you want to display. To produce a ggplot2 version of the dodged
barplot from 14-1, call the following:

R> gplot(factor(mtcars$cyl),geom="blank",fill=factor(mtcars$am),xlab="",
ylab="",main="Performance car counts\nby transmission and cylinders")

geom_bar(position="dodge")

scale x_discrete(labels=c("v4","v6","v8"))

scale_y_continuous(breaks=seq(0,12,2))

theme_bw() + coord flip()

scale_fill grey(name="Trans.",labels=c("auto","manual"))

+

+ 4+ + o+

You can find the result on the right in Figure 14-2.



Note a number of new additions to the basic gplot setup. The default
mapping, by cyl, remains the same as earlier. You further specify that the
bars should be filled according to a factor created by using the transmission
variable am; so, each cyl bar is instructed to split according to that variable.
The initial call to gplot was “empty,” in the sense that geom="blank", and there-
fore drawing begins with the addition of geom bar to the ggplot2 object. It
becomes a dodged barplot through position="dodge"; as in base R graphics,
the default behavior is to generate a stacked plot. The scale x_discrete
modifier specifies labels for each category of the default cyl mapping; the
scale_y_continuous modifier is employed to control the axis labels for the
frequencies.

Further, adding theme_bw() to the object changes the visual theme of the
image; in the current example, I've chosen to remove the gray background
because it’s too similar in color to the manual car bars. Adding coord_flip to
the object flips the axes and provides horizontal bars rather than the default
vertical style (note that the calls to the scale_ functions are used with respect
to the unflipped image). The default behavior of fill is to use colors, so you
use the scale_fill grey modifier to force this to be grayscale and to alter the
labels of the automatically generated legend to match at the same time.

The most prominent advantage of using ggplot2 over base R graphics
in this case lies in the fact that you don’t need to manually tabulate counts
or design specific matrix structures of these frequencies—the variable map-
pings do this automatically. For practice, I encourage you to experiment
with this code example, omitting or modifying some of the additions to the
gplot object to assess the impact on the resulting image.

14.1.2 A Quick Pie Chart

The venerable pie chart is an alternative option for visualizing frequency-
based quantities across levels of categorical variables, with appropriately
sized “slices” representing the relative counts of each categorical variable.

R> pie(table(mtcars$cyl),labels=c("v4","Vv6","V8"),

col=c("white","gray", "black"),main="Performance cars by cylinders")

You can find the resulting plot in Figure 14-3.

Though it’s possible to achieve with some effort, there is no direct “pie”
geom in ggplot2. This may, at least in part, be due to the general preference
of statisticians for barplots over pie charts. That fact itself is even summa-
rized in the help file ?pie!

Pie charts are a bad way of displaying information. The eye is good
at judging linear measures and bad at judging relative areas.

Furthermore, barplots are of greater value than pie charts if you want
frequencies split by a second categorical variable or if the levels of a factor are
ordered.
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Figure 14-3: A pie chart of the
frequencies of total cylinders of
the cars in the mtcars data frame

14.2 Histograms
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The barplot is intuitively sensible for counting observations in relation to
categorical variables but is of virtually no use if the variable you’re interested
in is numeric-continuous. To visualize the distribution of continuous mea-
surements, you can use a histogram—a tool that’s sometimes confused with
a barplot owing to its similar appearance. A histogram also measures fre-
quencies, but in targeting a numeric-continuous variable, it’s first necessary
to “bin” the observed data, meaning to define intervals and then count the
number of continuous observations that fall within each one. The size of this
interval is known as the binwidth.

For a simple example of a histogram, consider the horsepower data of
the 32 cars in mtcars, given in the fourth column, named hp.

R> mtcars$hp
[1] 110 120 93 110 175 105 245 62 95 123 123 180 180 180 205 215 230 66
[19] 52 65 97 150 150 245 175 66 91 113 264 175 335 109

For this section, define horsepowers of all performance cars from
that era as your population and assume that these observations repre-
sent a sample from that population. Using base R graphics, the hist com-
mand takes a vector of numeric-continuous observations and produces a
histogram, as shown on the left in Figure 14-4.

R> hist(mtcars$hp)
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Figure 14-4: lllustrating the default behavior of hist on the mtcars horsepower data (left);
customizing binwidth, color, and title options, as well as adding markers of centrality

(right)

You can immediately see that the histogram on the left has used bin-
widths of 50 units spanning the range of the data, providing you with a quick
and useful first impression of the distribution of horsepower measurements.
It seems to be centered roughly in the range of 75 to 150, tapering off on
the right (this is known as a right or positive skew; more terminology will be
covered in Section 15.2.4).

The accuracy of a histogram as a representation of the shape of a dis-
tribution of measurements depends solely upon the widths of the intervals
used to bin the data. Binwidths are controlled in hist by the breaks argu-
ment. You can manually set these by supplying a vector, giving each break-
point, to breaks. This is done in the following code by halving the width of
each bin from 50 to 25 and widening the overall range somewhat, using an
evenly spaced sequence.

R> hist(mtcars$hp,breaks=seq(0,400,25),col="gray",main="Horsepower",xlab="HP")
R> abline(v=c(mean(mtcars$hp),median(mtcars$hp)),lty=c(2,3),1lwd=2)
R> legend("topright",legend=c("mean HP","median HP"),1ty=c(2,3),1wd=2)

This plot, given on the right in Figure 14-4, shows the result of using the
narrower bins, as well as making the bars gray and adding a more readable
title. It also includes vertical lines denoting the mean and median, using
abline, and a legend (refer back to Section 7.3).

With the smaller binwidth, more detail is visible in the distribution.
However, using narrower bins risks highlighting “unimportant features”

(in other words, features of the histogram that represent natural varia-
tion as a consequence of the finite-sized sample). These typically occur at
locations on the scale where data are scarce. For example, the single 335
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horsepower car has produced an isolated bar on the right of the scale, but
you might reasonably conclude that this is not a precise, accurate reflec-
tion of a “true bump” at that location in terms of the overall population. It’s
therefore important to note that choosing the interval widths is a balancing
act of sorts.

You want to choose a width that gives you a good idea of the distribution
of measurements without emphasizing unimportant detail by using too small
a binwidth. Equivalently, you also want to avoid hiding important features
by using too large a binwidth. To address this, there are data-driven algo-
rithms that use the scale of the recorded observations to try to calculate an
appropriately balanced binwidth. You can supply a character string to breaks,
giving the name of the algorithm that you want to employ. The default
breaks="Sturges" often works well, though it’s worth trying a small number
of alternative widths when exploring data in this way. For further details on
this and other ways to use breaks, the documentation ?hist provides clear
and concise instruction.

The issues surrounding intervals and their widths is emphasized in a dif-
ferent way in ggplot2. By default, the gplot function produces a histogram
when you supply it with a single numeric vector but no value for the geom
argument:

R> gplot(mtcars$hp)
“stat_bin()™ using “bins = 30°. Pick better value with “binwidth.

You can find the result on the left in Figure 14-5. Note, however, that a
notification from gplot concerning the binwidths is printed to the console.
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Figure 14-5: lllustrating the default behavior of gplot on the mtcars horsepower data
(left); customizing binwidth, color, and title options, as well as adding markers of centrality

(right)



If you don’t explicitly specify the bins, exactly 30 intervals will be used
to span the range of the data. Inspecting the relevant geom documentation
given with a call to ?geom_histogram tells you the following:

By default, stat_bin uses 30 bins. This is not a good default, but the
idea is to get you experimenting with different binwidths. You may
need to look at a few to uncover the full story behind your data.

So, rather than defaulting to a data-driven algorithm such as hist,
ggplot2 encourages users to become aware of the issue and actively set their
own binwidths. You can see that 30 bins yields inappropriately narrow inter-
vals for this example—there are many gaps where no observations have
fallen. There are a number of ways to choose histogram intervals in gplot,
one of which is to use breaks as earlier, supplying it with an appropriate
numeric vector of interval endpoints. To re-create the plot on the right of
Figure 14-4 using ggplot2 functionality, use the following code, which pro-
duces the right-hand plot in Figure 14-5:

R> gplot(mtcars$hp,geom="blank",main="Horsepower",xlab="HP")
+ geom_histogram(color="black",fill="white",breaks=seq(0,400,25),
closed="right")
+ geom_vline(mapping=aes(xintercept=c(mean(mtcars$hp),median(mtcarsshp)),
linetype=factor(c("mean","median"))), show.legend=TRUE)
+ scale_linetype_manual(values=c(2,3)) + labs(linetype="")

Starting with a "blank" geom, geom_histogram completes most of the work,
with color governing the bar outline color and fill the internal color of the
bars. The argument closed="right" determines that each interval is “closed”
(in other words, exclusive) on the right and “open” (in other words, inclu-
sive) on the left, the same as the default noted in ?hist. The geom_vline func-
tion is used to add the vertical mean and median lines; here, the mapping
must be instructed to change using aes and the locations of these lines. To
ensure a correctly labeled legend is created for the mean and median, you
must also instruct linetype in aes to be mapped to the desired values. In this
case, this is simply a factor comprised of the two desired “levels.”

Since you’re manually adding these lines and the associated map-
ping to the ggplot2 object, the legend itself must be instructed to appear
with show.legend=TRUE. By default, the two lines will be drawn 1ty=1 (solid)
and 1ty=2 (dashed), but to match the earlier plot, you want 1ty=2 and
1ty=3 (dotted). You can add the scale linetype manual modifier to make
this change; the desired line type numbers are passed as a vector to values.
Finally, to suppress the automatic inclusion of a title for your manually
added legend, the labs(linetype="") addition instructs the scale associated
with the variable mapped to linetype in the aes call to be displayed without
this title.
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The choice between using ggplot2 and base R graphics often comes
down to your intended goal. For automated handling of graphics, espe-
cially where categorical variables are used to separate subsets of the data
set, ggplot2 is particularly powerful. On the other hand, if you require man-
ual control over the creation of a given image, traditional R graphics can
be easier to handle, and you don’t need to keep track of multiple aesthetic
variable mappings.

14.3 Box-and-Whisker Plots
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An especially popular alternative to the histogram is the box-and-whisker plot,
or simply boxplot for short. This is merely a visual representation of the five-
number summary discussed in Section 13.2.3.

14.3.1 Stand-Alone Boxplots

Let’s return to the built-in quakes data frame of the 1,000 seismic events near
Fiji. For the sake of comparison, you can examine both a histogram and a
boxplot of the magnitudes of these events using default base R behavior.
The following code produces the images given in Figure 14-6:

R> hist(quakes$mag)
R> boxplot(quakes$mag)
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Figure 14-6: Default histogram (leff) and boxplot (right] of the magnitude data from
quakes. On the boxplot, commentary (superimposed externally) points out the key informa-
tion displayed.

Like the histogram, a boxplot shows important features of the distribu-
tion, such as global (in other words, overall) centrality, spread, and skew-
ness. It’s not really possible to see local features, such as multiple significant
peaks in the distribution, however. As the labeling arrows point out, the line
in the middle of the box represents the median, the lower and upper edges



of the box show the respective quartiles, perpendicular lines (the whiskers)
extending from the box indicate the minimum and the maximum, and any
dots drawn beyond the whiskers are deemed to be points of extremity or out-
liers. By default, boxplot defines an outlier as an observation that lies more
than 1.5 times the IQR below the lower quartile or above the upper quartile.
This is done to prevent the whiskers from extending too far and overempha-
sizing any skew. Thus, the “maximum” and “minimum” values marked by the
whiskers are not always the raw, overall maximum or minimum values in the
data set because a value that has been deemed an “outlier” might actually
represent the highest or lowest value. You can control the nature of this clas-
sification via the range argument in boxplot, though the default of range=1.5 is
usually sensible for basic data exploration.

14.3.2 Side-by-Side Boxplots

One particularly pleasing aspect of these plots is the ease with which you
can compare the five-number summary distributions of different groups
with side-by-side boxplots. Again using the quakes data, define the following
corresponding factor and inspect the first five elements (review use of the
cut command from Section 4.3.3 if necessary):

R> stations.fac <- cut(quakes$stations,breaks=c(0,50,100,150))
R> stations.fac[1:5]

[1] (0,50] (0,50] (0,50] (0,50] (0,50]

Levels: (0,50] (50,100] (100,150]

Recall that the stations variable records how many monitoring stations
detected each event. This code has produced a factor breaking up these
observations into one of three groups—events detected by 50 stations or
fewer, between 51 and 100 stations, and between 101 and 150 stations. Thus,
you can compare the distributions of the magnitudes of the events accord-
ing to these three groups. The following line produces the left image of
Figure 14-7:

R> boxplot(quakes$mag~stations.fac,
xlab="# stations detected",ylab="Magnitude",col="gray")

With this line of code, you should note new syntax in the form of a
tilde, ~, shown here in quakes$mag~stations.fac. You can read the ~ as “on,”
“by,” or “according to” (you’ll use the tilde notation frequently in Chap-
ters 20 through 22). Here you’re instructing boxplot to plot quakes$mag accord-
ing lo station.fac so that a separate boxplot is produced for each group, nat-
urally given in the order listed in the grouping factor. Optional arguments
are also employed to control axis labeling and box color. Your interpreta-
tion of this plot mirrors what you can see in Figure 13-6, in that the higher
the recorded magnitude, the more stations that detected a given seismic
event.
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Figure 14-7: Side-by-side boxplots of the quakes magnitudes, split by the three groups
identified by station.fac, using base R graphics (left] and ggplot2 functionality (right)

Turning to ggplot2 functionality, gplot can produce the same type of plot
easily, with the following producing the image on the right in Figure 14-7:

R> gplot(stations.fac,quakes$mag,geom="boxplot",
xlab="# stations detected",ylab="Magnitude")

The default boxplots look a little different, though you can make the
same interpretations. In this use of gplot, you supply the boxplot grouping
factor as the x-axis variable (first argument) and the continuous variable for
which you require boxplots as the y-axis variable (second argument). Here
I've explicitly set geom="boxplot" to ensure a boxplot display, and I've added
axis labels.

14.4 Scatterplots
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A scatterplot is most frequently used to identify a relationship between the
observed values of two different numeric-continuous variables, displayed as
x-y coordinate plots. The coordinate-wise nature of base R graphics lends
itself naturally to the creation of scatterplots, so you’ve seen several examples
already in this book. However, not every x-y coordinate-based plot is always
called a scatterplot; a scatterplot usually assumes there is some “relation-
ship of interest” present. For example, a plot of spatial coordinates like
Figure 13-1 might not be regarded as a scatterplot, but a plot of the earth-
quake magnitude against the number of stations detecting the event, like
Figure 13-6, would be.

I'll finish this chapter by expanding on how you can use scatterplots to
explore more than two continuous variables. To do this, let’s access another



ready-to-use R data set, namely, the famous iris data. Collected in the mid-
1930s, this data frame of 150 rows and 5 columns consists of petal and sepal
measurements for three species of perennial iris flowers—Iris setosa, Iris vir-
ginica, and Iris versicolor (Anderson, 1935; Fisher, 1936). You can view the
first five records here:

R> iris[1:5,]
Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa

Looking through ?iris, you can see that there are 50 observations for
each variable, recorded in centimeters (cm), for each species.

14.4.1 Single Plot

You can modify a simple scatterplot to split the plotted points according to a
categorical variable, exposing potential differences between any visible rela-
tionships with respect to the continuous variables. For example, using base
R graphics, you can examine the petal measurements according to the three
species. Using the “stepping-stone” approach first explained in Chapter 7,
you can manually build up this plot by first using type="n" to generate an
empty plotting region of the correct dimensions and subsequently adding
the points corresponding to each species, altering point character and color
as desired.

R> plot(iris[,4],iris[,3],type="n",xlab="Petal Width (cm)",
ylab="Petal Length (cm)")

R> points(iris[iris$Species=="setosa",4],
iris[iris$Species=="setosa",3],pch=19,col="black")

R> points(iris[iris$Species=="virginica",4],
iris[iris$Species=="virginica",3],pch=19,col="gray")

R> points(iris[iris$Species=="versicolor",4],
iris[iris$Species=="versicolor",3],pch=1,col="black")

R> legend("topleft",legend=c("setosa","virginica","versicolor"),

col=c("black","gray","black"),pch=c(19,19,1))

You can find the plot in Figure 14-8. Note that the Iris virginica
species has the largest petals, followed by Iris versicolor, and the smallest
petals belong to Iris setosa. However, this code, while functional, is fairly
cumbersome. You can generate the same image more simply by first setting
up vectors that specify the desired point character and color for each individ-
ual observation.
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Figure 14-8: A scatterplot of petal measurements
split by species from the builtin iris data frame

Consider the two objects created here:

R> iris pch <- rep(19,nrow(iris))

R> iris pch[iris$Species=="versicolor"] <- 1

R> iris_col <- rep("black",nrow(iris))

R> iris_col[iris$Species=="virginica"] <- "gray"

The first line creates a vector iris_pch of equal length to the number
of observations in iris, with every entry being 19. Vector subsetting then
overwrites the entries corresponding to Iris versicolor and sets the point char-
acter to 1. The same steps are followed to create iris_col; first an appropri-
ately sized vector is filled with the character strings "black”, and then those
entries corresponding to Iris virginica are overwritten and set to "gray". With
that, note that the single line shown next, when followed by the same call to
legend as earlier, will produce an identical plot:

R> plot(iris[,4],iris[,3],col=iris col,pch=iris pch,
xlab="Petal Width (cm)",ylab="Petal Length (cm)")

14.4.2 Matrix of Plots

The “single” type of planar scatterplot is really useful only when comparing
{wo numeric-continuous variables. When there are more continuous vari-
ables of interest, it isn’t possible to display this information satisfactorily on
a single plot. A simple and common solution is to generate a two-variable
scatterplot for each pair of variables and show them together in a structured
way; this is referred to as a scatterplot matrix. Making use of the iris_pch and
iris_col vectors created earlier, you can generate a scatterplot matrix for all



four continuous variables in iris, retaining the distinction between species.
Working with base R graphics, use the pairs function.

R> pairs(iris[,1:4],pch=iris pch,col=iris _col,cex=0.75)

You can find the result of this line in Figure 14-9.

45 B8 68 75

o
@ 4
Sepal Length nﬁnu ..d ‘g
o at® A ®° - ¢
- - .
=
Sepal. Width ? f"
o o
. gy
o

10 40

:

. A,
.
5

Ty

{W c?;;;yb Petal Length g
oo, . 4wk -

LI I B s |
1234667

A |l || S

i ‘,&W s Petal. Width
. .
2 1 ke . J
R ) -

45 55 65 75 1234567

Figure 14-9: A scatterplot matrix with respect to all
four continuous measurements in the data frame

The easiest way to use pairs is to supply a matrix or data frame of the
raw observations as its first argument, done here by selecting all columns of
iris except the Species column (iris[,1:4]). The interpretation of the plots
depends upon the labeling of the diagonal panels, running from the top
left to the bottom right. They will appear in the same order as the columns
given as the first argument. These “label panels” allow you to determine
which individual plot in the matrix corresponds to each pair of variables.
For example, the first column of the scatterplot matrix in Figure 14-9 co