

Learn Java the Easy Way

L e a r n J a v a
t h e E a s y W a y
A H a n d s - O n I n t r o d u c t i o n

t o P r o g r a m m i n g

by Bryson Payne

San Francisco

Learn Java the Easy Way. Copyright © 2018 by Bryson Payne.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-10: 1-59327-805-5
ISBN-13: 978-1-59327-805-2

Publisher: William Pollock
Production Editor: Riley Hoffman
Cover Illustration: Josh Ellingson
Interior Design: Octopod Studios
Developmental Editors: Jan Cash and Tyler Ortman
Technical Reviewer: Bryan Fagan
Copyeditor: Rachel Monaghan
Compositors: Riley Hoffman and Meg Sneeringer
Proofreader: Paula L. Fleming
Indexer: BIM Creatives, LLC.

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900; sales@nostarch.com
www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Names: Payne, Bryson, author.
Title: Learn Java the easy way : a hands-on introduction to programming /
 Bryson Payne.
Description: San Francisco : No Starch Press, Inc., [2018]
Identifiers: LCCN 2017022283 (print) | LCCN 2017035701 (ebook) | ISBN
 9781593278465 (epub) | ISBN 1593278462 (epub) | ISBN 9781593278052 (pbk.)
 | ISBN 1593278055 (pbk.)
Subjects: LCSH: Java (Computer program language) | Java (Computer program
 language)
Classification: LCC QA76.73.J38 (ebook) | LCC QA76.73.J38 P3955 2018 (print)
 | DDC 005.13/3--dc23
LC record available at https://lccn.loc.gov/2017022283

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in it.

www.nostarch.com
https://lccn.loc.gov/2017022283

About the Author
Dr. Bryson Payne is a tenured professor of computer science at the
University of North Georgia, where he has taught aspiring coders since
1998. He is a Certified Information Systems Security Professional (CISSP)
and Certified Ethical Hacker (CEH), among other industry certifications.
He was also the first Department Head of Computer Science at UNG and
the founding Director of the Center for Cyber Operations Education, an
NSA Center of Academic Excellence in Cyber Defense. He enjoys working
with K–12 schools worldwide to promote computer science education.

Featured in CIO magazine, Campus Technology, and the Wall Street
Journal, Dr. Payne is also the best-selling author of Teach Your Kids to Code:
A Parent-Friendly Guide to Python Programming (No Starch Press, 2015), now
published in five languages (Korean, Portuguese, Russian, Chinese, and
English). He’s also a popular online instructor of several courses, includ-
ing the highly rated Udemy course Real-World Ethical Hacking (2017).
His courses reach more than 20,000 enrolled students from more than
150 countries. He holds a PhD in computer science from Georgia State
University and has published articles in scholarly and trade journals, in
addition to speaking regularly at regional and national conferences on
computer science and cybersecurity education.

Dr. Payne lives north of Atlanta, Georgia, with his lovely wife, Bev; two
sons, Alex and Max; and three cats, Leo, Rocky, and Pixel.

About the Technical Reviewer
Bryan Fagan is a middle school engineering and technology teacher. He
lives in Dahlonega, Georgia, where he teaches, enjoys the slow-rolling
Appalachian mountains with his wife and daughter, and trains in Brazilian
jiujitsu. He is the founder of Make Stuff, an after-school makerspace for
middle school students.

To Mom, for always believing in me

B r i e f C o n t e n t s

Acknowledgments . xvii

Introduction . xix

Chapter 1: Getting Started . 1

Chapter 2: Build a Hi-Lo Guessing Game App! . . 19

Chapter 3: Creating a GUI for Our Guessing Game . 43

Chapter 4: Creating Your First Android App . 75

Chapter 5: Polishing Your App by Adding Menus and Preferences 109

Chapter 6: Deciphering Secret Messages . 125

Chapter 7: Creating Advanced GUIs and Sharing Your App 147

Chapter 8: Make Secret Messages a Phone App to Share with Friends! 175

Chapter 9: Paint Colorful Bubbles with Your Mouse! . 197

Chapter 10: Adding Animation and Collision Detection with Timers 221

Chapter 11: Making BubbleDraw a Multitouch Android App 249

Appendix: Debugging and Avoiding Common Errors in Java 273

Index . . 279

C o n t e n t s i n D e t a il

Acknowledgments	 xvii

Introduction	 xix
Why Should I Learn to Code? . . xx
Why Should I Learn Java? . xx
What’s in This Book . xx
What Tools Do I Need? . xxi
Online Resources . xxi
Start Now! . xxii

1
Getting Started	 1
Java on Windows, macOS, and Linux . 1
Installing Java 8 and 9 for Developers . 2
Installing the Eclipse IDE for Java Developers . 3
Setting Up Eclipse . 4

Installing the WindowBuilder Editor . 6
Customizing Eclipse’s Look and Feel . . 7

Installing Android Studio for Mobile App Development . 8
Getting to Know Java with JShell . . 9

Running JShell . 9
Working with Java Expressions in JShell . 12
Declaring Java Variables in JShell . 13
Printing Output in Java . 15
JShell Commands . 16

What You Learned . 17

2
Build a Hi-Lo Guessing Game App!	 19
Planning the Game Step-by-Step . 20
Creating a New Java Project . 20
Creating the HiLo Class . 21

Generating a Random Number . 23
Getting User Input from the Keyboard . . 25
Making the Program Print Output . 27

Loops: Ask, Check, Repeat . 28
if Statements: Testing for the Right Conditions . 30
Adding a Play Again Loop . 33

Testing the Game . 36
What You Learned . 38
Programming Challenges . . 39

#1: Expanding Your Range . 40
#2: Counting Tries . 40
#3: Playing MadLibs . 41

xii Contents in Detail

3
Creating a GUI for Our Guessing Game	 43
Practicing with JShell . 44

Creating a GUI in Four Lines of Code . 44
Creating an Interactive GUI in 10 Lines of Code! . 45

Setting Up the GUI App in Eclipse . . 48
GUI Design with Eclipse’s WindowBuilder Editor . 50
Designing the User Interface . 51

Setting GUI Properties in the Properties Pane . 51
Customizing GUI Components in the Palette Pane . 52
Aligning GUI Elements . 54
Naming GUI Components for Coding . . 55
Connecting the GUI to Your Java Code . . 56

Adding a Method to Check the Player’s Guess . 58
Getting Text from a JTextField . 59
Converting Strings to Numbers . 60

Starting a New Game . 61
Listening for User Events: Click to Guess! . 62
Setting Up the GUI Window . . 64
Time to Play! . 66
Adding a Play Again Feature . 66
Improving the UX . 67

Allowing Users to Press Enter to Guess . 68
Automatically Removing Old Guesses . . 68

Handling Bad User Input . 70
What You Learned . 73
Programming Challenges . . 73

#1: Showing Users How Many Tries They Took . 73
#2: Showing and Hiding a Play Again Button . 73
#3: Creating a GUI MadLib . 74

4
Creating Your First Android App 	 75
Starting a New Android Studio App Project . 76
Building the GUI Layout in Design View . 80
Naming GUI Components in Android Studio . 83
Connecting the GUI to Java in Android Studio . 85
Adding Methods to Check the Guess and Begin a New Game 88
Handling Events in Android . 91
Running the App on the Android Emulator . 94
Running the App on a Real Android Device . 100

Preparing Your Device . 100
Connecting Your Device . 101
Running the App on Your Device . 101

Improving the UX . 102
Centering the User’s Guess in the Text Field . 103
Adding a Listener for the Enter Key . . 103
Adding One More Finishing Touch . . 104

What You Learned . 105

Contents in Detail xiii

Programming Challenges . . 105
#1: “Toast”-ing to the Number of Tries . 106
#2: Adding Visual Appeal . 107
#3: Creating a MadLibs Mobile App . 107

5
Polishing Your App by Adding Menus
and Preferences	 109
Adding an Options Menu in Android . 109

Adding Items to the Menu’s XML File . 110
Displaying the Options Menu . 111
Responding to User Selections . 112
Creating an Alert Dialog Pop-up for the About Screen 113

Changing the Guessing Range . 114
Adding a Variable for the Range . 115
Using the range Variable . 115
Building the Dialog to Allow the User to Select the Range 116

Storing User Preferences and Game Stats . . 118
Storing and Retrieving the User’s Preferred Range . 118
Storing the Number of Games Won . 120

What You Learned . 122
Programming Challenges . . 122

#1: You Win Some, You Lose Some . 122
#2: Ratio of Wins to Losses . 123

6
Deciphering Secret Messages 	 125
The Caesar Cipher . 125
Setting Up the Secret Messages App . 126

Creating the Secret Messages Project in Eclipse . 127
Beginning to Code SecretMessages.java . 128
Messing with Strings . . 128

Characters and Values in Java . 132
Encoding Just the Letters . 133
Closing the Scanner . 135
Adding a Custom Key Value . . 137
Encoding Digits . . 138
Running Command Line Apps Without Eclipse . 141

Finding Your Workspace Folders . 141
Opening a Command Line Window . . 142

What You Learned . 144
Programming Challenges . . 144

#1: Looping the Loop . 144
#2: Reversing and Encoding . 145
#3: Safely Handling Keys with try and catch . 145

xiv Contents in Detail

7
Creating Advanced GUIs and Sharing Your App	 147
Setting Up the Secret Messages GUI App Project . 148
Designing the GUI and Naming Components . 148
Coding the Secret Messages GUI App . . 152

Creating the encode() Method . 152
Writing the Event Handler for the Encode/Decode Button 154
Handling Bad Input and User Errors . 156
Building the main() Method and Running the App . 156

Improving the GUI . . 159
Setting Line Wrap and Word Wrap . 161
Handling Bad Input and User Errors: Part 2 . 162
Adding a Slider to the Secret Messages GUI . 164

Code Cracking with the Slider . 166
Bonus: Sharing Your App as a Runnable JAR File . 169
What You Learned . 172
Programming Challenges . . 172

#1: Movin’ On Up! . 172
#2: Scrolling Away! . 173
#3: Changing the Text to Change the Slider . 174

8
Make Secret Messages a Phone App to
Share with Friends!	 175
Setting Up the Mobile GUI . 176
Designing the Mobile GUI . 177
Wiring the GUI to the Java Code . 182

Connecting the Encode Button to the encode() Method 182
Testing the App . 185
Working with the SeekBar . . 187

Running the App on the Emulator and on an Android Device 188
Bonus: Customizing the Floating Action Button . . 190
Receiving Secret Messages from Other Apps . 193
What You Learned . 195
Programming Challenges . . 196

#1: Creating a Move Up Button . . 196
#2: Changing the SeekBar’s Progress . 196

9
Paint Colorful Bubbles with Your Mouse!	 197
Creating the BubbleDraw Project Files . 198
Building the BubbleDraw Frame . 199
Creating a Class for Bubbles . 200

Defining a Bubble . 200
Designing a Bubble’s Methods . . 202

Storing Bubbles in an ArrayList . 205
Adding a Constructor to the BubblePanel Class . 206
Adding a Method to Draw on the Screen . 207
Testing the BubblePanel Class . 208

Contents in Detail xv

Handling Mouse Events from the User . 210
Creating a Reusable Event Listener . 211
Handling Clicks and Drags . 212
Bonus: Handling MouseWheel Events . . 215

What You Learned . 218
Programming Challenges . . 218

#1: No Bubble Too Small . 218
#2: PixelDraw! . 219

10
Adding Animation and Collision Detection
with Timers	 221
Copying the BubbleDraw Java Project to Create BubbleDrawGUI 222

Renaming the Main Class and Java File . 222
Adding Transparency . 224

Adding Animation: Bubbles Rising! . 225
Adding a Timer . 226
Setting the Timer . 226
Preparing the Animation . 227
Starting the Timer . 229

Forever Blowing Bubbles: Adding Random Speed and Direction 229
Building a GUI for Our Animated Drawing App . 232

Setting Up the GUI Panel and Buttons . 232
Coding the Clear and Pause/Start Buttons . 234

Bouncing off the Walls with Collision Detection . 235
A Soft Bounce . 236
A Hard Bounce . 238

Adding a Slider to Control the Animation Speed . . 240
Customizing the Slider . 241
Implementing the Slider Event Handler . 242

What You Learned . 243
Programming Challenges . . 244

#1: No Bubble Left Behind . 244
#2: Flexi-Draw! . 244
#3: PixelDraw 2.0 . 245

11
Making BubbleDraw a Multitouch Android App	 249
Setting Up the BubbleDraw Project . 250
Creating the BubbleView Constructor . 252

Adding the Animation Variables . 252
Creating the BubbleView() Constructor . 254
Preparing the Layout to Use BubbleView . 254

Modifying the Bubble Class . 255
Drawing in Android with the onDraw() Method . . 257
Testing BubbleDraw with 100 Bubbles . . 258

Adding testBubbles() . . 258
Fixing the OnTouchListener Error . 259
Running the BubbleDraw App . 260

xvi Contents in Detail

Using Threaded Animation and Multitasking in Java . 261
Using Touch to Draw with Your Finger . 264

Using Multitouch to Draw with 10 Fingers at a Time! 266
Testing Multitouch Events on an Android Device . . 266

Changing the App Launcher Icon . 268
Creating a Custom App Icon . 268
Adding the Custom Icon to Your App . 268
Displaying Your New Icon . 269
Changing the App Name . 270

What You Learned . 270
Programming Challenges . . 271

#1: Combining One-Finger and Multitouch Events, v1.0 271
#2: Combining One-Finger and Multitouch Events, v2.0 271

Appendix
Debugging and Avoiding Common Errors in Java 	 273
Spelling and Case . . 274

Correcting Typos in Eclipse . 274
Correcting Typos in Android Studio . 275
Avoiding Other Common Spelling Errors . . 276

Comparison Trouble . 276
Grouping Symbols . 276

Quick Fixes in Eclipse . 277
Code Completion in Android Studio . . 277

Summary . 278

Index	 279

Ac k n owl e d g m e n t s

This book would not have been possible without the exceptional support of
the No Starch Press team. Thanks especially to Bill Pollock, Tyler Ortman,
Riley Hoffman, Jan Cash, Serena Yang, Amanda Hariri, and Julia Borden
for their tireless editing, review, and marketing, and for the innumerable
ways they helped me improve this book from my original manuscript.

Thanks to Bryan Fagan for his awesome work as a technical reviewer.
Thanks to all of my current and former students who inspire me to con-

tinue to create interesting, engaging content—especially Shah and Susan
Rahman, Justin and Diane Turner, Jacob Elliott, Brian Murray, Aaron Walker,
Robert Brown, Trent Deal, Seth Park, Simon Singh, Andrew Miller, the
Ctrl-Alt-Del robotics team, Jackson Grant, Quintin Kerns, Grace and Jack
Halley, Matthew Harpur, and David Knight. Thanks also to the students
from 150 countries enrolled in my online courses, especially Hayden Redd
and Bob Watson.

Thanks to my inspiring colleagues and friends who continually moti-
vate me to be my best: Markus Hitz, Chuck Robertson, Irene Kokkala,
Tamirat Abegaz, Antonio Sanz Montemayor, Don Watkins, Eddie Mienie,
Rose Procter, Ron Larson, Victor Parker, Keith Antonia, Billy Wells, Jim
Goldy, James Daniel, and Craig Gentry.

Thanks to my father-in-law, Norman Petty, whose passion for technol-
ogy is surpassed only by his love for family, and my stepdad, Dale Carver,

xviii Acknowledgments

who always has time for my 3D-printed gadgets. Thanks most of all to my
beautiful wife, Bev, and my amazing sons, Alex and Max, for their unend-
ing patience while I wrote two books in three years.

Special thanks to Kalen Cole. At eleven years old, Kalen embraced my
first book, Teach Your Kids to Code, learning to code at his own pace. He even
sent me his first creative design using lines of code he’d written himself.
Way to go, Kalen! You are an inspiration to every kid who’s just beginning
to discover who they are and what they want to become.

I n t r od u c t io n

Java is used on billions of devices world-
wide. From mobile apps to desktop soft-

ware, Java powers the largest enterprises
and the smallest personal devices. Students, IT

professionals, and anyone considering a career in pro-
gramming will find that they need to learn Java. As a
computer science professor who has taught Java for almost 20 years, I
wrote this book to help you learn Java the way I learned to code: with
hands-on projects. I’ve found that students learn best by building real
apps and games that are interesting, engaging, and worth sharing. In this
book, you’ll make a simple Hi-Lo guessing game, a Secret Messages app
to exchange messages with friends, and an interactive drawing app called
BubbleDraw. No prior programming experience is required, but if you
have learned other languages, you’ll also pick up Java faster using this
hands-on approach.

xx Introduction

Why Should I Learn to Code?
First, jobs. According to the US Bureau of Labor Statistics, seven of the top
ten fastest-growing, highest-paying job fields are in computing. Programmers
are in demand worldwide, and millions more will be needed over the next
several years. No matter where you are, as long as you have an internet con-
nection, you can make money as a programmer.

But high income and job security aren’t the only reasons to learn
to code. Coding is problem solving, and the world needs more problem
solvers. You can write apps that connect people and help them work. You
can enable new forms of commerce and even create entirely new markets.
You can break down barriers, help an individual or a community or a whole
continent, and create opportunities that hadn’t existed before. Thanks to
the reach of the internet and smartphones, you can write an app and share
it with billions of people.

Drew Houston, founder of Dropbox, says coding is “the closest thing
we have to a superpower,” and Gabe Newell, cofounder of video gaming’s
Valve Corporation, says knowing how to code makes you “look like you
have magic powers compared to everybody else.” Computers are all around
us—in every device, every system, and every network in our daily lives—and
code is what makes all those computers work. Learn to code, and you learn
to thrive in a high-tech future.

Why Should I Learn Java?
Java is considered by many to be the #1 programming language, for several
good reasons. First, it runs on virtually every type of device imaginable,
from desktops and laptops to smart TVs. The same Java code will run on
Windows, macOS, or Linux.

Second, Java is used by companies to run some of the biggest enterprise
applications. Java is an object-oriented programming language, designed to
allow software engineers to develop massive applications in fields ranging
from manufacturing to sales and human resources to accounting.

Third, Java is one of the most popular languages in colleges and univer-
sities worldwide, so it brings you up to speed with fellow coders right away.

Whether you’re coding as a hobby, as a side business, or as your full-
time job, Java makes it free and easy to get started. Java is a great first lan-
guage or a terrific next language if you’ve coded before.

What’s in This Book
Here’s a quick overview of what you’ll find in each chapter.

In Chapter 1, you’ll be guided through installing and setting up Java,
Eclipse, and Android Studio. You’ll also write your first Java commands
using the JShell interactive shell.

Introduction xxi

In Chapter 2, you’ll write your first application—the Hi-Lo guessing
game, a text-based, command line program that has a player guess a ran-
dom number between 1 and 100. In Chapter 3, you’ll upgrade the guessing
game into a windowed, desktop application, complete with a graphical user
interface (GUI) featuring labels, a text field, and a clickable button.

In Chapter 4, you’ll build your first Android mobile app, reusing much
of the Hi-Lo guessing game code from the previous two chapters. Once you
have the mobile app completed, in Chapter 5, you’ll add several finishing
touches to the guessing game, including a settings menu and a high scores
feature.

In Chapter 6, you’ll start a new program—the Secret Messages app,
a text-based program that scrambles messages using a Caesar cipher. In
Chapter 7, you’ll give the app a GUI upgrade by adding a slider bar tool
that will allow you to crack Caesar ciphers quickly. Then, in Chapter 8,
you’ll make a mobile Secret Messages app with sharing functionality, which
will allow users to share secret messages back and forth by email, text mes-
sage, or social media with the touch of a button.

In Chapter 9, you’ll begin creating the most visual application in the
book—the BubbleDraw app, which allows the user to draw colorful bubbles
on the screen. In Chapter 10, you’ll add animation to make the bubbles
float and bounce around the screen as they’re drawn, and in Chapter 11
you’ll add multitouch functionality to draw bubbles in several places at
once. By the end of this chapter, you’ll have a professional-looking app that
you’ll want to share with all your friends!

Finally, in the appendix, you’ll find tips for debugging and avoiding
common errors as you write Java programs in Eclipse and Android Studio.

What Tools Do I Need?
The programming tools you’ll learn to use in this book, Eclipse and
Android Studio, are two of the most popular Java development tools
used in industry, so once you finish this book, you’ll be ready to code
real apps right away. Best of all, they’re free to download and use!

To get started, all you need is internet access and a regular desktop or
laptop computer running Windows, macOS, or Linux. You don’t even need
an Android phone or tablet to build mobile applications, because Android
Studio comes with a free Android device emulator that you can use to test
your apps. Of course, if you have an Android device, you’ll be able to run
your mobile apps directly on your phone or tablet.

Online Resources
If you want extra help, you can download all the source code for the apps
free on the book’s official website at https://www.nostarch.com/learnjava/. And,
if you’d like step-by-step videos in a one-on-one tutorial style, the online

https://www.nostarch.com/learnjava/

xxii Introduction

course at http://www.udemy.com/java-the-easy-way/ will guide you through every
example and every line of code. Use the coupon code BOOKHALFOFF to
save 50 percent on the course. You can ask questions or message me directly
in the online course anytime.

Start Now!
You’ve got nothing to lose and everything to gain by learning to code in
Java. Start today. Coding is the key to a new world of possibilities, and
learning Java could be your first step into a new career and a new future.
Whether young or old, my university students have one thing in common:
they took that first step. They wrote their first line of code and their first
program, then learned and grew from there. You can do the same thing.

As the Chinese proverb says, “The best time to plant a tree was 20 years
ago. The second best time is now.” Whether you’re still in school or consid-
ering embarking on a second career, the time to learn to code is now.

http://www.udemy.com/java-the-easy-way/

1
G e t t i n g S t a r t e d

In this chapter, you’ll get started by install-
ing Java, Eclipse, and Android Studio onto

your computer, and then you’ll get familiar
with some basic Java programming by testing

out some commands in the interactive command line
shell, JShell.

Java is a powerful, multiplatform programming language that’s free to
download and install on Windows, macOS, and Linux. Eclipse, an industry-
standard integrated development environment (IDE), is a toolkit for building
Java apps quickly and easily. And Android Studio is the development envi-
ronment for Android mobile apps in Java. It gives you the power to program
your own mobile games and apps for phones, tablets, and more.

Java on Windows, macOS, and Linux
One of the great things about Java is that the Java programs you write can
run on any other computer that has the Java Virtual Machine (JVM) software
(sometimes called the Java Runtime Environment, or JRE) installed. JVM

2 Chapter 1

technology allows you to write a program once and run the same code on any
operating system (Windows, macOS, Linux, Android, and more).

This sounds like an obvious idea, but most other programming lan-
guages require you either to write different code for Windows, macOS,
Linux, and smartphones or to compile a separate version for each operat-
ing system. The JVM is a runtime environment that makes this unnecessary.

Figure 1-1 shows the same graphical Java app running on Windows,
macOS, and Ubuntu Linux.

Figure 1-1: The same Java code running on three different operating systems—Windows, macOS, and Linux!

This simple but powerful concept is one of the reasons Java has been
adopted by individuals and businesses worldwide.

Installing Java 8 and 9 for Developers
The Java Development Kit (JDK) is the version of Java for developers or
programmers—like you! The JDK gives you the power to write and compile
your own Java apps that you can share with your friends, deploy in a busi-
ness, or run anywhere on almost any device.

We’re going to install both versions 8 and 9 of the JDK. That way, we
can gain the benefits of version 8’s widespread use while also accessing
version 9’s newest features.

To install JDK 8:

1.	 Go to http://jdk.java.net/8/.

2.	 Click the Accept License Agreement radio button.

3.	 Find the link for your operating system in the list of downloads under
JDK, and click it. If your operating system is Windows or Linux, choose
the 64-bit version.

4.	 Open the JDK file from your computer’s Downloads directory and install
the JDK.

To install JDK 9, go to http://jdk.java.net/9/ and then repeat steps 2–4
from your JDK 8 installation.

No t e 	 For more detailed, step-by-step instructions in video form, you can preview the
online course associated with this book for free at http://www.udemy.com/
java-the-easy-way/.

http://jdk.java.net/8/
http://jdk.java.net/9/
http://www.udemy.com/java-the-easy-way/
http://www.udemy.com/java-the-easy-way/

Getting Started 3

That’s all it takes to get your computer ready to compile and run Java
programs from the text-based command line or terminal, but we also want
to take advantage of Java’s ability to create graphical user interface (GUI) appli-
cations like those in Figure 1-1. To tap into Java’s GUI awesomeness, next
we’ll install an integrated development environment called Eclipse.

Installing the Eclipse IDE for Java Developers
Eclipse is one of the most popular IDEs for programming in Java. It’s also
open source, which means it’s free for both personal and business use,
and there’s a thriving open source community continually improving and
supporting Eclipse. There are a number of alternative IDEs for Java, but
Eclipse is famous for its ease of use in developing Java apps. It’s also pretty
easy to install.

To install Eclipse on your computer, go to http://www.eclipse.org/
downloads/, download the installer for your operating system (as shown
in Figure 1-2), and then run it. The current version as of this writing is
Eclipse Oxygen.

Figure 1-2: Download the Eclipse IDE installer for your operating system.

You’ll see a menu like the one in Figure 1-3. Choose Eclipse IDE for
Java Developers and click Install. Be careful to choose the Eclipse IDE
for Java Developers option and not one of the other options (the Java EE,
or Enterprise Edition, doesn’t have some of the features we’ll use in
this book).

Installation may take several minutes to complete.

http://www.eclipse.org/downloads/
http://www.eclipse.org/downloads/

4 Chapter 1

Figure 1-3: Choose Eclipse IDE for Java Developers from the
Eclipse installer menu.

Setting Up Eclipse
Let’s get our Eclipse installation configured to look and feel like the profes-
sional development environment it is, complete with the WindowBuilder
Editor, a coder-friendly color scheme, and easy-to-read fonts.

Start Eclipse by clicking the Eclipse icon. When Eclipse starts, it will
usually ask you where you want to store your workspace, which holds all of
your Java projects, as shown in Figure 1-4. You can use the default loca-
tion (on Windows it’s C:\Users\<YourUserName>\eclipse-workspace\ , on macOS
it’s /Users/<YourUserName>/Documents/eclipse-workspace/, and on Linux it’s
/home/<YourUserName>/eclipse-workspace/), or you can choose a custom
location for your Java workspace folder.

Figure 1-4: Eclipse begins by asking where you would like
to store your Java projects.

Getting Started 5

If you don’t have another preference, use the default eclipse-workspace
location. No matter what, remember the location of this folder because this
is where all your Java projects will be stored. If you check the box labeled
“Use this as the default and do not ask again,” the Eclipse Launcher window
won’t pop up every time you start Eclipse. If you plan to use multiple work-
spaces, you might want to leave the checkbox unchecked so that you can
switch between workspaces easily when opening Eclipse.

Modif y ing Eclip se to Run wi t h J ava 9

If Eclipse fails to launch, there’s one more change you’ll need to make. As of
this writing, Java 9 is still brand-new, and while Eclipse versions Oxygen and
later support Java 9, some releases require an addition to the eclipse.ini config-
uration file to run with Java 9 installed. To make this change, follow these steps:

1.	 Find your Eclipse installation folder:

•	 On Windows, you can right-click the Eclipse shortcut and choose
Open file location. The eclipse.ini file will be in the same folder as
the eclipse.exe program file.

•	 On macOS, find the Eclipse app in your Applications folder in Finder,
control-click the Eclipse app icon, and choose Show Package
Contents. Open the Contents folder, then the Eclipse folder, and
you will see eclipse.ini in the list of files.

•	 On Linux, go to your home folder and open eclipse/java-oxygen/
eclipse to find eclipse.ini.

2.	 Right-click or control-click the eclipse.ini file. Choose Open With... and
then select Notepad, TextEdit, or another text editor of your choice.

3.	 Add the following line to the bottom of the eclipse.ini file:

--add-modules=ALL-SYSTEM

4.	 Save eclipse.ini and then reopen Eclipse. Eclipse should launch correctly
from now on.

The first time you run Eclipse, you’ll see a welcome screen. Depending
on your version of Eclipse, this screen may include some useful sample
projects and tutorials, or it might be simpler. Feel free to click around and
explore a bit if you’d like, and when you’re ready to move ahead, close the
Welcome tab by clicking the small X at the top.

6 Chapter 1

Installing the WindowBuilder Editor
The most important upgrade we’ll make to Eclipse is to install the
WindowBuilder Editor, which allows us to build windowed applications
by dragging and dropping GUI elements like buttons, labels, and text
fields onto a graphical preview of the app.

Some versions of Eclipse have the WindowBuilder Editor already
installed, but we’ll go over the steps to install or update it to make sure
you’re ready to build GUI applications starting in Chapter 3.

First, go to http://www.eclipse.org/windowbuilder/ and click Download.
On the download page, find the WindowBuilder version that matches your
version of Eclipse (for Eclipse Oxygen, that’s version 4.7), right-click or
control-click the corresponding link, and copy the link address, as shown
in Figure 1-5.

Figure 1-5: Find the latest WindowBuilder Editor download link and copy the link address.

Next, come back to Eclipse and select Help4Install New Software.
In the Work with: text box, paste the URL of the WindowBuilder Editor
(for Eclipse Oxygen, that’s http://download.eclipse.org/windowbuilder/WB/
integration/4.7/), click the Add... button, and enter WB in the Name field in
the pop-up, as shown in Figure 1-6.

Click OK, and when the WindowBuilder checkbox appears in the
install window, click Select All to install all of the needed WindowBuilder
components. Click Next until you are prompted to accept the license
agreement, and finally click Finish.

http://www.eclipse.org/windowbuilder/
http://download.eclipse.org/windowbuilder/WB/integration/4.7/
http://download.eclipse.org/windowbuilder/WB/integration/4.7/

Getting Started 7

Figure 1-6: Use Eclipse’s Install New Software window to add the
WindowBuilder Editor.

The software may take a few minutes to install—you’ll see a prog-
ress indicator in the bottom-right corner of Eclipse. When installation
completes, you’ll be asked to restart Eclipse. Click Restart Now, and the
WindowBuilder installation will be complete.

Next, let’s add a few optional tweaks to make code in Eclipse easier to
read by changing the background, text colors, and font.

Customizing Eclipse’s Look and Feel
Now that you’ve installed the required elements, you may also want to cus-
tomize Eclipse’s appearance. On Windows and Linux, you can access the
Preferences menu by going to Window4Preferences. On macOS, go to the
menu bar and select Eclipse4Preferences.

For example, you may want to change the theme (color palette) and the
font size used in the text editor. Depending on your monitor’s size and the
environment in which you’re programming, your theme and your font size
can make a big difference in readability, comfort, and even productivity.

In the Preferences menu, under General4Appearance, you’ll see the
Theme option. You can choose from favorites such as Classic (light, gray-
ish background with dark fonts) or Dark (black background with brighter,
more colorful fonts). I prefer the Dark theme because the font colors are
brighter against the dark background and the display can be easier to read
on a monitor or projection screen.

Under General4Appearance4Colors and Fonts, you can change the
font size. In the Colors and Fonts pane on the right, choose Basic4Text
Font and click the Edit button. The Font menu will pop up. Choose a font

8 Chapter 1

you can read easily. I prefer Courier New or Consolas. I recommend a font
size of 18 to 20 and a font style of Bold. The Font window will display a
sample of the selected font, style, and size, as shown in Figure 1-7.

Figure 1-7: The Colors and Fonts preferences menu (left) and the Font preferences menu (right)

Click OK when you’re finished with your selections, and you’ll return
to the main Eclipse workspace. You’ll see your preference settings in effect
when you begin coding in the Java text editor in Chapter 2.

Installing Android Studio for Mobile App Development
Android Studio is the official Android mobile app development environ-
ment. It gives us the ability to design and code mobile apps using Android’s
native Java programming language. Like Java and Eclipse, Android Studio
is free to download, install, and use. Because of its large size, Android
Studio may take from several minutes to several hours to download and
install, depending on your internet connection.

To download Android Studio, go to http://developer.android.com/studio/
and click Download Android Studio, as shown in Figure 1-8. Read and
agree to the terms and conditions and then click Download Android
Studio for <operating system>.

Follow the instructions to complete the installation. The installation
process may download additional software development kit (SDK) components,
and it could take several more minutes to install once all the components
are downloaded.

http://developer.android.com/studio/

Getting Started 9

Figure 1-8: Android Studio is the official Android mobile app development environment.

Getting to Know Java with JShell
Now that we’ve set up our programming environment, let’s test our setup
by using JShell, an interactive interpreter for Java. JShell is a great way to start
learning how Java works, as it gives you feedback on your code right away.
Before Java 9, Java coders had to type a complete program, compile it, and
run it to see the result. Now, with JShell, we can type a single line of Java
code, such as System.out.println("Hello, Java!"), press enter, and see the
output immediately on the screen, as shown in Figure 1-9.

Figure 1-9: JShell in Java 9 allows us to quickly test code in an interactive
command line shell.

Any valid Java statement will work in JShell, which makes it a great tool
for learning the basics of Java coding, so let’s jump right in!

Running JShell
You should be able to run JShell either from the command line or by set-
ting up a shortcut. Just in case one of those options doesn’t work for you,
though, we’ll go over both.

10 Chapter 1

First, you must have JDK 9 installed. You can confirm that JDK 9 is
installed by running a command from the command line.

Here’s how to launch the command line interface on Windows, macOS,
and Linux:

•	 On Windows, open the command prompt by going to the Start menu
and typing cmd in the Search box. Press enter or click the Command
Prompt icon.

•	 On macOS, open the Launchpad and enter terminal in the search box.
Click the Terminal app icon.

•	 On Linux, search for terminal and click the Terminal app icon.

A command prompt window will appear. Enter java -version at the
prompt, and Java will tell you which JDK version is installed. You’ll see
something like the following output on Windows:

C:\Users\Payne> java -version
java version "9-ea"
Java(TM) SE Runtime Environment (build 9-ea+153)
Java HotSpot(TM) 64-Bit Server VM (build 9-ea+153, mixed mode)

Or you’ll see this output on macOS and Linux:

Payne:~ payne$ java -version
java version "1.9.0_33"
Java(TM) SE Runtime Environment (build 1.9.0_33)...

If Java responds with something containing version 9 or version 1.9,
as shown here, you’re ready to run JShell. If you’d like to run it from the
command line, continue to the next section, “Running JShell from the
Command Line.” If you get an earlier version of Java, like 1.8, go back
to “Installing Java 8 and 9 for Developers” on page 2 and install JDK 9.
If version 9 doesn’t appear on the command line after installing or if
you’d prefer to set up a desktop shortcut, skip to “Running JShell from a
Shortcut” on page 11.

Running JShell from the Command Line

To run JShell from the command prompt, type jshell and press enter. Java
will respond with a JShell welcome message and prompt, which look like the
following in Windows.

C:\Users\Payne> jshell
| Welcome to JShell -- Version 9-ea
| For an introduction type: /help intro

jshell>

Getting Started 11

On macOS or Linux, the message and prompt look similar:

Payne:~ payne$ jshell
| Welcome to JShell -- Version 9-ea
| For an introduction type: /help intro

jshell>

If you get the jshell> prompt, you’re ready to move ahead to “Working
with Java Expressions in JShell” on page 12. If the jshell command doesn’t
work on your computer after installing JDK 9, try following the steps in the
next section.

Running JShell from a Shortcut

If you have any trouble getting JShell to run from the command line, or if
you’d prefer to run it from a desktop shortcut, follow these instructions to
access JShell directly from the JDK 9 bin folder and set up a shortcut. (The
folder name bin is short for binaries, which are programs written in com-
puter language with just 1s and 0s.)

No t e 	 Unfortunately, this method doesn’t reliably work for Linux, but you should be able to
use the command line method.

You can find JShell in the following directories:

•	 On Windows, use C:\Program Files\Java\jdk-9\bin\jshell.exe

•	 On macOS, use /Library/Java/JavaVirtualMachines/jdk-9.jdk/Contents/
Home/bin/jshell

Your JDK folder may be labeled jdk-1.9.x instead of jdk-9, but it will work
the same either way. Navigate to the JDK 9 bin folder on your computer and
find the JShell file, as shown in Figure 1-10.

You can double-click the JShell file’s icon to run JShell. You can also
create a shortcut to run JShell directly from your desktop for convenience:

•	 On Windows, right-click jshell.exe and select Create Shortcut. Windows
will respond with “Windows can’t create a shortcut here. Do you want
the shortcut to be placed on the desktop instead?” Click Yes.

•	 On macOS, control-click the jshell file and select Make Alias. A file
called jshell alias will appear. Drag it to your desktop.

Now, anytime you want to run JShell, simply double-click the icon on
your desktop, and you’re ready to code in Java.

12 Chapter 1

Figure 1-10: The JShell program file in the JDK 9 bin folder on Windows (left) and macOS (right)

Working with Java Expressions in JShell
An expression is any combination of values (like numbers or text) and opera-
tors that results in another value. An operator performs an operation like
addition, subtraction, multiplication, or division. In Java, the symbols we
use for these operators are, respectively, +, -, *, and /. Let’s try one out with
a simple math expression. At the JShell prompt, type 2+2 and press enter:

jshell> 2+2
$1 ==> 4

JShell tells you the answer: the value of the expression 2+2 is 4. The $1 is
a temporary variable. JShell creates these variables to store values, and here
the variable $1 is storing the value 4 temporarily, in case you want to use
it later. If you want to know what value is in a variable, you can enter it in
JShell. For example, if you enter $1 now, JShell will tell you $1 is storing the
value 4:

jshell> $1
$1 ==> 4

Let’s try another expression. This time, let’s combine two strings of
text. Strings are characters between quotation marks that are used to display
words, names, and other text. You can use the + operator to combine strings:

jshell> "Your" + "Name"
$3 ==> "YourName"

You’ll see that a different temporary variable is created—in this case,
$3. The number after the $ indicates the line of code where the expression
was entered. This is my third snippet of code, so JShell is storing "YourName"
in the variable $3.

Getting Started 13

Notice also that Java concatenates, or adds, the two strings, with no space
between. If we want a space between two concatenated strings, we have to
include it inside double quotes, like this:

jshell> "Your" + " " + "Name"
$4 ==> "Your Name"

Any valid Java expression can be evaluated in JShell, so go ahead and
try a few more expressions. To edit a statement you’ve entered, press the up
arrow key. JShell will display the last command you typed, allowing you to
edit it and press enter to run the statement again. Pressing the up arrow
more than once will scroll you through the history of previous statements,
all the way to the first line you entered.

Declaring Java Variables in JShell
Evaluating expressions with simple values is nice, but you’ll usually want to
store values in variables so you can use them later. JShell has been creating
temporary variables for us automatically, like $1 and $3 in the previous sec-
tion, but you can also create, or declare, your own.

Numeric Variables

Let’s create an integer (whole number) variable called x and store the value
42 in it. Java stores whole numbers in variables of the type int, so at the
JShell prompt, enter int x = 42:

jshell> int x = 42
x ==> 42

The equal sign (=) is the assignment operator in Java, meaning that it is
used to assign a value to a variable. JShell responds, letting us know the vari-
able x contains the value 42. Now, when we want to use that value, we can
just call the variable by name. Let’s find out what x * 2 (x times two) equals:

jshell> x * 2
$6 ==> 84

Java uses the asterisk (*) as the symbol for multiplication, and JShell
is letting us know that x * 2 is equal to 84. Did we change the value of x,
though, by getting its value and multiplying that value by two? Let’s find
out by entering x:

jshell> x
x ==> 42

Whew! Our variable x still has the same value, 42. That means we can
use the value stored in a variable without changing the variable.

14 Chapter 1

So how would we change the value stored in the variable? We simply
use the assignment operator again. Enter x = x + 7 at the JShell prompt:

jshell> x = x + 7
x ==> 49

We’ve replaced the value stored in x by taking the old x value and adding
7 to it. From now on, whenever we ask for the value of x, we’ll get 49, until we
change it again. The value of a variable can change, or vary, as often as we
need it to—that’s why they’re called variables.

Let’s try a few variables of different types. We’ve seen an integer value,
so let’s try a decimal, or floating-point, number. Java stores decimal numbers
in variables of the type double (short for double-precision floating point), so
create a double called meters and store the decimal value 1.83 in it:

jshell> double meters = 1.83
meters ==> 1.83

Java handles decimal values just as easily as integer values. Let’s do
some math and convert meters to centimeters:

jshell> double centimeters = meters * 100
centimeters ==> 183.0

We’ve converted the value in meters to a value in centimeters by multiply-
ing it by 100.

Java handles a few other types of numbers, but int and double values are
the most common ones you’ll use. Anytime you come across a new type of
variable, feel free to open JShell and play around with different values.

String Variables

The String variable type is used to store strings of text characters. Let’s
define a String variable called myName and store a name in it as follows (you
can use your name instead of mine):

jshell> String myName = "Bryson Payne"
myName ==> "Bryson Payne"

We use the equal sign assignment operator, like we did with numeric
variables.

No t e 	 Case matters in Java variable, method, and class names. All-lowercase myname is
different from all-uppercase MYNAME, and both of those are different from myName.
The convention, or common way of doing things, in Java is to use camel
case—capitalizing the first letter of each new word in a name, like myName or
thisIsASillyNameButShowsCamelCase, so that the words resemble a camel’s humps.
Classes are in camel case and also begin with an uppercase letter.

Getting Started 15

Now let’s use the value stored in myName. Let’s say you’ve added a certifi-
cation or earned a degree. Add some characters after your name, as follows:

jshell> myName + ", PhD"
$12 ==> "Bryson Payne, PhD"

Notice that we didn’t use the assignment operator, so the value stored
in myName should still be your name without the extra characters.

This time, let’s change the value stored in the variable myName. Add a
formal title or greeting to your name, like you would for addressing an
envelope or invitation:

jshell> myName = "Dr. " + myName
myName ==> "Dr. Bryson Payne"

JShell shows us the updated value stored in myName. We’ll continue to
work with both numeric and text variables in the next section, and you’ll
learn to output values to the screen from inside a Java program.

Printing Output in Java
Up to this point, we’ve just been evaluating expressions by entering them
into JShell to see their values, but this won’t usually be the case when we
start writing actual programs. In a Java program, we won’t see anything
echoed back to the screen as we type line by line.

When we want to print something to the screen, we use a print func-
tion, like System.out.println(), which prints a line of output to the system
console, or your screen. If you’re still using the same JShell window from
the previous section, you can print the value we stored in x as follows:

jshell> System.out.println(x)
49

If you get an error, declare a new variable int x = 49 and then run the
print statement again.

Notice that this time, JShell doesn’t respond with x ==> 49, because
you aren’t asking it to evaluate an expression. The println() statement tells
JShell to print only what you’ve placed inside the parentheses, which is the
variable x, so JShell simply responds with 49.

Let’s try some output using strings instead. Enter the following
statement:

jshell> System.out.println("Hello, " + myName)
Hello, Dr. Bryson Payne

As long as you’ve still got a variable called myName from the previous sec-
tion, Java will greet you by name.

Whenever you need to print information to the screen for a user to read,
the System.out.println() statement will allow you to print exactly what you
want to communicate.

16 Chapter 1

JShell Commands
JShell has been so easy to use that you might never want to leave it, but
eventually you’ll need to get on with other work, like building exciting
desktop and mobile apps in Java. Let’s take a look at the commands that
JShell has to offer, including the command to exit JShell.

At the JShell prompt, enter /help:

jshell> /help

JShell will respond with the full list of special commands that it recog-
nizes. We precede each command with the forward slash, /, to indicate that
we’re talking to the JShell program directly, not to Java. Here’s a shortened,
partial version of the commands JShell recognizes:

| /list [<name or id>|-all|-start] -- list the source you have typed
| /edit <name or id> -- edit a source entry referenced by name or id
| /save [-all|-history|-start] <file> -- save snippet source to a file
| /open <file> -- open a file as source input
| /vars [<name or id>|-all|-start] -- list the declared variables and their values
| /imports -- list the imported items
| /exit -- exit jshell
| /reset -- reset jshell
| /history -- history of what you have typed
| /help [<command>|<subject>] -- get information about jshell

Try some of the commands, like /list to see all the source code you’ve
typed. You’ll notice that JShell adds semicolons at the ends of lines where
needed—the semicolon is how Java separates multiple statements in a pro-
gram. The /history command shows you what you’ve typed, including com-
mands like /help, /list, and even /history.

When you’re editing regular Java programs in the next chapter and
beyond, you’ll be working in files, saving often, and reopening the files
when you want to work on them more. In JShell, though, once you close the
JShell window, everything you’ve typed is gone for good—unless you save it,
that is. Thankfully, JShell includes the ability to save, open, and edit the
awesome code snippets you produce. To save code you created in JShell, use
the /save command and specify where you’d like to store your file:

jshell> /save ~/Desktop/filename.txt

The tilde (~) means your user directory on your computer, so this com-
mand will save all the code you’ve typed since you opened JShell, or since
the last /reset, in a file on your desktop. Look at your computer’s desktop
screen and you should see the new file.

To open the file again, use the /open command and tell JShell where to
find it:

jshell > /open ~/Desktop/filename.txt

Getting Started 17

JShell will open the file and run the code.
Anytime you write a snippet of code that you’d like to store for later

use, use the /save and /open commands to keep your code from one JShell
session to the next.

To start a new code snippet, use the /reset command. JShell will
remember and save only what you type after the /reset command, but you
can reopen a file that you’ve saved anytime. Try the following code for a
quick example of saving a file, resetting, and opening a file:

u jshell> /reset
| Resetting state.

v jshell> System.out.println("Hello, Java!")
Hello, Java!
jshell> System.out.println("My name is Bryson, nice to meet you!")
My name is Bryson, nice to meet you!

w jshell> /save ~/Desktop/myJava.txt
x jshell> /reset

| Resetting state.
y jshell > /open ~/Desktop/myJava.txt
z Hello, Java!

My name is Bryson, nice to meet you!

No t e 	 The numbered circles point out important lines, but they aren’t actually part of the code.

First, you need to reset JShell u so that you don’t include any earlier code
you might have written before the code you want to save. Once you’ve done
that, you can write out your program, which in this case is two print state-
ments v, and then save it to your desktop w. Even after JShell is reset x, the
/open command y recalls the two lines of code we typed before the /save
command and runs them z. You can use /edit to change the code and /save
again when you’re done.

JShell can store and recall a snippet whether it’s a single line or as many
lines as you care to type.

If you’re finished exploring, use the /exit command to close JShell:

jshell> /exit
Goodbye

JShell is even polite when you leave, bidding you a kind goodbye.

What You Learned
In this chapter, you’ve not only installed Java, Eclipse, and AndroidStudio
but you’ve also begun learning Java by testing various commands in the
JShell interactive shell. JShell is an exciting improvement to the already
omnipresent, industry-standard Java, and it’s a great tool for beginners
and seasoned developers alike.

18 Chapter 1

For new coders, JShell encourages exploration and removes some of
the unnecessary barriers to learning basic Java commands. For experienced
programmers, JShell provides a way to rapidly test new pieces of code and
see results instantly on the screen. As an educator and coder, I’m excited
about what JShell means for the future of Java and for the millions of coders
who’ll be able to benefit from this important new set of tools.

You’ve set up your programming environments for Java desktop and
mobile apps, and you’ve learned how to test code in JShell. You’ve also
gained some experience with a number of programming concepts that
you’ll use in the Java desktop and mobile apps that we’ll build in the
upcoming chapters. Here’s a quick overview of what you’ve accomplished
so far:

•	 Installing Java JDK 8 and 9

•	 Installing Eclipse IDE for Java Developers and the WindowBuilder
Editor

•	 Installing Android Studio for mobile app development

•	 Running JShell from the command line and from the JDK9/bin folder

•	 Evaluating Java expressions in JShell, including numbers and text

•	 Declaring integer, decimal, and string variables in Java

•	 Printing output to the screen using System.out.println()

•	 Using JShell commands such as /reset, /edit, /save, /open, and /exit

•	 Saving and opening files from JShell

In the next chapter, we’ll build our first complete Java application, the
Hi-Lo guessing game. In the chapters that follow, we’ll create text-based
programs, desktop apps, and, finally, Android mobile apps for each of our
programs.

Along the way, we’ll use the programming concepts we picked up
in JShell, including expressions, variables, output, and more. Whether
you’re building your first app or your thousandth, a desktop app for work
or a mobile game for fun, these same elements will be part of everything
you code.

You’ve got the tools, so let’s jump into Chapter 2 and get started!

2
B u ild a

Hi - L o G u e s s i n g G a m e App !

Let’s begin by coding a fun, playable
game in Java: the Hi-Lo guessing game.

We’ll program this game as a command line
application, which is just a fancy way of saying

it’s text based (see Figure 2-1). When the program
runs, the prompt will ask the user to guess a number
between 1 and 100. Each time they guess, the pro-
gram will tell them whether the guess is too high,
too low, or correct.

20 Chapter 2

Figure 2-1: A text-based Hi-Lo guessing game

Now that you know how the game works, all you have to do is code the
steps to play it. We’ll start by mapping out the app at a high level and then
code a very simple version of the game. By starting out with a goal in mind
and understanding how to play the game, you’ll be able to pick up coding
skills more easily, and you’ll learn them with a purpose. You can also enjoy
the game immediately after you finish coding it.

Planning the Game Step-by-Step
Let’s think about all the steps we’ll need to code in order to get the Hi-Lo
guessing game to work. A basic version of the game will need to do the
following:

1.	 Generate a random number between 1 and 100 for the user to guess.

2.	 Display a prompt, or a line of text, asking the user to guess a number in
that range.

3.	 Accept the user’s guess as input.

4.	 Compare the user’s guess to the computer’s number to see if the guess
is too high, too low, or correct.

5.	 Display the results on the screen.

6.	 Prompt the user to guess another number until they guess correctly.

7.	 Ask the user if they’d like to play again.

We’ll start with this basic structure. In Programming Challenge #2 on
page 40, you’ll try adding an extra feature, to tell the user how many tries
it took to guess the number correctly.

Creating a New Java Project
The first step in coding a new Java app in Eclipse is creating a project.
On the menu bar in Eclipse, go to File4New4Java Project (or select
File4New4Project, then Java4Java Project in the New Project wizard).
The New Java Project dialog should pop up, as shown in Figure 2-2.

Build a Hi-Lo Guessing Game App! 21

Figure 2-2: The New Java Project dialog for the
Hi-Lo guessing game app

Type HiLo into the Project name field. Note that uppercase and lower
case letters are important in Java, and we’ll get in the habit of using
uppercase letters to start all of our project, file, and class names, which is
a common Java practice. And we’ll use camel case, as Hi and Lo are two
words: HiLo. Leave all the other settings unchanged and click Finish.
Depending on your version of Eclipse, you may be asked if you want to open
the project using the Java Perspective. A perspective in Eclipse is a workspace
set up for coding in a specific language. Click Yes to tell Eclipse you’d like
the workspace set up for convenient coding in Java.

Creating the HiLo Class
Java is an object-oriented programming language. Object-oriented programming
languages use classes to design reusable pieces of programming code. Classes
are like templates that make it easier to create objects, or instances of that
class. If you think of a class as a cookie cutter, objects are the cookies. And,
just like a cookie cutter, classes are reusable, so once we’ve built a useful class,
we can reuse it over and over to create as many objects as we want.

The Hi-Lo guessing game will have a single class file that creates a guess-
ing game object with all the code needed to play the game. We’ll call our
new class HiLo. The capitalization matters, and naming the class HiLo follows
several Java naming conventions. It’s common practice to start all class names
with an uppercase letter, so we use a capital H in HiLo. Also, there should be no
spaces, hyphens, or special characters between words in a class name. Finally,
we use camel case for class names with multiple words, beginning each new
word with a capital letter, as in HiLo, GuessingGame, and BubbleDrawApp.

22 Chapter 2

To create the new HiLo class, first find your HiLo project folder under
the Package Explorer pane on the left side of the Eclipse workspace.
Expand the folder by clicking the small arrow to the left of it. You should
see a subfolder called src, short for source code. All the text files containing
your Java programs will go in this src folder.

Right-click the src folder and select New4Class, as shown in Figure 2-3.

Figure 2-3: Creating a new class file for the Hi-Lo guessing game app

The New Java Class dialog will appear, as shown in Figure 2-4. Type HiLo
into the Name field. Then, under Which method stubs would you like to create?,
check the box for public static void main(String[] args). This tells Eclipse
that we’re planning to write a main() program method, so Eclipse will include
a stub, or skeleton, for the main() method that we can fill in with our own
code. Methods are the functions in an object or class. The main() method is
required any time you want to run an app as a stand-alone program.

Figure 2-4: Name the new Java class HiLo and
select the checkbox to create a main() method.

Build a Hi-Lo Guessing Game App! 23

Click Finish in the New Java Class dialog, and you should see a new file
named HiLo.java that contains the code shown in Listing 2-1. This Java file
will be the outline of the Hi-Lo guessing game. We’ll write the guessing
game program by editing this file and adding code inside it.

u public class HiLo {
 v public static void main(String[] args) {

 // TODO Auto-generated method stub

 }
}

Listing 2-1: The stub code for the HiLo guessing game class, generated by Eclipse

Eclipse creates this code all on its own. The class HiLo is public u, mean-
ing we can run it from the command line or terminal.

Java groups statements with braces, { and }. The opening brace, {,
begins a block of statements that will form the body of the HiLo class. The
closing brace, }, ends the block of statements. Inside the class is the main()
method v, which is the method that will run when the class is executed.

Inside the opening brace for the main() method is a comment line that
starts with two forward slashes, //. Comments are for us (the humans)
to read. They’re ignored by the computer, so we can use them to help us
remember what a section of code does or to leave notes for future use. You
can delete the TODO comment in Listing 2-1.

Generating a Random Number
The first programming task for our game is to generate a random number.
We’ll use the Math class, which contains a method for generating a random
floating-point (decimal) number between 0.0 and 1.0. Then, we’ll convert
that decimal value to an integer (a whole number) between 1 and 100. The
Math class is a built-in class that contains many useful math functions like
the ones you might find on a nice scientific calculator.

Inside the main() method, add the comment and line of code shown in
Listing 2-2. (The new code is shown in black and the existing code is shown
in gray.)

public class HiLo {
 public static void main(String[] args) {
 // Create a random number for the user to guess
 int theNumber = (int)(Math.random() * 100 + 1);
 }
}

Listing 2-2: The code to create a random number between 1 and 100

First, we need to create a variable to hold the random number the user
will be trying to guess in the app. Since the app will ask the user to guess
a whole number between 1 and 100, we’ll use the int type, short for integer.
We name our variable theNumber. The equal sign, =, assigns a value to our

24 Chapter 2

new theNumber variable. We use the built-in Math.random() function to gener-
ate a random number between 0.0 and just under 1.0 (0.99999). Because
Math.random() generates numbers only in that specific range, we need to
multiply the random number we get by 100 to stretch the range from 0.0
to just under 100.0 (99.99999 or so). Then we add 1 to that value to ensure
the number runs from 1.0 (0.0 + 1) to 100.99999.

The (int) part is called a type cast, or just cast for short. Casting changes
the type of the number from a decimal number to an integer. In this case,
everything after the decimal point is removed, resulting in a whole number
between 1 and 100. Java then stores that number in the variable theNumber,
the number the user is trying to guess in the game. Finally, we add a semi-
colon (;) to indicate the end of the instruction.

Now, you can add a System.out.println() statement to print the number
you’ve generated:

 int theNumber = (int)(Math.random() * 100 + 1);
 System.out.println(theNumber);
 }
}

After we add this line of code, we can run the program to see it gener-
ate and print a random number. Click the green run button in the top
menu bar to compile and run the program, as shown in Figure 2-5. You
can also go to the Run menu and select Run.

Figure 2-5: Printing a random number to the screen

Your random number will appear in the small console window at the
bottom of the screen, as shown in Figure 2-5. If you run your program
again, you’ll see a different number between 1 and 100.

This would be a great time to play with the program a bit. Try generat-
ing a number between 1 and 10, or 1 and 1,000—even 1 to 1,000,000. Java
will accept numbers all the way to a billion or so. Just remember to write
your numbers without commas: 1,000 becomes 1000 in Java, and 1,000,000

Build a Hi-Lo Guessing Game App! 25

is written 1000000. You probably don’t want to guess a number between 1 and
1,000,000 the first time you play the game, though, so remember to change
this line back before you move ahead.

No t e 	 Remember to save your code often. Eclipse will save for you automatically every time
you run a program, but it’s a good idea to save after every few lines of code. In fact,
pressing ctrl-S (or -S) to save after each line of code isn’t a bad habit to get into.
I’ve never heard a coder say they wish they hadn’t saved so often, but I’ve expe-
rienced losing unsaved code a few times myself, and it’s not fun. Save often, and
remember that you can use Edit4Undo if you ever type something incorrectly or
accidentally delete a section of code.

Getting User Input from the Keyboard
Now let’s add the code that allows the user to guess a number. To do this,
we’ll need to import some additional Java capabilities. Java comes with many
libraries and packages that we can use in our own projects. Libraries and
packages are sets of code that someone else has created. When we import
them, we get new features that make creating our own programs even
easier. We can access packages and libraries whenever we need them using
the import statement.

For the guessing game program, we need to be able to accept keyboard
input from the user. The Scanner class, contained in the java.util utilities
package, provides several useful functions for working with keyboard input.
Let’s import the Scanner class into our program. Add the following state-
ment at the top of the HiLo.java file, before the line public class HiLo:

import java.util.Scanner;

public class HiLo {

This line imports the Scanner class and all its functionality from the main
Java utilities package. The Scanner class includes functions like nextLine() to
accept a line of input from the keyboard and nextInt() to turn text input
from the keyboard into an integer number that can be compared or used in
calculations. To use the Scanner class for keyboard input, we have to tell it to
use the keyboard as its source.

We want to do this before anything else in the program, so add this line
of code inside the top of the main() method:

public class HiLo {
 public static void main(String[] args) {
 Scanner scan = new Scanner(System.in);
 // Create a random number for the user to guess
 int theNumber = (int)(Math.random() * 100 + 1);

This line creates a Scanner object called scan that pulls input from the
computer’s keyboard, System.in.

26 Chapter 2

Although this new line of code sets up the scan object, it doesn’t actually
ask for input yet. To get the user to type in a guess, we’ll need to prompt
them by asking them to enter a number. Then, we’ll take the number they
enter from the keyboard and store it in a variable that we can compare
against theNumber, the computer’s original random number. Let’s call the
variable that will store the user’s guess something easy to remember, like
guess. Add the following line next:

 public static void main(String[] args) {
 Scanner scan = new Scanner(System.in);
 // Create a random number for the user to guess
 int theNumber = (int)(Math.random() * 100 + 1);
 System.out.println(theNumber);
 int guess = 0;

This statement both declares a variable called guess of type int (an inte-
ger in Java), and it initializes the guess variable to a starting value of 0. Some
programming languages require a variable to be declared and then initial-
ized in separate lines of code, but Java allows programmers to include both
the declaration and initialization of variables in a single line. Java requires
every variable to be declared with a specific type, or kind of information it
should store. The user’s guess will be a whole number, so we’ve declared
guess as an int.

Next, we need to prompt the user to enter a guess. We can let the user
know the program is ready for input by printing a line of text to the console
window (or command line). We access this text-based screen as a part of
our computer system through the System class, just like we did for keyboard
input. But this time, we want to output information for the user to read. The
object that lets us access the command line console for output is System.out.
Similar to the System.in object that allows us to receive text input from the
keyboard, System.out gives us the ability to output text to the screen. The
specific function to print a line of text is the println() command:

 int guess = 0;
 System.out.println("Guess a number between 1 and 100:");

Here we are using dot notation, which lists a class or object, followed by
a dot and then a method or an attribute of that class or object. Methods
need to be called with dot notation to tell Java which object or class they
belong to; for example, Math.random(). Attributes are the values stored in an
object or class.

For example, System is a class representing your computer system.
System.out is the command line screen object contained in the System class,
because your computer monitor is part of your overall computer system.
System.out.println() is a method to print a line of text using the System.out
object. We’ll get more practice using dot notation as we continue.

Now that the user knows what kind of input the program is expecting
from them, it’s time to check the keyboard for their guess. We’ll use the
Scanner object called scan that we created earlier. Scanners have a method

Build a Hi-Lo Guessing Game App! 27

called nextInt() that looks for the next int value the user inputs from the
keyboard. We’ll store the user’s guess in the variable guess that we created
earlier:

 System.out.println("Guess a number between 1 and 100:");
 guess = scan.nextInt();

This statement will wait for the user to type something into the con-
sole window (hopefully a whole number between 1 and 100—we’ll see
how to make sure the user enters a valid number in Chapter 3) and press
enter. The nextInt() method will take the string of text characters the user
entered ("50", for example), turn it into the correct numeric value (50),
and then store that number in the variable guess. Take a moment to save
the changes you’ve made so far.

Making the Program Print Output
We can also check to make sure our program is working so far by adding
another println() statement:

 guess = scan.nextInt();
 System.out.println("You entered " + guess + ".");

This line uses the System.out.println() method again, but now we’re
combining text and numeric output. If the user guesses 50, we want the
output to read, "You entered 50." To make this happen, we form a println()
statement that mixes text with the number stored in the variable guess.

Java allows us to concatenate strings of text using the + operator. We
use double quotation marks to specify the text we want to output first ("You
entered "). Note the space before the closing quotation marks—this tells
th program that we want a space to appear in the printed output after the
last word. Java ignores most spacing, but when a space is included inside the
quotation marks of a string of text, it becomes part of that text.

We also want to print the number the user guessed. We’ve stored this
value in the variable called guess, so we just have to use the println() state-
ment to output that value. Fortunately, in Java, when you include a variable
in a println() statement, Java prints the value contained in that variable. So,
immediately after the text "You entered ", we add the concatenation opera-
tor (+) followed by the variable name guess. Finally, we want to end the sen-
tence with a period, so we use another concatenation operator followed by
the text we want, contained in double quotation marks, so it looks like ".".

Listing 2-3 puts together all of our lines of code so far.

import java.util.Scanner;

public class HiLo {
 public static void main(String[] args) {
 Scanner scan = new Scanner(System.in);

28 Chapter 2

 // Create a random number for the user to guess
 int theNumber = (int)(Math.random() * 100 + 1);

 u // System.out.println(theNumber);
 int guess = 0;
 System.out.println("Guess a number between 1 and 100:");
 guess = scan.nextInt();
 System.out.println("You entered " + guess + ".");
 }
}

Listing 2-3: The code to this point generates a random number and allows the user to
guess once.

At u, note that I turned System.out.println(theNumber); into a comment
by adding a pair of forward slashes to the start of that line. This is called
commenting out, and it’s a useful technique for debugging—finding and fix-
ing bugs or errors in programs. We used this println() statement earlier to
show the value of the variable theNumber while we were writing and testing
the program. Now, rather than deleting the line entirely, we can turn it into
a comment so it’s ignored by the computer. If we want to use that line again,
we can just remove the // to include it in the program.

Now let’s save our program and run it to see how it works so far. To run
it, press the green run button or go to Run4Run. Right now, the user can
guess only once and the program doesn’t check whether they guessed cor-
rectly. So next, we’ll add some code so that the user can guess more than
one time, and then we’ll learn how to test each guess against theNumber.

Loops: Ask, Check, Repeat
To give the user more than one chance to guess the number, we need to
learn how to build a loop! In the guessing game program, we need to ask
the user for a guess until they guess correctly. Loops give us the ability to
repeat a set of steps over and over. In this section, we’ll build a loop for the
steps that prompt the user for a guess and accept the keyboard input.

Loops are very powerful programming tools, and they’re one of the
reasons computers are so valuable in our daily lives and in the business
world—computers are really good at repeating the same task predictably.
And, if they’re programmed correctly, they can do this all day, every day,
without making mistakes. You or I might get tired of telling someone their
guess is too high or too low, but the computer never does. It will also never
forget the number or tell the player their guess is too low or too high when
it’s actually not.

Let’s tap into the power of loops with a while loop. A while loop repeats
a set of statements as long as some condition is true. A condition is just some-
thing we can test. For example, in this program, we want to know whether
the user correctly guessed the secret number. If they didn’t guess correctly,
we want to keep giving them a chance to guess again until they get it right.

To write a while loop, we need to know what condition we want to test
for before repeating the loop each time. In the guessing game, we want the

Build a Hi-Lo Guessing Game App! 29

user to guess again as long as their guess isn’t equal to the secret number
theNumber. When the user’s guess is equal to the secret number, the user wins
and the game is over, so the loop should stop.

To create a while loop, we need to insert a while statement before the
last three lines of code and then wrap the three lines for guessing inside a
new pair of braces, as follows:

 int guess = 0;
 while (guess != theNumber) {
 System.out.println("Guess a number between 1 and 100:");
 guess = scan.nextInt();
 System.out.println("You entered " + guess + ".");
 }
 }
}

We use the keyword while to let Java know we’re building a while loop,
and then we put the appropriate condition inside parentheses. The part
inside the parentheses, guess != theNumber, means that while the value
stored in guess is not equal to (!=) the value stored in theNumber, the loop
should repeat whatever statement or set of statements immediately follow
this line of code. The != operator is a comparison operator—in this case, it
compares guess and theNumber and evaluates whether they’re different, or
not equal. You’ll learn about other comparison operators in the next sec-
tion, but this is the one we need for the guessing while loop.

We need to tell Java what statements to repeat in the while loop, so
I’ve added an opening brace, {, after the while statement. In the same way
that braces group all the statements together in the main() method, these
braces group statements together inside the while loop.

There are three statements that we want to include inside the loop. First
we need the println() statement that prompts the user to guess a number.
Then we need the statement that scans the keyboard and records the guess
with the nextInt() method. Finally, we need the println() statement that tells
the user what they entered. To turn this set of statements into a block of
code that will be run repeatedly in the while statement, we write the while
statement and condition first, then an opening brace, then all three state-
ments, and finally, a closing brace. Don’t forget the closing brace! Your pro-
gram won’t run if it’s missing.

One good programming practice that will help you keep your code
organized and readable is using tab spacing correctly. Highlight the three
statements inside the braces for the while statement and then press the tab
key to indent them.

The result should look like the following code:

 int guess = 0;
 while (guess != theNumber) {
 System.out.println("Guess a number between 1 and 100:");
 guess = scan.nextInt();
 System.out.println("You entered " + guess + ".");
 }

30 Chapter 2

 }
}

Correct indentation will help you remember to match up your opening
and closing braces, and it will help you quickly see which statements are
inside a loop or other block of code, as well as which statements are outside
the loop. Indentation doesn’t affect how your program runs, but if done
well, it makes your program much easier to read and maintain.

Save your program now and run it to check that it works. The game
is almost playable now, but we still need to tell the program to check if
the user’s guess is too high, too low, or just right. Time for (drum roll,
please . . .) if statements!

if Statements: Testing for the Right Conditions
Now that the user is able to guess until they are correct, we need to check
the guess to let them know whether they were too high or too low. The
statement that allows us to do this is the if statement.

An if statement will select whether to run a block of statements once or
not at all based on a condition, or a conditional expression.

We used a conditional expression before in the guessing loop: (guess !=
theNumber). To check whether a guess is too high or too low, we just need a
few more comparison operators: less than (<), greater than (>), and equal
to (==).

First, instead of just telling the user what their guess was, let’s write
some code to check whether their guess was too low. Replace the last line
of the while statement with the following two-line if statement:

 while (guess != theNumber) {
 System.out.println("Guess a number between 1 and 100:");
 guess = scan.nextInt();
 if (guess < theNumber)
 System.out.println(guess + " is too low. Try again.");
 }

The if statement begins with the keyword if, followed by a conditional
expression in parentheses. In this case, the condition is guess < theNumber,
which means the value of the user’s guess is less than the value of the ran-
dom secret number. Notice there’s no semicolon after the parentheses,
because the println() statement that follows is actually part of the if state-
ment. The whole statement tells the program that if the condition is true,
it should print the user’s guess and let them know they guessed too low.
We use the concatenation operator (+) between the user’s guess and the
string of text telling them the guess was too low. Note the space after the
first double quote and before is. This separates the user’s guess from the
word is.

Build a Hi-Lo Guessing Game App! 31

If you run the program now and enter a low guess, like 1, the if state-
ment should tell the program to say your guess is too low. That’s a good
start, but what if we guess a number that’s too high instead? In that case,
we need an else statement.

The else statement gives the program a way to choose an alternative
path, or set of steps, if the condition in the if statement is not true. We can
test for guesses that are too high or too low with an if-else statement pair.
Let’s add an else statement right after the if statement:

 u if (guess < theNumber)
 System.out.println(guess + " is too low. Try again.");

 v else if (guess > theNumber)
 System.out.println(guess + " is too high. Try again.");

 Notice that the code at v looks similar to the code at u. Often when
we’re using if-else statements, we need to check for multiple conditions in
a row, instead of just one. Here, we need to check for a guess that’s too low,
too high, or just right. In cases like this, we can chain if-else conditions
together by placing the next if statement inside the else portion of the
previous if-else statement. At v we’ve begun the next if statement immedi-
ately after the else from the previous condition. If the guess is higher than
the number, the program tells the user their guess is too high. Now that the
program can tell the user if their guess is too high or too low, we just need
to tell them if they guessed correctly and won!

If neither of the previous conditions is true—the user’s guess is not too
high and not too low—then they must have guessed the number. So we add
one final else statement:

 u if (guess < theNumber)
 System.out.println(guess + " is too low. Try again.");

 v else if (guess > theNumber)
 System.out.println(guess + " is too high. Try again.");

 w else
 System.out.println(guess + " is correct. You win!");

Notice that we don’t need a conditional expression for this final else
statement w. A correct guess is the only remaining option if the number
is neither too high nor too low. In the case of a winning guess, we provide
the statement to let the user know they’ve won. The full program up to this
point is shown in Listing 2-4. Save your HiLo.java file and run the program
to check that it works. It should prompt you to enter guesses until you guess
the correct number.

import java.util.Scanner;

public class HiLo {
 public static void main(String[] args) {
 Scanner scan = new Scanner(System.in);
 // Create a random number for the user to guess
 int theNumber = (int)(Math.random() * 100 + 1);

32 Chapter 2

 // System.out.println(theNumber);
 int guess = 0;
 while (guess != theNumber) {
 System.out.println("Guess a number between 1 and 100:");
 guess = scan.nextInt();
 if (guess < theNumber)
 System.out.println(guess + " is too low. Try again.");
 else if (guess > theNumber)
 System.out.println(guess + " is too high. Try again.");
 else
 System.out.println(guess + " is correct. You win!");
 } // End of while loop for guessing
 }
}

Listing 2-4: The Hi-Lo guessing game is complete for a single full round of play.

The full program is now a completely playable guessing game! After the
user wins, the program tells them that they guessed correctly and won, and
then it ends, as shown in Figure 2-6.

Figure 2-6: One full play-through of the Hi-Lo guessing game—
the program ends when the user guesses the secret number.

Give yourself a hand! You’ve built a program in Java from scratch, and
if this is your first program ever in Java, you deserve some kudos. Enjoy the
game for a few rounds and see if you can guess the number in fewer tries
each time. Test your program to make sure it works the way you want, and
we’ll add some improvements in the next section.

Build a Hi-Lo Guessing Game App! 33

Adding a Play Again Loop
Right now, the only way to play the guessing game again is to rerun the
program in Eclipse. Fortunately, we already know there’s a way to make
our program do something over and over again—we need another loop!

The guessing game program ends when the user guesses the right num-
ber because there’s nothing after the while loop. The while loop ends when
the condition (guess != theNumber) is no longer true. A user might want to
play over and over once they get the hang of the game. For this play again
loop, we’ll learn a new keyword and a new kind of loop: the do-while loop.

Like the while loop, a do-while loop repeats a block of statements as long
as a condition is true. Unlike the while loop, however, the block of code inside
a do-while loop is guaranteed to run at least once. There are times when the
condition at the top of a while loop may be false before the loop even starts,
so the entire loop and all the lines of code inside it are ignored. Think of the
condition of a while loop as being like a thermostat on a heater. If the temper-
ature of the room is already warm enough and the condition for the heater to
turn on isn’t met, the heater may not turn on at all.

For our guessing game, or almost any game program in general, we
choose a do-while loop (we sometimes call this the game loop), because the
user probably wants to play the game at least once. We also usually want to
ask the user if they would like to play again, and the user typically responds
yes or no (or y or n in a text-based game like this one). The game will con-
tinue to play through the game loop as long as the user responds with a yes.

To check the user’s response, we’ll need a new type of variable: a String.
Strings are objects that hold text within double quotation marks, like "y",
or "yes", or "My name is Bryson! I hope you like my game!". Earlier we used an
integer variable, or int type, to hold the numbers the user was guessing, but
now we need to hold text, so we’ll use a String instead. We can add a String
variable to the top of the program, right after the Scanner setup:

 Scanner scan = new Scanner(System.in);
 String playAgain = "";

Notice the String type begins with an uppercase S. This is because the
String type is actually a class, complete with several useful functions for
working with strings of text. I’ve named the variable playAgain, using camel
case with a capital A to start the second word. Remember, no spaces are
allowed in variable names. And, just like how we gave an initial value of 0 to
the guess variable with int guess = 0, here we’ve given an initial value to the
playAgain variable with playAgain = "". The two double quotes, with no space
between, indicate an empty string, or a String variable with no text in it.
We’ll assign a different text value to the variable later, when the user enters
y or n.

Just as we did with the while loop, we’ll need to figure out which state-
ments should be repeated in the do-while loop. The do-while loop will be our
main loop, so almost all of the statements in the program will go inside it.
In fact, all the remaining statements after the Scanner and String playAgain

34 Chapter 2

statements will be contained in the do-while loop. Those steps describe one
full round of play, so for each round, the game repeats all of those steps
again, from choosing a new random number to declaring a winning guess
and asking the user to play again.

So, we can add the do keyword and an opening brace immediately after
these two lines and before the code that creates the secret number:

 Scanner scan = new Scanner(System.in);
 String playAgain = "";
 do {
 // Create a random number for the user to guess
 int theNumber = (int)(Math.random() * 100 + 1);
 // System.out.println(theNumber);
 int guess = 0;
 while (guess != theNumber) {

Then, after the closing brace for the while loop for guessing and the
brace following our last else statement, we’ll ask the user if they would like
to play again and get their response from the keyboard.

Then we need to close the do-while loop with a while condition to check
whether the user replied with a yes:

 } // End of while loop for guessing
 u System.out.println("Would you like to play again (y/n)?");
 v playAgain = scan.next();
 w } while (playAgain.equalsIgnoreCase("y"));
 x }
y }

The prompt asks the user "Would you like to play again (y/n)?" u, to
which they can reply with a single letter, y for yes or n for no. At v, the
scan.next() function scans the keyboard for input, but instead of looking
for the next integer as nextInt() does, it looks for the next character or
group of characters that the user types on the keyboard. Whatever the
user types will get stored in the variable playAgain.

The line at w closes the block of code that repeats the game with a
brace, and it contains the while condition that determines whether the code
will run again. Within the while condition, you can see an example of the
equals() method of a String object. The equals() method tells you whether a
string variable is exactly the same as another string of characters, and the
equalsIgnoreCase() method tells you whether the strings are equal even if
their capitalization is different. In our game, if the user wants to play again,
they are asked to type y. However, if we just test for a lowercase y, we might
miss an uppercase Y response. In this case, we want to be flexible by check-
ing for the letter y, whether it is uppercase or lowercase, so we use the
string method equalsIgnoreCase().

Build a Hi-Lo Guessing Game App! 35

The final while statement tells Java to continue to do the game loop while
the string variable playAgain is either an uppercase or lowercase y. The final
two closing braces at x and y are the ones that were already in the program.
The one at x closes the main() method, and the one at y closes the entire
HiLo class. I’ve included them just to show where lines u through w should be
inserted.

The complete game to this point is shown in Listing 2-5.

import java.util.Scanner;
public class HiLo {
 public static void main(String[] args) {
 Scanner scan = new Scanner(System.in);
 String playAgain = "";
 do {
 // Create a random number for the user to guess
 int theNumber = (int)(Math.random() * 100 + 1);
 // System.out.println(theNumber);
 int guess = 0;
 while (guess != theNumber) {
 System.out.println("Guess a number between 1 and 100:");
 guess = scan.nextInt();
 if (guess < theNumber)
 System.out.println(guess + " is too low. Try again.");
 else if (guess > theNumber)
 System.out.println(guess + " is too high. Try again.");
 else
 System.out.println(guess + " is correct. You win!");
 } // End of while loop for guessing
 System.out.println("Would you like to play again (y/n)?");
 playAgain = scan.next();
 } while (playAgain.equalsIgnoreCase("y"));
 }
}

Listing 2-5: The Hi-Lo guessing game is ready to play over and over again.

Review your code to make sure you’ve added everything in the correct
place, check your braces and semicolons, and take a moment to save your
file. We’ll test the game in the next section.

No t e 	 Your indentation, which is the tab spacing at the beginning of each line, may not look
exactly like the last code snippet because we’ve added braces in a couple of new places.
Fortunately, adding new features, including loops and other blocks of code, is so com-
mon in Java that Eclipse has a menu option to clean up indentation automatically.
First, select (highlight) all the text in your HiLo.java file on the screen. Then, go to
Source4Correct Indentation. Eclipse will correctly indent each line of code to show
which statements are meant to be grouped together. As I mentioned before, the inden-
tation doesn’t matter to the computer (the program will run just fine even with no
tabs or extra spaces), but good indentation and spacing help make the program easier
to read.

36 Chapter 2

Testing the Game
Now that the play again loop is in place, the game should run perfectly.
First, save your HiLo.java file and choose Run4Run to test the program.
After you guess the first random number correctly, the program should
ask you if you’d like to play again. As long as you respond y (or Y) and
press enter, the program should keep giving you new random numbers
to guess. In the screenshot in Figure 2-7, notice that the game starts over
when I respond y to the prompt to play again.

Figure 2-7: The guessing game is fully playable for multiple
rounds as long as the user answers y or Y.

When the user finishes playing and responds to the play again question
with n, or anything other than y or Y, the game will end. However, we might
want to thank them for playing after they’ve finished the game. Add the
following line after the final while statement, before the final two closing
braces:

 } while (playAgain.equalsIgnoreCase("y"));
 System.out.println("Thank you for playing! Goodbye.");
 }
}

Build a Hi-Lo Guessing Game App! 37

Finally, the last line we’ll add to the guessing game app is to address a
warning you may have noticed in Eclipse. This warning appears as a faint
yellow line under the declaration of the scan object, as well as a yellow tri-
angle with an exclamation point to the left of that line. Eclipse is bringing
to our attention that we’ve opened a resource that we haven’t closed. In
programming, this can create what’s known as a resource leak. This doesn’t
usually matter if we just open one Scanner object for keyboard input, but if
we leave multiple Scanner objects open without closing them, the program
could fill up memory, slowing or even crashing the user’s system. We use
the close() method of the Scanner class to tell our program to close the con-
nection to the keyboard.

Add the following line after the println() statement thanking the user
for playing, before the final two closing braces:

 System.out.println("Thank you for playing! Goodbye.");
 scan.close();
 }
}

You’ll notice that the yellow warning disappears from the Eclipse editor
window when we add this line. Eclipse helps with common programming
errors like misspellings or missing punctuation, and it even warns us about
problems that could occur like resource leaks and unused variables. As you
build bigger, more complex applications in Java, these features of the IDE
will become even more valuable. You can find more information on using
Eclipse to debug your programs in the appendix.

The finished program, shown in Listing 2-6, is a fully playable guessing
game, complete with the option to play again and guess a new random
number every game.

import java.util.Scanner;

public class HiLo {
 public static void main(String[] args) {
 Scanner scan = new Scanner(System.in);
 String playAgain = "";
 do {
 // Create a random number for the user to guess
 int theNumber = (int)(Math.random() * 100 + 1);
 // System.out.println(theNumber);
 int guess = 0;
 while (guess != theNumber) {
 System.out.println("Guess a number between 1 and 100:");
 guess = scan.nextInt();
 if (guess < theNumber)
 System.out.println(guess + " is too low. Try again.");
 else if (guess > theNumber)
 System.out.println(guess + " is too high. Try again.");
 else
 System.out.println(guess + " is correct. You win!");
 } // End of while loop for guessing

38 Chapter 2

 System.out.println("Would you like to play again (y/n)?");
 playAgain = scan.next();
 } while (playAgain.equalsIgnoreCase("y"));
 System.out.println("Thank you for playing! Goodbye.");
 scan.close();
 }
}

Listing 2-6: The finished text-based, command line guessing game

There are a few things worth noting about the finished Hi-Lo guessing
game program. First, despite all the work in writing it, the code is relatively
short—fewer than 30 lines long. Nevertheless, you could play it forever if you
wanted to. Second, this program not only demonstrates conditions and loop-
ing, it also makes use of a loop inside another loop. This is called a nested loop,
because the guessing loop is contained in, or nested inside, the play again
loop. The indentation helps us see where the do-while loop begins and ends,
and we can see the smaller while loop and its if statements tabbed over and
nested inside the bigger do-while loop. Finally, we end the program neatly—
both for the user, by thanking them for playing, and for the computer, by
closing the scanner resource.

What You Learned
While building a simple, fun, playable game, we’ve picked up several valu-
able programming concepts along the way. That’s the way I first learned
how to code as a kid—I would find a fun game or graphical app, program
it, then change it, take it apart, and try new things. Play and exploration are
an important part of learning anything new, and I hope you’ll take a little
time to try new things with each program. The programming challenges at
the end of each chapter will also give you an opportunity to try a few new
things.

In building this guessing game, we’ve developed a wide range of skills
in Java:

•	 Creating a new class, HiLo

•	 Importing an existing Java package, java.util.Scanner

•	 Using a Scanner object to accept keyboard input

•	 Declaring and initializing integer and string variables

•	 Generating a random number with Math.random() and casting it to an
integer

•	 Using while and do-while loops to repeat a set of steps while a condition
is true

•	 Printing text strings and variable values to the command line console

•	 Scanning integers and strings from the keyboard and storing them in
variables

•	 Testing various conditional expressions in if and if-else statements

Build a Hi-Lo Guessing Game App! 39

•	 Using String methods to compare string values with equalsIgnoreCase()

•	 Closing input resources like Scanner objects with the close() method

•	 Running a command line program from inside Eclipse

In addition to practical skills, you’ve also developed a working knowl-
edge of several important programming concepts in Java:

Variables  theNumber is an integer variable, or int, and so is guess.
playAgain is a string variable, or String. We change the values of these
variables as we play the game by entering new number guesses or
answering y or n.

Methods  Methods are what we call functions inside a class in Java.
Math.random() is a method for generating random numbers between 0.0
and 1.0. The scan.nextInt() method accepts numeric input from the
user. System.out.println() is a function for displaying text to the console
or terminal window.

Conditionals  The if-else statements allow us to test whether a condi-
tion, like guess < theNumber, is true and run a different block of code
depending on the outcome of that test. We also use conditional expres-
sions to determine whether to perform a loop again, as in the statement
while (guess != theNumber). This statement will loop as long as guess is
not equal to theNumber. Remember the test for “is equal to” is the double
equal sign: ==.

Loops  A while loop lets us repeat a block of code as long as a condi-
tion is true. We used a while loop in the guessing game to keep asking
the user for another guess until they got the right number. A do-while
loop always runs at least once, and we used one to ask the user if they
wanted to play again.

Classes  The whole HiLo app is a Java class, public class HiLo. A class is
a template. Now that we’ve built a class template for the HiLo guessing
game, we can reuse it to play the guessing game across many different
computers. We also imported the Scanner and Math classes in this app to
accept user input and generate random numbers. We’ll write our own
classes to do something new, and we’ll take advantage of the classes
already included in Java to do everyday tasks like input, math, and more.

Programming Challenges
Try these programming challenges to review and practice what you’ve
learned and to expand your programming skills. If you get stuck, you can
visit the book’s website at https://www.nostarch.com/learnjava/ to download
sample solutions, or you can watch this lesson in the video course online at
http://www.udemy.com/java-the-easy-way/ for step-by-step solutions. Chapter 2
is free to preview, and you can use the coupon code BOOKHALFOFF to
save 50 percent when you buy the full course.

PROGRAMM

ING

 CHA

LLENGES

https://www.nostarch.com/learnjava/
http://www.udemy.com/java-the-easy-way/

40 Chapter 2

#1: Expanding Your Range
For this first programming challenge, change the guessing game to use
a bigger range of numbers. Instead of 1 to 100, try having the user guess
between −100 and 100!

Hi n t 	 Multiply Math.random() by 200 and subtract 100 from the result.

Remember to change both the programming statement that generates
the random number and the prompt that tells the user the range they should
guess between.

If you want an easier game, you can change the range from 1 to 10 and
wow your friends when you can guess the secret number in just four tries.
Try other ranges, like 1 to 1,000, or even 1 to 1,000,000, or use negative
ranges if you want! (Remember that you can’t use commas when writing
the number in Java.) You’ll not only get better at programming but also
improve your math skills. Change the program however you’d like and have
fun with it!

S t r at egi z e Your Gue sse s

You may discover that the more you play the guessing game, the faster you’ll be
able to guess the secret number. You might even stumble onto the fact that you
can guess the number fastest by guessing in the middle of a range with each
new guess. This technique is called a binary search. Guessing a number in the
middle of the possible range cuts the number of possibilities in half each time.

Here’s how it works. For a number from 1 to 100, guess 50. If that’s too
low, you know the secret number must be between 51 and 100, so guess
75, right in the middle of this range. If that’s too low, try a number halfway
between 76 and 100, which would be 87. One reason the binary search is
so valuable is that we can reduce the number of guesses to just seven tries (or
fewer) to find a secret number between 1 and 100, every time. Try it out!

When you get the hang of guessing a number between 1 and 100 in
seven tries or less, try guessing a number from 1 to 1,000 in just 10 tries. If
you’re really brave (and have a pencil nearby), try guessing a number from 1
to 1,000,000. Believe it or not, it should take you just 20 guesses.

#2: Counting Tries
We’ve already built a pretty cool guessing game app, but let’s try adding one
more feature to the game. Your challenge is to count and report how many
tries it takes the user to guess the secret number. It could look something
like the following:

62 is correct! You win!
It only took you 7 tries! Good work!

PROGRAMM

ING

 CHA

LL
ENGES

Build a Hi-Lo Guessing Game App! 41

To accomplish this task, you’ll need to create a new variable (you might
add a line like int numberOfTries = 0;), and you’ll have to add to the number
of tries every time the guessing loop executes. You can do this by increas-
ing the variable numberOfTries by one for each new loop using numberOfTries =
numberOfTries + 1. Be sure to include text to let the user know the number of
tries.

It may take a few tries to get all the code working in the right order at
the right time, but it’s worth the effort and will help you practice your new
skills. In Chapter 3, we’ll build this feature into a different version of the
guessing game. In the meantime, I hope you’ll come up with even more
ideas for improving and changing the game. Playing with your programs,
taking them apart, and rebuilding them can be the best way to learn.

#3: Playing MadLibs
For your final challenge in this chapter, let’s write a completely new pro-
gram. We’ve learned how to ask a user for input and store it in a variable.
We’ve also learned how to print out both text and variable values to the
screen. With those skills, you can build even more interesting and fun
programs.

Have you ever played MadLibs? Let’s try to use our new skills to build a
program in that same style. MadLibs asks a player for various words or parts
of speech, such as a color, a past-tense verb, or an adjective, and then inserts
the words the player chose into a template, usually resulting in a funny
story. For example, if a player gave a color of “pink,” a past-tense verb of
“burped,” and an adjective of “silly” and then inserted them into the tem-
plate “The ____ dragon ____ at the ____ knight,” they would get the result
“The pink dragon burped at the silly knight.”

Now, the challenge is to write a new program, MadLibs.java, with a class
called MadLibs and a main() method that prompts the user for several words.
Those words should each be stored in a different String variable, like color,
pastTenseVerb, adjective, and noun, which you initialize as empty strings. Then,
after the user has entered their last word, the program should print a com-
pleted sentence or story by replacing the empty strings with the words the
user provided, like this:

 System.out.print("The " + color + " dragon " + pastTenseVerb + " at the " + adjective);
 System.out.println(" knight, who rode in on a sturdy, giant " + noun + ".");

Note that the first statement is a print() statement instead of a println().
The print() statement continues printing at the end of the same line, allow-
ing us to build a longer paragraph or story. The println() statement, how-
ever, always skips a line after printing, like when you press enter at the end
of the line. You can write a longer MadLibs story by using different variable
names like noun1, noun2, and noun3. Give it a try, and get ready to laugh at the
funny stories you create! Try to personalize each program you create by
adding new features and making it your own.

PROGRAMM

ING

 CHA

LLENGES

3
C r e a t i n g a GU I f o r O u r

G u e s s i n g G a m e

In this chapter, we’ll create a GUI ver-
sion of the Hi-Lo guessing game from

Chapter 2, as shown in Figure 3-1. When
this version of the program runs, it presents

a graphical, or visual, interface that users will inter-
act with. The GUI version allows the user to play the
game in a desktop window like the applications you
use every day. It’s a professional, windowed app complete with a text field
for the user’s guess, a button to submit the guess, and a label that tells the
user if they’ve guessed too high, too low, or correctly.

44 Chapter 3

Figure 3-1: A GUI version of the Hi-Lo guessing game running on Windows (left) and on
macOS (right)

Best of all, the exact same Java source code produced both versions of
the app in Figure 3-1. With the GUI code we’ll write in this chapter, our
game will be playable on Windows, macOS, and Linux!

Practicing with JShell
JShell works at the command line, accepting text commands and usually
responding with text output. However, JShell also has access to the full set
of Java libraries—prewritten packages of code—and isn’t limited to just
text. Before we start programming our game, let’s create a simple GUI in
JShell as practice.

Creating a GUI in Four Lines of Code
We can create a simple GUI window with just four lines of code in JShell.
Let’s take each statement one at a time. First, enter an import statement into
JShell to import the javax.swing.JFrame class:

jshell> import javax.swing.JFrame

The JFrame class we’ve just imported creates a frame or window using
Java. Next, let’s create a frame using that class. Enter the following declara-
tion to create a JFrame called myFrame:

jshell> JFrame myFrame = new JFrame("Hello!")

The new keyword creates a new object of the JFrame class—in this case, a
GUI window that we’ll program to say "Hello!" in its title bar. JShell responds
with a long line letting us know some of the default properties the window
will have:

myFrame ==> javax.swing.JFrame[frame1,0,0,0x0,invalid,hidden,layout=java.awt.BorderLayou ...

Creating a GUI for Our Guessing Game 45

The information shown after the square bracket is a string representa-
tion of myFrame and its property values, like its size (0x0, which is 0 by 0 pixels)
and whether it’s hidden or visible. Let’s change one of those properties by set-
ting the size to something bigger than 0 by 0 pixels.

The third line of code sets the size of the window in pixels by specifying
a width and height for the frame:

jshell> myFrame.setSize(300,200)

This tells Java to make the window 300 pixels wide and 200 pixels tall,
big enough for us to see the window and title bar.

Finally, let’s show the window on the screen by calling the setVisible()
method:

jshell> myFrame.setVisible(true)

We use setVisible(true) to show a window and setVisible(false) to hide
it. Since we’ve called myFrame.setVisible(true), you should see your window
appear on the screen, as shown in Figure 3-2.

Figure 3-2: Our GUI window on Windows (left) and on macOS (right)

We’ve created a GUI window by entering just four snippets of code into
JShell!

Creating an Interactive GUI in 10 Lines of Code!
I showed the previous example to my students at the university and to my
sons at home, and both groups responded with something like “That’s
really cool, but can you make the window do something?”

Thankfully, the answer is yes. By adding just a few more lines of code,
we can add a button to the window that prints something every time you
click it.

Let’s begin with a fresh JShell. Clear your JShell history by entering
/reset at the JShell prompt:

jshell> /reset
| Resetting state.

46 Chapter 3

Next, let’s use the built-in JShell editor to write a 10-line snippet of code
to create an interactive GUI app that responds to your click. At the JShell
prompt, enter /edit to open the JShell editor:

jshell> /edit

The JShell Edit Pad, which is helpful when we want to write several
lines of code at once or when we want to go back and edit a line we’ve typed
earlier, appears with an empty window as shown in Figure 3-3.

Figure 3-3: The JShell Edit Pad is a convenient editor for
writing longer snippets of code.

In this case, we want to type 10 lines of code that will create an inter-
active GUI window with a button that prints something when it’s clicked.
Enter the following lines, being extra careful with your capitalization and
adding a semicolon at the end of each complete statement to separate the
multiple commands:

import javax.swing.*;
JFrame window = new JFrame("Bryson's Window");

u JPanel panel = new JPanel();
JButton button = new JButton(v"Click me!");

w panel.add(button);
x window.add(panel);

window.setSize(y300,100);
z button.addActionListener(e ->

 System.out.println("Ouch! You clicked me!"));
{ window.setVisible(true);

First, we import all the Swing GUI classes, including JFrame, JPanel,
and JButton. An asterisk (*) at the end of a Java library is called a wildcard
character and means “include every class in this package.” Then, we create
a JFrame just like we did in the previous example. At u, we create a panel
inside the window. The panel will serve as a container for other GUI com-
ponents like labels and buttons.

Next, we add a button with the text “Click me!” v printed on it. At w,
we add the button to our GUI panel, and then we add the panel to the
window at x. Then, we set the size of the window to 300 pixels wide by
100 pixels high y, similar to the previous example.

The lines at z are where the magic happens: here we add an action
listener to the “Click me!” button to respond every time the user clicks the

Creating a GUI for Our Guessing Game 47

button. The action listener will print "Ouch! You clicked me!" to the console
whenever the user clicks the GUI button. We’ll use listeners like this one in
the GUI apps we build in this book to make the programs interact with the
user whenever the user performs an action.

Finally, we make the window visible {, and we’re ready to test the pro-
gram by clicking the button.

When you’ve finished typing all 10 lines of code and double-checked
them for accuracy, click the Accept button in JShell Edit Pad to accept the
code and run it in JShell, as shown in Figure 3-4.

After accepting the code, click Exit to close the JShell Edit Pad. JShell
will run the code snippet, and if you’ve typed everything correctly, you’ll see
a small window pop up like the one in Figure 3-5.

Figure 3-4: After typing all 10 lines of code into
the JShell Edit Pad, click Accept.

Figure 3-5: An interactive GUI
window with a clickable button

Click the button labeled Click me! with your mouse, and you’ll see Java
respond as follows in the JShell window:

jshell> Ouch! You clicked me!
Ouch! You clicked me!
Ouch! You clicked me!
Ouch! You clicked me!

If you close the small GUI window, all you have to do to get it back is
repeat the last line that sets the window to visible. Press enter a couple of
times after clicking back into the JShell command line window to get the
prompt and cursor back and then enter the following:

jshell> window.setVisible(true)

The window reappears when we set the visible property to true; if you
close the window, the visible property becomes false.

This 10-line snippet is cool enough, but now you’ll learn how to build a
game with a GUI!

48 Chapter 3

Setting Up the GUI App in Eclipse
If you still have the HiLo project open in Eclipse from Chapter 2, as in
Figure 3-6, close or minimize the editor window for any other Java files you
may have been working on u. Also, collapse the HiLo project by clicking the
small down arrow next to the HiLo folder in the Package Explorer on the
left side v. This allows us to keep projects together in a single workspace
without getting files mixed up.

�
�

Figure 3-6: Close any open files and collapse the HiLo project folder.

From the Eclipse menu bar, go to File4New4Java Project and
name the project GuessingGame. After you’ve typed in the project name,
click the Finish button at the lower right. This creates the new project
folder in which we’ll develop the GUI version of the guessing game.

Expand the GuessingGame folder in the Package Explorer window and
find the src folder. Right-click (or, on macOS, control-click) the src folder
and select New4Class. Name the new class GuessingGame. Be sure to use
camel case, beginning with an uppercase G for the class name. Check
the box next to the public static void main(String[] args) method stub.
This adds the skeleton of a main() method so that we can run our app as
a stand-alone program.

Before we finish, we’ll need to do one more step differently than in
the command line app we built in Chapter 2. We’re going to change the
superclass from the default java.lang.Object to the javax.swing.JFrame class,
like the JFrame we used in JShell at the beginning of this chapter. A super-
class or parent class in Java is a class that we extend in order to reuse code
that’s already been written, which in this case is the code needed to build a
graphical, windowed interface. The JFrame class in the javax.swing package
is one way we can include GUI components in our own apps, so we’ll use
JFrame to create a window and then customize a version of it to add some
more features. Since the JFrame class is an extension of the Object superclass
itself, we don’t need java.lang.Object because JFrame will inherit the Object
superclass’s code. That means that JFrame will have all the features of the
Object class, plus some. We’ll see how extensions work in a bit.

Figure 3-7 shows these settings in the New Java Class dialog for our
guessing game.

Creating a GUI for Our Guessing Game 49

Figure 3-7: Be sure to change the superclass to
javax.swing.JFrame to prepare for a GUI class.

Click Finish to see the following source code for GuessingGame.java:

u import javax.swing.JFrame;
public class GuessingGame vextends JFrame {
 public static void main(String[] args) {
 // TODO Auto-generated method stub
 }
}

On the first line, Eclipse has imported the javax.swing.JFrame class u to
allow our program to use the GUI capabilities of Swing’s set of packages. In
the second line, we use a new coding superpower, the extends keyword v.

In object-oriented programming, a parent class or superclass can have
child classes that inherit all the methods and attributes contained in the
parent class. Once we write a class that does something important that we
plan to reuse, we can refer to that original class and extend it to add new
functionality without changing the code in the parent class. In this case, a
JFrame parent class has the ability to display text fields, labels, buttons, and
other GUI components that we can customize and arrange for the new
guessing game app.

The JFrame parent class we’re extending in this app will enable us to
display a window with GUI elements like text fields, labels, and buttons by
designing the GUI layout with the WindowBuilder Editor in Eclipse. Let’s
see how the WindowBuilder Editor works next.

50 Chapter 3

GUI Design with Eclipse’s WindowBuilder Editor
The most popular Java IDEs include tools to help programmers build
an attractive GUI in a design view, with a what-you-see-is-what-you-get
(WYSIWYG) interface. WYSIWYG interfaces allow users to position design
elements as they will look in the final product. For instance, Microsoft Word
is a WYSIWYG interface, because it allows you to edit text as it will look in
its final print form. In the same way, Java IDE tools like the WindowBuilder
Editor allow programmers to place GUI components like text fields, labels,
and buttons as they will look in the final windowed application, helping
programmers deliver professional-looking GUI apps.

To open the WindowBuilder Editor, right-click the GuessingGame.java
file in the Package Explorer on the left and then select Open With4
WindowBuilder Editor. A new window that looks like a regular text editor
will open. But, if you look at the lower-left corner of the window, you’ll see
two new tabs, Source and Design. The Source tab is the plain text, source
code view of your application. If you click the Design tab, you’ll see the
design view shown in Figure 3-8.

The WindowBuilder Editor appears only for GUI classes, such as
GuessingGame, that extend JFrame or one of the other GUI superclasses.
Notice that the preview window has a title bar with a Java icon on the left
side and three buttons to minimize, maximize, and close the window. The
preview window in Figure 3-8 looks slightly different on Windows, macOS,
and Linux. This window will be our playground for building a GUI guess-
ing game that looks and feels like a real app.

Figure 3-8: The WindowBuilder Editor’s Design tab makes it easy to build GUI windowed apps.

Creating a GUI for Our Guessing Game 51

Designing the User Interface
Double-click the GuessingGame.java tab at the top of the WindowBuilder
Editor to expand the WindowBuilder design view to fullscreen. This will
create more room for designing the GUI layout. You can double-click the
tab again to restore the normal Java perspective when you’re ready to get
back to programming.

Setting GUI Properties in the Properties Pane
We’ll use the Properties pane to start customizing the GUI window for our
guessing game. The Properties pane can be found on the bottom left of the
Design tab in the WindowBuilder Editor. As you can see in Figure 3-9, if you
click a component in the Components pane (on the left under Structure),
the Properties pane immediately below it lists several properties and values
we can view and edit for that component.

Figure 3-9: The Properties pane helps you customize the properties of each GUI component in your app.

We’re going to build a customized GUI window for the guessing game
app. First, let’s change the title property of this JFrame. In the Components
pane, click javax.swing.JFrame, then scroll down in the Properties pane
until you see the title property. Click in the empty box to the right of title
and enter Your Name's Hi-Lo Guessing Game. (Replace the italicized text with
your name; this is your app, after all!) After you enter the title text, press
enter. The GUI preview on the right will automatically update to show Your
Name’s Hi-Lo Guessing Game in the title bar.

With the title done, let’s set a few other properties to make the GUI
look and behave like we want for the guessing game. Scroll up in the
Properties pane to find defaultCloseOperation (it may just display part of the

52 Chapter 3

name like defaultClose... or something similar if the pane is too narrow).
Click the box to the right of defaultCloseOperation and select EXIT_ON
_CLOSE from the drop-down menu. This means that when you click the
close window button on the title bar of this JFrame, you’ll exit the program.
This is usually the default, but there might be times you want to close a
window but not close the whole application—for example, in a save dialog
or a pop-up window. For this single-window game, though, we want to exit
the application when the main window closes.

Next, we’ll change the way GUI components are arranged inside the
app window. Click the getContentPane() entry in the Components pane,
just under javax.swing.JFrame. A content pane is the interior of the JFrame,
where we’ll build the guessing game GUI layout. Now, find Layout in the
Properties pane and click the down arrow in the right edge of the field.
Select Absolute Layout from the drop-down list of values; this enables us
to place GUI elements with pixel-perfect precision.

Customizing GUI Components in the Palette Pane
Let’s start customizing our guessing game app. You can find the elements
you’ll need for almost any GUI app in the Palette pane. The Palette pane
can be found in the middle of the WindowBuilder Editor on the Design tab.
Note that you can expand or collapse a pane by clicking the small arrow to
the left of the pane’s title. Click the arrow once to collapse the pane. Click
the arrow again to expand the pane. This can be handy when you need extra
room for a large, complex GUI layout.

In the Palette, scroll down until you see the
Components section, as shown in Figure 3-10.

The Palette contains all the standard
components you’re probably already familiar
with, like labels (JLabel), text fields (JTextField),
buttons (JButton), and checkboxes (JCheckBox).
You might have noticed that GUI components
in the javax.swing package all begin with
an uppercase J, followed by the name of the
component in camel case. This makes it easy
to remember the class name for each of the
GUI elements in an app that uses the Swing
toolkit.

Let’s place a label at the top of the GUI
window that says Your Name’s Hi-Lo Guessing
Game. Click JLabel under Components in the
Palette. Then, mouse over the GUI preview on
the right; you should see gridlines appear. By
default, the WindowBuilder Editor provides
these gridlines to help you place elements. Now, hover your mouse near the
top center of the gray content pane (the interior of the JFrame) and click to
place a JLabel in that spot.

When you first place the JLabel, you can edit the text in the label
directly in the GUI preview. Type Your Name's Hi-Lo Guessing Game and press

Figure 3-10: The Components
section in the Palette pane is
where we’ll find the most com-
mon GUI components.

Creating a GUI for Our Guessing Game 53

enter. If you want to change the text later, go to the text property of the
JLabel in the Properties pane on the lower left and type in your text. At first,
you’ll probably only see part of the text in the label, because the label is too
small to show the full text. Click the label, and you’ll see small black resiz-
ing squares on each corner. Click the lower-left corner of the label and drag
it to the left border of the content pane to stretch the label to the content
pane’s left edge. Then, click the label’s lower-right corner and drag to resize
it to the content pane’s right edge.

Now your full label text should fit inside the label at the top of the GUI
preview. Next let’s make the label text centered and bold. First, find the
horizontalAlignment property of the label in the Properties pane. Click the
value and choose CENTER from the drop-down list. Next, find the font
property of the label and click the three dots to the right of the font prop-
erty’s value. A font chooser window will open, allowing you to choose a font,
style, and size. I chose Tahoma, 15 point, and Bold, as shown in Figure 3-11.
Note that you may have to resize your label to fit a larger font.

Figure 3-11: The first label, customized and in place, at the top of the content pane

Let’s add a label for the first prompt a user will see in the game. Click
JLabel in the Palette pane, then place the new label just above the middle
of the content pane. Enter Guess a number between 1 and 100: as the text of
the label. You’ll need to resize the label a little wider than the text for extra
padding.

Just to the right of the label, let’s place a text field for the user to enter
their guess. Click JTextField on the Palette and then drop the text field
into place to the right of the label you just placed.

Resize it so it’s just big enough to hold a three-digit number. Click the
label again and change its horizontalAlignment property to RIGHT to bring
the text closer to the text field, as shown in Figure 3-12.

54 Chapter 3

Figure 3-12: The guessing game now has a label and text field for the user’s guess.

Next, let’s place a button the user can push to submit their guess. On
the Palette, find and click JButton. Mouse over the middle of the GUI pre-
view window and click to place the JButton. Change the text to Guess!.

Finally, place a JLabel below the button, give it the text Enter a number
above and click Guess!, and resize the label to the full width of the JFrame.
Then, change the horizontalAlignment to
CENTER. Later, this label will also be
where we tell users whether they guessed
too high, too low, or correctly. The align-
ment of each component may not be per-
fect yet, but your GUI layout should look
something like Figure 3-13.

Now that we have all the GUI compo-
nents on the screen, we’re ready to make
a few tweaks to balance and center the
layout. First, be sure to save your file.

Aligning GUI Elements
So far, we’ve been positioning GUI components by eye, trying to space them
correctly and center them as much as possible. However, when we run a pro-
gram, we expect the layout to be “perfect.” Fortunately, Eclipse has built-in
tools to help us align components.

First, let’s distribute the four main elements evenly, spacing them the
same distance apart vertically. Select the three labels and the button by
clicking each one while holding down the shift button. For now, don’t
click the text field where the user enters their guess. You should see a small
row of alignment tools appear above the GUI preview window. Mouse over

Figure 3-13: The GUI layout has all
the components, just not perfectly
aligned yet.

Creating a GUI for Our Guessing Game 55

each tool to see a tool tip that tells you what that button does. You may need
to resize your Eclipse window if you don’t see all the tools at first.

Click the tool that looks like stacked buttons (the rightmost icon in
Figure 3-14). All four selected items should now be spaced an equal dis-
tance apart from top to bottom.

Now select just the text field. Move it to
realign it with the label prompting the user to
guess a number. We didn’t include the text field
originally because Eclipse would have distrib-
uted all five components evenly, separating the
text field and its label from each other and creat-
ing five rows instead of four.

No t e 	 If you ever mess up while aligning things (or doing anything else) in WindowBuilder,
you can undo your previous action by pressing ctrl-Z or -Z. This is a great safety
feature in the WindowBuilder Editor and lets you try new things without perma-
nently messing up the layout.

Finally, click the button labeled Guess! and click the alignment button
above the GUI preview (the one near the far right with the tool tip “Center
horizontally in window”). You can center or adjust the other components
as desired. If you want to move two or more components together, you can
shift-click to select both, then click and drag to move them.

When you’re happy with the layout, it’s time to prepare for coding by
naming the components. Take a moment to save your changes.

Naming GUI Components for Coding
The user interface of the guessing game app is ready for the player. To
make the app easier to work with, however, we need to make a few final
tweaks over in the Java source code file, where we’ll be programming the
rest of the game. We need to name each component so that we’ll know how
to refer to it inside the source code.

This step is sometimes called “wiring
up,” because we’ll be connecting each GUI
component needed in the program to vari-
able names that we can access in the Java
source code. Eclipse has been naming each
GUI element for us as we’ve added them,
but we’ll want to change those names. Select
the text field where the user will enter their
guess. If you look in the Properties pane,
you’ll see the very top property is Variable.
The variable name Eclipse has given your
first text field by default is probably some-
thing like textField. Click the value field
beside the Variable property and rename
the variable for this text field to txtGuess,
as shown in Figure 3-15.

Figure 3-15: Rename the variables
for each GUI element so we can
use them easily in the Java
source code.

Figure 3-14: You can align
and space components
evenly using the tools above
the GUI preview window.

56 Chapter 3

The name txtGuess will remind us that it’s a text field and that it stores
the user’s guess. You’ll find that naming GUI components consistently and
logically will help you code more quickly and efficiently, with fewer errors.

After you’ve renamed the text field, select the label at the bottom of
the GUI window that reads “Enter a number above and click Guess!”. This
is the label that will output information for the user to read, like Too high,
Too low, or You win!, so let’s rename the variable lblOutput. This name will
help us remember it’s a GUI label (lbl) and that it’s the one we want to use
for output to display information to the user.

In the Source tab at the lower left of the WindowBuilder Editor window,
you’ll see that Eclipse has been writing the Java source code to produce the
GUI layout you’ve been designing (Figure 3-16).

Figure 3-16: Click the Source tab, and you’ll see Eclipse has coded the GUI components
in Java for us.

Notice that the new variable names you gave the text field (txtGuess)
and output label (lblOutput) are both visible in the source code. Now is a
good time to save the file with all the changes you’ve made so far.

But before we start writing the code for the guessing game app, we’re
going to make an adjustment to the source code.

Connecting the GUI to Your Java Code
Scroll up to the top of the GuessingGame class, and you’ll see that Eclipse has
declared the JTextField txtGuess right at the top of the GuessingGame class:

public class GuessingGame extends JFrame {
 private JTextField txtGuess;

Eclipse does this for text fields by default for a reason. Declaring
text fields at the top level of the class makes it possible to access the text
field (to see if the user’s guess is too high or too low, for example) from

Creating a GUI for Our Guessing Game 57

anywhere inside the class. Text fields are usually used in this way, so Eclipse
declares a private JTextField txtGuess right at the top of the GuessingGame
class instead of in a method or function further down in the class. The
modifier private is used as an object-oriented programming best practice
(a recommended way of doing things). Making something private keeps
other classes from being able to see that part of the code. Since txtGuess
is private, classes other than GuessingGame won’t be able to access it or acci-
dentally change the txtGuess variable, which is what we want.

In this guessing game app, we want to be able to access the value the
user enters into the txtGuess text field, so it’s great that Eclipse has declared
it at the top level of the class. We also want to access the label lblOutput to be
able to change the text displayed to the user (when their guess is too high,
too low, or correct). So we need to add one more declaration to the top of
the class, right under the declaration of txtGuess:

public class GuessingGame extends JFrame {
 private JTextField txtGuess;
 private JLabel lblOutput;

This line of code declares lblOutput as a variable that refers to a JLabel
object in the GUI layout for the app. We’ve chosen to make this object refer-
ence private to hide this data from outside programs, but we’ll still be able
to use it throughout the GuessingGame class.

One final change is to correct the line where lblOutput was originally
declared, down near the bottom of the class. Find the line that looks like
this, further down in the code:

 JLabel lblOutput = new JLabel("Enter a number above and click Guess!");

And change it to this:

 lblOutput = new JLabel("Enter a number above and click Guess!");

Notice we’ve removed the additional JLabel declaration. If you leave
this second JLabel declaration in the program, your app won’t work because
you’ve already declared lblOutput to be of type JLabel at the top of your class.
If you leave the second JLabel declaration, Java will think you mean to have
two separate JLabel objects named lblOutput. By removing the second JLabel
declaration, you’re telling Java to use the one JLabel lblOutput you’ve created
at the top of the program and initialize it with a text value of "Enter a number
above and click Guess!".

While we’re declaring variables at the top level of the GuessingGame class,
let’s add one more important variable: theNumber. Remember in the text-
based version of the game, this is what we named the secret, random num-
ber the user is trying to guess. Add a declaration for theNumber after txtGuess
and lblOutput as follows:

public class GuessingGame extends JFrame {
 private JTextField txtGuess;

58 Chapter 3

 private JLabel lblOutput;
 private int theNumber;

Now that our variables are correctly declared at the top of the class,
we’re ready to begin coding the GUI version of the guessing game app. In
the next section, you’ll learn how we can get the user’s guess from the GUI
text field and check to see if it’s too high or too low. We’ll also show the out-
put text in the GUI label lblOutput to help the user make their next guess.

Adding a Method to Check the Player’s Guess
Now that the GUI is wired to the Java source code with the private variables
we added, txtGuess and lblOutput, we’ll begin coding the logic of the guess-
ing game.

Let’s write a method called checkGuess() near the top of the GuessingGame
class. The signature, or skeleton, of this method will look like this:

public class GuessingGame extends JFrame {
 private JTextField txtGuess;
 private JLabel lblOutput;
 private int theNumber;
 public void checkGuess() {
 }

Notice that the method is declared as public. Variables in a class are
usually declared as private, but methods or functions that operate on
those variables are usually declared as public so other classes can call
on them. You can think of it like your checking account. Your balance
is private and can only be accessed by you or the bank, but the function
of making deposits is public (other people can deposit money into your
account).

The second term, void, tells Java that we’re not expecting a return value,
which is a value that a function or method outputs, from this function. For
example, a conversion calculator for Fahrenheit to Celsius called convertFtoC()
could take a value representing a temperature in Fahrenheit and return a
numeric value representing the converted temperature in Celsius. In this
guessing game application, the checkGuess() method will not return infor-
mation like this to the rest of the program. Instead, we’re going to program
the app to display information to the user through the graphical user inter-
face, so we use the void return type, which doesn’t return a value.

Finally, we’ve named the method checkGuess() and provided the opening
and closing braces that will contain the code that tells the program how we
want to check a user’s guess.

Creating a GUI for Our Guessing Game 59

Getting Text from a JTextField
Let’s start building the checkGuess() method, which will take the string the
user enters and check it against the number to guess. Add this line between
the two braces for the checkGuess() method:

 public void checkGuess() {
 String guessText = txtGuess.getText();
 }

This line creates a new String variable called guessText that will hold
the number the user enters into the GUI text field. To get the text the user
entered, we’ll need to use the getText() method by calling txtGuess.getText()
and storing the result in the new string variable called guessText.

You may see a window pop up near where you’re typing when you add
the dot operator (.) after txtGuess, as shown in Figure 3-17.

Figure 3-17: After you type txtGuess and the dot operator (.), you may see
a helpful code recommendation window appear.

This is known as a content assist—Eclipse is trying to help by suggesting
lines of code to finish the statement you’re working on. This particular kind
of content assist is also called a code recommender, because it recommends
common code options, like methods in the current class or object. Code
recommendation is one feature that makes Eclipse a powerful IDE for
professional Java developers. It’s not only faster in most cases to select a
code recommender suggestion, but doing so also helps prevent errors and
makes coders more efficient as they develop complex applications.

Now, we need to create a string to hold the message telling the user
whether their guess was too high, too low, or correct. Let’s declare one
additional string:

 public void checkGuess() {
 String guessText = txtGuess.getText();
 String message = "";
 }

We don’t know yet whether the user’s guess is too high or too low, so
we’ve initialized message to an empty string with a pair of double quotes ("").

60 Chapter 3

After we test the user’s guess against the random number, or theNumber, we’ll
update this string with more information before we output it in the GUI
label. To test the user’s guess, we’ll need to turn their text entry, currently
stored in guessText, into numeric form so that we can compare it to theNumber.

Converting Strings to Numbers
In the text-based version of this app we made in Chapter 2, we used a
Scanner object to scan a number value from the keyboard text the user
entered. A scanner could work in a GUI, but there’s a more compact way
to do this that will work better for this version.

Just like the Math class had Math.random() so that we could generate a
random number, there is also a class for working with integers, called
Integer. The Integer class has several functions that are useful for working
with whole numbers, including a method to look for integers in strings of
text, Integer.parseInt(). Enter the following line below String message = "".

 public void checkGuess() {
 String guessText = txtGuess.getText();
 String message = "";
 int guess = Integer.parseInt(guessText);
 }

First, this line declares guess to be an integer variable. Then, it searches
for, or parses, an integer from the text the user entered. For example, the
string "50" will become the number 50. Finally, it stores the number in the
variable guess. We need the numeric version of the user’s guess in order to
compare it to theNumber, using the comparison operators < and >.

With the user’s guess stored in the variable guess, we’re ready to test it
against the computer’s secret, random number theNumber. We haven’t actually
programmed theNumber to hold a value yet, but we’ll do that soon. Comparing
the guess with theNumber will look like it did in the text-based version of the
game, except we won’t print to the console using System.out.println(). Instead,
we’ll store output for the user in the string variable message that we created:

 String guessText = txtGuess.getText();
 String message = "";
 int guess = Integer.parseInt(guessText);
 if (guess < theNumber)
 message = guess + " is too low. Try again.";
 else if (guess > theNumber)
 message = guess + " is too high. Try again.";
 else
 message = guess + " is correct. You win!";
 }

Notice the three if-else statements are virtually identical to those in
the text-based version of the game, except that we’re storing the output
message (too high, too low, or correct) in a variable instead of outputting
it directly to the console window. We still need to show message to the

Creating a GUI for Our Guessing Game 61

user, so we’ll do that using the lblOutput GUI label. We’ll use the setText()
method like so:

 else
 message = guess + " is correct. You win!";
 lblOutput.setText(message);
 }

This command will show the output message to the user in the GUI
window by changing the text property of the JLabel called lblOutput to the
correct String variable message based on the user’s guess.

Your completed checkGuess() code should look like the following:

 public void checkGuess() {
 String guessText = txtGuess.getText();
 String message = "";
 int guess = Integer.parseInt(guessText);
 if (guess < theNumber)
 message = guess + " is too low. Try again.";
 else if (guess > theNumber)
 message = guess + " is too high. Try again.";
 else
 message = guess + " is correct. You win!";
 lblOutput.setText(message);
 }

Next, we need to write the code that assigns a random value to
theNumber. We’ll use the newGame() method, because we want to have a new
random number every time the user begins a new game.

Starting a New Game
We want to tell the computer to pick a new, secret, random number when-
ever a new round of the guessing game starts, so it makes sense to do this in
a method in the GuessingGame class. By doing it this way, we’ll be able to call
on the method every time the user wins and wants to play a new game.

The method signature of the newGame() method looks similar to the
checkGuess() method. Place it just after the closing brace for checkGuess() and
before public GuessingGame():

 lblOutput.setText(message);
 }
 public void newGame() {
 }
 public GuessingGame() {

We’ll make this method public so that it can be called from an outside
class. We also need to let Java know that just like the checkGuess() method,
this method has no information that needs to be returned, so its return
type is void. Finally, the method’s name is newGame, and it includes open and

62 Chapter 3

close parentheses, (). The method body is empty right now, with nothing
between the braces, but we’ll address that next.

A new game in this app just means that we’re telling the computer
to pick a new random number. The code to assign this random value to
theNumber will look and function like it did in the text-based version of the
game, except now we’re putting this code inside its own, separate method.
So, the finished newGame() method should look like this:

 public void newGame() {
 theNumber = (int)(Math.random() * 100 + 1);
 }

That’s it! Now we have all the necessary pieces in place to build a func-
tional guessing game app, so we just have to connect them to the GUI inter-
face. Once the app can listen for user events so it can respond to the user
clicking the “Guess!” button, we’ll be ready to run the game!

Listening for User Events: Click to Guess!
The last step we need to complete before running the app is to connect the
btnGuess button (labeled “Guess!”) with the function that checks the user’s
guess, checkGuess(). With Java, we can use event listeners to do this. Event
listeners are just code that tells the program to wait, or listen, for user inter-
action events, like button clicks, mouse movement, or keyboard entries.

Go back to the GUI preview of the app by clicking on the Design tab. In
the GUI preview window, find the “Guess!” button, as shown in Figure 3-18,
and double-click it.

Figure 3-18: In the Design view, double-click the “Guess!” button to add an event listener to the code.

Creating a GUI for Our Guessing Game 63

Double-clicking the “Guess!” button automatically opens the Source tab,
where you’ll notice Eclipse has added new code. This new code is the skeleton
of an event listener—in this case, an ActionListener() for the event that occurs
when the user takes an action on the JButton btnGuess. In this case, the action
is clicking the button.

Eclipse has added everything except the action we want to perform
when the user clicks the button. Let’s take a look at the event listener code
Eclipse has created for us.

 JButton btnGuess = new JButton("Guess!");
 u btnGuess.addActionListener(new vActionListener() {
 w public void actionPerformed(ActionEvent e) {

 }
 });
 btnGuess.setBounds(172, 149, 89, 23);
 getContentPane().add(btnGuess);

The event listener for an ActionListener(), the specific listener that
handles button clicks, is connected to btnGuess with the addActionListener()
method at u. The next couple of lines of code are all built inside the paren-
theses for the addActionListener() function.

Inside the addActionListener() method, the first thing we see is the
keyword new, letting us know that Eclipse is creating a new object of the
ActionListener class at v. What makes this new object different from the
ones we’ve seen in the past, though, is that it’s an anonymous inner class,
meaning that it doesn’t have a variable that refers to it and it’s created
entirely inside the GuessingGame class. Anonymous inner classes can help
us code faster since we don’t need to build a completely separate class to
handle short, quick events like a button click. Instead, we can insert the
code for an event handler right where we create the button. In this case, the
ActionListener will be listening for just a button click, so it’s a perfect candi-
date for an anonymous inner class.

Eclipse creates the skeleton for the anonymous inner class, but we still
need to code the button’s behavior. This next section of code will go inside
the braces of the actionPerformed() method at w. The actionPerformed()
method is where we describe what we want the app to do when the user has
clicked btnGuess. The method accepts an ActionEvent as an argument, which
is the event, or user action, the listener is listening for. In this case we’ve
named the ActionEvent e, but you can use any variable name you’d like.
When the user enters a guess and clicks the “Guess!” button, that action
is assigned to e, and we need to check their guess with the checkGuess()
method we created earlier:

 btnGuess.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 checkGuess();
 }
 });

64 Chapter 3

Thanks to Eclipse, the only part we had to add was the checkGuess();
command. The automatic code completion feature has saved us time and
helped us avoid typographical errors.

With this section of code in place, now we just need to tell the app what
to do on startup. Take a moment to save your work so far.

Setting Up the GUI Window

Before we run the game for the first time, we need to tell the program
what to do to set up the GUI window. This includes building the GUI inter-
face, starting a new game by calling the newGame() method, and setting the
desired width and height dimensions of the window.

Inside the braces for the main() method near the bottom of the file, add
the following lines of code:

 public static void main(String[] args) {
 u GuessingGame theGame = new GuessingGame();
 v theGame.newGame();

 }
}

The line of code at u creates a new GuessingGame called theGame. The line
at v will start the guessing game with a new random number.

Now, let’s give Java an idea of the size we want the window to be. For a
GUI desktop app, we can specify the size of the frame for the app using the
setSize() method, entering the width and height of the window we want to
create.

 public static void main(String[] args) {
 GuessingGame theGame = new GuessingGame();
 theGame.newGame();
 theGame.setSize(new Dimension(450,300));

The setSize() method requires a parameter of the Dimension type that’s
built into the java.awt library (.awt is short for abstract window toolkit). The
new Dimension() inside the parentheses for setSize() tells Java to create an
object of type Dimension with width and height parameters of 450 pixels
wide by 300 pixels tall. But we haven’t imported the java.awt library yet,
which means Eclipse doesn’t know what Dimension refers to, so your Eclipse
editor will tell you there’s an error with this statement by underlining the
class name Dimension in red. If you click the word Dimension in the editor,
Eclipse shows you a list of Quick Fix options, as shown in Figure 3-19. (If
you aren’t able to get the Quick Fix pop-up to display, press ctrl-1 or -1
after placing your cursor in Dimension.)

Creating a GUI for Our Guessing Game 65

Figure 3-19: Eclipse recommends Quick Fix options for the new code we’ve entered;
choose the top option to import the correct class.

We want to make use of the Dimension class that’s already provided in
the java.awt package, so the topmost Quick Fix option, Import 'Dimension'
( java.awt), is the right one for this situation. Click it, and Eclipse will add
java.awt.Dimension to the list of imported classes at the top of the file.

import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.SwingConstants;
import java.awt.Dimension;
import java.awt.Font;
import javax.swing.JTextField;

Finally, add this line to the main() method to make the app visible on
the screen:

 theGame.setSize(new Dimension(450,300));
 theGame.setVisible(true);
 }

This command calls the setVisible() method on the GuessingGame object
theGame. Remember, GuessingGame extended the class JFrame, so theGame is also
a descendent of the JFrame parent class. We want to set the visible property
of the main JFrame holding the GUI version of the guessing game to true,
which is a Boolean value.

There are only two Boolean values, true and false (both spelled with all
lowercase letters), and these are used in Boolean expressions. Boolean expres-
sions are any set of arguments that can be evaluated to true or false. The if
statements we used in the checkGuess() method, like the expression (guess <
theNumber), are just one example we’ve already seen. When we evaluate this
expression and check whether guess is less than theNumber, the expression
evaluates to either true (meaning guess is less than theNumber) or false (guess
is not less than theNumber). The result of that Boolean expression determines
whether the statement following the if statement will run.

The complete main() method for the GuessingGame class is as follows:

 public static void main(String[] args) {
 GuessingGame theGame = new GuessingGame();
 theGame.newGame();
 theGame.setSize(new Dimension(450,300));
 theGame.setVisible(true);
 }

66 Chapter 3

Time to Play!
With your code complete, now is a good time to save the GuessingGame.java
file. Once you’ve done so, click the run button or select Run4Run from the
menu. The game window will appear.

Try entering some guesses and see if the app works. While you’re playing
the game, check each component to make sure it works. Make sure to test the
“Guess!” button, the label at the bottom, and the text field. If you spot prob-
lems, go back and check your code. Pay attention to when or where the error
occurs to narrow down the source. You’ll get better at finding errors as you
learn to code. Figure 3-20 shows how the app might look when it’s working
properly.

Figure 3-20: The “Guess!” button works!

When your game is playable all the way through, you’re ready to take
the next step.

Right now, the game is playable, but only until you win. The current
version of the app doesn’t have the code to tell Java to start a new game
every time we win the current one.

First, let’s set it up so we can keep playing the game even after we win
once, and then we’ll make a few tweaks to the user interface to provide a
better user experience.

Adding a Play Again Feature
Just like we did in the first text-based version of the game, let’s add a play
again feature. We created a newGame() method already, but we only called
that method when setting up the game for its initial display in the main()
method of the app.

We need to either change the GUI or change the app behavior. We
could add a Play Again button for the user to click when they want to play
another round, or we could just make the app automatically start a new
game every time the user wins.

The benefit of adding a Play Again button is that it would be easy to
understand from the user’s perspective. However, we wouldn’t want the
Play Again button to be visible in the GUI window all the time, because it’s

Creating a GUI for Our Guessing Game 67

needed only when the user wins. One option would be to add a button but
make it invisible while the game is running, having it become visible only
when the user wins. In order to keep our game simple, we won’t do this here,
but if you’re interested in trying it out, see Programming Challenge #2 on
page 73.

Instead of adding a button, let’s change the app’s behavior so that a
new number is picked automatically after the user wins the current round.
This requires changing only one section of the program, the else state-
ment that handles a guess matching the random number. If the user has
won a round, a new round should begin automatically. This makes intuitive
sense—no extra buttons, no decisions to make. If the player decides they’re
done playing, they can simply close the window. We’ll add this behavior by
changing the following lines:

 else
 message = guess + " is correct. You win!";

We’ll call newGame() to start a new game. To add the call to the newGame()
method inside this else statement, we’ll group two statements (setting the
variable message and calling newGame()) together as one block like so:

 else {
 message = guess +
 " is correct. You win! Let's play again!";
 newGame();
 }

The braces group these two statements as a single block of code to be
executed together whenever the else statement is selected as the correct
program path. Without the braces, only the first line after the else state-
ment would be executed, and the newGame() method would run after the
if-else statements are evaluated. This would make the game change the
secret number every time the user tried to guess.

Notice also that we added Let's play again! to the end of the message
string. This lets the user know that they’re able to play again just by guess-
ing and can expect the computer to pick a new number each round. Make
these changes, save the program, and run it again to see the new version of
the game!

Improving the UX
As you play the game, you may notice a few elements of gameplay that could
make the user interface even better. For example, if we could have the app
accept a new guess either when the user clicks the “Guess!” button or when
they press enter from the keyboard, that would provide a more natural and
intuitive user experience (UX).

One other problem is that when we want to guess a new number, we
have to highlight and select the old number (or, alternatively, press the

68 Chapter 3

delete or backspace key) to clear the previous guess. We also have to click
back into the text field, because the focus switches to the “Guess!” button.
To improve the user interface, we could have the cursor return to the text
field after each guess and automatically highlight or delete the previous
guess’s text so that the new guess replaces the old one.

Let’s tackle these two items now.

Allowing Users to Press Enter to Guess
The first improvement we’ll make is to allow the user to press enter
to submit their guess. First, go to the Design tab and right-click the
“Guess!” button. In the pop-up menu, select Add event handler4action4
actionPerformed.

Just like when we created an event handler for btnGuess, Eclipse will
automatically add the code to create an action listener for txtGuess, as
shown in the following code snippet. And, just like we did before, we’ll add
the checkGuess() method inside the braces of the actionPerformed() portion
of this code. The only action event we usually want to handle from inside a
text field is the user pressing the enter key.

 txtGuess.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 checkGuess();
 }
 });

After you add this line, save the file and run it again. Now when we
press the enter key, it activates the checkGuess() method. The “Guess!”
button still works, so the user has their choice of interacting only by key-
board or with their mouse.

Automatically Removing Old Guesses
Now let’s solve the issue of having to click back into the text field to delete
our old guesses. To address this, we’ll need to learn a couple of new methods
for working with JTextField objects like txtGuess.

First we have to consider when we want text to be selected. For the
guessing game, after the user’s guess is evaluated is probably the right time
to enable the user to guess again. In the code, this would be at the end of
the checkGuess() method, as we want it to occur after the user has made one
guess and is ready to make another.

So, we know we need to add code inside the end of the checkGuess()
method to place the cursor back into the txtGuess text field and select the
text from the user’s previous guess. But how do we know which commands
would place the cursor in the text field and select all the text? This is a
great time to use the content assist feature in Eclipse. Type the name of the
object, txtGuess, followed by the dot operator (.), and Eclipse will display a
list of available methods, as shown in Figure 3-21.

Creating a GUI for Our Guessing Game 69

Figure 3-21: The content assist feature displays all the methods available for the
JTextField txtGuess.

You’ll see that there are dozens of methods available for working with
JTextFields like txtGuess, but the one we’re looking for is requestFocus(). The
documentation for this function says, “Requests that this Component gets
the input focus.” The focus in this case is the cursor. This method will do
exactly what we want and request that the cursor be placed back in the text
field every time the user guesses again.

Finally, we want to select all the text from the user’s previous guess so
that their new guess will replace the old one automatically. To select all the
text in a text field, use the selectAll() method, which is also listed in Eclipse’s
content assist feature suggestions. Add both these lines to the end of the
checkGuess() method, right after the line for lblOutput.setText(message); and
right before the closing brace:

 lblOutput.setText(message);
 txtGuess.requestFocus();
 txtGuess.selectAll();
 }

Now is a good time to save your application. When you try running the
game again, you should feel a much smoother, more intuitive user experi-
ence. The guessing game finally has an elegant, easy-to-use GUI that provides
a simple UX. Our game is easy to play, but a challenge to master. It’s just like
the games that we play for fun, but we’ve built this one from scratch, using
Java and the Swing toolkit for a professional appearance.

Now, we have a great app all around, except for one important thing:
security. You may ask, “What? Security? I thought we were just building a
fun GUI game!” And that’s true—the program works beautifully, but only
as long as the user enters their numbers correctly.

What happens if the user’s fingers slip and they press enter or click the
“Guess!” button before they’ve typed their guess? What if they enter any
noninteger text, like blah, as a guess? Figure 3-22 shows what happens in
Eclipse when the user enters bad input.

70 Chapter 3

Figure 3-22: Bad things happen when the user enters bad data, like blah, in the text field.

As you can see, our console window is now filled with errors. The bad
input resulted in an exception—an unexpected or faulty programming
situation. The first line of output in Figure 3-22 tells us there was a
NumberFormatException because the string "blah" is not recognized as a
number. You’ll need to learn how to handle exceptions in the programs
you create.

Handling Bad User Input
Java provides a safe way of anticipating and dealing with exceptions, the
bad things that can happen when a program runs. In addition to bad user
input like we just discussed, exceptions can include missing files (a file gets
deleted, or you remove a USB drive unexpectedly) or network problems
(such as a missing connection or a bad server).

We call the code built for dealing with exceptions an exception handler.
An exception handler deals with exceptional situations. But how do we
know when an exception might occur? Do we have to predict everything
bad that could happen when a program is running?

Many of the situations in which errors could occur are particular types
of events, like user input, file input/output, or network access. For example,
think about the exceptions we listed previously. Bad user input could happen
any time we ask the user for input of a certain type. A missing file could
be a problem whenever we’re reading or writing files; for example, when
viewing and saving pictures from a photo app. If we can anticipate possible
exceptions and write exception handlers to deal with those exceptions, our
code will be safer, more secure from malicious hackers who might want to
crash your program by entering bad input, and more reliable.

In the case of the guessing game, the exception occurred when we
asked the user for a number, but they entered text instead. Specifically, the
exception was triggered when we tried to parse an integer out of a string
that didn’t contain an integer. User input is a common source of exceptions,
both accidental and intentional. An example of the latter is a hacker trying
to break your program.

Creating a GUI for Our Guessing Game 71

Java gives us a clean way of handling exceptions with the try-catch state-
ment. The idea of a try-catch block is that we want the program to try to do
something that we know might cause an exception and catch, or handle, the
exception that might occur rather than allowing it to break the program.
The catch block executes only when an exception happens.

The last part of a try-catch is the optional finally block. In a try-catch-
finally statement, the finally block will always execute if it’s provided,
regardless of whether there’s an exception. If there’s no exception, the
finally block will still run after the try block finishes. If an exception
occurs, the finally block will run after the catch block has completed.

The format of a try-catch typically looks something like this (don’t type
this into your code; this is just an example of the format):

 try {
 // Something that could cause an exception, like getting bad input
 } catch (Exception e) {
 // Handle or recover from the exception, like asking for good input
 } finally {
 // Any wrap-up code; this will always run last, exception or not
 }

Notice we group statements for each part of the try-catch-finally state-
ment with braces, just like we do for if-else and loop statements. The catch
part requires an Exception parameter; this can be a specific exception, like
NumberFormatException, or we can use the base class Exception. This parameter
will receive information about the Exception, like what line number the
exception occurred on.

To place the try-catch-finally blocks correctly in our game’s code, we
need to think about where the exception might occur (and wrap that code
inside a try block), what we want to do if there is an exception (and put that
in a catch block), and what we want to do after either the try or catch block
finishes (this part goes inside the finally block).

Because the user input problem occurred when we tried to parse an
integer out of text the user entered, we want to wrap that code in a try
block. Let’s put the try keyword and an opening brace right before the line
that parses the integer out of the text:

 public void checkGuess() {
 String guessText = txtGuess.getText();
 String message = "";
 try {
 int guess = Integer.parseInt(guessText);
 if (guess < theNumber)

If the user didn’t enter a number, we can’t test for too high or too low,
so the try clause will go all the way to the end of this pair of if-else state-
ments. Place a closing brace for the try block after the closing brace for the
else statement, as shown in the following listing. The catch keyword should

72 Chapter 3

go next. In this game, if a user enters bad input, we just want to ask them
to enter a whole number between 1 and 100. We can do that with the message
string that gets displayed in lblOutput later. So, the catch block should look
like this:

 else {
 message = guess +
 " is correct. You win! Let's play again!";
 newGame();
 }
 } catch (Exception e) {
 message = "Enter a whole number between 1 and 100.";
 }

The last step we want to take, whether there was an exception or not, is
to show the output message, request the focus for the text field, and select
all the text to prepare for the next entry. These three statements will go
into the finally block, after the closing brace of the catch statement we just
added:

 } finally {
 lblOutput.setText(message);
 txtGuess.requestFocus();
 txtGuess.selectAll();
 }
 }
 public void newGame() {

You may notice that the statements inside each of the try-catch-
finally blocks are indented to make the code easier to read. Remember,
there’s a shortcut in Eclipse that will automatically indent everything cor-
rectly after you’ve made any changes. Just select all the code, then go to
Source4Correct Indentation.

Save your app and run it a few times to test the user interface. Test a
few nonintegers to make sure the exception handling works the way it’s sup-
posed to. If you run into errors that prevent the file from compiling, check
your braces. Whenever we add blocks around existing code, braces are the
first place to check for errors. Once your try-catch-finally statements are in
place, you’ve got a more reliable, more predictable, and safer version of the
GUI guessing game app.

Safe programming isn’t just a nice touch—it’s often a critical part
of writing good software. For our guessing game, the consequences of
bad code don’t seem dire. But think about the code running on a medi-
cal device, a satellite, a car, an airplane, or the power grid that delivers
electricity to your home and city. Secure code is vital to our safety and
security. And even a small game or app running unsecure code on your
smartphone could expose your data to hackers. Safe programming is
always a smart practice.

Creating a GUI for Our Guessing Game 73

What You Learned
In the GUI version of the guessing game app, we’ve grown our Java skills to
include all the following:

•	 Creating GUI windows by importing the javax.swing package

•	 Setting up a GUI app in Eclipse

•	 Designing a GUI with the WindowBuilder Editor

•	 Using the Properties pane to change GUI component properties

•	 Naming GUI components consistently for easy use in Java code

•	 Connecting GUI elements to Java variables and programming code

•	 Getting user text from a JTextField and using it in a program

•	 Listening for user events, like button clicks

•	 Improving the user experience, or UX, by testing the app with the user
in mind

•	 Handling exceptions with try-catch-finally

Programming Challenges
Try these challenges to review and practice what you’ve learned and to
expand your programming skills by trying something new. If you get stuck,
visit https://www.nostarch.com/learnjava/ for sample solutions.

#1: Showing Users How Many Tries They Took
Try changing the winning message to tell the user how many tries they took
when they win, as in the following:

62 is correct! You win after 7 tries!

To accomplish this task, you’ll need to create a new variable (like
numberOfTries) to store how many times the user guessed, add to the number
of tries every time the checkGuess() method runs successfully, and display
the number of tries to the user when they win.

As an alternative version, you could begin the game with seven or eight
tries and then subtract a try every time the user guesses. When the last
guess has been used, you could tell the user they lost, show them what the
correct number was, and start a new game. Give it a shot!

#2: Showing and Hiding a Play Again Button
When we built the GUI for this chapter’s guessing game, we decided
not to include a Play Again button because it would have cluttered the
interface when it wasn’t in use and it would really only be needed at the
end of the game. As it turns out, we can hide a GUI component with the
setVisible(false) method. Then we can show it again with setVisible(true),
just as we did with our JFrame.

PROGRAMM

ING

 CHA

LLENGES

https://www.nostarch.com/learnjava/

74 Chapter 3

First, we could add a Play Again button, called btnPlayAgain, to the GUI
layout. In the code after the button is created, we could call btnPlayAgain
.setVisible(false) to hide the button. In the winning else statement in
checkGuess(), we could call btnPlayAgain.setVisible(true) to show the button
instead of starting a new game. Once you’ve written that code, remember to
double-click the button in the GUI preview to add an event listener, call
newGame() in that listener, and then hide the button again.

One important note before you start: unlike with the other button
(btnGuess), you need to change the the visible property to hide and show
the button from several places in the code. As with txtGuess and lblOutput,
you’ll need to declare private JButton btnPlayAgain at the top of the class, but
make sure not to redeclare the button in the code below it.

When you get it working, the game should start with the Play Again
button hidden, and the button should appear when you win the game.
When you click the button, a new game will start, and the button will dis-
appear again. Play the game with the button, and if you think of any other
improvements for the UX, go ahead and try them!

#3: Creating a GUI MadLib
Look back at the MadLibs.java program you built in Chapter 2 (Program
ming Challenge #3 on page 41) and create a new MadLibGUI.java app
that prompts the user for several words in a graphical user interface with
labels and text fields, like txtColor, txtPastTenseVerb, txtAdjective, and
txtNoun. Add a button that the user can press to generate a MadLibs-style
story.

Explore and play around with several more properties of the GUI ele-
ments in the WindowBuilder Editor, including background colors, fonts,
initial text values, and more. When the user clicks the button, the program
should display the completed MadLibs story in a JLabel or a JTextArea, as
shown in Figure 3-23.

Figure 3-23: A GUI MadLibs app

PROGRAMM

ING

 CHA

LL
ENGES

4
C r e a t i n g Yo u r Fi r s t

A n d r oid App

To build the mobile version of the Hi-Lo
guessing game app, we’re going to use

Android Studio. If you didn’t set this up
in Chapter 1, go back to “Installing Android

Studio for Mobile App Development” on page 8
and set it up. As with the GUI version of the game,
we’re going to create a user interface for the app, as
shown in Figure 4-1. The apps you’ve created so far
could only be run on your desktop computer, but Android apps can run
on any Android device, including phones, tablets, watches, TVs, and so
on. If you don’t own an Android device, don’t worry—you can still code
for Android, as the Android emulator that comes with Android Studio
lets you simulate running a device.

76 Chapter 4

Figure 4-1: The guessing game will become a mobile app in this chapter. The app
runs on a simulated Android phone (left) and on an actual Android tablet (right).

Figure 4-1 shows our app running on the Android emulator, simulating
how the app looks on a Nexus 6P, and on an Android tablet. Both versions
are running the same code—and, even more conveniently, we can reuse
a lot of the Java code we built for the previous desktop versions because
Android is built on Java!

Notice that the emulator and the actual device look very similar, with
some minor differences to account for the different screen sizes between
the phone and the 7-inch tablet. In the same way that you can write a Java
app for Windows and run it on macOS or Linux, you can write an Android
mobile app in Java and run it on any of literally thousands of Android
devices. Let’s get started building your first Android mobile app!

Starting a New Android Studio App Project
The first time you start Android Studio, it may take a few minutes to update
and run. When it starts, you’ll see a screen like the one shown in Figure 4-2.
Select the option labeled Start a new Android Studio project.

Name your new project GuessingGame, with no space. If you have a web-
site, you can enter it in the Company Domain field, as shown in Figure 4-3.
Otherwise, leave the default example domain. Next, choose a project loca-
tion. I’ve set up a folder called AndroidProjects to keep things organized, and
you should do the same.

Creating Your First Android App 77

Figure 4-2: Once Android Studio finishes setting up, choose Start a new
Android Studio project.

Figure 4-3: Name your new Android Studio project GuessingGame, with
no space.

Click Next after naming your project. Now you’ll have the opportu-
nity to choose which Android version number your app should run on.
The Android platform evolves rapidly as new devices and capabilities are
developed, so we’ll need to pick a target. Fortunately, Android Studio

78 Chapter 4

is regularly updated with both the latest Android versions and informa-
tion on how many devices still use the older versions. You’ll also need to
select a software development kit (SDK) or application program interface (API)
level when you choose which versions of Android to support. SDK and
API levels include tools you’ll use to develop your app, but they’re tied to
specific versions of Android. The Target Android Devices window, shown
in Figure 4-4, allows you to choose a minimum SDK or API level for each
app you develop.

Figure 4-4: Choose the Minimum SDK level for the Android
devices you’re developing for.

Choose API 16 (Android 4.1, Jelly Bean) as the minimum SDK for the
guessing game app. Android Studio will tell you that this runs on more
than 99 percent of active Android devices. Click Next.

The New Project wizard will ask you what kind of activity you want to
add to your app. An activity is just something the user can do. Each activity
usually has its own screen layout with a user interface, like the ones shown
in Figure 4-5.

There are lots of choices for the main activity for an app, such as
Google Maps, Login, Settings, Tabbed Activities, and more. The Basic
Activity will give us a great foundation for the guessing game app, so
choose that option and click Next.

We’ll use the default names provided by Android Studio on the follow-
ing screen (shown in Figure 4-6): MainActivity for the activity name and
activity_main for the layout name. The activity file contains the Java source
code that runs the app. The layout is a separate file that contains the app
interface. Click Finish to complete your app project setup.

Creating Your First Android App 79

Figure 4-5: Choose Basic Activity as the basis for your app.

Figure 4-6: Leave the default values for activity name and layout name.

80 Chapter 4

The project may take a few moments to build, as Android Studio
creates the project files and sets up the GuessingGame app project. After it
finishes loading, Android Studio will open the project to a default view that
looks like Figure 4-7.

Figure 4-7: The default project view in Android Studio, complete with a GUI mobile layout view

If your project doesn’t open with this screen, click the Project tab in
the upper left, expand the app folder in the Project Explorer, expand the
res (short for resources) folder, expand layout, and then double-click the
content_main.xml file to see a view similar to Figure 4-7.

Building the GUI Layout in Design View
Android apps separate the layout from the app code (the activity), so this
app will be a little different from the desktop app we wrote in Chapter 3.
The layout isn’t described in Java but in eXtensible Markup Language (XML).
Fortunately, despite this difference, we can still use a drag-and-drop palette
similar to Eclipse’s WindowBuilder Editor to design the GUI view. The main
difference in Android Studio is that the components have been named with
mobile apps in mind.

Like the WindowBuilder Editor, Android Studio has two tabs, one for
the design view and one for the source code. Click the Design tab in the
lower-left corner of the main window containing the content_main.xml file.
You’ll see the design view shown in Figure 4-8.

Creating Your First Android App 81

�
�

�
�

Figure 4-8: Android Studio has a design view similar to the WindowBuilder Editor in Eclipse.

Figure 4-8 shows the four areas of the design view that we’ll be using
the most: the Project Explorer pane u, the Palette pane v, the Preview
pane w, and the Properties pane x.

In the center of the Preview pane, you’ll see a label—known as a
TextView in Android terminology—reading Hello World!. Click the label and
press delete (or right-click and select Delete from the menu) to delete it
from the Preview pane. Then, click the Layouts option in the Palette pane,
select a RelativeLayout, and drag it either to the Preview pane or onto the
ConstraintLayout (in Figure 4-8) in the Component Tree listing just below
the Palette pane. We’ll start with an empty RelativeLayout to build our
guessing game GUI view.

In the Palette pane, under Widgets, select TextView. A TextView in
Android is similar to a JLabel in the Swing toolkit, and widgets are what we
call most of the GUI components in Android. We’ll drag and drop to place
GUI components in the design preview.

Click the TextView widget and drag it over the white app background in
the simulated Android phone, placing the widget near the top to serve as the
title of your app.

After placing the title TextView, you’ll see options appear in the Properties
pane on the right. If the pane doesn’t appear, click Properties in the upper-
right corner of the Design tab to expand the Properties pane. Find the text
property of the TextView widget you’ve just added. Change the text to "Your
Name's Guessing Game" and change the textAppearance property to Large. Then,
drag the TextView to center it at the top of the screen as shown in Figure 4-9.
The gray dashed guideline helps with placement.

82 Chapter 4

Figure 4-9: Placing GUI widgets/components in Android Studio is very similar to the process in Eclipse.

To add the label prompting the user to enter a number between 1 and
100, place another TextView widget onto the design preview just a small dis-
tance below the title. Change the textAppearance property to Medium in the
Properties pane on the right. Then, type Enter a number between 1 and 100: in
the text property for the TextView.

Next, we’ll place the text field, also known as an EditText in Android,
for the user’s guess. Text fields are listed just below Widgets in the Palette
pane. There are many types of text fields in Android, and each behaves dif-
ferently depending on the needs of your app. For example, Plain Text is a
simple text field, Password hides characters as they’re typed, Phone shows
the numeric keypad and formats the input as a phone number, and E-mail
shows a modified keyboard with the @ symbol.

Choose a Number text field so the user can enter their guess from a
numeric keyboard on their screen. Place this field just a little below the
previous label. Then, place a Button widget an equal distance below the
text field and change its text property to "Guess!". Finally, place another
TextView widget below the button, giving it a text property of "Enter a
number, then click Guess!". If you have trouble placing the widget the
same distance below the button because you’re too close to the vertical
center of the screen, place it lower or higher in the Properties pane under
Layout_Margin (you may need to click View all properties and then click
the gray arrow next to Layout_Margin to expand the margin properties),
find layout_marginTop, and change the value to 30dp. The finished GUI
layout should look similar to Figure 4-10.

Creating Your First Android App 83

Figure 4-10: The finished GUI layout for the Android guessing game app
in design view

We’ll make one final change before naming the GUI components.
Change the width property of the numeric text field, where the user enters
their guess, to 75dp; do so by clicking View all properties or the left-and-
right arrow icon in the Properties pane. The original text field was too wide
for a number-guessing game that uses only numbers between 1 and 100, so
we’ve resized it to make it narrower.

With that small change, it’s time to start naming our GUI components
so we’ll be able to find them easily in the Java code.

Naming GUI Components in Android Studio
Just as we named GUI components in Eclipse, we’ll need to name the GUI
elements in Android Studio so that we can access them from the code.
But in Android Studio, the names of the GUI elements themselves won’t
appear in the Java source code by default. Instead, we’ll have to connect
these XML GUI components to the Java code by hand before we can use
them in the code.

For now, though, we just need to change the id property of the number
text field, the guess button, and the bottommost label to txtGuess, btnGuess,
and lblOutput, respectively. If a pop-up message asks you to update usages,
click Yes. We’ll use these names for consistency and convenience. Figure 4-11
shows the renamed text field, button, and label.

84 Chapter 4

Figure 4-11: Rename the EditText, Button, and TextView components (circled)
by changing their id properties to txtGuess, btnGuess, and lblOutput, respectively.

One last thing we should do before we start coding in Java is hide the
small floating action button (fab) icon, shown in the bottom right of the design
preview in Figure 4-12. Your project may not show the fab icon, but if it does,
double-click the activity_main.xml file in the Project Explorer pane u. Click
the activity_main.xml tab above the design view v and then click the fab
icon w. Go to Properties and set the visibility property to invisible x.

�

�

�

�

Figure 4-12: Hide the fab icon by going to the activity_main.xml file, clicking the small envelope icon, and
setting the visibility property to invisible.

Creating Your First Android App 85

I’ve chosen to set the fab icon to invisible rather than delete it entirely,
because you might want to use the floating action button to add new fea-
tures to your app later on. The floating action button can share info from
the app to Facebook, post a tweet in Twitter about how much you like the
app, send an email to a friend about the app, and more.

Next, we’ll wire up the GUI so that we can use it in Java to program the
rest of the app.

Connecting the GUI to Java in Android Studio
It’s time to connect the GUI to Java so we can write the code for the guessing
game app. First, let’s open the Java source code file by looking in the Project
Explorer pane, under app4src4main4java4com.example.guessinggame (or
your package name)4MainActivity. Double-click MainActivity to open the
MainActivity.java source code file.

You may have noticed the java folder in the Project Explorer has another
package or two, possibly labeled the same, but with (test) or (androidTest) after
the package name. These packages are used for testing in larger applications,
where engineers evaluate app quality, security, and functionality for software
quality assurance. We won’t tackle quality assurance, but it’s a great way to get
into the software development industry.

The Java source code inside the MainActivity.java file will look some-
thing like Figure 4-13.

Figure 4-13: The Java source code for the app is called MainActivity.java by default.

Notice that in Android Studio, a package declaration appears at the very
top of the file by default. Packages help us organize all the files needed in

86 Chapter 4

a more complex program, such as a mobile app. In this case, the package
name is the company domain name from the Create New Project screen back
in Figure 4-3 on page 77, but in reverse order—notice the com comes first.

Several Android import statements follow the package declaration.
These work just as they do for Java on the desktop, importing existing fea-
tures and functionality into the code.

The following public class MainActivity code snippet may be slightly
different for you depending on the minimum API level you chose for your
app, but the overall code will be similar, and the app we’re writing will work
across multiple API levels. First we’ll declare our variables to connect the
GUI to the program. Click just inside the opening brace for the class, on
the next line down, and add these lines to declare variables for the text
field, button, and output label:

public class MainActivity extends AppCompatActivity {
 private EditText txtGuess;
 private Button btnGuess;
 private TextView lblOutput;

As you enter each new variable type, you may see a drop-down menu
offering to import it (android.widget.EditText, for example). If you click the
correct widget type to import, Android Studio will add the corresponding
import statement for you. If you typed the three lines without clicking to
accept the automatic imports, just click each widget type and then press
alt-enter (or option-enter on macOS) to import any missing classes, as
shown in Figure 4-14.

Figure 4-14: Android Studio enables you to automatically import classes just as Eclipse did, either as you
type or afterward with a simple key combination (alt-enter, or option-enter on macOS).

Creating Your First Android App 87

The following three import statements should now appear with the
others near the top of your file:

import android.widget.EditText;
import android.widget.Button;
import android.widget.TextView;

After declaring the three variables for the GUI widgets, we need to
connect those variables to the XML components for each one. We’ll do this
in the onCreate() method, shown at the bottom of Figure 4-14, which is the
function that runs when the app is loaded. Android Studio has automati-
cally generated the code to begin this method.

Look inside the top two or three lines of the onCreate() method, and
find this line:

 setContentView(R.layout.activity_main);

Right after that line, press enter a couple of times and type the fol-
lowing partial line of code to begin connecting the variable txtGuess to the
EditText widget in the XML layout file:

 txtGuess = (EditText) findViewById(R.id.

The findViewById() function is how we connect GUI widgets in the XML
layout to the variables we’ll use to represent them in the source code. The
R inside that function refers to a special file called R.java that Android
Studio generates to make it possible to connect resources. The R is short
for resources, usually stored in the res folder in the project. As you begin to
type the preceding line, you’ll see a pop-up menu like the one shown in
Figure 4-15. Find and double-click txtGuess in the drop-down list of options.
If you don’t see the txtGuess option, go back to the design view for content
_main.xml and make sure you gave the text field the id property of txtGuess.

Finish with the closing parenthesis followed by a semicolon, as shown in
the following listing, and then set up the button and output label. The fin-
ished three lines of code inside your onCreate() method should look like this:

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 txtGuess = (EditText) findViewById(R.id.txtGuess);
 btnGuess = (Button) findViewById(R.id.btnGuess);
 lblOutput = (TextView) findViewById(R.id.lblOutput);

If everything has been named correctly in the layout, these lines of
code should connect the variables txtGuess, btnGuess, and lblOutput to the
EditText, Button, and TextView components in the GUI layout. This is a good
time to stop and save your project to capture the progress you’ve made
so far.

88 Chapter 4

Figure 4-15: Android Studio helps us “wire up” the Java code to the GUI resources in the layout with helpful
drop-down options.

Adding Methods to Check the Guess and Begin a New Game
Now, let’s work on writing the code for the checkGuess() function. We can
begin writing the checkGuess() method just below the variable declarations
for txtGuess, btnGuess, and lblOutput and just above the onCreate() method, as
shown in Figure 4-16.

First, we need to get the user’s guess from the GUI text field and store it
in a String variable:

public class MainActivity extends AppCompatActivity {
 private EditText txtGuess;
 private Button btnGuess;
 private TextView lblOutput;
 public void checkGuess() {
 String guessText = txtGuess.getText().toString();

The code to get the user’s guess from the text field looks almost
the same as in the desktop version of the app, except for the additional
.toString() method at the end. There is a separate Text class in Android
and the text that is entered into a text field is a Text object, so we have to
convert that object to a String object.

Creating Your First Android App 89

Figure 4-16: Beginning to write the checkGuess() method in Java

Fortunately, the rest of the checkGuess() method can be copied and pasted
directly from the Eclipse desktop GUI version of the app from Chapter 3,
with no changes! The complete checkGuess() method should look like this:

public void checkGuess() {
 u String guessText = txtGuess.getText().toString();

 String message = "";
 v try {
 w int guess = Integer.parseInt(guessText);

 if (guess < theNumber)
 message = guess + " is too low. Try again.";
 else if (guess > theNumber)
 message = guess + " is too high. Try again.";
 else {
 message = guess +
 " is correct. You win! Let's play again!";
 newGame();
 }

 x } catch (Exception e) {
 message = "Enter a whole number between 1 and 100.";

 y } finally {
 lblOutput.setText(message);
 txtGuess.requestFocus();
 txtGuess.selectAll();
 }
}

90 Chapter 4

One of the convenient features of Java is that we can reuse code across
platforms. Just as we used code from the command line game to make the
desktop game, we can use code from the desktop version in the Android ver-
sion. Let’s review this code to understand how it will work in the Android app.

At u, we get the user’s guess from the text field and set up a string for
the output message. At v, we begin a try-catch-finally statement to handle
user input errors or exceptions. Inside the try block, at w, we parse the
integer number of the user’s guess from the characters they enter. The
rest of the try block contains the if-else statements that test whether the
user guessed too high or too low, set the appropriate message, and start a
new game. Next, the catch statement x that tells the user to enter a whole
number between 1 and 100. Then, the finally block y sets the text on the
lblOutput widget to the appropriate message, returns the cursor to the text
field, and highlights the text to prepare for the user’s next guess.

You may have noticed that there are a couple of items underlined in
red: theNumber and newGame(). This is because we haven’t defined them yet in
this version of our app.

At the top of the MainActivity class, below the three GUI widget declara-
tions, add a declaration for the secret number, theNumber:

public class MainActivity extends AppCompatActivity {
 private EditText txtGuess;
 private Button btnGuess;
 private TextView lblOutput;
 private int theNumber;

This is the same code we used in the desktop game, because the Java
code to create an integer is the same across the command line, desktop,
and Android mobile versions of the app.

The code for the newGame() method is also the same as the desktop ver-
sion. Add the newGame() method just before the onCreate() statement:

 public void newGame() {
 theNumber = (int)(Math.random() * 100 + 1);
 }
@Override
protected void onCreate(Bundle savedInstanceState) {

Creating a new game in the Android app is just like doing so in the
desktop app. We just set theNumber to a random integer from 1 to 100, using
the Math.random() function.

We can add a call to newGame() inside the onCreate() method after the
code that connects the three GUI components:

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 txtGuess = (EditText) findViewById(R.id.txtGuess);

Creating Your First Android App 91

 btnGuess = (Button) findViewById(R.id.btnGuess);
 lblOutput = (TextView) findViewById(R.id.lblOutput);
 newGame();

When the game starts up, the program will call the newGame() method
and pick a random number for the user to guess. Now, we just need to
handle the button click event and learn how to run the app on our own
Android device or on the Android emulator.

Handling Events in Android
In Eclipse, we were able to add an event listener to the guess button just
by double-clicking it in the design view. Unfortunately, it’s not that easy in
Android Studio, because the GUI layout is separate from the source code.
Fortunately, Android Studio helps us add event listeners by providing code
completion options, similar to the content assist feature in Eclipse.

To add a listener for button clicks, begin typing the following partial
line of code inside the onCreate() method on the next line after the call to
newGame():

 txtGuess = (EditText) findViewById(R.id.txtGuess);
 btnGuess = (Button) findViewById(R.id.btnGuess);
 lblOutput = (TextView) findViewById(R.id.lblOutput);
 newGame();
 btnGuess.setOn

Android Studio’s code completion feature will pop up with a list of code
recommendations, as shown in Figure 4-17. Choose setOnClickListener() from
the list of options and double-click to add it to your program.

Inside the parentheses for btnGuess.setOnClickListener(), type new and
start typing OnClickListener. Android Studio’s code completion feature will
display a list of options, as shown in Figure 4-18.

Choose OnClickListener from the list of options, and you’ll see Android
Studio adds a few extra lines of code. Your event listener code for the
btnGuess button should now look like the following:

btnGuess.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 }
});

Look familiar? This is another example of an anonymous inner class.
The desktop version also had an anonymous inner class, but it was named
slightly differently. The two will work virtually identically. You may have
noticed that Android inserts @Override in several places. This is called a
compiler directive, and it tells the compiler that you’re implementing your
own version of a method in the parent class.

92 Chapter 4

Figure 4-17: Android Studio’s code completion feature suggests code as we type, similar to Eclipse’s content
assist feature.

Figure 4-18: Use the code completion feature to create a new OnClickListener to add to the button btnGuess.

Creating Your First Android App 93

When the user clicks the Guess! button, we need to check their guess
against the secret number. Add checkGuess(); inside the braces of the onClick()
method.

public void onClick(View v) {
 checkGuess();
}

The guessing game mobile app is now ready for its first run. The fully
functional code for this first version of the guessing game is shown here.
Your version may differ slightly, perhaps with a couple of extra methods for
handling menu items, but because we’re not using the menu, these have been
removed for space (see Chapter 5 to learn how to create options menus and
settings):

package com.brysonpayne.guessinggame;
import android.os.Bundle;
import android.support.design.widget.FloatingActionButton;
import android.support.design.widget.Snackbar;
import android.support.v7.app.AppCompatActivity;
import android.support.v7.widget.Toolbar;
import android.view.View;
import android.view.Menu;
import android.view.MenuItem;
import android.widget.EditText;
import android.widget.Button;
import android.widget.TextView;
import org.w3c.dom.Text;
public class MainActivity extends AppCompatActivity {
 private EditText txtGuess;
 private Button btnGuess;
 private TextView lblOutput;
 private int theNumber;
 public void checkGuess() {
 String guessText = txtGuess.getText().toString();
 String message = "";
 try {
 int guess = Integer.parseInt(guessText);
 if (guess < theNumber)
 message = guess + " is too low. Try again.";
 else if (guess > theNumber)
 message = guess + " is too high. Try again.";
 else {
 message = guess +
 " is correct. You win! Let's play again!";
 newGame();
 }

94 Chapter 4

 } catch (Exception e) {
 message = "Enter a whole number between 1 and 100.";
 } finally {
 lblOutput.setText(message);
 txtGuess.requestFocus();
 txtGuess.selectAll();
 }
 }
 public void newGame() {
 theNumber = (int)(Math.random() * 100 + 1);
 }
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 txtGuess = (EditText) findViewById(R.id.txtGuess);
 btnGuess = (Button) findViewById(R.id.btnGuess);
 lblOutput = (TextView) findViewById(R.id.lblOutput);
 newGame();
 btnGuess.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 checkGuess();
 }
 });
 Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);
 setSupportActionBar(toolbar);
 }
}

In the next two sections, you’ll learn how to run the app on the
Android emulator and on real Android devices.

Running the App on the Android Emulator
Now we have a working version of the Java code to run the app, but we still
need to test it. Unlike the command line and desktop apps, the mobile app
can’t run on a PC by itself, because PCs don’t have the Android operating
system. To run your app for testing, you’ll need either an Android device or
an emulator that will simulate an Android device on your PC. In this sec-
tion, we’ll create an Android virtual device for testing your apps.

While viewing the MainActivity.java file, press the run button or select
the menu item Run4Run ‘app’. A pop-up window will ask you to select a
deployment target, which is a device you want to run the app on, as shown in
Figure 4-19.

Creating Your First Android App 95

Figure 4-19: To run an Android app, you must choose a
target device—either an emulator or an actual device.

Click the Create New Virtual Device button to begin configuring a new
Android virtual device (AVD). Let’s begin by choosing the type of device, as
shown in Figure 4-20. Then click Next.

Figure 4-20: Choose a device to emulate.

We’ll select a Nexus 6P to start with, but feel free to test out other
devices. If you decide to develop your own app for the Google Play Store,
you’ll want to test it across a variety of screen sizes and device types, so you
can try setting up several different emulators. But let’s start small for now
with just one.

96 Chapter 4

Next, we need to select the system image, usually either x86 or ARM.
We’ll be using an ARM image, so click the Other Images tab, as shown in
Figure 4-21.

Figure 4-21: You can choose either an x86 or ARM emulator; ARM is slower but tends to work more
consistently on different types of processors.

If the Android version, API level, or emulator you want is displayed in
a gray font, click the Download link for the version you want.

Click Next when you’ve chosen the Android emulator you want. For
now, let’s use the Nougat API 24 ARM Android 7.0 version with Google
APIs. You’ll see a final screen asking you to verify your configuration,
including any advanced settings changes you want to make. Let’s change
the name of the AVD, the device you’re emulating, to My Nexus 6P, as
shown in Figure 4-22.

If you have trouble getting your emulator to run on an older com-
puter or on a computer with less than 8 GB of RAM, click Show Advanced
Settings, scroll down to Memory and Storage, and change the RAM amount
to 768 MB.

Creating Your First Android App 97

Figure 4-22: Name your new AVD.

Click Finish, and your new device will be created and saved to disk.
Now it’s time to start the emulator and try out your device. You should see
the Select Deployment Target window again, but this time, it shows My
Nexus 6P as an available emulator. Now click OK, as shown in Figure 4-23.

Figure 4-23: Choose the emulator you just created as your
deployment target.

After a few moments, you’ll see the message “Starting AVD,” followed by
an emulator window that looks like an Android startup screen, as shown in
Figure 4-24. This could take several minutes the first time you run the emu-
lator. When the emulator starts up, you might see a lock screen.

98 Chapter 4

Figure 4-24: The Android emulator booting up (left); the Android virtual device’s
home screen (right)

If your emulator shows a lock screen, click the lock at the bottom of the
screen and drag it up to unlock the virtual device, similar to swiping the
lock upward on an actual Android phone. You might see a welcome screen
or two, but feel free to click out of those until you reach the home screen,
which is shown in Figure 4-24.

Now, go back to Android Studio and press the run button again. This
time, you’ll see your AVD in the Select Deployment Target dialog (see
Figure 4-25). Choose your device and click OK.

Figure 4-25: The emulator appears in the list of connected
devices when running.

Creating Your First Android App 99

The project will build one more time, and then it will transfer the
executable version of the app to the emulator. (You may be asked to update
your Android SDK Tools the first time you run the emulator.) After a few
minutes, you’ll see your guessing game app running on the emulator!

We’ve coded the full app, so you should be able to play the game right
away on your emulator. Take a look at Figure 4-26 to see what a round of
the game might look like on the app.

Figure 4-26: The guessing game app running on the emulator screen (left), after one guess (center), and after
a winning guess (right).

It works just like the desktop app, but on an Android emulator. Use
your keyboard to type a guess and your mouse to click the Guess! button.
There are a couple more things we’ll do to improve the user experience,
just like we did with the GUI desktop app, but our Android mobile app is
fully functional!

Before we improve the UX, we’ll cover how to run the app on a real
Android device. For now, leave your Android emulator open. You can mini-
mize it when you’re not using it, but leave it running in the background
while programming to avoid the long startup time.

No t e 	 If you don’t have an Android device, you can skip to “Improving the UX” on
page 102.

100 Chapter 4

Running the App on a Real Android Device
Running the app on a real Android device can take some time and prepara-
tion, but if you have a USB cable to connect your device to your computer,
you’ll be up and running quickly.

Preparing Your Device
Before you can deploy your own apps to your Android device, you have to
enable Developer mode on the device. You’ll also need to change a couple
of settings to allow you to develop and debug apps.

On your Android device, tap Settings and then scroll to the bottom of
the Settings menu to find the About tablet, About phone, or About device
section. At the bottom of the About screen, you’ll find the Build num-
ber entry. Tap the build number at least seven times to enable the secret
Developer mode. Developer mode allows you to test the apps you develop
on your own device. Figure 4-27 shows the Settings menu (left) and the
About menu (center) with Developer mode unlocked.

After you’ve unlocked Developer mode, tap the back arrow in the
upper-left corner of the About screen and open Settings4Developer
options. Make sure the Developer options are turned On, as shown in
Figure 4-27 (right). You should also turn on USB debugging.

Figure 4-27: The Settings menu on an Android Nexus 7 tablet (left), the About menu (center), and the
Developer options (right).

Now you’re ready to connect an Android phone, tablet, or other device
to your computer and run your app.

Creating Your First Android App 101

Connecting Your Device
To connect an Android device to your computer, you’ll need a USB cable,
preferably the one that came with your phone or tablet. It should be a
micro-USB cable, and it is often supplied as part of the charger for your
device. Note that not all charger cables are fully functional USB cables—
if your cable doesn’t work after you complete the following steps, try a dif-
ferent one.

Connect your device to your computer using the USB cable. After you
plug in, the screen on your phone or tablet will show a window like the one
in Figure 4-28 asking whether you want to allow USB debugging from the
computer you just attached to. Tap OK. You can select the checkbox beside
Always allow from this computer to prevent the pop-up next time you con-
nect by USB to the same computer.

Figure 4-28: When you connect your Android
device to your computer for the first time, it will
ask whether you want to allow USB debugging.

Allowing USB debugging enables a couple of things. First, we’ll be able
to transfer the apps we program right to the Android device by transfer-
ring an Android package file (APK). This is usually much faster than running
apps on an emulator, and it’s a better way to test how the apps will behave
on a real device. Also, we’ll be able to debug apps using the USB connec-
tion, meaning we’ll get information back from the Android device to help
us debug. This information will include errors and other log entries that
we’ll be able to read in a console-like application (called logcat in Android
Studio). This is similar to the console output we used to find bugs in our
command line and desktop GUI Java apps.

Now that you’ve connected a real Android device to your computer, let’s
see how to run the guessing game app on it!

Running the App on Your Device
Now we’re ready to try the app on the Android device. In Android Studio,
press the run button or go to Run4Run ‘app’. This time, the Select
Deployment Target window will show two connected devices to choose
from, as shown in Figure 4-29: your emulator (My Nexus 6P) and your
real Android device.

102 Chapter 4

Figure 4-29: If you’ve unlocked Developer mode,
enabled USB debugging, and connected your
device successfully, you should be able to select
your Android device to run your app.

Choose your real Android device this time and click OK. Android Studio
may take a moment to build the application, but once it transfers the APK
file to your device, you’ll see the guess-
ing game app open right up on your
tablet or phone. Play a round or two to
verify that it works just as it did on the
emulator (maybe even better, or at least
faster). Very cool!

You may notice one important dif-
ference right away: the bottom part of
the screen is covered by the numeric
keypad, as shown in Figure 4-30.

When we placed the text field
(EditText) for the user’s guess, we
chose a Number text field for our
input so the numeric keypad would
show up. But since the emulator runs
on a computer, which has its own key-
board, you probably didn’t see this
when you ran your app earlier.

Now that we’re able to run
Android apps on an Android phone,
tablet, or other device, let’s make a few
final improvements to the user experi-
ence for the guessing game app.

Improving the UX
The guessing game app works beautifully on both the Android emulator
and on real Android devices, but there are a few UX items we can improve
upon. First, we’ll center the user’s guess in the Number text field. Second,

Figure 4-30: The app runs on your
own Android device and shows the
numeric keypad by default.

Creating Your First Android App 103

we’ll learn how to treat the enter key just like the Guess! button to make
the app more intuitive to the user.

Centering the User’s Guess in the Text Field
In Android Studio, open the content_main.xml layout file again. Select the
text field, called txtGuess, by clicking it in the design preview. Under the
Properties pane, find textAlignment. The textAlignment property in Android
is similar to the horizontalAlignment property in the desktop GUI—it allows
us to change the alignment of the text the user enters.

Click the center text alignment option, the icon that looks like cen-
tered text. If you want to test it in the design preview without running the
app, scroll to find the text property and enter a value of 50. The number
should appear centered in the text field in the design preview pane. Be sure
to delete the test value if you don’t want it to show up in the actual app.

Adding a Listener for the Enter Key
Let’s set up an event listener to handle the enter key the same way we
handled a click on the Guess! button, with a call to checkGuess().

Go back to the MainActivity.java source code file, scroll down to the
onCreate() method, and find where we added an onClickListener to the
button btnGuess. (You may need to expand the event listener code by click-
ing the + in the left margin beside btnGuess.setOnClickListener() to make it
look like the code shown here.) Right below that, we can add an event lis-
tener to the text field txtGuess to handle action events such as pressing the
enter key. The following code adds a listener to txtGuess:

btnGuess.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 checkGuess();
 }
});
txtGuess.setOnEditorActionListener(new TextView.OnEditorActionListener() {
 @Override
 public boolean onEditorAction(TextView v, int actionId, KeyEvent event) {
 checkGuess();

 u return true;
 }
});

The editor action we’re listening for is when the user presses the enter
key while typing in the text field. When that event happens, we want to
check the guess the user entered.

We changed the return statement to return a value of true u because
we want to keep the keyboard on the screen so the user can enter their next
guess. The return statement tells the text field whether the event handler code

104 Chapter 4

we’ve provided completed the event. By returning the value true, we’ve told
Android that we’ve done everything that needs to be done to check the user’s
guess. If we returned false here instead, Android would finish processing the
enter key by removing the number keypad from the screen—as it does by
default when you finish typing in a form on a web page. We don’t want the
keypad to disappear after every guess, so we return true.

Adding One More Finishing Touch
Run the app a few times to test it, and you’ll see the enter key allows you to
enter and check guesses quickly and efficiently. You’ll also see your guesses
centered nicely in the text field. However, when you win, depending on the
API version, screen size, or density of your device, you may see an alignment
problem like the one shown in Figure 4-31.

The problem is that the TextView named lblOutput resizes to show the
longer “You win! Let’s play again!” text, and some older APIs may not cen-
ter this correctly. You can prevent this by expanding lblOutput to the full
width of the screen in the design preview and by changing the textAlignment
property to center. Now you have a complete guessing game app to play on
your device and to share with friends! The final version 1.0 of the app is
shown running on a Nexus 7, with Font settings at Large, in Figure 4-32.

Figure 4-31: If you notice misaligned
text, you may need to expand and
center the TextView lblOutput.

Figure 4-32: Your finished version 1.0
of the mobile app, with all the user
experience improvements in place

Creating Your First Android App 105

Wow! You’ve gone from a simple, text-based, command line number-
guessing program, to a sophisticated GUI desktop game, to a fully featured
mobile app that runs on real Android devices. Are you starting to see
the power and flexibility of Java? And in Chapter 5, we’ll make the app
even more professional with a settings menu and the ability to store user
preferences!

What You Learned
You’ve seen that much of the Java code used in a text-based and GUI desk-
top program can build the foundation of a modern mobile app, thanks to
Java’s reusability across multiple platforms. We have also picked up several
new mobile-specific skills in this chapter:

•	 Starting a new Android Studio app project

•	 Building the GUI layout in design view in Android Studio, including
changing the properties of various elements in the Properties pane

•	 Naming GUI components in a layout for easy use in Java code

•	 Connecting the Android GUI layout elements to your Java code

•	 Adding your own methods, such as checkGuess() and newGame(), to an
Android app

•	 Reusing Java code in an Android app

•	 Handling events in Android, including button clicks and keyboard/
editor actions such as pressing the enter key

•	 Testing apps by running them on an Android virtual device using the
Android emulator

•	 Running an app on an Android phone, tablet, or other device by
enabling Developer mode and USB debugging

•	 Improving the user experience by changing widget properties and
adding user-friendly finishing touches

Programming Challenges
Try these programming challenge exercises to review and practice what
you’ve learned and to expand your programming skills by trying something
new. If you get stuck, visit https://www.nostarch.com/learnjava/ to download
sample solutions.

PROGRAMM

ING

 CHA

LLENGES

https://www.nostarch.com/learnjava/

106 Chapter 4

#1: “Toast”-ing to the Number of Tries
In the programming challenges for
Chapter 3, you changed the winning
message to tell the user how many tries
they took to win:

62 is correct! You win after 7 tries!

Let’s do something similar for the
Android version, with a twist—or, should
I say, a Toast? A Toast is an Android
widget for creating pop-up message
windows. Toast pop-ups are a conve-
nient way to show a quick notice, such
as an error or a note telling the user
they’ve won the game. See the Toast
message near the bottom of the screen
in Figure 4-33.

You can create a Toast message pop-
up with the Toast.makeText() method.
Here’s a sample to help you add a Toast
pop-up to the else statement for winning
the game:

else {
 message = guess +
 " is correct. You win after " + numberOfTries + " tries!";
 Toast.makeText(MainActivity.this, message,
 Toast.LENGTH_LONG).show();
 newGame();
}

The Toast message in this code will pop up over the MainActivity (our
guessing game), displaying the String message for a few seconds thanks to
Toast.LENGTH_LONG. There’s also a Toast.LENGTH_SHORT, but it pops up and dis
appears so quickly that it can be hard to read. The .show() method at the
end does the important part, showing the Toast on the screen.

As with the GUI desktop version, to accomplish this task, you’ll need to
create a new variable at the top of your class (like int numberOfTries = 0;), add
to the number of tries every time the checkGuess() method runs successfully,
and change the output message to display the number of tries to the user when
they win, both in a Toast pop-up and in the lblOutput field. After counting the
number of tries, add the features you learned in Chapter 3 for running out of
tries or losing. Give the user seven tries and tell them how many tries are left
after each guess.

Figure 4-33: A Toast message
pops up on the screen to alert the
user to important information.

PROGRAMM

ING

 CHA

LL
ENGES

Creating Your First Android App 107

#2: Adding Visual Appeal
Explore some of the more aesthetic prop-
erties of the GUI components in Android
Studio, including background colors, fore-
ground colors, fonts, textSize, and more.
Move components in your guessing game
app around to make the interface more
visually appealing. For an example of one
way you could customize your game, see
Figure 4-34.

You can even add a custom back-
ground image (add an image file to the
app4res4drawable folder and then select
it as the background property for your layout
or for a button or other component). Play
with various settings—you can always undo
by pressing ctrl-Z!

#3: Creating a MadLibs Mobile App
Look back at the MadLibGUI.java program
you built in Chapter 3 (Programming
Challenge #3 on page 74). Now create
a mobile version of your MadLibs app
that prompts the user for several words
in a GUI with labels and text fields, such as txtBigAnimal, txtPastTenseVerb,
txtSmallContainer, and txtFood. Add a button that the user can press to gen-
erate their own MadLibs-style story. It may be a nice touch to include some
default or initial text in each text field, just to give the user an idea of how
the program works.

When the user clicks the button, the program should display the com-
pleted MadLibs story in a TextView or in an EditText widget—the EditText
makes it possible to copy and paste the user’s funny story if they wish to
share it. Play with the colors, fonts, and layout until you’re happy with the
result and then share your creation with a friend!

Hi n t 	 To make a TextView or EditText show multiple lines, use the escape character sequence
\n to insert a new line in the String message you display using the setText() method,
like so: "Once upon a time... \n There was a buffalo princess \n who lived in a
soup can." This quote will span three lines, separated by new lines wherever the \n
escape sequence appears.

Figure 4-34: Changing the
colors, fonts, text size, and
arrangement of the compo-
nents in your app can make
it stand out!

PROGRAMM

ING

 CHA

LLENGES

5
P oli s h i n g Yo u r App b y Addi n g

M e n u s a n d P r e f e r e n c e s

You’ve written a fun Android app, but
it’s still missing a few things. You haven’t

learned how to build a settings or options
menu in Android or how to save high scores,

game stats, and other information. In this chapter,
we’ll add an options menu to our Hi-Lo guessing
game app and the capability to store information.

Adding an Options Menu in Android
Most apps and games have options or settings that the user can access
through a menu. For the Hi-Lo guessing game, we might want to allow the
user to change the game’s difficulty level, start over, see their game stats, or
view an About screen, so we’ll create a menu that can perform all of these
actions.

110 Chapter 5

There are four general steps to adding an options menu in Android:

1.	 Edit the app’s default XML menu file to create items that will serve as
the options the user can select.

2.	 Modify the app’s activity file to display the menu and options that we
created in the previous step.

3.	 Create an event handler to determine when the user selects an option.

4.	 Write the code to execute for each option when the user selects it.

Adding the options menu not only will make our app look and feel
more professional but will also give the user greater control over their
gaming experience. My sons loved being able to change the range of the
guessing game from 1 to 10, then 1 to 100, then 1 to 1,000, but when we
added the Game Stats option that displays the number of games won, I
almost couldn’t get my device back from them—they wanted to keep run-
ning the number higher and higher! I hope you’ll find these extra features
as fun (and maybe as addictive) as they did.

Adding Items to the Menu’s XML File
Open your Hi-Lo guessing game project in Android Studio and, in the
Project Explorer pane, change the view at the top left to Android. Then,
open the default menu file by expanding app4res4menu and double-
clicking menu_main.xml.

Change the XML code in your menu_main.xml file to match the following
listing:

<menu xmlns:android="http://schemas.android. com/apk/res/android">
 <item
 android:id="@+id/action_settings"
 android:title="Settings" />
 <item
 android:id="@+id/action_newgame"
 android:title="New Game" />
 <item
 android:id="@+id/action_gamestats"
 android:title="Game Stats" />
 <item
 android:id="@+id/action_about"
 android:title="About" />
</menu>

The <menu> tag creates a menu resource using the XML namespace for
Android XML documents, identified by the uniform resource identifier
(URI) http://schemas.android. com/apk/res/android. We can use XML to store
or display everything from web pages to databases by connecting XML

Polishing Your App by Adding Menus and Preferences 111

tags to those elements. The xmlns (XML namespace) attribute in this code
selects the main Android namespace so that the tags in this XML file will
refer to common elements in an Android application. So, the <menu> tag
refers to an Android menu, and each <item> tag describes an item or entry
in that menu with attributes. This menu will have the four options Settings,
New Game, Game Stats, and About, so we add four <item> tags. We assign
those names to each item’s title attribute, which determines the text dis-
played for each option when the user opens the menu. We’ll use the id
attribute later in our code to determine which option the user has selected.

Save the menu_main.xml file. Now it’s time to display our options menu
in the Hi-Lo guessing game app.

Displaying the Options Menu
We’ve set up the menu, but in order to display it, we need to add some Java
code to our app’s MainActivity.java file. Open MainActivity.java in the Project
Explorer pane under app4java4com.yourdomain.GuessingGame.

Near the middle or bottom of the MainActivity class, you should find a
method called onCreateOptionsMenu(). Modify it to match the code snippet
below. (If your code doesn’t have the onCreateOptionsMenu() method, add the
following code after the closing brace of onCreate() but before the final clos-
ing brace for MainActivity.)

 public boolean onCreateOptionsMenu(Menu menu) {
 MenuInflater inflater = getMenuInflater();
 inflater.inflate(R.menu.menu_main, menu);
 return true;
 }
} // Final closing brace of the MainActivity.java file

The onCreateOptionsMenu() method does exactly what its name implies—it
tells Android what to do when creating the options menu for our app. In
this case, we tell Android we want to expand the menu_main.xml file to serve
as our options menu. The menu_main.xml file isn’t a menu yet, so we need
to convert it into a menu using a class called a MenuInflator. We’ll create a
MenuInflator instance, which we call inflater, by using the getMenuInflator()
method. Once we have inflater, we call the inflate() method and pass
it the XML file (R.menu.menu_main) and the menu we want the XML file’s
items to inflate into (menu). You may need to press alt-enter (on macOS,
option-enter) to correct any missing import statements as you add the
code to your file.

After making this change, save and run the app. Android lets you know
there’s an options menu available by displaying the three dots in the action
bar of your app (see Figure 5-1, top). Clicking the dots will display the
options menu (see Figure 5-1, bottom).

112 Chapter 5

Figure 5-1: The options menu shows up as three dots in the app’s
action bar (top). Clicking the three dots will expand the options
menu (bottom).

You’ll notice that clicking the options doesn’t do anything yet because
we haven’t added the code to respond to user selections. We’ll do that next.

Responding to User Selections
When the user chooses an option from the menu, we want our app to per-
form the requested action. In order for our app to do that, we need to add
an event handler that keeps track of which option was selected. We’ll use
the id attribute associated with each item to tell selections apart.

In the MainActivity.java file, find and modify the onOptionsItemSelected()
event handler method. Alternatively, you can add it right below the method
onCreateOptionsMenu() that we modified in the previous section, but before
the closing brace on the final line of the file.

 public boolean onCreateOptionsMenu(Menu menu) {
 MenuInflater inflater = getMenuInflater();
 inflater.inflate(R.menu.menu_main, menu);
 return true;
 }
 public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.action_settings:
 return true;
 case R.id.action_newgame:
 newGame();
 return true;
 case R.id.action_gamestats:
 return true;
 case R.id.action_about:
 return true;

Polishing Your App by Adding Menus and Preferences 113

 default:
 return super.onOptionsItemSelected(item);
 }
 }
}

In this code, we use a switch statement to determine which of the options
the user selected on the menu. A switch statement is another way of testing
multiple conditions, similar to a long chain of if-else statements. Rather than
chaining four if-else statements to test for each possible menu item selection,
though, we can use a single switch statement, with the variable we’re testing
inside parentheses after the switch keyword. In this example, we’re checking
the id of the menu item the user selected, so we use switch (item.getItemId()).
Then, inside the braces for the switch statement, we list the values we want to
test as case statements (e.g., case R.id.action_settings), each of which is fol-
lowed by a colon (:), the code to run for that selection, and either a break
or return statement. This event handler returns a Boolean value, so we’ve
used return statements instead of break statements in each case block. If we
didn’t have return statements here, we would need to use a break command
as the final statement of each case.

Each case statement in this code tests for one of the id values of the
items we entered in the menu_main.xml file, and the code for each value will
execute in response to the user’s selection. Right now, we have code only for
the action_newgame case, which starts a new game using the newGame() method.
The other cases require writing a bit more code, so we’ll define those one at
a time.

Creating an Alert Dialog Pop-up for the About Screen
For the About menu option, we’ll pop up a dialog window similar to other
applications you’ve likely seen. To do this, we’ll use an alert dialog, a flexible
pop-up used to inform the user about something or to prompt them for a
response. This kind of pop-up is more adaptable than the Toast pop-up we
used in Chapter 4 (Programming Challenge #1 on page 106), because the
AlertDialog class allows us to customize the properties of our dialog through
the Builder subclass. In this case, we’ll use an alert dialog to respond to the
user selecting the About option with a message telling them who created
the awesome Hi-Lo guessing game they’ve been playing.

Add the following code to the case statement for the action_about item
selection:

case R.id.action_about:
  AlertDialog aboutDialog = new AlertDialog.Builder(MainActivity.this).create();
  aboutDialog.setTitle("About Guessing Game");
  aboutDialog.setMessage("(c)2018 Your Name.");
  aboutDialog.setButton(AlertDialog.BUTTON_NEUTRAL, "OK",

 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int which) {

  dialog.dismiss();
 }

114 Chapter 5

 });
  aboutDialog.show();

 return true;

We use the AlertDialog.Builder class  to create a customized pop-
up window. The code at  sets the title of the pop-up window to "About
Guessing Game", and the line at  displays a simple message with copyright
information and your name (though you can write any text you’d like here).
The setButton() method  adds a button to the pop-up with the text "OK",
and the subsequent onClick() event listener closes the pop-up whenever the
user clicks the OK button by calling the dismiss() method . Finally, the
customized pop-up is shown with the show() command .

Use alt-enter (or option-enter) to import the AlertDialog class. Then
save your updated code and run the new version of the app. When you click
the options menu and select the About option, you should see a pop-up
window like the one in Figure 5-2.

Figure 5-2: A custom alert dialog pop-up

The Hi-Lo guessing game app is beginning to feel even more like a
professional Android app! Now let’s knock it out of the park by allowing
the user to choose the difficulty level of the game and to keep track of
how many games they’ve won.

Changing the Guessing Range
Letting the user choose the guessing range—say, from 1 to 10, 1 to 100,
or 1 to 1,000—would be a huge enhancement. Now that you understand
option menus and alert dialogs, let’s map out how we might upgrade the
game to allow the user to change the range setting.

First, we’ll need to add a variable for the range so that instead of
using a hardcoded value of 100, we’ll use the user’s chosen range. Second,
we’ll need to modify the app’s behavior in a couple of ways. We’ll change
the newGame() method to use the new range variable. We’ll also make the
TextView that currently reads, "Enter a number between 1 and 100:" display a
different prompt depending on the range selected. Finally, we’ll need to
give the user a method of choosing the range. We’ll do this by building
another custom alert dialog with the three range selections: 1 to 10, 1 to
100, and 1 to 1,000.

Polishing Your App by Adding Menus and Preferences 115

Adding a Variable for the Range
First, we’ll replace the hardcoded value of 100 we use in the random num-
ber calculation with a variable. At the top of the MainActivity class, add a
variable for the range and set it to a default value of 100:

public class MainActivity extends AppCompatActivity {
 private EditText txtGuess;
 private Button btnGuess;
 private TextView lblOutput;
 private int theNumber;
 private int range = 100;

While we’re adding variables, let’s also add a second TextView for the
label that reads, "Enter a number between 1 and 100:". When the user selects
a range other than 1 to 100, this label will no longer be correct, so we need
a variable to store the appropriate text to display. We’ll create the variable
called lblRange to do this:

 private int range = 100;
 private TextView lblRange;

To wire up the GUI to the lblRange variable, add the following line of
code to the onCreate() method:

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 txtGuess = (EditText) findViewById(R.id.txtGuess);
 btnGuess = (Button) findViewById(R.id.btnGuess);
 lblOutput = (TextView) findViewById(R.id.lblOutput);
 lblRange = (TextView) findViewById(R.id.textView2);

If you get an error, check the name of your prompt’s TextView in the
design view: open app4res4layout4content_main.xml and click the label
reading "Enter a number between 1 and 100:". Change the label’s id property
to textView2.

With the range and lblRange variables set up, it’s time to modify the
behavior of the app to use these variables instead of hardcoded values.

Using the range Variable
First, let’s modify the newGame() method to use the range variable. Let’s also
add the code needed to change the prompt to let the user know the correct
range to guess from:

public void newGame() {
 theNumber = (int)(Math.random() * range + 1);
 lblRange.setText("Enter a number between 1 and " + range + ".");
 txtGuess.setText("" + range/2);

116 Chapter 5

 txtGuess.requestFocus();
 txtGuess.selectAll();
}

In addition to using range to set the random number correctly, we’ve
changed the lblRange prompt to use the range variable as well. The last
three lines are a finishing touch—I’ve taken the liberty of entering a
default starting value in the txtGuess text box, one half of the range. So, if
the user is guessing between 1 and 10, the guessing text field will show 5
as a default first guess; if the range is 1,000, the text field will recommend
500 for the first guess.

One last range-related change is found in the checkGuess() method.
We added a try-catch statement to handle bad user input, and in the catch
statement, we tell the user to enter a valid whole number in the range from
1 to 100. Let’s change just the catch statement to reflect the user’s selected
range:

public void checkGuess() {
--snip--
 }
 } catch (Exception e) {
 message = "Enter a whole number between 1 and " + range + ".";
 } finally {
--snip--
 }
}

Now both TextView labels will display the user’s selected range correctly.
It’s time to build the alert dialog to allow the user to select the difficulty
level of their game.

Building the Dialog to Allow the User to Select the Range
The range settings dialog should display all the range options (1 to 10,
1 to 100, and 1 to 1,000) to the user whenever they select the Settings
option in the menu. To display the list of options, we’ll build another cus-
tomized alert dialog, but this one will display a list view of the three range
options.

First, scroll back down to your onOptionsItemSelected() method and add
the following code inside the case statement for action_settings:

public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.action_settings:
 final CharSequence[] items = {"1 to 10", "1 to 100", "1 to 1000"};
 AlertDialog.Builder builder = new AlertDialog.Builder(this);
 builder.setTitle("Select the Range:");
 builder.setItems(items, null);
 AlertDialog alert = builder.create();
 alert.show();
 return true;

Polishing Your App by Adding Menus and Preferences 117

These six lines of code will display an alert dialog with a list view of
the three options for the guessing range, but we need to add just a bit
more code to handle the user’s selection. The builder.setItems() method
will accept both a list of items and an event listener to handle the user’s
choice from the list.

If the user selects the first option, we need to change the value of
the range variable to 10, and likewise for the second and third options to
100 and 1000, respectively. The code for the event listener goes inside the
builder.setItems() statement:

 case R.id.action_settings:
 final CharSequence[] items = {"1 to 10", "1 to 100", "1 to 1000"};
 AlertDialog.Builder builder = new AlertDialog.Builder(this);
 builder.setTitle("Select the Range:");
 builder.setItems(items, new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int item) {
 switch(item) {
 case 0:
 range = 10;
 newGame();
 break;
 case 1:
 range = 100;
 newGame();
 break;
 case 2:
 range = 1000;
 newGame();
 break;
 }
 dialog.dismiss();
 }
 });
 AlertDialog alert = builder.create();
 alert.show();
 return true;

Notice that after we set the new range for each item selection, we call
newGame() to create a new random number in that range and to change the
prompt on the user’s screen to reflect the new range.

Save the file after making these changes and run the game to test the
new options. Change the range from 1 to 10 and guess a few rounds, then
go back to 1 to 100, and if you’re brave, go for 1 to 1,000.

Close the app and open it again, however, and you’ll notice that the
game doesn’t remember your preferred range when it’s run a second time.
The app also doesn’t remember how awesome you are at guessing the cor-
rect number. If only there were a way to have the app remember your pre-
ferred range and the number of games you’ve won. . . .

118 Chapter 5

Storing User Preferences and Game Stats
The key to remembering user preferences and game statistics from one ses-
sion to another is the ability to save persistent information to your Android
device. Persistent information is any data that remains on the device after
the app is closed. In the Hi-Lo guessing game, we want to store the user’s
preferred difficulty level and the number of games they’ve won as persistent
information.

There are three ways to save persistent data to your Android device:
storing shared preferences, saving files, and saving data in a database. Shared
preferences are a type of object that stores a relatively short list of settings that
your app needs to save for the next time you use the app. They’re called
shared preferences because you can share the settings across several activities
or screens in your app, such as an options menu and the main game screen in
the guessing game. Saving a file to the device is useful when you need to store
a large amount of data, such as a text document, and databases are necessary
for apps such as an address book or contacts list. But for the guessing game,
we just need to store a few numbers, so we’ll use shared preferences.

Storing and Retrieving the User’s Preferred Range
Shared preferences are stored as sets of key/value pairs where each value has
an associated key that is used to retrieve it. For example, you could have
a pair like "range" and "100", where "range" is the key and "100" is the value
we’re storing under that key. Let’s write a method to store the user’s pre-
ferred range to shared preferences.

Near the bottom of your MainActivity.java file, add the following method
after the onOptionsItemSelected() method and just before the closing brace:

 default:
 return super.onOptionsItemSelected(item);
 }
 }
 public void storeRange(int newRange) {
 SharedPreferences preferences =
 PreferenceManager.getDefaultSharedPreferences(this);
 SharedPreferences.Editor editor = preferences.edit();
 editor.putInt("range", newRange);
 editor.apply();
 }
}

There is already a default shared preferences object for every
app you make, which you can access by creating a SharedPreferences
object to connect to it. To do this, access the default object by calling
getDefaultSharedPreferences() on the PreferenceManager object that creates
and maintains lists of shared preferences. Remember to import as you go,
or press alt-enter (or option-enter).

Polishing Your App by Adding Menus and Preferences 119

To write to shared preferences, we must use an Editor object, which
allows us to edit individual shared preference values. To store a specific
key/value pair, we use a put method, such as putString to store a string value,
putInt to store an integer, putFloat to store a floating-point decimal value,
putBoolean to store a true/false value, and so on. Every time the user selects
a new range, we’ll pass the range variable to the storeRange() method as
newRange. In order to store newRange under the "range" key, we use editor
.putInt("range", newRange); to store the user’s new range value (10, 100, or
1,000) under the shared preferences key name "range". The apply() method
tells Android you’re finished modifying the shared preferences values, and
it can apply the changes.

Now that we can store the range to shared preferences, we need to add
the storeRange() function to each case the user can select in the event lis-
tener in the onOptionsItemSelected() method:

public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.action_settings:
 final CharSequence[] items = {"1 to 10", "1 to 100", "1 to 1000"};
 AlertDialog.Builder builder = new AlertDialog.Builder(this);
 builder.setTitle("Select the Range:");
 builder.setItems(items, new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int item) {
 switch(item) {
 case 0:
 range = 10;
 storeRange(10);
 newGame();
 break;
 case 1:
 range = 100;
 storeRange(100);
 newGame();
 break;
 case 2:
 range = 1000;
 storeRange(1000);
 newGame();
 break;
 }
 dialog.dismiss();
 }
 });
 AlertDialog alert = builder.create();
 alert.show();
 return true;

Finally, we need to retrieve the range when the game loads so that the
user’s last selected range will be the range the game uses the next time it

120 Chapter 5

runs. Scroll up to the onCreate() method and add the following two lines to
retrieve the range from shared preferences:

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 txtGuess = (EditText) findViewById(R.id.txtGuess);
 btnGuess = (Button) findViewById(R.id.btnGuess);
 lblOutput = (TextView) findViewById(R.id.lblOutput);
 lblRange = (TextView) findViewById(R.id.textView2);
 SharedPreferences preferences =
 PreferenceManager.getDefaultSharedPreferences(this);
 range = preferences.getInt("range", 100);
 newGame();

Notice that we’ve retrieved the shared preferences before we call the
newGame() method to ensure that the user gets the range they last used
whenever the app starts over. The getInt() method looks for the value
stored in the key "range", but if it doesn’t find a value, the second param-
eter tells it to default to 100. We do this so that range has a value the first
time the user runs the app.

Save the file, build, and run it. This time, choose a different range and
then close the app entirely. The same range will be waiting for you the next
time you start the app!

Storing the Number of Games Won
High scores, leaderboards, winning streaks—anything that records our
accomplishments tends to make us want to try harder, play longer, and
beat the record. One finishing touch we’ll add to the game is the ability to
track the number of games won. Once again, we can easily store these stats
as shared preferences.

When the user wins a round of the game by guessing the correct num-
ber, we can use a shared preference to retrieve the number of games they’ve
won, add 1 to it, and store the new value. Add this code to your checkGuess()
method, putting it inside the else statement for a winning guess:

public void checkGuess() {
 String guessText = txtGuess.getText().toString();
 String message = "";
 try {
 int guess = Integer.parseInt(guessText);
 if (guess < theNumber)
 message = guess + " is too low. Try again.";
 else if (guess > theNumber)
 message = guess + " is too high. Try again.";
 else {
 message = guess +
 " is correct. You win! Let's play again!";

  SharedPreferences preferences =
 PreferenceManager.getDefaultSharedPreferences(this);

  int gamesWon = preferences.getInt("gamesWon", 0) + 1;

Polishing Your App by Adding Menus and Preferences 121

  SharedPreferences.Editor editor = preferences.edit();
  editor.putInt("gamesWon", gamesWon);
  editor.apply();

 newGame();
 }

Here, we’ve accessed the default SharedPreferences at , and at , we’ve
retrieved the value stored under the key name "gamesWon" (with a default of
0 if this is the first time the user has won) and added 1 to account for this
win. At , we create an editor to write a new value to shared preferences.
At , we put the integer value gamesWon into shared preferences under the
corresponding key name for later use, and at , we tell Android to write the
changes to the device.

That takes care of storing the number of games won, but how about
displaying those stats to the user? To do that, we’ll need to add code for the
action_gamestats case in the onOptionsItemSelected() method, as follows:

case R.id.action_gamestats:
  SharedPreferences preferences =

 PreferenceManager.getDefaultSharedPreferences(this);
  int gamesWon = preferences.getInt("gamesWon", 0);
  AlertDialog statDialog = new AlertDialog.Builder(MainActivity.this).create();

 statDialog.setTitle("Guessing Game Stats");
  statDialog.setMessage("You have won "+gamesWon+" games. Way to go!");

 statDialog.setButton(AlertDialog.BUTTON_NEUTRAL, "OK",
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int which) {
 dialog.dismiss();
 }
 });
 statDialog.show();
 return true;

At , we connect to the app’s default shared preferences, and at , we
retrieve the number of games won (which we give a default value of 0 in
case this is the first run of the program). At , we build an alert dialog to
show the user the number of games they’ve won, and at , we display the
number along with an encouraging message.

Save that final change and then build and run your app. Your last chal-
lenge may be trying to stop playing! Figure 5-3 shows how the Game Stats
screen may look if you have a couple of math whizzes playing your game.

Figure 5-3: The Game Stats screen keeps track of the number of
times you (or your friends) have guessed the correct number.

122 Chapter 5

Adding options menus, saving game stats and user preferences, dis-
playing alert dialogs—these are the kinds of finishing touches that can
make your game or any other app really stand on its own as a professional-
looking, fully functional mobile application. Keep making improvements to
your app as you think of new features, and you’ll have an app worth sharing
with friends—or with the world. Happy coding!

What You Learned
You’ve built a professional-quality Android mobile game by adding several
finishing touches to the Hi-Lo guessing game app, including:

•	 Adding an options menu to an Android app

•	 Designing the options menu by editing the menu’s XML file

•	 Displaying the options menu using a MenuInflater

•	 Responding to user selections in a menu

•	 Using a switch statement with multiple case statements to replace long
if-else chains

•	 Creating customized pop-ups in Android with the AlertDialog class

•	 Storing shared preferences and app statistics using the SharedPreferences
class

•	 Retrieving the user’s shared preferences when an app starts

Programming Challenges
Try these programming challenge exercises to review and practice what
you’ve learned and to expand your programming skills. Visit the book’s
website at https://www.nostarch.com/learnjava/ to download sample solutions.

#1: You Win Some, You Lose Some
Programming Challenge #1 in Chapter 4 (page 106) asked you to give the
user seven tries to guess a number between 1 and 100. Now that you’ve added
the ability to change the range, you need to change the number of tries to
match.

You learned in Chapter 4 that we could guess a number between 1 and
100 using a binary search strategy (guessing in the middle of the remaining
possible values each time) because 27, or two to the seventh power, is equal
to 128. This means that we should be able to guess a number between 1 and
128 in seven guesses every time using the binary search method. But how
many guesses do we need to get a number between 1 and 10, or 1 and 1,000?

To figure out the number of tries needed, we need to know the lowest
exponent we can raise 2 to that will give us a number greater than the range.
For example, for a number between 1 and 10, 24 = 16, and 16 > 10, so we need
up to four guesses for that range; for a range from 1 to 1,000, 210 = 1,024, so
we need 10 guesses.

PROGRAMM

ING

 CHA

LL
ENGES

https://www.nostarch.com/learnjava/

Polishing Your App by Adding Menus and Preferences 123

To find the exponent to which you need to raise a number to be equal
to another number, you can use logarithms. A logarithm takes a number and
a base to find the exponent the base should be raised to in order to result
in the given number. Java has a Math.log() method that will take a number
and find the exponent for base 10. When you divide the logarithm of one
number by the logarithm of another number in base 10, the result is the
same as taking the logarithm of the first number with the second number
as a base. This means that dividing Math.log(range) by Math.log(2) will tell
you what power of 2 will give you range. Because exponents can be decimals
and you don’t want the user to have a noninteger number of guesses, like
7.25, you’ll need to also round up and cast the result into an int. To find the
exponent for the number of guesses needed for each range, you can use the
expression (int)(Math.log(range)/Math.log(2)+1).

Modify the Hi-Lo guessing game to adapt the maximum number of
guesses to suit the range the user selects, both when the game starts and
whenever the user selects a new range in the options menu. For example,
you could create a variable called maxTries to use in place of the hardcoded
number 7 when testing whether your user has run out of tries.

#2: Ratio of Wins to Losses
After completing Programming Challenge #1, modify the Hi-Lo guessing
game app to store both the number of games won and lost. Modify the game
stats menu code to retrieve both numbers and show the number of games
won, the total number of games played, and the winning percentage (games
won divided by total games played, multiplied by 100). Figure 5-4 shows an
example.

Figure 5-4: The Game Stats screen showing the
percentage of games won

PROGRAMM

ING

 CHA

LLENGES

6
D e cip h e r i n g S e c r e t M e s s a g e s

You’ve probably sent secret, encoded notes
to your friends to try to hide the messages

from your parents or teachers. In this chap-
ter, we’ll be doing something similar as we

create a Secret Messages app.
Our previous app, the Hi-Lo guessing game, was all about numbers—

too high, too low, or just right. By contrast, our Secret Messages app will
focus on text. You’ll learn to work with text strings and manipulate charac-
ter values in Java to produce the encoded messages.

The Caesar Cipher
Our app will encode and decode secret messages using the Caesar cipher, an
algorithm developed more than 2,000 years ago that uses letter substitu-
tions to encode messages.

126 Chapter 6

The Caesar cipher is named for the
Roman emperor Julius Caesar (100–44 BCE).
Historians say Caesar liked to encode his
private messages, such as notes to his mili-
tary generals, by “shifting” the letters of the
alphabet. For example, the cipher disk
shown in Figure 6-1 shifts the alphabet by
13 letters.

In the disk, the outer letters align with
the inner letters they should be substituted
with, so an A becomes an N, a B becomes an
O, and so on. This is the cipher that created
the following example:

Secret messages are so cool!
Frperg zrffntrf ner fb pbby!

The first line is the plaintext: the original, readable version of the mes-
sage. The second line is the ciphertext, the encoded version of the same
message.

Try decoding this message back to its original plaintext by reversing the
substitution: find each inner letter and substitute it with the corresponding
outer letter.

Not all Caesar ciphers are symmetric like this one. Symmetric means that
the same process can be used for both encoding and decoding a message.
For example, F becomes S when encoding by adding 13, and S becomes
F when decoding by subtracting 13, and you can use the same disk and
key—the number used to shift the letters—for both processes. The number
to shift the letters by (in this case 13) is called a key because knowing it
“unlocks” the cipher. The Secret Messages app we’ll build will allow us to
use any key value.

Setting Up the Secret Messages App
We’ll build the Secret Messages app just like we did the Hi-Lo guessing
game: first, we’ll create a command line version, then a GUI for the desk-
top, and, finally, an Android mobile app. The command line version will
look fairly simple, as shown in Figure 6-2, but it will allow us to test the
secret message algorithm quickly and easily.

Figure 6-2: The command line version of the Secret Messages app

A B C D
E
F
G
H
I
J

KLMNOPQ

R
S
T
U
V
W

X Y
Z

ABC
DE

F
G
H
I
J K

L M N O P QR
S
T
U
V
WXYZ

Figure 6-1: A Caesar cipher
disk, showing a key value of 13

Deciphering Secret Messages 127

As you can see in Figure 6-2, the program asks the user to enter a mes-
sage to encode or decode, followed by a secret key value. The program then
responds with the encoded message. Note that when we start coding the
app, the entire message will be encoded, including spaces and punctuation.
In the final version, we’ll add some logic to encode only letters, as shown in
Figure 6-2.

Creating the Secret Messages Project in Eclipse
Let’s begin by opening Eclipse. If you still have files open from previ-
ous projects, close those files now. To create a new Java Project, go to
File4New4Java Project and name the project SecretMessages. Click
Finish.

In the Package Explorer pane, expand the SecretMessages project folder
to see the src folder. Right-click the src folder and go to New4Class to
create a new Java source code file, which you’ll also name SecretMessages.
Select the checkbox to create a main() method, as shown in Figure 6-3.

Figure 6-3: Create a new Java project, with a new
class file called SecretMessages, and select the
checkbox to create a main() method stub.

Click Finish, and you’ll see the SecretMessages.java file in the main window
in Eclipse. Let’s get started coding the Secret Messages app!

128 Chapter 6

Beginning to Code SecretMessages.java
At the top of the SecretMessages.java file, above the public class SecretMessages
declaration, add the import statement for java.util.Scanner so we can ask the
user for input:

import java.util.Scanner;
public class SecretMessages {
 public static void main(String[] args) {

 u Scanner scan = new Scanner(System.in);
 v System.out.println("Enter a message to encode or decode:");

 }
}

Inside the main() method, at u, we set up a Scanner object named scan.
Then, at v, we prompt the user to enter a message to encode or decode.

After the user prompt, we’ll create a String variable, called message, to
accept the line of text the user enters:

 System.out.println("Enter a message to encode or decode:");
 String message = scan.nextLine();

Then, we get the user’s next full line of input, up to an enter or return
character, using the nextLine() method of the scan object, and we store it in
the string message.

So far, the app can ask the user for a message and scan that message
into a variable. Now we need to learn how to manipulate the characters
inside a string to create an encoded version of the message. Save your file
before continuing to the next section.

Messing with Strings
Up to this point, the Secret Messages app looks pretty similar to the Hi-Lo
guessing game app. We set up an input scanner, prompt the user for some
input, scan the console for the user’s response, and then capture the input
in a variable. What’s going to make the Secret Messages app different is its
ability to work with the characters inside the string.

The Caesar cipher command line app will take a lot of steps to com-
plete, so we’ll build our app in iterations. That means that instead of writing
out the whole app all at once and hoping the code works in the end, we’ll
create our app bit by bit, or one iteration at a time, and test it as we go along
so that we’ll have a functioning app at each point. Each iteration might not
have all the features we need, but we’ll eventually get to the complete, full-
featured app.

We’ll need to use text processing to manipulate the inputted string into
an output string. To begin working with strings of text in Java, we’ll build
a simple message reverser. In other words, we’ll take the message the user
entered and then give it back to them with the letters in reverse order. So,
for example, "Meet me at the arcade at 5pm" would become "mp5 ta edacra eht
ta em teeM".

Deciphering Secret Messages 129

First, we create a variable called output for the reversed string and set it
equal to an empty string:

 String message = scan.nextLine();
 String output = "";

We’ll need a loop to run through the characters in the message. We
can choose a for loop for convenience, because we know the number of
characters in the message. (Later, we’ll use the message.length() method to
tell us how many characters the message contains.) A for loop declaration
in Java needs to do three things: initialize a loop variable, test a condition to
keep going, and update the loop variable before the next iteration. We place
semicolons between each of the three parts to separate them. The syntax
looks like this:

for (initialization; condition; update) { body }

For example, open JShell and enter this code to create a for loop:

jshell> for (int x = 0; x < 10; x++) { System.out.println(x); }

This loop will print the numbers 0 through 9. The initialization sets
the first looping variable x to 0. The condition tests to make sure x is less
than 10 before proceeding. Finally, the update adds 1 to x after each pass
through the loop. x++ uses a shortcut called the increment operator because it
increments, or adds 1 to, x each time through the loop. x++ is equivalent to
the statement x = x + 1. In this example, the for loop prints the value of x each
time through the loop, repeating 10 times and stopping when x is no longer
less than 10.

So, to reverse the characters in the message string, we might initialize a
variable to the position number, or index, of the last character in the string
and then loop through the characters from last to first (in reverse order),
going backward through the string. In our example, this would look like:

 for (int x = message.length()-1; x >= 0; x--) { }

The character positions in a string in Java are numbered from 0 (the
index of the first character) to the length minus 1. The first character is at
index 0, and the nth character in a string is at index (n − 1).

In Figure 6-4, the first 10 characters of our
sample message are shown. The index of each char-
acter in the string is shown below the character. The
first letter, M, is at index 0, the first e is at index 1, and
so on. Notice that spaces count as characters—there
are two spaces shown here, at indexes 4 and 7. The
10th character in the message is at index 9, the
letter t. This continues all the way to the last charac-
ter in the message, at index message.length()-1.

M e e t m e a t
0 1 2 3 4 5 6 7 8 9

Figure 6-4: The char-
acters in a message
labeled with their
indexes

130 Chapter 6

We want to start our reversed message at the end of the string, so we
initialize x to the message.length()-1, the index of the last character in the
message. The condition is x >= 0 because we want to keep going all the way
down to the first character of the message, at index 0. Finally, the update
is x-- because we’re stepping backward through the string. The opposite of
x++, x-- uses the decrement operator, which decreases the value of x by 1 each
time. Come back into Eclipse and begin writing the for loop just below the
previous line of code:

 String output = "";
 for (int x = message.length()-1; x >= 0; x--) {
 }

To get the character at a specific position in a string, we use the charAt()
(“character at”) method and give it the index location of the character we
want. To append or add a character to a string, we use the + operator. Putting
those together, we can build the reverse version of the string message and store
it in the string output:

 for (int x = message.length()-1; x >= 0; x--) {
 output += message.charAt(x);
 }

The body of the for loop is a single line. We’re getting the character
at the xth index of message and adding it to output. Remember to use open
and close braces around the body of the for loop, because we’ll want to add
more lines inside the loop as the app grows.

Now we just need to show the output message to the screen, which we
can do with System.out.println(output). The full message-reversing iteration
of the app is shown in Listing 6-1.

import java.util.Scanner;
public class SecretMessages {
 public static void main(String[] args) {
 Scanner scan = new Scanner(System.in);
 System.out.println("Enter a message to encode or decode:");
 String message = scan.nextLine();
 String output = "";
 for (int x = message.length()-1; x >= 0; x--) {
 output += message.charAt(x);
 }
 System.out.println(output);
 }
}

Listing 6-1: The first iteration of the Secret Messages app reverses the characters in the
user’s message.

You can run the program in Eclipse and test it with your own message,
as shown in Figure 6-5. This isn’t our finished Secret Messages app, but it
does make the message harder to read and easy to decode.

Deciphering Secret Messages 131

Figure 6-5: Run the program and enter your own message to reverse in the console window at the bottom of
the screen.

You can even decode a message by copying the encoded, reversed
message and pasting it into the program, as shown in Figure 6-6. So you
can type a message, encode it, and paste it into a message to a friend, and
then they can decode it by pasting the encoded message into the same pro-
gram. You’ve built your first secret message encoder!

Figure 6-6: Copy and paste an encoded message into the
running program to decode it.

This version of the app is simple enough that you can read the messages
without running them through the program, so it’s not a very secure way
to send messages to your friends. But you did learn how to loop through a
string of text using a for loop, how to get the string’s length(), how to access
a specific character at a given index or position in the string using charAt(),
and how to add characters to the end of a string using the + operator. In the
next section, you’ll learn how to change the values of the individual charac-
ters in the message to make it harder to read, but still easy for our program
to decode.

132 Chapter 6

Characters and Values in Java
Building a better secret message encoder requires the ability to work with
character values in strings of text. For the Caesar cipher, we need to be able
to shift those values—for example, changing an A to an N, and an N to an A.
To do this, you need to understand how characters are stored in a computer.

In Java, individual characters, such as 'A', can be stored in their own data
type: char. Notice that we use single quotation marks to contain character
values. The charAt() method of a string returns a char value representing
a single character. Java uses 16-bit Unicode characters. Unicode is an inter
national character set containing thousands of characters and symbols from
all over the world that are represented as numeric values. The char type is a
way to store Unicode characters, such as 'A', 'ñ', and 'ç', by their numeric
values.

We can add to a Unicode char value in the same way we can add to an
int variable. With the Secret Messages app, we want to add the char value for
'A' (65) to the key (13) to get the new char value (78), which represents the
encoded letter ('N').

For our second iteration of the app, let’s begin coding the Caesar
cipher by setting up a char variable called key and storing the value 13 in it.
We’ll add this below the String output line:

 String output = "";
 char key = 13;

We also need to modify the for loop to go from the beginning of the
string to the end. We’re starting at index 0 this time and moving through
the string while x is less than message.length(). Each time we repeat the loop,
we’re adding 1 to x, the character position. Here is the new for loop:

 char key = 13;
 for (int x = 0; x < message.length(); x++) {

Finally, instead of adding the original characters of the message string
to the output string, we need to add the key value to each character, making
sure we get a char value that we can add to the output string:

 output += (char)(message.charAt(x) + key);

We’ve added the key value to each character in the message string, and
then we’ve taken that sum and cast it to a char. Putting char in parentheses
before an expression forces the value to its right to fit into a char data type,
or casts the value to that type. We have to cast the output value to (char)
here because in Java, the right side of this equation may result in an int
value by default. Listing 6-2 shows the program with these changes.

import java.util.Scanner;
public class SecretMessages {
 public static void main(String[] args) {

Deciphering Secret Messages 133

 Scanner scan = new Scanner(System.in);
 System.out.println("Enter a message to encode or decode:");
 String message = scan.nextLine();
 String output = "";
 char key = 13;
 for (int x = 0; x < message.length(); x++) {
 output += (char)(message.charAt(x) + key);
 }
 System.out.println(output);
 }
}

Listing 6-2: The Secret Messages app is still short at just 14 lines, but it encodes strings of
text now!

If you run the program at this point and enter a message, you should
see output like the following:

Enter a message to encode or decode:
Secret messages are so cool!
`rpr?-zr??ntr?-nr-?|-p||y.

The message is encoded, but it’s not quite what we were expecting. First
of all, we’re encoding all characters, including spaces and punctuation marks.
Second, we’re not wrapping around to the front of the alphabet yet, because
we’re always adding 13 to every character, not taking into account the fact
that the letters at the end need to wrap back around to the beginning of the
alphabet, resulting in odd symbols and unprintable characters in the output
message. We’ll cover both of these issues in the next section. Before moving
on, save your program.

Encoding Just the Letters
Our second iteration of the Secret Messages app gave us an encoded
message, but it lacks some features that we want in the final app. The
upgrades needed to create the final app will require some logic in the
form of if statements and conditions to encode only letters (not spaces or
punctuation) and to make the alphabet wrap around during encoding.
We’ll tackle these improvements in our third iteration.

First, we want to perform some tests on each character in the input
message instead of just adding the character directly to the output message.
Let’s change the body of the for loop as follows:

 for (int x = 0; x < message.length(); x++) {
 char input = message.charAt(x);
 }

The character stored in input will be the first character in message, then
the second, and so on. We need to test each character one by one to check
whether it’s a character that we want to encode. We want to encode letters

134 Chapter 6

by adding the key value to them and wrapping to the front of the alphabet
if necessary. Otherwise, if the character is a space or punctuation, we’ll
leave the character unchanged and add it to the output message.

Let’s add the following if statement in the body of our for loop:

 char input = message.charAt(x);
 if (input >= 'A' && input <= 'Z')

In the condition inside the if statement, we can use either 65 (the value
of 'A') or the character literal 'A' itself. The condition tests whether the
character stored in input is greater than or equal to 'A' and less than or
equal to 'Z'—in other words, whether input contains an uppercase letter. If
this condition is true, we want to add the key value to input to shift it, pro-
ducing the Caesar cipher value to substitute for that letter. Notice that this
is only for uppercase letters—lowercase letters will require a separate test.

Now, in the body of the if statement, we’ll add the key value to the
input character to encode the letter. This is also where we’ll handle wrap-
ping around to the front of the alphabet if the key value shifts a letter past
'Z'. So the code inside the for loop will become:

 for (int x = 0; x < message.length(); x++) {
 char input = message.charAt(x);
 if (input >= 'A' && input <= 'Z')
 {

 u input += key;
 v if (input > 'Z')
 w input -= 26;

 }
 x output += input;

 }

After getting the next character from the message and checking to make
sure it’s an uppercase letter, we encode the letter by adding the key to it u.
Then, we check whether adding the key value pushed the letter past Z v. If
so, at w we subtract 26 (the number of letters in the English alphabet) from
the encoded input value to wrap it back around to the front of the alphabet.
Finally, we can add the resulting input character to the output string x.

If you run the program now, you can encode an all-uppercase message
as follows:

Enter a message to encode or decode:
SECRET MESSAGES ARE SO COOL!
FRPERG ZRFFNTRF NER FB PBBY!

Notice the punctuation and spaces stay the same, and all uppercase
letters are shifted by 13 characters, wrapping around so that S becomes F,
and so on.

Encoding the lowercase letters is logically identical to handling the
uppercase letters. You can copy and paste the same if statement code, but

Deciphering Secret Messages 135

change the A and Z to lowercase letters. Don’t forget to add an else before
the second if statement. Try it yourself; but if you get stuck, the complete
code is provided in Listing 6-3 in the next section.

E ncoding Me ss age s in Ot he r L a nguage s

The version of the program we’re writing will only work consistently for basic
Latin characters from A to Z and a to z. If your preferred language is not
English, however, you can adjust the program as long as Unicode has the
alphabet or symbols of your language grouped together in a contiguous set,
one after the other. You can test for the first and last character of your pre-
ferred language just like the English encoder/decoder in this chapter. If your
language either isn’t provided in a complete set or uses some of the basic Latin
alphabet plus certain other characters (like how Spanish uses the ñ and French
uses the ç, along with other accented characters), you could add the key to any
character as we did in Listing 6-2. Optionally, you could leave spaces in the
message by testing with the Character.isSpace() method and encode every-
thing except spaces. Play with different methods for the alphabet or language
of your choice to find the encoding scheme that works best for you. Change
the program and make it do something new—that’s the best way to learn!

Closing the Scanner
There’s one touch we can add here that you may recall from Chapter 2. The
Scanner variable scan should have a yellow underline, indicating a warning in
Eclipse telling you there is a resource leak. When you hover your mouse over
the warning, it pops up with the message 'scan' is never closed. Remember
that we need to close all input/output resources, such as Scanner objects, when
we’re finished using them. To do so, we’ll add the command scan.close() right
after the final System.out.println in the main() method of the program:

 System.out.println(output);
 scan.close();

Adding this line removes the resource leak warning. See Listing 6-3 for
a fully functional Caesar cipher encoder and decoder with a key value of 13.

import java.util.Scanner;
public class SecretMessages {
 public static void main(String[] args) {
 Scanner scan = new Scanner(System.in);
 System.out.println("Enter a message to encode or decode:");
 String message = scan.nextLine();
 String output = "";
 char key = 13;

136 Chapter 6

 for (int x = 0; x < message.length(); x++) {
 char input = message.charAt(x);
 if (input >= 'A' && input <= 'Z')
 {
 input += key;
 if (input > 'Z')
 input -= 26;
 }
 else if (input >= 'a' && input <= 'z')
 {
 input += key;
 if (input > 'z')
 input -= 26;
 }
 output += input;
 }
 System.out.println(output);
 scan.close();
 }
}

Listing 6-3: This version of the app is a fully functional Caesar cipher encoder and
decoder with a key value of 13.

Try it out by first running the program and encoding a message. Then
copy the encoded output and run the program again; when prompted, paste
the encoded message and press enter. The program will respond with the
original, decoded message. Here are two sample runs of the program in
which I’ve copied the encoded output from the first message to use as the
input for the second run:

Enter a message to encode or decode:
Secret messages are so cool!
Frperg zrffntrf ner fb pbby!
Enter a message to encode or decode:
Frperg zrffntrf ner fb pbby!
Secret messages are so cool!

Because the Caesar cipher is symmetric, running the program on an
encoded message decodes the message back to its original plaintext. This
means you can run this program as it’s written in Listing 6-3 to encode a
message, send the encoded version to a friend who also has the encoder
program, and have them decode your message instantly.

Unfortunately, this means anyone running the program (or anyone who
figures out the cipher) can decode your messages just as quickly as you can.
For our next iteration, let’s make the code a little more interesting by allow-
ing the user to set their own key value. Then, you can pick a different key to
send messages to different people, or you can use a new key every time.

Deciphering Secret Messages 137

Adding a Custom Key Value
The secret message encoder works well with a key value of 13, but what if we
want to encode and decode messages using a different key value, such as 3
(the classical Caesar cipher shift) or 5 or 25?

We’ll need to prompt the user for a key value in addition to the mes-
sage. We can do that by adding a prompt before the line that creates the
char key variable:

 String output = "";
 System.out.println("Enter a secret key (-25 to 25):");
 char key = 13;

We’re allowing negative key values as a convenience for decoding mes-
sages. If you use a key value of 5 to encode your message and send it to a
friend, your friend can use a key value of -5 to decode the message.

When the user responds with their desired secret key value, we can
scan the line of input they provide, parse the integer value out of the line
of input, and store the value in an int variable:

 String output = "";
 System.out.println("Enter a secret key (-25 to 25):");
 int keyVal = Integer.parseInt(scan.nextLine());

Finally, instead of using 13 as the key variable, we’ll change the variable
key to the following:

 int keyVal = Integer.parseInt(scan.nextLine());
 char key = (char) keyVal;
 for (int x = 0; x < message.length(); x++) {

Here, we’re casting the keyVal entered to a char and storing that value in
the variable key, since we can’t store an integer directly into a char.

To handle negative key values for the decoding process, we’ll need
to make a change to the logic inside the if statements. We have to check
whether subtracting a value (or adding a negative key) would shift the letter
past the beginning of the alphabet (or less than 'A'). If that happens, we
can shift the letter back into the range from A to Z by adding 26. Add the fol-
lowing code to the if statement for uppercase letters:

 if (input >= 'A' && input <= 'Z')
 {
 input += key;
 if (input > 'Z')
 input -= 26;
 if (input < 'A')
 input += 26;
 }

138 Chapter 6

If we input a negative key, we check whether we shifted before A and add
26 to wrap back around to the end of the alphabet.

Remember to do the same for the lowercase logic inside the else-if
statement that follows:

 else if (input >= 'a' && input <= 'z')
 {
 input += key;
 if (input > 'z')
 input -= 26;
 if (input < 'a')
 input += 26;
 }

After these changes, you’ll be able to run the program to encode and
decode messages with your own, custom key. Your program should work
like the following example:

Enter a message to encode or decode:
You've written a really cool app in Java!
Enter a secret key (-25 to 25):
7
Fvb'cl dypaalu h ylhssf jvvs hww pu Qhch!
Enter a message to encode or decode:
Fvb'cl dypaalu h ylhssf jvvs hww pu Qhch!
Enter a secret key (-25 to 25):
-7
You've written a really cool app in Java!

The first time we ran the program, we used a key of 7. So, to decode the
secret message, we ran the program again with the key value -7, revealing
the original plaintext message.

Go ahead and try it out!

Encoding Digits
Now we have encoded letters, but if we encode a message like the following,
any digits remain unencoded, in their original plaintext:

Enter a message to encode or decode:
Meet me at the arcade at 5pm.
Enter a secret key (-25 to 25):
8
Ummb um ib bpm izkilm ib 5xu.

Notice the 5 in 5pm remains a 5 in the output message. If we want to
encode numbers as well as letters, we need to add one more section of logic
to the for loop. We’ll need to check whether a character falls between 0

Deciphering Secret Messages 139

and 9 and then encode that character as a different digit. We’ll also have to
remember to wrap back around to the front or back of the set of 10 digits.
We’ll have to handle this differently from wrapping around in the set of 26
letters since we’re dealing with numbers now.

First, let’s add another else-if statement right after the else-if that
handles lowercase letters:

 else if (input >= 'a' && input <= 'z')
 {
 input += key;
 if (input > 'z')
 input -= 26;
 if (input < 'a')
 input += 26;
 }
 else if (input >= '0' && input <= '9')
 output += input;

This part looks similar to the previous two if conditions, except that
we’re using the digits '0' through '9', instead of the letters 'A' to 'Z', as the
range.

The next line, inside the brace for the if statement, looks a bit different:

 else if (input >= '0' && input <= '9')
 {
 input += (keyVal % 10);

First, we’re using the integer version of the secret key, keyVal, which
the user entered earlier in the program. Second, we’ve used the modulo
operator (%) to keep the shift value for digits between -10 and +10.

We also need to test whether adding the keyVal pushed a digit past 9
or before 0, just as we checked whether encoding a letter pushed it past Z or
before A. But, instead of subtracting 26 to wrap back around to the begin-
ning of the alphabet, we need to subtract 10 to keep a digit between 0 and 9:

else if (input >= '0' && input <= '9')
 {
 input += (keyVal % 10);
 if (input > '9')
 input -= 10;
 if (input < '0')
 input += 10;
 }
 output += input;

If encoding a digit pushes it past 9, we subtract 10. And, if decoding
moves a digit below 0, we add 10.

140 Chapter 6

Now we can encode both numbers and letters in the messages we send:

Enter a message to encode or decode:
Meet me at the arcade at 5pm and bring $2 to play Pac-Man :)
Enter a secret key (-25 to 25):
7
Tlla tl ha aol hyjhkl ha 2wt huk iypun $9 av wshf Whj-Thu :)

The 5 in 5pm is correctly shifted by seven and wraps back around to
2wt in the encoded message. The 2 in $2 is shifted by seven to $9. You can
test the preceding secret message by decoding it with a key of -7, and you
should get the original plaintext message back, including the numbers.

The full, final text-based version of the Secret Messages app is given in
Listing 6-4.

import java.util.Scanner;
public class SecretMessages {
 public static void main(String[] args) {
 Scanner scan = new Scanner(System.in);
 System.out.println("Enter a message to encode or decode:");
 String message = scan.nextLine();
 String output = "";
 System.out.println("Enter a secret key (-25 to 25):");
 int keyVal = Integer.parseInt(scan.nextLine());
 char key = (char) keyVal;
 for (int x = 0; x < message.length(); x++) {
 char input = message.charAt(x);
 if (input >= 'A' && input <= 'Z')
 {
 input += key;
 if (input > 'Z')
 input -= 26;
 if (input < 'A')
 input += 26;
 }
 else if (input >= 'a' && input <= 'z')
 {
 input += key;
 if (input > 'z')
 input -= 26;
 if (input < 'a')
 input += 26;
 }
 else if (input >= '0' && input <= '9')
 {
 input += (keyVal % 10);
 if (input > '9')
 input -= 10;
 if (input < '0')
 input += 10;
 }
 output += input;
 }

Deciphering Secret Messages 141

 System.out.println(output);
 scan.close();
 }
}

Listing 6-4: The finished command line version of the Secret Messages app

This Secret Messages app can be a fun way to share scrambled messages
back and forth with friends. But some of your friends may not have Eclipse
or the Java JDK installed on their computer. Wouldn’t it be nice to be able
to share the Secret Messages app with them too? In the next section, we’ll
see how to run a command line Java app without opening Eclipse.

Running Command Line Apps Without Eclipse
We’ve built two command line apps so far, but we’ve always run them from
inside Eclipse. Eclipse provides a convenient console emulator to let us see
how a command line app would look and feel, but what if we wanted to run
the app from an actual command line, such as the Command Prompt in
Windows or the Terminal on macOS? Or what if we wanted to send one of
our command line apps to a friend who doesn’t have Eclipse installed on
their computer?

Fortunately, most people have at least the JRE, or Java Runtime
Environment, installed on their computers.

Finding Your Workspace Folders
To run the app you’ve written and compiled in Eclipse, first start by finding
your Eclipse workspace folder. Open it in File Explorer (or Finder), as shown
in Figure 6-7.

Figure 6-7: My workspace folder has folders inside it for each of the projects
we’ve built so far, plus some Eclipse default folders.

Open the SecretMessages project folder inside your workspace, and you’ll
see a few files and folders inside it, as shown in Figure 6-8. The src folder has
your source code files (ending in .java), and the bin folder has the compiled
version of your app (ending in .class).

142 Chapter 6

Figure 6-8: Find the bin folder inside the SecretMessages project folder.

Opening a Command Line Window
Next, open a command line window. On Windows, you can do this
by pressing the Start button, going to the search bar, and typing cmd
(short for command) and pressing enter. On macOS, use the Spotlight
search bar to find Terminal, or from a new Finder window, go to
Applications4Utilities4Terminal. On Linux, open the Terminal
application or use Search to find Terminal.

We need to browse into the bin folder described earlier from the com-
mand line or Terminal prompt. Type cd (“change directory”) followed by
a space in your terminal window. Then, to change directories into the bin
folder for your app, drag the bin folder from your File Explorer or Finder
window and drop it into the Command Prompt or Terminal window, as
shown in Figure 6-9.

Figure 6-9: You can drag and drop the bin folder from File Explorer or Finder into the
command line window to easily copy the directory path.

Notice that the full path appears after the cd command and looks some-
thing like the following (your workspace/SecretMessages/bin folder will be in a
slightly different location from mine, of course):

cd "C:\Users\Bryson Payne\workspace_ch06\SecretMessages\bin"

Deciphering Secret Messages 143

On macOS, the command will be:

cd /Users/BrysonPayne/Desktop/workspace_ch06/SecretMessages/bin

Press enter after this command, and the terminal will change the prompt
to show you that you’re now inside the bin folder. On Windows, this looks like:

C:\Users\Bryson Payne\workspace_ch06\SecretMessages\bin>_

Now we’re inside the bin folder, where the file SecretMessages.class has
been compiled. To run the program contained in the SecretMessages.class
bytecode file, enter the following command:

C:\Users\Bryson Payne\workspace_ch06\SecretMessages\bin>java SecretMessages

Spelling, capitalization, and spacing all matter in the command, so you’ll
need to match the name you gave your Java class precisely. If you typed the
command correctly, the app should run, and you can test it with a message
and secret key like so:

C:\Users\Bryson Payne\workspace_ch06\SecretMessages\bin>java SecretMessages
Enter a message to encode or decode:
I'm running my app directly from the command line terminal!
Enter a secret key (-25 to 25):
12
U'y dgzzuzs yk mbb pudqofxk rday ftq oayymzp xuzq fqdyuzmx!

You can run the app again by retyping the line java SecretMessages or by
pressing the up arrow key on your keyboard and pressing enter. Figure 6-10
shows a couple of runs encoding and decoding a message from a Windows
command prompt.

Figure 6-10: Now that you can run your Java app from the command line, you can encode
and decode messages on any computer with Java installed, with or without Eclipse.

Now that you know how to run the app on your computer, you can
share the SecretMessages.class file with your friends to exchange encoded

144 Chapter 6

messages. If their computer has Java (JDK or JRE) installed, all they’ll
have to do is open their command line program, change directories into
the folder containing the SecretMessages.class file, and run the same java
SecretMessages command. To exchange messages, just agree on a key value
to use. You can choose to use the same key every time or use different key
values with different friends! Remember, though, this message app is just
for fun—anyone with this program, or with a little time on their hands, can
break a simple Caesar cipher. We’ll see how to break Caesar ciphers easily
in Chapter 7.

What You Learned
The Secret Messages app provided a fun way to delve into the world of
manipulating characters and strings of text in Java. Among the new things
you learned in this chapter were:

•	 Using the Caesar cipher to encode and decode simple messages

•	 Understanding the char data type for storing single Unicode characters

•	 Getting a specific character in a string with the charAt() method

•	 Accessing a specific location in a string using the index, or position
number, of a character in the string

•	 Adding strings and characters together using the + operator

•	 Looping through a string with a for loop, using its length() function to
get the number of characters

•	 Understanding how the computer stores characters and other data
represented by number values

•	 Running command line apps directly from the command line, without
Eclipse

Programming Challenges
Try these programming challenge exercises to review and practice what
you’ve learned, as well as to expand your programming skills by trying
something new. Visit the book’s website at https://www.nostarch.com/learnjava/
to download sample solutions.

#1: Looping the Loop
We’ve built a fun message encoder/decoder app that will let us send and
receive secret texts, emails, tweets, and so on. For your first programming
challenge, add a loop to the Secret Messages app that will allow you to keep
encoding and decoding messages as many times as you like.

PROGRAMM

ING

 CHA

LL
ENGES

https://www.nostarch.com/learnjava/

Deciphering Secret Messages 145

You can choose to use the same key every time, or you can ask the user
for a new key each time. If you ask the user to enter a secret key each time
through the loop, you can enable them to encode and decode messages,
one after the other (entering 8, for example, to encode a message to a
friend, and -8 to decode a message from that same friend).

One way to do this is to prompt the user to enter a new message to
encode or decode or tell them to press enter to quit. Then, use an if state-
ment to check whether the user entered a message or just pressed enter.
Give it a shot!

Hi n t 	 message.length() will be greater than zero if the user typed something.

#2: Reversing and Encoding
Let’s make our messages even harder to decipher by reversing the message
before we encode it with the Caesar cipher. This double-encoding version of
the app will combine the message-reversing approach of the first version in
Listing 6-1 on page 130 with the Caesar cipher features of the final version
from Listing 6-4 on page 140.

Reversing the order of the message is another example of symmetric
encryption—doing it once reverses the message, and doing it again restores
the message. Combining the string reversal with the Caesar cipher shift
doesn’t make the program much more difficult, but it can make your mes-
sages even more confusing to an eavesdropper.

Make sure your app correctly encodes and decodes messages, and
remember that your friends will need the new version of the program to
be able to decipher your new, doubly scrambled messages! Enjoy!

#3: Safely Handling Keys with try and catch
A final improvement you could make to the Secret Messages app would
be to safely handle bad numeric input when the user enters a key value.
Remember the try-catch statement?

Adding the try-catch blocks to this app can be a bit tricky. In addition
to adding the exception-handling code to prevent the user from crashing
the program by giving a bad number (for example, by entering text instead
of a number when prompted for the key value), you’ll need to think about
what the app should do when bad input is provided. Should it tell the user
their key was invalid and use a predefined key instead (say, 13)? Or should it
create a loop that will keep asking the user for a valid key?

Try coding it both ways and pick the one you like best!

PROGRAMM

ING

 CHA

LLENGES

7
C r e a t i n g Ad v a n c e d GU I s a n d

S h a r i n g Yo u r App

For the GUI desktop version of the Secret
Messages app, we’re going to provide two

large text areas that allow the user to copy
and paste long messages in the GUI interface.

By the end of the chapter, we’ll add a slider for key
selection like the one shown in Figure 7-1, which will
make cracking Caesar ciphers very easy, even when
the key is unknown!

148 Chapter 7

Figure 7-1: The Secret Messages encoder/decoder app
we’ll build in this chapter

This version of the app is more user-friendly than the console-based
app, and we’ll be able to reuse some code from Chapter 6 because the
algorithm for encoding and decoding messages is the same.

Setting Up the Secret Messages GUI App Project
Open Eclipse and create a new Java project by going to File4New4Java
Project. Name the project SecretMessagesGUI and then click Finish. Close
any open files and expand the SecretMessagesGUI project folder in the
Package Explorer pane to find the src folder. Right-click the src folder
and select New4Class to create a new Java source code file. Name this
SecretMessagesGUI as well.

We’re going to use the Swing toolkit again, so in the New Java Class
dialog, change the superclass to javax.swing.JFrame and select the checkbox
to create a main() method.

Click Finish, and you’ll see some familiar skeleton code for the
SecretMessagesGUI.java file. Right-click the SecretMessagesGUI.java file in the
Package Explorer and select Open With4WindowBuilder Editor to begin
creating the GUI interface for the Secret Messages app.

Designing the GUI and Naming Components
Open the WindowBuilder Editor’s Design tab. Expand the javax.swing.JFrame
component in the Components pane and select getContentPane(). Now go
to the Properties pane and change the Layout property to Absolute layout,
as shown in Figure 7-2. This will allow us to position components with pixel-
perfect accuracy.

Creating Advanced GUIs and Sharing Your App 149

Figure 7-2: Change the Layout property to Absolute layout before
placing any GUI components.

Next, in the Components pane, click javax.swing.JFrame. Then, in the
Properties pane, set the defaultCloseOperation to EXIT_ON_CLOSE. Also,
change the title property to Your Name's Secret Message App, as shown in
Figure 7-3.

Figure 7-3: Change the defaultCloseOperation
and title properties to customize the app.

150 Chapter 7

Next, let’s give ourselves some room to build a slightly larger GUI inter-
face so we can encode and decode longer messages. With javax.swing.JFrame
still selected in the Components pane, click the outside border of the window
in the design preview. Click the small black resize box at the lower-right
corner of the window, and drag down and to the right to resize the frame
to 600 by 400 pixels, as shown in Figure 7-4.

Figure 7-4: Resize the JFrame to hold bigger messages.

Now we’re ready to begin placing the GUI interface components. For
the GUI version of the app, we want to be able to encode and decode long
messages, so the first component we’ll place is a JTextArea. Like a JTextField,
text areas allow you to enter text, but a JTextArea can hold, display, and even
wrap several lines of text.

To insert the first JTextArea for the user to input a message, under
Components in the Palette, click JTextArea. Then place it near the top
of the JFrame in the design preview. Click and drag to draw a JTextArea
approximately one-third of the height of the content pane, with a small
margin between the JTextArea and the edge of the frame. The JTextArea
should be approximately 564 pixels wide by 140 pixels tall. Then, in the
Properties pane, change the Variable property to txtIn.

To create the second JTextArea for the outputted message, right-click
txtIn in the Preview pane, select Copy, right-click the content pane, and
select Paste. Place the new JTextArea near the bottom edge of the frame. To
name the new JTextArea, change the Variable property to txtOut. You should
end up with two JTextArea components, as shown in Figure 7-5.

Creating Advanced GUIs and Sharing Your App 151

Figure 7-5: Copy and paste txtIn to create a second
JTextArea and name it txtOut.

Next, let’s add a text field for the encryption key value. Click JTextField
in the Palette pane under Components and then click near the center of
the content pane to place the JTextField. Change the JTextField’s Variable
property to txtKey and resize it to about half its original size.

Add a JLabel to the left of txtKey, entering Key: as the label’s text property.
Set the horizontalAlignment to RIGHT. Finally, add a JButton to the right of
txtKey, entering the words Encode/Decode as the button’s text property. Expand
the width of the button until it shows all the text. The interface should look
like Figure 7-6. To preview the interface without running the app, press the
small Test GUI button above the Palette, circled in Figure 7-6.

Figure 7-6: Test the GUI interface by pressing the Test GUI button above
the Palette.

Now that you have the user interface set up, it’s time to code the program.

152 Chapter 7

Coding the Secret Messages GUI App
Switch back to the source view by clicking the Source tab on the bottom
left of the design view window. You’ll see that Eclipse has added all the GUI
code in the SecretMessagesGUI.java file. To connect the GUI to our app, we
first need to add the declarations for the two JTextArea variables at the top
of the SecretMessagesGUI class. Eclipse knows that JTextField components
usually need event handlers for user input, so it places txtKey at the top of
the class, but we need to do the same with the two JTextArea components,
txtIn and txtOut. Add the two bottom lines shown here:

public class SecretMessagesGUI extends JFrame {
 private JTextField txtKey;
 private JTextArea txtIn;
 private JTextArea txtOut;

After declaring the JTextArea variables at the top of the file, we need to
modify the code inside the SecretMessagesGUI() constructor. Delete the vari-
able type JTextArea at the beginning of each of these two lines:

 public SecretMessagesGUI() {
 setTitle("Dr. Payne's Secret Message App");
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 getContentPane().setLayout(null);
 txtIn = new JTextArea(); // Delete "JTextArea" from start of line
 txtIn.setBounds(10, 11, 564, 140);
 getContentPane().add(txtIn);
 txtOut = new JTextArea(); // Delete "JTextArea" from start of line
 txtOut.setBounds(10, 210, 564, 140);
 getContentPane().add(txtOut);

With these changes, we’re ready to begin writing the method to encode
messages whenever the user clicks the Encode/Decode button.

Creating the encode() Method
The encode() method we’ll write is similar to checkGuess() from the Hi-Lo
guessing game app in Chapter 3. The checkGuess() method took a string
that was the user’s guess, but the method didn’t need to return a value, so
it returned void. Unlike checkGuess(), encode() will take a message and an
encryption key as values, and instead of returning void, it will return an
encoded message.

Methods return values so that the program can use them. We want
encode() to take a message and key from the user and then run some code
on those values to produce the encoded message, which our program
will use as the output for the user. When declaring a method that returns
information, we state the return value’s data type before the name of the
method. The type of information we want returned from encode() is a String
variable. So, encode() will be declared as public String encode().

Creating Advanced GUIs and Sharing Your App 153

We need to tell Java what kind of information we want to pass to encode();
this information is known as a method’s parameters. To declare parameters
for a method, we place them inside the parentheses following the method
name, with the data type first and the name of the parameter second.
Multiple parameters are separated by commas. The declaration for the
encode() method looks like this:

 public String encode(String message, int keyVal)

Let’s add braces for the body and place the encode() method
right below the declarations for the two JTextArea variables, above the
SecretMessagesGUI() constructor method:

public class SecretMessagesGUI extends JFrame {
 private JTextField txtKey;
 private JTextArea txtIn;
 private JTextArea txtOut;
 public String encode(String message, int keyVal) {
 }
 public SecretMessagesGUI() {

Eclipse will underline the encode() method in red to let you know you
haven’t returned a value, but that’s because we haven’t written the code inside
the method body yet. Here we’ll be reusing some of our code from Chapter 6.

Declare a String called output, set it equal to an empty string for now,
and add a line to return output as the result of the encode() method using a
return statement:

 public String encode(String message, int keyVal) {
 String output = "";
 return output;
 }

Since encode() was declared to return a String value and we’re returning
output, which is a String, Eclipse will remove the red underline to let us know
we’ve fixed the problem of the missing return value.

Next, we’ll reuse a selection of code from the text-based version of the
app for encoding messages. Open the SecretMessages project from Chapter 6
in the Project Explorer pane.

We can copy the code starting at char key and ending at the closing
brace of the for loop, right before System.out.println(output); near the end
of the program. This is the part of the app that encodes a message using
the Caesar cipher algorithm.

Paste the copied code from SecretMessages.java into SecretMessagesGUI.java,
inside encode(), between the two lines we just added. The finished encode()
method looks like this:

 public String encode(String message, int keyVal) {
 String output = "";
 char key = (char) keyVal;

154 Chapter 7

 for (int x = 0; x < message.length(); x++) {
 char input = message.charAt(x);
 if (input >= 'A' && input <= 'Z')
 {
 input += key;
 if (input > 'Z')
 input -= 26;
 if (input < 'A')
 input += 26;
 }
 else if (input >= 'a' && input <= 'z')
 {
 input += key;
 if (input > 'z')
 input -= 26;
 if (input < 'a')
 input += 26;
 }
 else if (input >= '0' && input <= '9')
 {
 input += (keyVal % 10);
 if (input > '9')
 input -= 10;
 if (input < '0')
 input += 10;
 }
 output += input;
 }
 return output;
 }

Because we named our variables consistently, we can reuse the Caesar
cipher encryption code. Consistent naming is a good habit, and well-written
code in Java can be reused across multiple platforms.

Writing the Event Handler for the Encode/Decode Button
We want the user to provide both the input message and the key value that
we’ll pass along to encode() in the GUI interface, and we want the output
message to be returned when the user presses the Encode/Decode button,
so let’s write the code to handle the button click event.

Switch to the design view in SecretMessagesGUI.java and double-click
the Encode/Decode button. Eclipse will switch back to the source view
and insert the code for the actionPerformed() event handler for the Encode/
Decode button, like the code snippet shown here:

 JButton btnEncodedecode = new JButton("Encode/Decode");
 btnEncodedecode.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent arg0) {
 }
 });

Creating Advanced GUIs and Sharing Your App 155

This is an anonymous inner class, like the one we first encountered in
Chapter 3. All we have to add is the code inside actionPerformed() to tell Java
how the button should behave when it’s clicked.

We want the Encode/Decode button to perform the following steps:

1.	 Get the input message from txtIn.

2.	 Get the key from txtKey.

3.	 Encode the message using the key.

4.	 Show the output message in txtOut.

Think about how we might accomplish each of those steps. Try it yourself
before reading further and then read below to see how my solution compares.

For the first step, we can set up a String called message that gets the text
from the txtIn field. Just like a JTextField, a JTextArea has a getText() method:

 public void actionPerformed(ActionEvent arg0) {
 String message = txtIn.getText();

For the second step, we can get the user’s key from txtKey using the
Integer.parseInt() method, which pulls an integer value out of a text string.
Then we’ll store the integer we get in a variable we’ll call key:

 String message = txtIn.getText();
 int key = Integer.parseInt(txtKey.getText());

To encode the message in the third step, we just need to call the encode()
method and pass it two arguments. Arguments are the values we give a method
to serve as its parameters. Remember we defined encode() to require two
parameters, so we’ll need to pass encode() two arguments, which will be the
variables message and key.

We can call encode() with the statement encode(message, key). When it has
finished executing, it will return the encoded message, which is output. Note
that a method returns the value itself, not the variable the value is stored in.
That means that the encoded message is stored in output, but when encode()
returns output, we’re actually getting only the encoded string. In addition to
that, all the code and variables created inside encode() aren’t carried over to
the rest of the program, so the output variable doesn’t exist anymore once
encode() returns. We’ll need to store the value returned by the method in a
new variable if we want to save it. In order to keep our naming consistent,
let’s call the new variable output too:

 String message = txtIn.getText();
 int key = Integer.parseInt(txtKey.getText());
 String output = encode(message, key);

156 Chapter 7

Finally, we’ll use the setText() method to show the output message in
txtOut:

 String message = txtIn.getText();
 int key = Integer.parseInt(txtKey.getText());
 String output = encode(message, key);
 txtOut.setText(output);

The actionPerformed() method is almost complete, except for some
error handling. We’ve used the Integer.parseInt() method, which can
throw exceptions if the user enters bad input, so we’ll need to add try-catch
statements.

Handling Bad Input and User Errors
The code to process button clicks includes a call to Integer.parseInt(), and
we learned back in Chapter 3 that this method can throw exceptions when
the user enters erroneous input. In particular, if the user were to leave the
txtKey field blank or type anything other than an integer into that JTextField,
the Integer.parseInt() method would fail.

We need to protect the program from bad input by using try-catch blocks
to handle exceptions. Since we want to encode or decode a message only
when the user has correctly entered an encryption key, we can wrap all four
lines of actionPerformed() inside a try block by adding the keyword try and
an opening brace before the first line, as well as a closing brace after the
fourth line, as shown here:

 public void actionPerformed(ActionEvent arg0) {
 try {
 String message = txtIn.getText();
 int key = Integer.parseInt(txtKey.getText());
 String output = encode(message, key);
 txtOut.setText(output);
 } catch (Exception ex) {
 }
 }

Eclipse will highlight the closing brace in red, so let’s go ahead and add
the catch block as shown. We’ll need to tell Java what to do when bad input is
received, and we’ll add those steps inside the braces for the catch statement a
little later. But first, let’s finish the main() method so that we can test the app.

Building the main() Method and Running the App
Just like when we created our game app in Chapter 3, we need to add
some setup code to the main() method to create an instance of the Secret
Messages app, correctly size the GUI window, and make the GUI visible to
the user. Near the bottom of the SecretMessagesGUI.java file, find the main()
method stub Eclipse provided and add the following three lines.

Creating Advanced GUIs and Sharing Your App 157

 public static void main(String[] args) {
 u SecretMessagesGUI theApp = new SecretMessagesGUI();
 v theApp.setSize(new java.awt.Dimension(600,400));
 w theApp.setVisible(true);

 }

The line at u creates a SecretMessagesGUI object called theApp. The
new keyword followed by the class name runs the constructor method
SecretMessagesGUI(), which sets up all the components of the GUI interface.

Next, we set the size of the JFrame to match the width and height that we
used in designing the layout, 600 by 400 pixels v. Finally, we set the JFrame’s
visible property to true w, allowing the user to see the GUI. Save these
changes and then run the app to test it, as shown in Figure 7-7.

Figure 7-7: The Secret Messages app is still a bit plain,
but it can encode and decode messages!

The following is the full source code for SecretMessagesGUI.java to this
point:

import javax.swing.JFrame;
import javax.swing.JTextArea;
import javax.swing.JTextField;
import javax.swing.JLabel;
import javax.swing.JButton;
import java.awt.event.ActionListener;
import java.awt.Dimension;
import java.awt.event.ActionEvent;
public class SecretMessagesGUI extends JFrame {
 private JTextField txtKey;
 private JTextArea txtIn;
 private JTextArea txtOut;
 public String encode(String message, int keyVal) {
 String output = "";
 char key = (char) keyVal;
 for (int x = 0; x < message.length(); x++) {
 char input = message.charAt(x);

158 Chapter 7

 if (input >= 'A' && input <= 'Z')
 {
 input += key;
 if (input > 'Z')
 input -= 26;
 if (input < 'A')
 input += 26;
 }
 else if (input >= 'a' && input <= 'z')
 {
 input += key;
 if (input > 'z')
 input -= 26;
 if (input < 'a')
 input += 26;
 }
 else if (input >= '0' && input <= '9')
 {
 input += (keyVal % 10);
 if (input > '9')
 input -= 10;
 if (input < '0')
 input += 10;
 }
 output += input;
 }
 return output;
 }
 public SecretMessagesGUI() {
 setTitle("Dr. Payne's Secret Message App");
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 getContentPane().setLayout(null);
 txtIn = new JTextArea();
 txtIn.setBounds(10, 11, 564, 140);
 getContentPane().add(txtIn);
 txtOut = new JTextArea();
 txtOut.setBounds(10, 210, 564, 140);
 getContentPane().add(txtOut);
 txtKey = new JTextField();
 txtKey.setBounds(258, 173, 44, 20);
 getContentPane().add(txtKey);
 JLabel lblKey = new JLabel("Key:");
 lblKey.setBounds(202, 176, 46, 14);
 getContentPane().add(lblKey);
 JButton btnEncodedecode = new JButton("Encode/Decode");
 btnEncodedecode.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent arg0) {
 try {
 String message = txtIn.getText();
 int key = Integer.parseInt(txtKey.getText());
 String output = encode(message, key);
 txtOut.setText(output);
 } catch (Exception ex) {
 }
 }

Creating Advanced GUIs and Sharing Your App 159

 });
 btnEncodedecode.setBounds(312, 172, 144, 23);
 getContentPane().add(btnEncodedecode);
 }
 public static void main(String[] args) {
 SecretMessagesGUI theApp = new SecretMessagesGUI();
 theApp.setSize(new java.awt.Dimension(600,400));
 theApp.setVisible(true);
 }
}

This first version of the app is a success, but it leaves a bit to be desired
visually. We can make the GUI interface look more professional with just a
few tweaks.

Improving the GUI
Let’s switch back to the design view to correct the issues we noted in the
last section. First, click the Encode/Decode button and make it a bit wider.
Different computers can have other default fonts and sizes, so give the button
a little extra room to be safe.

Now, let’s make the font sizes in the two JTextArea fields larger and easier
to read. We want to change the font properties of both text areas, so we can
select both txtIn and txtOut at the same time by clicking txtIn and then
using ctrl-click (or z-click) to also select txtOut.

With both text areas selected, go to the font property in the Properties
pane and click the three dots next to the font size. The Font Chooser dialog
will appear, as shown in Figure 7-8.

Figure 7-8: We can change the font properties for both
JTextArea fields at the same time.

160 Chapter 7

Choose a font size of 18 or greater and select a font that you like. Stick
with a familiar font so that when you share the app with friends on different
computers, the look and feel won’t change too dramatically. I’ve selected
Lucida Console, 18 point. Click OK to save the font selection.

Finally, let’s change the background color of the content pane to per-
sonalize it. Select the content pane by clicking getContentPane() in the
Components pane in the upper left. Then, click the three dots beside the
background property in the Properties pane. In the Color Chooser dialog that
pops up, select the Named colors tab, as shown in Figure 7-9. You’ll see a
broad selection of colors. Choose a color that you like and click OK.

Figure 7-9: Change the background color of the
content pane and button to make the app more
stylish.

You can also change the background color of the Encode/Decode
button. You may not see all your changes in the design preview, but if you
run the app, you should see your new selections, as shown in Figure 7-10,
along with any new background color you chose.

Creating Advanced GUIs and Sharing Your App 161

Figure 7-10: The GUI after you change the button size and
font size.

There are a lot of other properties you can customize based on your
preference. Explore the Properties pane for each component and adjust
things until the app looks how you want it. Remember to stop and save
your app so your changes don’t get erased!

Setting Line Wrap and Word Wrap
So far, the messages I’ve used in my examples have been shorter than one
line. But what happens if we type several lines of text?

Let’s try typing or pasting a long sentence into the input text area.
I’ll use the first sentence of the Gettysburg Address, by US president
Abraham Lincoln:

Four score and seven years ago our fathers brought forth on this
continent, a new nation, conceived in Liberty, and dedicated to
the proposition that all men are created equal.

You can use this sentence or make up your own long sentence. Either
way, as soon as you type it in, you’ll notice a problem, as shown in Figure 7-11.

Figure 7-11: Longer messages in the app don’t yet auto-
matically wrap at the end of a line.

162 Chapter 7

To correctly wrap longer lines of text by full words, you’ll need to change
two properties for each text area in the Properties pane. Select both JTextArea
objects again in the design preview and then, under Properties, select the
checkboxes next to lineWrap and wrapStyleWord. The first property, lineWrap,
tells Java to wrap text longer than one line down to the next line. Setting
the wrap style to wrapStyleWord tells Java to break the line at the end of a
whole word, as we do in a word processor or as you see in this book.

Now save and run the app again. Paste your long sentence into the first
text box, and you should notice an improvement. Now the text is correctly
wrapped across multiple lines, with line breaks after the last full word that fits
on each line. Enter a key and press the Encode/Decode button, and you’ll
see the same text wrapping in the output text area, as shown in Figure 7-12.

Figure 7-12: Changing both the lineWrap and wrapStyleWord
properties to true results in a nice multiline interface, complete
with word wrapping.

This version of the program is becoming more professional looking,
but what happens if we enter bad input in the text field for the encryption
key? Well, nothing yet. We added a try statement earlier, but we didn’t
complete the catch statement. Let’s do that now. We’ll also learn how to
create pop-up message dialogs to alert the user to errors.

Handling Bad Input and User Errors: Part 2
Earlier in the chapter, we added a try block around the button event
handler, but we left the body of the catch statement empty. It’s time to
fill that in with code.

Our catch statement will handle bad or missing user input in the txtKey
text field. If the user forgets to enter a value for the encryption key or if the
value they entered is not a number, one way of handling that is to pop up a
message describing the problem, like the one shown in Figure 7-13.

Creating Advanced GUIs and Sharing Your App 163

Figure 7-13: A dialog pops up to alert the user to an error.

After the user closes the pop-up window, another helpful touch is to
move the cursor to the txtKey text field and highlight or select any text there
so the user can type a new value easily, without needing to click and select
the value manually.

The javax.swing toolkit that we’ve been using for GUI components such
as JFrame and JTextField also has classes that handle various kinds of pop-up
windows. Some examples are input dialogs, which allow the user to provide
text input; confirm dialogs, which allow the user to select Yes/No/OK or
Cancel; and message dialogs, which provide information to the user in a
pop-up window.

The error message we’d like to provide to the user is best displayed
in a message dialog. The javax.swing.JOptionPane class has a method called
showMessageDialog() that takes two parameters, which are the parent window
and the message to display. If we were writing a larger application, we would
use the parent window parameter to center the dialog over the main word
processing window, for example. But for this app, we can use the keyword
null to center the dialog over the desktop instead, as shown here:

JOptionPane.showMessageDialog(null,
 "Please enter a whole number value for the encryption key.");

When this line of code is called, it will pop up a message dialog reading
“Please enter a whole number value for the encryption key.”

To add this pop-up error message to the catch statement we created
earlier, go to the design view and double-click the Encode/Decode button.
This is a quick way to have Eclipse take you directly to the source code for
the button-click event handler that contains the catch statement.

164 Chapter 7

After the error message is displayed, we’ll also want to place the cursor
in the txtKey field and select any text currently in the txtKey field, as we did
for the Hi-Lo guessing game GUI app. We’ll add the message dialog and
the same requestFocus() and selectAll() statements we used in the Hi-Lo
guessing game app inside the braces for the catch statement. The finished
event handler code for the Encode/Decode button looks like the following:

 btnEncodedecode.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent arg0) {
 try {
 String message = txtIn.getText();
 int key = Integer.parseInt(txtKey.getText());
 String output = encode(message, key);
 txtOut.setText(output);
 } catch (Exception ex) {
 JOptionPane.showMessageDialog(null,
 "Please enter a whole number value for the encryption key.");
 txtKey.requestFocus();
 txtKey.selectAll();
 }
 }
 });

No t e 	 When you add JOptionPane, if you don’t use the content assist or if you see an error
at JOptionPane, you may need to press ctrl-shift-O to import the javax.swing
.JOptionPane class correctly at the top of your code.

Run the app now, either leaving the key field blank or entering non-
numeric text as the key. The message dialog will pop up, asking you to
enter a valid key. It will also highlight the text in the key field so that it’s
easy to type a whole number when the dialog closes.

A first-time user might not know what to type into the key field, so add-
ing a default value might also be a helpful UI tweak. Click the Design tab,
select the txtKey text field, and enter a default key value into the text property
in the Properties pane. I’ll choose 3 as my default encryption key, but you can
choose any number. Let’s also change the horizontalAlignment property of the
txtKey field to CENTER. Feel free to change other properties to make txtKey
look exactly like you want, including the font color and style.

Adding a Slider to the Secret Messages GUI
We’ll add one more user interface improvement to the Secret Messages
app—a numeric slider that will allow the user to quickly slide through key
values and see how the message changes with each new key.

In design view, under Components in the Palette, select the JSlider
component. Hover over the middle left of the design preview, beside
the key prompt, and click to drop the JSlider into place as shown in
Figure 7-14—you can adjust the position later if needed.

Creating Advanced GUIs and Sharing Your App 165

Figure 7-14: Add a JSlider to the graphical user interface for a quick, easy way to try different key values.

Now let’s customize some properties of the JSlider. First, let’s change its
background color to match the rest of the app. With the new JSlider selected
in the design preview, click the three dots next to the background property in
the Properties pane, go to Named colors in the Color Chooser dialog, and
pick the same color you used for the rest of the GUI. Click OK to save the
new background color for the slider.

Next, we’ll add custom labels, tick marks,
and a default value for the slider. First, turn
on the paintLabels property by selecting the
true checkbox beside it. Second, enter a
maximum value of 26 and a minimum value of –26
to make it easy to choose a key value in the
correct range.

Next, for the minorTickSpacing property,
enter a value of 1—this will add small tick
marks on the slider track to help the user
see the range of possible values. Then, for
the majorTickSpacing property, enter 13—this
will show a label every 13 values between
-26 and 26 on the slider. Now, turn on the
paintTicks property by selecting the true
checkbox next to it. The complete Proper
ties pane with all the changes we’ve made is
shown in Figure 7-15.

Figure 7-15: Customizing the
properties of the slider

166 Chapter 7

We’re almost done! Change the default value of the slider to match
your default key value in the key text field by modifying the value property.
I selected 3 as my default key value, so I’ll enter 3 in the value property for
the slider. Finally, you’ll need to make the slider a bit taller to show the
labels, as shown in the finished slider in Figure 7-16.

Figure 7-16: The Secret Messages app with the GUI slider
in place

Now, we need to add the code to make the slider work, allowing the
user to slide easily among various key values to encode and decode messages
quickly.

Code Cracking with the Slider
We want the user to be able to change the encryption key value by clicking
and dragging the slider we added in the previous section, so next we’re going
to add an event handler to listen for changes to the slider.

Right-click or control-click the slider in the design preview and go to
Add event handler4change4stateChanged, as shown in Figure 7-17. The
stateChanged event handler will work similarly to the actionPerformed event
handler for the Encode/Decode button, but it will run anytime the user
changes the slider’s position to update the encryption key value.

Figure 7-17: Adding an event handler to the slider that will
detect when the user changes the slider’s value

Creating Advanced GUIs and Sharing Your App 167

When you click to add the stateChanged event handler to the slider,
Eclipse will automatically generate another anonymous inner class, much
like the one it created for the Encode/Decode button. But before we check
out the anonymous inner class, we’ll need to add the JSlider to the top of
the class with the JTextArea declarations. To do that, we have to declare the
JSlider as an instance variable. Add the last line shown here to the declara-
tions at the top of the SecretMessagesGUI class:

public class SecretMessagesGUI extends JFrame {
 private JTextField txtKey;
 private JTextArea txtIn;
 private JTextArea txtOut;
 private JSlider slider;

Then, scroll back down to the slider code. Remember, you can switch
back to design view and right-click to add the event handler again to go
directly to the code anytime you get lost. Now, change the first line, remov-
ing the JSlider type declaration, as shown here:

 slider = new JSlider();
 slider.addChangeListener(new ChangeListener() {
 public void stateChanged(ChangeEvent arg0) {

The first action we’d like the slider to do is update the txtKey text field
to show the slider’s current position. We can get the slider’s current position
with the getValue() method, and we can set the text of the txtKey field with
its setText() method. Adding those together, we can write the first line of
the stateChanged() method:

 public void stateChanged(ChangeEvent arg0) {
 txtKey.setText("" + slider.getValue());

The slider.getValue() method returns an integer—the current position
value of the slider—so we added an empty string to the number to turn it
into a string or text value. This will change the txtKey text field to show the
slider’s value. But it doesn’t automatically re-encode the message using the
new value yet. If you run the app now, you still need to click the Encode/
Decode button to change the message.

Let’s modify the code in the stateChanged() method so that the slider
updates the message like the Encode/Decode button would. We can copy the
code from inside the try statement for the Encode/Decode button and paste
it after the first line of the stateChanged() method for the slider, making only
one change:

 slider = new JSlider();
 slider.addChangeListener(new ChangeListener() {
 public void stateChanged(ChangeEvent arg0) {
 txtKey.setText("" + slider.getValue());
 u String message = txtIn.getText();
 v int key = slider.getValue();

168 Chapter 7

 w String output = encode(message, key);
 x txtOut.setText(output);
 }
 });

The lines at u, w, and x are copied directly from the Encode/Decode
button’s event handler, but we’ve made a small change at v. Instead of
parsing the value out of the text field, we can access the slider’s value
directly as an integer using the getValue() method. This means we don’t
need a try-catch statement, because we’re no longer relying on the user to
supply a hand-typed value. This is more convenient for the user and more
secure for the programmer, as using the GUI slider removes one potential
error while also making the interface easier to use.

Save the changes and run the application, and you’ll see that you can
type in a message and then change the position of the slider to try different
encryption key values. To test the ability to decode, copy an encoded mes-
sage from the bottom text area using ctrl-C (or z-C) and paste it into the
top text area using ctrl-V (or z-V). Then slide the slider to the left or right
until you see the original message again.

You’ll even be able to “crack” the Caesar cipher encryption for messages
that you don’t have the key to by sliding the slider slowly until you can read
the decoded message in the bottom text area. Give it a try! Type the following
message into the top text area of your app:

Epdetyr esp lmtwtej ez mcplv esp Nlpdlc ntaspc htes xj Dpncpe Xpddlrp laa...

Then, slide the slider to the far left and slowly slide it to the right
until it reveals the secret message. Can you tell what secret key was used to
encode the message? See Figure 7-18 for a hint.

Figure 7-18: You can use the Secret Messages app to
break Caesar cipher messages by sliding the slider left
and right until a plaintext message appears!

Creating Advanced GUIs and Sharing Your App 169

Moving the slider to -11 results in a plaintext English message, so the
secret key must have been 11. You may also notice that 15 will break the mes-
sage (because 15 = 26 – 11). You can always find a couple of values that work
to break messages in the basic Latin alphabet. Of course, you can send mes-
sages in other languages as well, as shown in Figure 7-19.

Figure 7-19: Any languages that use characters in the basic Latin alphabet can be used with this version
of the Secret Messages app to send and receive encoded messages; Spanish (left) and French (right) are
shown here.

You can copy and paste encoded messages back and forth with your
friends using email, Twitter, and Facebook—you can even send encoded
text messages, although that would be easier to do from your mobile device.
We’ll see how to turn this Secret Messages desktop app into a mobile app in
Chapter 8.

For now, in order to share secret messages back and forth, it would be
nice to be able to share your Secret Messages app with your friends easily.
We’ll learn to do that in the following section.

Bonus: Sharing Your App as a Runnable JAR File
For it to be really useful, you need to be able to share the Secret Messages
app with your friends—possibly even with friends who don’t know how to
code in Java and don’t have Eclipse installed on their computer.

The great news is that Eclipse and Java make it easy to export an appli-
cation as a runnable file and share it with any of the millions of computers
worldwide that run Java. Your friends don’t even have to download the Java
JDK developer’s edition; all they need is the JRE, which comes installed
on most computers. Eclipse can export an application in a runnable Java
archive (JAR) file that you can share by email, USB flash drive, or some
other means. All your friends have to do is double-click the JAR file, and
they’ll be able to run your app!

170 Chapter 7

To export a runnable JAR file from Eclipse, go to File4Export.
Then expand the Java folder and click Runnable JAR file, as shown in
Figure 7-20.

Figure 7-20: Share your application with others by exporting
a runnable JAR file.

Click Next, and Eclipse will ask you for a launch configuration and an
export destination. The launch configuration means which class or app you’d
like to run and from which project. Under Launch configuration, click the
drop-down list and choose SecretMessagesGUI – SecretMessagesGUI. This
means you want to run the SecretMessagesGUI.class file in the SecretMessagesGUI
project.

N O TE 	 You have to compile and run your application at least once to have a launch config
uration for that app.

The export destination is just the location and filename you want to
use for your executable app. Under Export destination, click Browse and
then select the destination folder you’d like to save your finished app in,
such as your Desktop folder, for example. Give your program file a name, like
Secret Messages.jar. You can use spaces (or other special characters) to name
your file exactly how you’d like people to see it when they open it. When
you’ve made your selections, as shown in Figure 7-21, click Save and then
Finish.

Creating Advanced GUIs and Sharing Your App 171

Figure 7-21: Choose a location and name for your runnable JAR file.

You may see a warning after clicking Finish, but you can ignore it and
click OK. Go to wherever you saved your JAR file, and you should see a Java
icon with your filename, as shown in Figure 7-22. Now you should be able to
run the program and send and receive coded messages.

Figure 7-22: The desktop icon for the executable
JAR file, on Windows (left) and on macOS (right)

No t e 	 On newer versions of macOS, you’ll need to hold down control when you click the
app the first time, then select Open, and finally click Open on the dialog that pops up
to allow the app to run.

Some email programs may block files ending in .jar as a safety pre-
caution, but you can upload the file to your favorite file-sharing program
(Dropbox, Google Drive, or SkyDrive, for example) and share the file from
there. Once your friend has the file, all they have to do is run it, and you
can share scrambled messages with each other.

N O TE 	 You can also export a runnable JAR file for the GUI guessing game app from
Chapter 3. Just follow these same steps for the GuessingGame.java file in the
GuessingGame project.

172 Chapter 7

What You Learned
You reused code from the text-based Secret Messages app in this app, and
you substantially expanded your understanding of GUI interface design
and programming. Here are some of the skills covered in this chapter:

•	 Naming GUI components and variables consistently for code readability
and reusability

•	 Reusing algorithms, such as the encode() method that we copied from
the text-based version of this app

•	 Declaring methods that accept parameters and return information

•	 Writing more advanced event handlers for a wider variety of GUI com-
ponents, including buttons, sliders, and text fields

•	 Working with properties of GUI components in design view to customize
the UI further

•	 Setting line wrap and word wrap for JTextArea objects

•	 Popping up javax.swing.JOptionPane dialogs, including message dialogs

•	 Adding and working with a JSlider GUI slider

•	 Changing a text field’s text using a stateChanged() event handler on a
slider

•	 Exporting a runnable JAR file to share your app with friends

Programming Challenges
Try these programming challenges to review and practice what you’ve
learned and to expand your programming skills by trying something new.
Visit the book’s website at https://www.nostarch.com/learnjava/ to download
sample solutions.

#1: Movin’ On Up!
The Secret Messages app is great for sending simple, encoded messages to
your friends, but it’s also fun to use all by yourself. One task that gets repeti-
tive from time to time is copying encoded messages from the output text
area and pasting them into the input text area. Your first programming
challenge is to create a Move Up ^ button, which moves the encoded mes-
sage up and automatically decodes it!

Place the Move Up ^ button next to the Encode/Decode button. Then,
add an event handler that will get the text from the txtOut text area and
set it as the text of the txtIn text area. As a bonus, have the event handler for
the Move Up ^ button change the slider to the opposite of its value. You can
also change the background of the button to match the rest of your app. A
sample solution to this challenge is shown in Figure 7-23.

PROGRAMM

ING

 CHA

LL
ENGES

https://www.nostarch.com/learnjava/

Creating Advanced GUIs and Sharing Your App 173

Figure 7-23: Adding a Move Up ^ button to swap the
message and slider value to automatically decode
your message

#2: Scrolling Away!
Another improvement we could make to the app would be to handle even
longer messages. In this case, we should add a scroll bar along the side and
scroll down automatically whenever the user enters a message too long for
the input text area. The JTextArea won’t add a scroll bar by itself, but Eclipse
makes adding a scroll bar to any text area quick and easy!

In the design view, right-click either of the JTextArea boxes and select
Surround with4javax.swing.JScrollPane, as shown in Figure 7-24.

Figure 7-24: Adding an automatic scroll bar to a JTextArea

You’ll need to do this for the other JTextArea as well. Run the app when
you’re finished, typing a long selection of text into the input text box to see
the scroll bar appear automatically. In Figure 7-25, I’ve pasted the entire US
Constitution into the input text area and encoded it.

PROGRAMM

ING

 CHA

LLENGES

174 Chapter 7

Figure 7-25: By adding a JScrollPane around each
JTextArea, you can encode text as long as the
US Constitution or even longer!

Only part of the text is visible in Figure 7-25, but now there is a scroll
bar along the right side of both text areas. The scroll bar lets us know that
there’s more text than will fit into the text area, and all we have to do is
scroll down to see it.

To customize the app even more, explore the Properties pane for each
of the GUI components we’ve added and change various property values
such as background colors, fonts, and so on. Make the app your own and
share it with friends to show off what you’ve created!

#3: Changing the Text to Change the Slider
For this challenge, let’s make one last tweak to the user interface. When the
user slides the slider, the key value shown in the text field changes. But what
if we want the slider to move whenever the value in the text field changes?

Hi n t 	 You’ll want to add an event handler to the txtKey text field. Right-click the txtKey
JTextField and then go to Add event handler4key4keyReleased. This will create
an event handler that listens for keystrokes in the txtKey text field.

To accomplish this, you’ll need to write code for the event handler that
will get the integer value from the text field and set the slider to that value.
Remember to use a try-catch block when dealing with user-supplied text.
Good luck!

PROGRAMM

ING

 CHA

LL
ENGES

8
M a k e S e c r e t M e s s a g e s

a P h o n e App t o S h a r e
wi t h F r i e n d s !

In this chapter, we’ll complete our Secret
Messages app experience by building a

mobile app version that can send secret
messages by text or email and can even post

to social media.
The app will look similar to the GUI version in Chapter 7, with labels,

text fields, and the ability to slide through different key values to quickly
encode and decode messages. You’ll also be able to copy and paste mes-
sages from the app into emails and text messages, but by the end of the
chapter, you’ll be able to send an email or text directly from the Secret
Messages app itself! Figure 8-1 shows the app in action on a real Android
device.

176 Chapter 8

Figure 8-1: The Secret Messages encoder/decoder app (left) can send secret text and
email messages directly from inside the app, at just the touch of a button (right).

We’ll reuse the working code from the desktop app by keeping the
names of the GUI components in the Android version and by taking advan-
tage of Java’s consistent language and structure across multiple platforms.

Setting Up the Mobile GUI
Let’s begin building the Secret Messages app with Android Studio. Android
Studio may ask you to perform updates as you open the program, which is
usually a good idea. Updating carries a bit of risk, as it can change the look
and feel of the program by moving icons or menu items, but the updates
also include important new security fixes and the latest Android features.

When you first open Android Studio, you may see the most recent
project you were working on—in our case, the Hi-Lo guessing game app.
You can close it by selecting File4Close Project.

To begin building the new Secret Messages app, either select File4New
Project from inside Android Studio or choose Start a new Android Studio
project from the Welcome screen.

Name the new project SecretMessages, save it in your preferred location,
and click Next.

Make Secret Messages a Phone App to Share with Friends! 177

On the Target Android Devices screen, choose API 16: Android 4.1
(Jelly Bean) for the Phone and Tablet Minimum SDK, as we did for the
Hi-Lo guessing game app, and then click Next. Choose Basic Activity on
the Add an Activity screen and click Next. On the Customize the Activity
screen, keep all the default names and click Finish.

It may take a moment for the new project to configure and open.
When the new project opens, double-click the content_main.xml file under
app4res4layout in the Project Explorer on the left. You may need to close
a pop-up message about the floating action button (we’ll use that later).

Your screen should look similar to Figure 8-2. (You may have to click
the Design tab to see the GUI preview.)

Figure 8-2: The starting view of the app in Android Studio

Designing the Mobile GUI
Now that we have a new project set up, let’s start designing the layout of
our app. First, delete the “Hello World!” text shown in the design preview
by clicking to select it and then pressing the delete key. Then, as we did
in the previous app, let’s add a RelativeLayout to hold our GUI elements: in
the Palette pane, under Layouts, select RelativeLayout and drag it onto the
Preview pane or onto the ConstraintLayout under the Component Tree.

Next, let’s add a title to the top of the app by selecting the TextView
widget under Widgets in the Palette. Place the TextView widget at the top
center of the screen, change the text to Your Name's Secret Messages App,
and then change the textAppearance property in the Properties pane to
Material.Large, as I’ve done in Figure 8-3.

178 Chapter 8

Figure 8-3: Add a Large text title to the top center of your app, customizing it with your name.

In the Properties pane, expand textAppearance to find textStyle and
click the bold checkbox to make the title text stand out more.

Now, let’s place the EditText text fields for the user’s input message. In
the Palette, under Text, select Multiline Text. Zoom in on the design pre-
view and place the text field about 30 dp below the title. Change the text to
Secret messages \n are so cool, \n aren't they? as shown in Figure 8-4. The
\n escape sequence will add newline characters; these characters don’t show
up onscreen, but they represent the new line you get by pressing enter on
the keyboard. Putting the text across multiple lines shows the user they can
enter a multiline message as well.

Figure 8-4: Add a Multiline Text field for the user’s input message, using the \n escape sequence to span
multiple lines of text.

Make Secret Messages a Phone App to Share with Friends! 179

You can also change the number of lines of text that a user can see at
any one time. Under the expanded Properties pane for the Multiline Text,
you can change the lines property to 4, for example. To be able to see the
multiline message across all devices, select the textMultiLine checkbox in
the inputType property’s drop-down list.

Finally, let’s change the input text field’s id property to txtIn, both to
help us use it in the code later and to maintain naming consistency with the
GUI desktop version of the app. Now drag the left and right borders of the
text field to stretch it to the full width of the app, as shown in Figure 8-5.

Figure 8-5: Change the id of the input text field to txtIn so that we can code with it later.

We’re going to add four components to the middle of the Secret
Messages app: a SeekBar for the user to swipe a bar to find a key, a label,
a text field to display the secret key, and an Encode/Decode button. The
SeekBar will function similarly to the JSlider in the desktop version of the
app. Don’t worry if all your components don’t line up perfectly when you
first place them—we’ll be able to fix that later.

First, find the SeekBar in the Widgets section of the Palette pane. Place it
a comfortable margin, 30 dp or so, below the input text field along the left
margin, as shown in Figure 8-6. You can set the top margin manually in the
Properties pane by going to View all properties (the left and right double-
arrows at the top of the Properties pane). Under Layout_Margin, enter 30dp
for the layout_marginTop.

180 Chapter 8

Figure 8-6: The SeekBar will function like the slider in the GUI desktop version of the app, allowing the user to
slide among different key values.

Next, add a TextView widget beside the SeekBar to serve as a label for the
text field of the user’s secret key value. Change the textAppearance property
to Material.Medium and the text property to Key: in the Properties pane.

Then, select a Number text field for the user’s secret key value and center
it horizontally, with a text property of 13 or another default key value of your
choice. Modify the width of the text field to fit the number comfortably by
changing its width property (under View all properties) to approximately
40dp, and then change the id property to txtKey.

With the txtKey text field in place, you should be able to drag the Key:
label over to be directly beside it. You should also be able to stretch the
SeekBar to fill the gap, as shown in Figure 8-7.

Complete the middle row of the layout by adding the Encode/Decode
button. Choose Button under Widgets in the Palette and insert the button
along the right margin beside the text field. Change the text property to
Encode/Decode.

Finally, create a text field for the output message by copying the txtIn
text field and pasting it below the middle row of widgets. Delete the text in
the text field, stretch it to the width of the app window, and rename the id
property to txtOut.

Make Secret Messages a Phone App to Share with Friends! 181

Figure 8-7: After placing the txtKey text field, adjust the placement
of the Key: label and stretch the SeekBar.

That’s it—the finished GUI layout is shown in Figure 8-8.

Figure 8-8: The finished layout for the Secret Messages mobile app

Before moving on, make sure your input text field has an id of txtIn,
the output text is txtOut, and the middle text field for the key is txtKey. We’ll
need all of these elements to be correctly named in order for the code to
work in the next section.

182 Chapter 8

Wiring the GUI to the Java Code
It’s time to connect the GUI layout to the Java source code to begin pro-
gramming the behavior of the Secret Messages mobile app. Switch to the
MainActivity.java file by clicking the tab at the upper left of the main con-
tent window.

Add the following five lines directly to the public class MainActivity
declaration:

public class MainActivity extends AppCompatActivity {
 EditText txtIn;
 EditText txtKey;
 EditText txtOut;
 SeekBar sb;
 Button btn;

You may need to press alt-enter or option-enter after each line to
import the widgets into the Java code.

These five variables point to the GUI components in the visual layout
for the app. We can connect these variable names to the actual widgets
by adding five lines of code to the onCreate() method, right below the
setSupportActionBar(toolbar); statement:

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);
 setSupportActionBar(toolbar);
 txtIn = (EditText)findViewById(R.id.txtIn);
 txtKey = (EditText)findViewById(R.id.txtKey);
 txtOut = (EditText)findViewById(R.id.txtOut);
 sb = (SeekBar)findViewById(R.id.seekBar);
 btn = (Button)findViewById(R.id.button);

You can rely on Android Studio’s code assist to autocomplete most of
these entries—all you have to do is type the first few characters, then click
the entry from the list or press enter to accept the code recommendation.
It’s faster and will help you avoid common typing errors.

Connecting the Encode Button to the encode() Method
Now that we have the code connected to the components in the GUI layout,
we can copy the encode() method from the desktop version of the app from
Chapter 7. We’ll paste the method into the public class MainActivity declara-
tion, right below the five lines you added declaring the variables that point to
the GUI components in the layout.

Make Secret Messages a Phone App to Share with Friends! 183

Open your SecretMessagesGUI desktop project in Eclipse and highlight
the entire encode() method. Copy this code and paste it into the public
class MainActivity declaration in Android Studio:

public class MainActivity extends AppCompatActivity {
 EditText txtIn;
 EditText txtKey;
 EditText txtOut;
 SeekBar sb;
 Button btn;
 public String encode(String message, int keyVal) {
 String output = "";
 char key = (char) keyVal;
 for (int x = 0; x < message.length(); x++) {
 char input = message.charAt(x);
 if (input >= 'A' && input <= 'Z')
 {
 input += key;
 if (input > 'Z')
 input -= 26;
 if (input < 'A')
 input += 26;
 }
 else if (input >= 'a' && input <= 'z')
 {
 input += key;
 if (input > 'z')
 input -= 26;
 if (input < 'a')
 input += 26;
 }
 else if (input >= '0' && input <= '9')
 {
 input += (keyVal % 10);
 if (input > '9')
 input -= 10;
 if (input < '0')
 input += 10;
 }
 output += input;
 }
 return output;
 }

Now that we have the encode() method in place, we just need to call that
method whenever the Encode/Decode button is clicked. We’ll create an
OnClickListener for the Encode/Decode button and call the encode() method
from there.

Inside the onCreate() method in MainActivity.java, start typing the code
btn.setOnCl until a code recommendation list pops up, as shown in Figure 8-9.
On the list, choose setOnClickListener().

184 Chapter 8

Figure 8-9: You can rely on code recommendations from Android Studio
to autofill code for you, as shown here with the setOnClickListener() for
the Encode/Decode button.

After clicking the setOnClickListener() code recommendation, click
inside the parentheses of that method and begin typing new OnClickListener,
as shown in Figure 8-10, double-clicking the first code recommendation
that pops up:

Figure 8-10: Use the code assist once more to fill in the OnClickListener. This time,
Android Studio provides several lines of code.

You’ll notice that Android Studio fills in several lines of code for you for
the OnClickListener() event handler:

 btn.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 }
 });

These few lines create an event listener using an anonymous inner class
of type View.OnClickListener(), with an onClick() event handler to respond
when the user clicks the button.

Next we’ll set up the encode() method. encode() doesn’t care what’s hap-
pening in the rest of our code as long as we give it two arguments that are
the right data types. This means we don’t have to change encode() to fit our
new app, but we do need to set up new values to give it as arguments.

To encode the message the user typed into txtIn, we’ll first need to
retrieve the key value they entered into txtKey. Then, we’ll get the string
of text the user entered into txtIn. We’ll pass both of those values to the

Make Secret Messages a Phone App to Share with Friends! 185

encode() method as arguments and store the encoded result in a variable
called output. Finally, we’ll set the text of the txtOut field to the encoded
output string output.

Add the following four lines within the braces of the onClick() method:

btn.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {

 u int key = Integer.parseInt(txtKey.getText().toString());
 v String message = txtIn.getText().toString();
 w String output = encode(message, key);
 x txtOut.setText(output);

 }
});

At u, we’ve used the Integer.parseInt() method to convert text from the
user into an integer value key. The only difference between this parseInt()
and others we’ve used before is that txtKey is followed by two methods:
getText() and toString(). In Android, the getText() method on an EditText
(that is, a text field) doesn’t return a string directly—it returns a flexible
type called Editable. All of the EditText types, from Plain to Password to
Number, return an Editable object, because the text inside an EditText is
meant to change and be editable by the user. We use the toString() method
to turn the text from the EditText into a string that we can parse, to find the
number the user entered.

The same is true at v: we need both methods, getText() and toString(), to
get the input message from txtIn and turn it into a string that we can encode.
At w, we use the encode() method on the message and key value the user pro-
vided to encode the message, then store the result in output. Finally, at x, we
set the text of the txtOut text field to display the encoded output message.

Now, our app is functional enough for a first test. Let’s run the app in
the Android Emulator to see the Encode/Decode button at work.

Testing the App
Save your progress so far. Then, go to Run4Run ‘app’. Select an emulator
you set up back in Chapter 4, such as My Nexus 6P, as shown in Figure 8-11.

Figure 8-11: Choosing an emulator

186 Chapter 8

The emulator may take a few minutes to run the first time—remember,
you can leave it running while working in Android Studio to avoid the
long startup each time you want to run the app. You can also run the app
directly on your Android device, as we did in Chapter 4, and skip the emu-
lator if you wish.

When the emulator starts up and the Secret Messages app loads, you’ll
see the initial layout, as shown in Figure 8-12 (left). Type in a key value,
then press the Encode/Decode button, and you’ll see Android convert the
message into ciphertext, as shown in Figure 8-12 (right).

Figure 8-12: The Secret Messages app running on the Nexus 6P Android Emulator (left);
clicking the Encode/Decode button creates the encoded text (right).

You can copy and paste between the fields, but the slider/SeekBar doesn’t
work yet. The floating action button—the email envelope symbol in the lower
right—also doesn’t do anything yet. Don’t worry; we’ll work on those shortly.

Notice there’s one other user experience issue: the encoded message
(Frperg zrffntrf...) is underlined because it looks like misspelled text to
the computer. To turn off spellcheck, go back to the content_main.xml layout
file and select the txtOut text field. Under the Properties pane, expand
inputType and select the textNoSuggestions property. You can also turn off
spelling suggestions for the txtIn text field, if you’d like, either separately or
by selecting both text fields while holding down shift in the layout view and
then selecting the textNoSuggestions property. Now rerun the app on the
emulator. No more spellcheck!

Make Secret Messages a Phone App to Share with Friends! 187

With this small tweak, we’re ready to bring the SeekBar online so we can
slide among different key values easily and quickly.

Working with the SeekBar
We’re going to wire the SeekBar to change the output message whenever the
user slides left or right, so we need to modify a few of its properties to get it
ready for use.

First, let’s learn a little about the SeekBar widget. You’ve probably seen
a SeekBar when playing a video on your mobile device. For example, on a
YouTube video the SeekBar shows where you are in a video, and it allows
you to skip forward or backward—this is sometimes called seeking.

The SeekBar differs from a JSlider in a few ways. First, a SeekBar can have
only positive values. Zero is the minimum, but we can set the maximum to
any positive value, like 26. Also, a SeekBar doesn’t show increment marks or
labels on the bar itself. This means that if we want to allow our users to use
negative key values, we’ll have to use a bit of math to convert positive values
to negative so that the user can slide the key value through the range of
values from, say, -13 to +13. To do this, we’ll make the SeekBar range from 0
to 26. And we’ll need to update the txtKey field to show the values changing
as the user slides the SeekBar to let them know the SeekBar’s current value.
Let’s begin by changing some of the properties of the SeekBar in the GUI
layout.

Switch back to the content_main.xml layout file and select the SeekBar in
the design preview. Under the Properties pane for the SeekBar, find max and
progress and change both to 26.

The max property is the maximum value the SeekBar will display. For the
Secret Messages app, we need at least 26 values to cover the whole alphabet.
We want the range to be -13 to +13 so that encoding and decoding is easy for
the user. That would be 27 values total, so we’ll choose 26 as the max (since
that makes for 27 values when 0 is included). The progress property is the
current value of the SeekBar, similar to the value property of a JSlider. We’ll
use the getProgress() method on the SeekBar to get the value the SeekBar is
currently pointing to.

Save your changes and then switch back to the MainActivity.java source
code file. Inside the onCreate() method, right below the closing line }); of the
btn.setOnClickListener() code, begin typing sb.set and use the code recom-
mender to find setOnSeekBarChangeListener(). This will store your SeekBar in the
variable sb.

The code for the SeekBar listener is different from that for the Encode/
Decode button. We want to listen for more than just click events on the
SeekBar. We want to listen for all changes, including the user pressing the
SeekBar and sliding it left or right. For that, we need an OnSeekBarChangeListener.

Just as with the button code, though, we’ll use the code recommender
to automatically generate the new OnSeekBarChangeListener. Inside the paren-
theses after sb.setOnSeekBarChangeListener(), begin typing new OnSeekBar and
use the code recommendation.

188 Chapter 8

Android Studio will fill in the OnSeekBarChangeListener code with three
methods: onProgressChanged(), onStartTrackingTouch(), and onStopTrackingTouch().
We want to use onProgressChanged(), as this will tell us when the user has
changed the value of the SeekBar.

The steps we want to program into the SeekBar event listener are similar
to the code for the Encode/Decode button, except that we need to calcu-
late the key based on the SeekBar’s value. We also need to show the key in
the txtKey field. Add the following lines of code to the onProgressChanged()
method:

sb.setOnSeekBarChangeListener(new SeekBar.OnSeekBarChangeListener() {
 @Override
 public void onProgressChanged(SeekBar seekBar, int progress, boolean
fromUser) {

 u int key = sb.getProgress() - 13;
 String message = txtIn.getText().toString();
 String output = encode(message, key);
 txtOut.setText(output);

 v txtKey.setText("" + key);
}

At u, we create a variable named key. We get the progress value from
the SeekBar sb variable, and we subtract 13 from that value. The SeekBar can
go only from 0 to 26, so subtracting 13 will give a range from -13 to +13, per-
fect for encoding and decoding messages. The next three lines are identical
to those in the Encode/Decode button event handler code, which get the
message, encode the message using the encode() method, and then display
the encoded text in txtOut.

The line at v is new. When the user moves the SeekBar slider, we want the
txtKey readout to change. Since key is an integer, we add an empty string ("")
to it to convert the result to a text string that will be displayed to the user. You
could have also used the command Integer.toString(key) to convert the key
value into a string using the Integer class’s toString() method, but adding an
empty string to an int is just a handy shortcut.

Running the App on the Emulator and on an Android Device
Save your changes and then try running the app again on the emulator.
You can now slide the SeekBar left and right and see the ciphertext change
immediately with each key value, as shown in Figure 8-13.

It’s been a few chapters since we connected a physical Android device,
so let’s review that quickly. First, connect a compatible USB cable between
your Android device and your computer. When a pop-up appears asking
whether you want to allow USB Debugging, click Yes.

Make Secret Messages a Phone App to Share with Friends! 189

Figure 8-13: The SeekBar is now fully functional,
as shown on the Android Emulator, with a key
value of 5.

In Android Studio, click the run
button, and you’ll see a Select Deployment
Target dialog. (You may need to close the
app in your emulator window to get the
dialog to show up.) Find the entry for the
Android device you’ve connected and
click OK.

When you run the app on your real
Android device, you’ll notice the SeekBar
is more responsive, and you have access to
a few options when you click certain parts
of the app. When you click the ciphertext
and choose Select All, a context menu will
appear, as shown in Figure 8-14, offering
you the option to Cut, Copy, Share, or
Assist.

If you click Share, the selected text
can be sent via email, text message,
chat, Bluetooth, Twitter, Facebook, or
any other app you have configured for Figure 8-14: The context menu

allows you to Cut, Copy, or Share
your encoded messages.

190 Chapter 8

sharing on your device, as shown in Figure 8-15 (left). With the Share
option, you can send encoded messages to anyone from inside the app!
You can even email a secret message to a friend who has the desktop GUI
version of the Secret Messages app, as shown in Figure 8-15 (right). All they
have to do is copy the ciphertext from the email you send them into the
Secret Messages GUI app while it’s running, then use the opposite of the
secret key to decode the message: for example, -8 would decode a message
sent with a key value of 8.

Figure 8-15: The Share option allows you to share your message via email, text message,
Twitter, Facebook, or any other app you’ve configured for sharing (left). Selecting the
email option will automatically create an email message with your encoded text (right).

So now we have a fully functional Secret Messages mobile app that allows
us to share our messages by email, text, or social media with anyone.

There’s only one feature left to make our app complete: adding our own
custom action to the floating action button. This will enable us to let the user
share their messages at the touch of a finger!

Bonus: Customizing the Floating Action Button
So far, we’ve been ignoring the floating action button (also
known as the fab icon), the circular email envelope symbol in
the lower-right corner of the app screen, shown in Figure 8-16.

The fab icon gives us a way to provide the user with a short-
cut to perform a specific action, such as sharing their message
via email, text, or social media.

Figure 8-16:
The floating
action button

Make Secret Messages a Phone App to Share with Friends! 191

Android Studio automatically includes some code for the fab icon that
displays a new type of pop-up message—called a “Snackbar” in Android
lingo—in the onCreate() method:

FloatingActionButton fab = (FloatingActionButton) findViewById(R.id.fab);
fab.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 Snackbar.make(view, "Replace with your own action", Snackbar.LENGTH_LONG)
 .setAction("Action", null).show();
 }
});

All we need to do is replace the code in the onClick() method of the
fab.setOnClickListener() with code that does what we want.

First, delete the code between the braces of the onClick() method. Next,
type the following code into the onClick() method:

FloatingActionButton fab = (FloatingActionButton) findViewById(R.id.fab);
fab.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {

 u Intent shareIntent = new Intent(Intent.ACTION_SEND);
 v shareIntent.setType("text/plain");
 w shareIntent.putExtra(Intent.EXTRA_SUBJECT, "Secret Message "+

 DateFormat.getDateTimeInstance().format(new Date()));
 x shareIntent.putExtra(Intent.EXTRA_TEXT, txtOut.getText().toString());
 y try {

 startActivity(Intent.createChooser(shareIntent, "Share message..."));
 finish();
 }

 z catch (android.content.ActivityNotFoundException ex) {
 Toast.makeText(MainActivity.this, "Error: Couldn't share.",
 Toast.LENGTH_SHORT).show();
 }
 }
});

Now let’s look at what each line does. At u, we create an Intent called
shareIntent. An Intent in Android is an activity that we want to start or launch,
such as email, Twitter, or the camera. The shareIntent uses ACTION_SEND, which
means we want to send some information to another app on the Android
device.

We set the type of the Intent to text/plain v, which is what we need
for an email, tweet, or social media post, and then add a subject line to
the activity w. If the user chooses to share their message by email or via
another app that uses a subject line, it will read “Secret Message” plus the
date. The DateFormat class will format the date in text form based on your
region, like "Dec 7, 2017 4:33:12 PM".

192 Chapter 8

The line at x sends the encoded message from txtOut as the body of
an email, tweet, or post, depending on which app the user chooses to share
their message through.

Next is a try statement y. Lots of things could go wrong when we try
to call one app from inside another. What if the user doesn’t have an email
app installed? What if the app is busy or the network can’t be reached? The
try statement is made for situations like this. The first line of code inside
the try statement attempts to start the activity the user selected (like email,
text messaging, or Twitter), then passes the information to the selected app,
and finally finishes the activity in the next line.

If there’s an error or exception, the catch statement z will display a
Toast message (a kind of pop-up) that reads "Error: Couldn't share.".

That’s all we need to get the fab icon working. Remember to import
new classes by pressing alt-enter (or option-enter) while typing the lines
of code. Remember, if Android Studio underlines a new class in red, it’s
often because the class hasn’t been imported, so pressing alt-enter (or
option-enter) will automatically add the correct import statement, just as
we did in Chapter 4.

Once you’ve added the code and imported the classes, run the app again.
After you encode a message, hide the keyboard by pressing the down

triangle at the bottom of your screen. Then, tap the fab icon on the bottom
right of the screen, as shown in Figure 8-17 (left). Select your email app from
the apps under Share message..., and the app should start, with a subject line
and the encoded message in the body of the email, as shown in Figure 8-17
(right).

Figure 8-17: Pressing the fab icon in the lower right pops up a sharing menu (left).
Choosing the email app from the sharing menu automatically creates an email with
the secret message as the body and today’s date and time in the subject line (right).

Make Secret Messages a Phone App to Share with Friends! 193

Now we can send secret messages from the app with just the touch of an
icon! But to make this app truly worthy of the Google Play Store, we need to
give it the ability to receive secret messages from outside the app.

Receiving Secret Messages from Other Apps
Let’s make one last upgrade to the mobile version of the Secret Messages app.
We can share, email, or tweet encoded messages from the app, but what if we
want to receive text from emails, tweets, and posts without copying and pasting
into the app? To address this, we can add our app to the Share list in Android
so that other apps can send text directly to the Secret Messages app—and it
only takes a few lines of code!

This is an advanced technique, so let’s walk through the process step-
by-step. First, open your app’s AndroidManifest.xml file under manifests4
AndroidManifest.xml in the Project Explorer pane. The manifest file
stores the “shipping” information for your app, much as a ship’s manifest
lists all the cargo traveling on the ship. You can declare properties for your
entire app and include the details an Android device needs to run the app,
just as you can declare the contents of a crate or package when you ship it
overseas.

In order to do this, you’ll need to edit some XML. XML files contain
tags to label information held in the file. Usually a tag is formatted with its
name between angled brackets, like <tag>. In this case, we need to modify
the manifest’s intent-filter tag entry, which has information about what
data the app will accept. Add the following five lines of XML near the end
of your AndroidManifest.xml file, before the </activity> tag:

 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>

 u <intent-filter>
 v <action android:name="android.intent.action.SEND" />
 w <category android:name="android.intent.category.DEFAULT" />
 x <data android:mimeType="text/*" />
 y </intent-filter>

 </activity>
 </application>
</manifest>

At u, we add a new intent-filter to the app. Earlier we used an Intent
object to send text out to another app, such as email, Twitter, or Facebook.
In this case, we’re creating a filter to receive Intent objects sent from other
apps on our phone v. (We used Intent.ACTION_SEND in the fab icon code
on page 191 to send Intent messages to other apps; here we’re doing the
opposite.)

The line at w uses the DEFAULT sharing category to add the Secret
Messages app to the list of apps on your phone that you can share with.
With the DEFAULT category, your app can receive data from any app. (There

194 Chapter 8

are other categories for when you want to filter or restrict the types of apps
that can send data to your app. For example, the BROWSABLE category is used
by apps that should receive data from only a web browser.) At x, we tell
Android that the Secret Messages app should receive any kind of text data
from other apps. (If you write an app that accepts images as input, your
mimeType might be "image/*", or "image/png" for just PNG images. For video,
there’s "video/mp4", and so on.)

Finally, we close the intent-filter entry y in your app’s manifest. XML
tags need to be closed, which is usually done with a forward slash and the
name of the XML tag that’s being closed, as in </intent-filter>. This lets
the computer know you’ve completed code for the intent-filter. Save your
AndroidManifest.xml file and then open the MainActivity.java file to begin
editing the Java source code.

Scroll down inside MainActivity.java to find the onCreate() method.
Immediately after the code that connects the GUI components to the vari-
ables from txtIn through btn, add the four statements shown here:

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);
 setSupportActionBar(toolbar);
 txtIn = (EditText)findViewById(R.id.txtIn);
 txtKey = (EditText)findViewById(R.id.txtKey);
 txtOut = (EditText)findViewById(R.id.txtOut);
 sb = (SeekBar)findViewById(R.id.seekBar);
 btn = (Button)findViewById(R.id.button);

 u Intent receivedIntent = getIntent();
 v String receivedText = receivedIntent.getStringExtra(Intent.EXTRA_TEXT);
 w if (receivedText != null)
 x txtIn.setText(receivedText);

 btn.setOnClickListener(new View.OnClickListener() {

At u, we create a variable called receivedIntent to accept the incom-
ing Intent message shared from another app. Then, we get the text from
the Intent message by calling the getStringExtra() method v. The parts of
a message sent by an Intent are referred to as extra data. An if statement w
checks to make sure the receivedText variable isn’t null and, if so, changes
the text in the txtIn text field at the top of the Secret Messages app to the
received text x.

Believe it or not, that’s all the work necessary to accept messages shared
from other apps into the Secret Messages app! Now, you can not only send
encoded messages from the app but also decode messages from email, tweets,
and posts directly. Figure 8-18 shows what it looks like to share a message
from email to the Secret Messages app for quick decoding.

Make Secret Messages a Phone App to Share with Friends! 195

Figure 8-18: Now the Secret Messages app can send and receive messages back and forth with other apps
on your phone, including your email.

Select text in your favorite email app, or in Twitter or Facebook, and
press the Share button. The Secret Messages app will appear on the list of
apps that accept a shared message. Select SecretMessages as the app to share
with, and the selected text will be shown in the input text field of the Secret
Messages app. You can encode or decode with ease; just remember you may
need to change the key value depending on how the message was encoded.

Congratulations! You’ve built a fully social Secret Messages mobile app.
Enjoy it and share it with a friend!

Let’s take a look at the skills you developed in this chapter and try a
couple of additional programming challenges.

What You Learned
We reused code in this app from the GUI desktop version of the Secret
Messages app, and we added so much more to make this a truly complete
mobile app. Here are some of the new things you’ve learned and some of
the skills you’ve reinforced in this chapter:

•	 Writing event handlers for Android components, including buttons,
SeekBars, and the floating action button

•	 Customizing Android GUI components

196 Chapter 8

•	 Using multiline text inputs in an Android app

•	 Adding a SeekBar and using it like a slider interface

•	 Running Android apps on both the emulator and real devices

•	 Customizing the action of the floating action button

•	 Creating custom Intent objects to call special activities, including sending
data to other apps, from inside an app

•	 Creating custom Intent filters to receive text (or image or video) data
sent from other apps

Programming Challenges
Try these programming challenges to review and practice what you’ve
learned, and to expand your programming skills by trying something new.
Visit the book’s website at https://www.nostarch.com/learnjava/ for sample
solutions.

#1: Creating a Move Up Button
This programming challenge is to create a Move Up ^ button similar to the
one in Chapter 7 (Programming Challenge #1 on page 172) that moves
text up from the output field into the input field.

Place the Move Up ^ button below the txtOut text field. Then add an
event handler that gets the text from the txtOut text field and sets it as the text
of the txtIn text field. As an added bonus, you could have the event handler
for the Move Up ^ button also change the SeekBar to the opposite of its value.
An encryption key of 7 would become -7, the decryption key. The result will
be that clicking the button swaps the encoded message up and automatically
decodes it!

#2: Changing the SeekBar’s Progress
A second improvement you could make to the user experience would be
to change the SeekBar’s progress property whenever the user enters a key
value manually in the txtKey field. Give it a try!

Hi n t 	 Instead of creating an event handler for the txtKey field, modify the code for the
Encode/Decode button to change the SeekBar’s progress to match the value in
txtKey + 13—remember the SeekBar goes from 0 to 26, not -13 to +13. One or two
lines of code should be all you need.

PROGRAMM

ING

 CHA

LL
ENGES

https://www.nostarch.com/learnjava/

9
P a i n t C olo r f u l B u bbl e s

wi t h Yo u r Mo u s e !

In the next three chapters, we’ll build
BubbleDraw, an interactive, animated

drawing app that lets the user draw floating,
bouncy, colorful bubbles with their mouse in the
desktop version and with their fingers in the mobile
version!

The first version of the BubbleDraw app will look like Figure 9-1, with
each bubble in a different random color. It will let the user draw bubbles of
random colors whenever they click and drag the mouse on the app window.
The user will also be able to change the size of the bubbles by scrolling
the mouse wheel up and down or by using a scroll gesture on a trackpad or
touchscreen.

198 Chapter 9

Figure 9-1: The BubbleDraw app lets the user draw randomly colored bubbles
using the mouse.

We’re going to use an object-oriented programming approach to build
the BubbleDraw app. The variables, functions, loops, and conditional state-
ments you’ve learned so far are known as procedural programming. Procedural
programming involves writing programs step-by-step in a linear fashion,
sort of like following a recipe. Object-oriented programming uses all of
these concepts, but it allows us to program much larger and more compli-
cated applications by breaking a big software project into smaller pieces
called objects.

As an example, a bubble is an important entity in the BubbleDraw app,
so bubbles might become objects as we begin to code this app. First, we’ll
tackle the problem of defining what a bubble is. Second, we’ll figure out a
way to store information on lots of bubbles and how to draw the bubbles on
the screen. Finally, we’ll add the ability to click and drag the mouse to create
bubbles. Instead of writing separate pieces of code to control each bubble
individually, we’ll write one piece of code that applies to all bubble objects.

We’ll begin with two source code files: one for the app window called
BubbleDraw and one for the drawing canvas called BubblePanel. The app
window will extend a familiar class, JFrame, and the drawing canvas inside
the window frame will use a new kind of GUI container called a JPanel. By
building two separate files, we’ll be able to reuse the drawing canvas in a
GUI app in Chapter 10. Let’s start coding!

Creating the BubbleDraw Project Files
In Eclipse, go to File4New4Java Project and create a new project folder
for the BubbleDraw app. Name the project BubbleDraw and click Finish.

Expand the BubbleDraw project folder in the Project Explorer pane,
right-click the src folder, and select New4Class. Create a class called

Paint Colorful Bubbles with Your Mouse! 199

BubbleDraw for the app window, with javax.swing.JFrame as the superclass, and
under Which method stubs . . . select the public static void main(String[]
args) checkbox. Then click Finish.

Next, we’ll create the BubblePanel drawing canvas. Right-click the src
folder and select New4Class. Name this class BubblePanel, with a superclass
of javax.swing.JPanel. Click Finish.

Using these classes, we’ll create a reusable BubblePanel canvas that we
can expand and put into other apps. The BubbleDraw frame will be a con-
tainer that displays the BubblePanel.

Building the BubbleDraw Frame
Let’s begin by setting up the main app window in the BubbleDraw.java
source code file. Click the BubbleDraw.java tab at the top of the content
pane in Eclipse, and you’ll see the following code has already been filled in:

import javax.swing.JFrame;
public class BubbleDraw extends JFrame {
 public static void main(String[] args) {
 }
}

The app window runs in a JFrame, like our previous GUI apps did. In
this app, we need the window to display the drawing canvas, our BubblePanel.
We won’t add any other GUI components to this first version of the app.

We want to create a JFrame window and add setup code for the frame as
we have in previous chapters, but we’ll also add a BubblePanel to the frame for
our drawing canvas. The complete BubbleDraw class will look like Listing 9-1:

import javax.swing.JFrame;
public class BubbleDraw extends JFrame {
 public static void main(String[] args) {

 u JFrame frame = new JFrame("Your Name's BubbleDraw App");
 v frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 w frame.getContentPane().add(new BubblePanel());
 x frame.setSize(new java.awt.Dimension(600,400));
 y frame.setVisible(true);

 }
}

Listing 9-1: The BubbleDraw class

Start by creating a new JFrame with a title bar at the top u. Put your own
name in the title string. Next, set the default close operation so that the app
exits when the user closes the window v. Then add the code to open a new
BubblePanel drawing canvas as the content inside this frame w. The last two
lines set the size of the window x and make it visible y.

Save the BubbleDraw.java file and run it once. You’ll see a gray Java frame
with "Your Name's BubbleDraw App" in the title bar. We’ll build the logic for the
BubblePanel drawing canvas next.

200 Chapter 9

Creating a Class for Bubbles
Switch to the tab for the BubblePanel.java file. This file will contain all the
logic for drawing bubbles on the screen. Our first task will be creating a
Bubble class to store each bubble’s color, size, and location on the screen.

Defining a Bubble
The reason for building a class is quite practical: in the older, procedural
approach to programming, we would need a separate variable for each
bubble’s x- and y-coordinates, size, and so on. For example, we’d need
a bubble1x variable for the first bubble’s x-location, as well as bubble1y,
bubble1size, and bubble1color variables for that bubble. That wouldn’t be so
bad, but what if we drag the mouse for a few seconds and wind up with a
thousand bubbles? We would need 4,000 variables just to keep track! Instead,
we can use properties inside a class to store those values for each bubble.

Before we start writing code, let’s define what a bubble is. As shown
earlier in Figure 9-1, a bubble is a colorful, filled circle, and bubbles can
be different sizes and in different locations.

All of those features are attributes of bubbles in this app. In object-
oriented programming, we use the nouns and adjectives that describe an
object to build a list of attributes when we create a new class. Attributes are
stored as class variables.

Besides attributes, a class can also contain methods. A method is a
type of function associated with a specific class. Methods enable a class
to do something. Think about what we want the bubbles in the drawing
app to do. We need to create a bubble whenever the user clicks or drags
the mouse. We’ll also draw a bubble every time the screen refreshes. The
verbs—like create and draw—will help us identify the methods we need in
our bubble class.

When we capture all of those attributes and methods into a single class,
we can describe any bubble we might want to show on the screen. This is
how a coder solves problems with object-oriented programming: by break-
ing big applications into smaller pieces, creating classes by asking questions
about what the program contains, and then identifying methods and attri-
butes by asking what each object of a new class should do and what kind of
information it needs.

Let’s begin writing the Bubble class. We’ll do this inside the BubblePanel
class, as BubblePanel is the only place we need to draw bubbles. Start coding
your Bubble class before the closing brace at the end of BubblePanel, as follows:

import javax.swing.JPanel;
public class BubblePanel extends JPanel {
 private class Bubble {
 }
}

Paint Colorful Bubbles with Your Mouse! 201

We usually make internal and helper classes private to keep other
programs from accessing them directly. So, to make Bubble an internal
class accessible only from a BubblePanel, we declare it as private. This tech-
nique, called encapsulation, means that the BubblePanel class hides its inner
workings from other classes. Encapsulation is one of the core principles
of object-oriented programming, and it’s a best practice worth following
because it means we can change the way the Bubble class works internally
and know for certain that we won’t break other parts of the code. Since
Bubble is declared as private, we know that there isn’t any code outside of
the BubblePanel class that depends on it. This is especially important for
bigger applications that contain a large number of classes and are worked
on by many programmers.

BubblePanel will rely on the Bubble class to store information on individ-
ual bubbles as the user draws on the screen. A bubble has an (x, y) location
on the screen, a size, and a color, so we can make these attributes as vari-
ables inside Bubble. The x- and y-coordinates of the bubble’s location and
the size of the bubble can all be stored as integer values:

import javax.swing.JPanel;
public class BubblePanel extends JPanel {
 private class Bubble {
 private int x;
 private int y;
 private int size;
 }
}

Here we make two separate variables called x and y to store the bubble’s
coordinates, as well as a size variable. These attributes are private, so only the
Bubble class itself can change those values directly. We encapsulate all the data
a bubble should have inside the Bubble class, and we interact with bubbles
using the methods in that class only.

As mentioned earlier, each bubble in our app can have its own color. The
java.awt library has a Color class that handles RGB (red-green-blue) color values
to reproduce any color that we can display on our monitor. We’ll talk a bit
more about RGB when we actually write the code to control bubble colors
later in the chapter, so for now just import the java.awt.Color class at the top
of the file and add an attribute called color to the Bubble class, like so:

import java.awt.Color;
import javax.swing.JPanel;
public class BubblePanel extends JPanel {
 private class Bubble {
 private int x;
 private int y;
 private int size;
 private Color color;
 }
}

202 Chapter 9

Now that we’ve added the four attributes we want each bubble to have
(x, y, size, and color), we can start building the behaviors, or functions, of
a bubble to give values to these attributes. We’ll do that by adding methods
inside the Bubble class.

Designing a Bubble’s Methods
The Bubble class will have two actions, which we’ll turn into methods:
creating a bubble and drawing a bubble on the desktop screen.

Methods that create objects have a special name: constructors. A construc-
tor sets up an object by assigning values to the object’s attributes. When we
assign values to the attributes inside a constructor, we’re initializing them. For
the Bubble class, we want to initialize the x, y, size, and color attributes of an
individual bubble.

Building the Constructor

A constructor method begins with the keyword public, followed by the name
of the class and a pair of parentheses. If there are any parameters you want
to pass in as you set up an object, you place those inside the parentheses.
We want to assign each bubble its x, y, and size values when it is created, so
the constructor for the Bubble class looks like Listing 9-2.

 private class Bubble {
 private int x;
 private int y;
 private int size;
 private Color color;

 u public Bubble(int newX, int newY, int newSize) {
 v x = newX;
 w y = newY;
 x size = newSize;

 }
 }

Listing 9-2: The Bubble class constructor

Each bubble’s coordinates and size will be determined by the user, so
we want to pass the x- and y-coordinates and a size as integer values to the
Bubble() constructor as each new bubble is created. These values are the
three parameters we pass to the Bubble() method and are called newX, newY,
and newSize u. Later in the code, when we handle the user creating bubbles,
we’ll be outside the private Bubble class. That means we won’t have direct
access to the bubble’s attributes, so we can’t just assign values to the x, y, and
size attributes of each bubble. In order to get around that, we assign the
attributes values through the Bubble() constructor, which takes the input
from the user; assigns the input values to newX, newY, and newSize; and then
assigns the user input values to the bubble’s attributes at v, w, and x.

We also want each bubble to have a random color. Because the color will
be random, we don’t need to pass it to the constructor using a parameter.
Instead, we can create the color inside the constructor.

Paint Colorful Bubbles with Your Mouse! 203

We’ll need to generate random RGB color values to create a color for
each bubble. RGB works by combining different amounts of red, green, and
blue light on your computer monitor to produce different colors. In program-
ming, each of these three colors is represented by an integer between 0 (none
of the color) and 255 (the maximum amount of the color possible). To make
a color, we need to get three integers between 0 and 255, separate them with
commas, and group them together between parentheses. For example, pure
red has an RGB value of (255, 0, 0), meaning full red, no green, and no blue.
Yellow is (255, 255, 0) in RGB, meaning full amounts of red and green, but
no blue. In total, there are over 16 million RGB color values that can be
created this way.

We’ve generated random numbers with the Math class’s Math.random()
method before when we needed a single number, but in the BubbleDraw
app, we’ll need three random numbers (one for each part of RGB), so let’s
look at a new way to generate random values.

The java.util.Random class contains several useful methods, including
nextInt(), which will let us instantly generate a random integer up to a certain
size without having to do additional math or rounding. To use the Random
class, we’ll have to import it first, at the top of the BubblePanel.java file:

import java.util.Random;
import java.awt.Color;
import javax.swing.JPanel;

Because Random is a class, we need to create a new object or variable of
the Random type to access its functions. Add the following line inside the top
of the BubblePanel class:

import java.util.Random;
import java.awt.Color;
import javax.swing.JPanel;
public class BubblePanel extends JPanel {
 Random rand = new Random();
 private class Bubble {

This line creates a random number generator called rand that will allow
us to generate random integer or floating-point values quickly. We’re encap-
sulating rand by putting it at the top of the BubblePanel class so that we can
generate random numbers both in the drawing window and in the inner
Bubble class, but not outside a BubblePanel.

To create a random color in Java, we can use the constructor for the
java.awt.Color class that we imported earlier. The constructor will accept
three integer arguments between 0 and 255 for the red, green, and blue
values to create a color.

Add the following code to the Bubble() constructor method:

 public Bubble(int newX, int newY, int newSize) {
 x = newX;
 y = newY;

204 Chapter 9

 size = newSize;
 color = new Color(rand.nextInt(256),
 rand.nextInt(256),
 rand.nextInt(256));
 }

We use the new keyword with the constructor for the Color class to
create a new color, and each of the RGB color values will be a randomly
generated integer between 0 and 255. Every time you call the nextInt()
method, it generates a new random integer between 0 and the maximum
integer you pass it. Here, we want random color values from 0 to 255, so we
pass it 256 because nextInt() generates an integer up to, but not including,
the upper bound passed to it.

Coding the Method to Draw a Bubble

Now that each bubble has an (x, y) location, a size, and a random color, let’s
add the ability to draw bubbles on the screen. To draw colorful graphics
on the screen, we’ll import the java.awt.Graphics class. This Graphics class
contains methods such as setColor() to choose a paint color, drawRect() to
draw a rectangle, and fillOval() to paint a filled-in oval on the screen, just
to name a few. We’ll use fillOval() to draw our circles, so add the following
import statement to the top of the BubblePanel.java file:

import java.awt.Graphics;
import java.util.Random;
import java.awt.Color;
import javax.swing.JPanel;

Next, let’s add a draw() method to the Bubble inner class, below the
Bubble() constructor:

 private class Bubble {
 private int x;
 private int y;
 private int size;
 private Color color;
 public Bubble(int newX, int newY, int newSize) {
 --snip--
 }
 public void draw(Graphics canvas) {
 u canvas.setColor(color);
 v canvas.fillOval(x - size/2, y - size/2, size, size);
 }
 }

The draw() method accepts one parameter, a Graphics canvas called canvas.
Inside the draw() method, we call the setColor() method on canvas u to set
the drawing color to the color stored in the color variable of the bubble
we’ll draw. At v, we call fillOval() to paint a filled-in circle on the screen.
The fillOval() method takes four parameters, the x- and y-coordinate of

Paint Colorful Bubbles with Your Mouse! 205

the upper-left corner of a bounding
box in which we’ll draw the oval,
followed by the width and height
of the box. Think of the bounding
box as an invisible rectangle at
that (x, y) location with the given
width and height and the oval as a
balloon that will be blown up until
it touches all four sides of the box
(see Figure 9-2). By setting the
same width and height for the box
to make it square, we’ll end up with
a circle instead of an oval.

Because our ovals are actually
circles, the width and height are the
same value—the size of the bubble
in pixels we stored in the size attri-
bute. At v, we want the bubble to
be centered on the (x, y) location the user clicked, so we adjust the upper-
left corner of each bubble by subtracting half the size (size/2) from each of
the x and y values.

With the addition of the draw() method, we now have a complete Bubble
class that can remember the location, size, and color of a bubble. The class
methods we made can be used to create new bubbles and draw them on the
screen. It’s time to add logic to the BubblePanel class to use those methods to
create and draw bubbles whenever the user clicks and drags on the screen.

Storing Bubbles in an ArrayList
We need a way to store all the bubbles the user creates when they click and
drag around the screen. Java’s libraries contain several useful data structures,
which are classes for storing groups of objects.

The java.util.ArrayList is a dynamic data structure. That means it not
only stores a collection of objects but can also grow or shrink depending
on the needs of the program. For the BubbleDraw app, we can’t predict
how many bubbles the user will draw, so a dynamic data structure like an
ArrayList is the perfect option for storing all the bubbles a user could create.
An ArrayList is a flexible way to store things when you don’t know how many
items you’ll need in advance. A regular array in Java has a fixed size, but an
ArrayList can keep adding new bubbles every time the user clicks.

First, let’s import java.util.ArrayList at the top of the BubblePanel.java
file so we can access ArrayList data types:

import java.util.ArrayList;
import java.awt.Graphics;
import java.util.Random;
import java.awt.Color;
import javax.swing.JPanel;

(x, y)
Width

H
ei

gh
t

Figure 9-2: The fillOval() method takes
four parameters, the upper-left corner’s x-
and y-coordinates, followed by the oval’s
width and height.

206 Chapter 9

Next, we need to declare an ArrayList that will hold objects of the Bubble
class. Inside the BubblePanel class, add the following declaration:

public class BubblePanel extends JPanel {
 Random rand = new Random();
 ArrayList<Bubble> bubbleList;

The ArrayList data structure can accept a type specifier inside the angle
brackets, < and >, to tell Java what type of objects the ArrayList will hold.
An ArrayList can hold any type of object, but the ArrayList we’re declaring,
bubbleList, will contain only objects of the Bubble class.

Next, let’s take care of one additional variable, size, for the default
bubble size:

public class BubblePanel extends JPanel {
 Random rand = new Random();
 ArrayList<Bubble> bubbleList;
 int size = 25;

This size variable sets a starting size for bubble diameters in pixels.
I picked 25 pixels, but you can choose a larger or smaller starting size if
you’d like.

Adding a Constructor to the BubblePanel Class
We’ve declared bubbleList to be a dynamic ArrayList of Bubble objects, so let’s
add a constructor to the BubblePanel class to initialize bubbleList and set the
background color of the drawing window.

Just as we saw in the Bubble inner class, the constructor for the BubblePanel
class uses the format public plus the name of the class, followed by a pair
of parentheses:

public class BubblePanel extends JPanel {
 Random rand = new Random();
 ArrayList<Bubble> bubbleList;
 int size = 25;
 public BubblePanel() {
 }

Notice that we end the constructor with open and close parentheses,
because the constructor is a method. Inside the constructor, we initialize
bubbleList to get it ready to store a flexible ArrayList of Bubble objects. We
also set the background color of the drawing window to black:

 public BubblePanel() {
 u bubbleList = new ArrayList<Bubble>();
 v setBackground(Color.BLACK);

 }

No t e 	 Although I recommend a black background for the app, the images in this book show
a white background for readability.

Paint Colorful Bubbles with Your Mouse! 207

Just as in the declaration of bubbleList, when we construct a new
ArrayList at u, we can specify the type of object we want to store in angle
brackets: <Bubble>.

At v, we can use the setBackground() method directly because BubblePanel
is extending JPanel, and we’ve seen that JPanel objects have a background
color. We’re setting the background to the color constant Color.BLACK from the
Color class we imported earlier. This constant has an RGB value of (0, 0, 0).

Now, when we start the BubbleDraw app and create a BubblePanel draw-
ing canvas, we’ll begin with an empty list of bubbles and a black screen
background.

Save your changes so far. In the next section, we’ll fill that window with
colorful bubbles!

Adding a Method to Draw on the Screen
Next, we need to add a method to paint all the bubbles in bubbleList to the
drawing screen.

All of the GUI components in the javax.swing toolkit, including the
JPanel we extended for the BubblePanel drawing screen, have a paintComponent()
method that draws that component on the screen. We’re going to modify, or
override, the default paintComponent() method to make the BubblePanel draw all
the bubbles in bubbleList.

First, we need to declare the paintComponent() method. Because we’re
overriding the paintComponent() method that already exists in JPanel, the par-
ent class of BubblePanel, we have to use the same method signature, or first line
of code. That means we have to match the way paintComponent() is declared
exactly, as a public void method, with one parameter, of type Graphics:

public class BubblePanel extends JPanel {
 --snip--
 }
 public void paintComponent(Graphics canvas) {
 }

We place the paintComponent() method just below the BubblePanel() con-
structor. Notice that paintComponent() requires a Graphics object, which we
call canvas just as in the draw() method we designed for the Bubble class. Any
object that draws on the screen can use a Graphics object to color the indi-
vidual pixels on the computer screen.

Inside this method, we first want to allow the JPanel parent class to clear
the drawing screen and do any other setup it normally would before drawing
anything else. We do this by calling paintComponent() from the parent class:

 public void paintComponent(Graphics canvas) {
 super.paintComponent(canvas);
 }

The keyword super tells Java to call the original paintComponent() method
from JPanel. This means that all the code in the original paintComponent()
method will be pulled into our new one. This is a useful object-oriented

208 Chapter 9

programming feature: because we extended the JPanel class to create the
new BubblePanel class, we can take advantage of all the functionality already
built into JPanel, such as clearing the pixels inside the window when the app
opens and preparing the Graphics canvas for drawing colorful graphics. We
say that BubblePanel inherits these functions from JPanel.

Once we’ve prepared the canvas, it’s time to loop through the list of
bubbles and draw each one on canvas. To accomplish this, we’ll use a for
loop in a new way.

You first saw a for loop in Chapter 6, when we wanted to loop through
each character in a string to encode secret messages. This time, we’re using
a shorter version of a for loop, called a for each statement, that’s specially
designed to loop through a list or collection of objects.

Let’s see the working code first, and then I’ll break down the for each
statement piece by piece:

 public void paintComponent(Graphics canvas) {
 super.paintComponent(canvas);

 u for(Bubble b : bubbleList) {
 v b.draw(canvas);

 }
 }

You can read the for each statement at u as “For each Bubble b in
bubbleList.” You can tell this is a for each statement instead of a regular for
loop, first because of the colon in the middle and, second, because it doesn’t
have the three parts we saw in for loops back in Chapter 6: initialization, con-
dition, and update. Java uses the same keyword for and parentheses for both
loops, but the for each statement is designed just for collections of objects,
such as arrays, ArrayLists, and so on.

For each Bubble b in the ArrayList bubbleList, the loop will call
b.draw(canvas) v to draw that individual bubble on the drawing screen.
The first time the loop executes, b will point to the first Bubble object in
bubbleList, and each time the loop repeats, b will point to the next bubble
in the list. Calling b.draw(canvas) tells that bubble to draw itself on the
canvas.

This single, short for each loop will draw every bubble in the bubbleList
to the screen. The only problem is that we don’t have any bubbles to test.
Let’s generate some random bubbles to see the app in action before we
move on to creating bubbles with the mouse.

Testing the BubblePanel Class
To test what we’ve done so far, before we add the mouse interaction, we’ll
write a test method that draws 100 bubbles of random sizes all over the app
window. This will allow us to make sure the app works without writing the
final code. This way we can debug any errors in our code early and see a
preview of how cool the app will look when it’s finished.

Call the new method testBubbles(). Place it after the paintComponent()
method and before the private class Bubble, as shown in Listing 9-3.

Paint Colorful Bubbles with Your Mouse! 209

 public void paintComponent(Graphics canvas) {
 --snip--
 }
 }

 u public void testBubbles() {
 v for(int n = 0; n < 100; n++) {
 w int x = rand.nextInt(600);
 x int y = rand.nextInt(400);
 y int size = rand.nextInt(50);
 z bubbleList.add(new Bubble(x, y, size));

 }
 { repaint();

 }
 private class Bubble {

Listing 9-3: Creating the testBubbles() method

At u, we declare testBubbles() as public with void as the return type,
meaning it doesn’t pass any information back to the program. Then, we use a
regular for loop v to go from n = 0 to 99, a total of 100 iterations. That means
we’ll create 100 bubbles, and for each bubble, we need an (x, y) location and
a size for its width and height in pixels.

We set the pixel dimensions of the BubbleDraw app frame to 600 wide
by 400 tall at the beginning of this chapter, so for the bubble’s location,
we need an x value between 0 and 600 and a y value between 0 and 400.
Inside the for loop, we use the random number generator rand to get a
random integer between 0 and 600 and store it in the variable x w for the
x-coordinate of the center of the bubble on the screen. Then, we generate
a y-coordinate value between 0 and 400 and store it in y x. Next, for the size
of the bubble in pixels, we generate a random number between 0 and 50 y.
The last step inside the loop creates a new Bubble object using the random
x, y, and size that we just generated, and we add that new Bubble to the
ArrayList bubbleList z.

Finally, we call the repaint() method {. Normally before we draw new
computer graphics, we have to clear the screen by drawing an empty, black
background, but here repaint() does this for us. Notice that we didn’t have to
clear the background of the screen inside the paintComponent() method either;
all we had to do was draw the bubbles from bubbleList. The repaint() method
takes care of redrawing the background as well as calling paintComponent(), so
we’ll call it anytime we want to refresh or repaint the screen.

There’s just one more step to complete before we can test the app—we
need to call the testBubbles() method from the BubblePanel() constructor.
Add the following line of code to your constructor for the BubblePanel:

 public BubblePanel() {
 bubbleList = new ArrayList<Bubble>();
 setBackground(Color.BLACK);
 testBubbles();
 }

210 Chapter 9

Save BubblePanel.java and then switch to the BubbleDraw.java tab. Save
that file and press the run button in Eclipse. You’ll need to run the file from
the BubbleDraw.java tab the first time you compile and run, because BubbleDraw
contains the main() method that runs the program. You should see a window
full of colorful, randomly placed bubbles, similar to Figure 9-3.

Figure 9-3: Each time you run this version of the BubbleDraw app, the
testBubbles() method will draw 100 bubbles on the screen.

If you like the look of the random bubbles, take a little time to play
with the numbers in the testBubbles() method. See if you can draw 200,
500, or even 1,000 bubbles instead of 100. Make the bubbles larger, either
by generating a larger random number for size or by adding a value to
size after the random number is generated. Play with the x and y values
to see if you can fit every bubble on the screen instead of having some
bubbles cut off at the edges.

Modify the testBubbles() method as much as you’d like; this is a great
opportunity to try new things and immediately see the visual effect of each
change. We’ll comment out the testBubbles() method in the next section
as we add mouse interaction, so you can feel free to experiment with
testBubbles() without fear of messing up the rest of the program.

Handling Mouse Events from the User
The goal of the BubbleDraw app is to allow the user to draw bubbles using
their mouse. We saw in the last section that the bubble-drawing part is
working. Now all we have to do is add the mouse interaction.

We’ll use event listeners to give the app the ability to handle mouse
clicks, mouse movement, and even mouse wheel scrolling. We added event
listeners to our GUI apps in Chapters 3 and 7 using anonymous inner
classes to handle button clicks, sliders, and text field changes; but if we

Paint Colorful Bubbles with Your Mouse! 211

used anonymous inner classes in this app, we would need to make three
separate listeners for each type of event, and that would be hard to keep
track of. Plus, in two of those events, clicking and dragging the mouse,
we want the result to be the same: the app should add bubbles each time
the user clicks the mouse on the screen and whenever the user drags the
mouse across the screen. It would be much easier to just have one block
of code we could attach to both events than to write a listener for one
event and copy and paste the code to another. So, to make the app more
manageable, we’re going to create a single, named event listener that can
respond to all three types of events.

Creating a Reusable Event Listener
Before we can create our event listener, we need to import one additional
library, java.awt.event.*, at the top of the BubblePanel.java file:

import java.awt.event.*;
import java.util.ArrayList;
import java.awt.Graphics;
import java.util.Random;
import java.awt.Color;
import javax.swing.JPanel;

Our previous import statements have brought in only one class at a time,
but this statement brings in every class in the java.awt.event library. The
wildcard character, the asterisk (*), means that we want to bring in all the
classes at the top level of java.awt.event, including all the mouse events and
listeners, and much more. We could import each class individually as we
use it, but importing java.awt.event.* will make the program much easier to
write, allowing us to focus on coding instead of switching back and forth to
the top of the file every time we need to use another event class.

Next, let’s start coding the private, named inner class to listen for mouse
events. We’ll name it BubbleListener, as it will handle all the events related
to bubbles in the BubblePanel class. Add this class below your testBubbles()
method but above the private class Bubble. Java programmers usually include
listener classes near the bottom of the class file, along with any other helper
classes—this convention just helps us quickly find the listener code for debug-
ging or modifying the file.

 repaint();
 }
 private class BubbleListener extends MouseAdapter {
 }
 private class Bubble {

The BubbleListener class extends MouseAdapter, which processes
mouse events. Just as when we used the extends keyword to build a new
type of JFrame that inherited all the features and functions of its parent
class, the BubbleListener will inherit all the mouse event listener features
of the MouseAdapter class. This adapter class includes the ability to handle

212 Chapter 9

MouseListener events for clicks, MouseMotionListener events for mouse move-
ment, and MouseWheelListener events for scrolling with the mouse wheel or
trackpad.

We’ll add these event handlers to the code step-by-step, and we’ll test
the app after each addition to see the BubbleDraw app emerge one feature
at a time.

Handling Clicks and Drags
When we handle mouse events, we need to complete two steps. First, we have
to add code to the BubbleListener to handle the individual event we’re after,
like mousePressed(). Then, we have to add the listener to the BubblePanel()
constructor so the drawing screen knows to listen for that type of event and
call BubbleListener to handle the event when it happens. Let’s do this for the
first case, when the user presses the mouse button to draw a bubble.

Listening for Mouse Button Events

There are three events that we can listen for from the mouse buttons:

mousePressed()  Occurs when the user presses any mouse button

mouseReleased()  Occurs when the user releases the button

mouseClicked()  Occurs when the user presses and releases in
quick succession

For the BubbleDraw app, we’ll use the mousePressed() handler so that the
app will draw a bubble as soon as the user presses the mouse button. The
signature for a mousePressed() event handler looks like the following:

 private class BubbleListener extends MouseAdapter {
 public void mousePressed(MouseEvent e) {
 }
 }

No t e 	 Spelling and capitalization are especially important when you’re writing event handlers
because they already have built-in names with specific capitalization. Make sure your
mousePressed() method matches this one exactly.

The mousePressed() event handler goes inside the BubbleListener class,
and it must be declared as public with a void return type to match the
mousePressed() method in the MouseAdapter class. Notice it also takes a
parameter of type MouseEvent. All of the mouse events get information
about the mouse pointer’s location on the screen when the event hap-
pened. The x- and y-coordinates of the mouse event are stored in a
MouseEvent object, and we can get those coordinates with the getX() and
getY() methods.

Paint Colorful Bubbles with Your Mouse! 213

The following code adds a bubble to the bubbleList at the location
where the user clicked the mouse, and then repaints the drawing screen
to make the bubble appear.

 private class BubbleListener extends MouseAdapter {
 public void mousePressed(MouseEvent e) {

 u bubbleList.add(new Bubble(e.getX(), e.getY(), size));
 v repaint();

 }
 }

At u, we create a new Bubble object at the (x, y) location where the user
clicked the mouse, e.getX() and e.getY(). The MouseEvent class has several
properties and methods for working with mouse events, like finding out
which button was pressed and where the mouse is on the screen. As I just
mentioned, the getX() and getY() methods tell us the x- and y-coordinates of
the mouse event, such as a click or drag. Look back down in the Bubble class,
and you’ll see that the constructor method we wrote there required three
parameters: int newX, int newY, and int newSize. So, we must pass e.getX(),
e.getY(), and size to the constructor to create a new Bubble object. Once the
bubble is created, we add it to the ArrayList of bubbles with bubbleList.add().

At v, we call the repaint() method to refresh the screen and draw the
updated bubbleList to the canvas.

This completes the mousePressed() event handler, but we still need to do
one more thing to make the app listen for mousePressed() events and send
them to the BubbleListener class. We have to tell the BubblePanel class to add
BubbleListener as the listener for mouse events.

In the BubblePanel() constructor, make two changes. First, comment out
the testBubbles() line by placing two forward slashes at the front of the line.
Second, call the addMouseListener() command to use BubbleListener to pro-
cess mouse events. The updated constructor is shown here:

 public BubblePanel() {
 bubbleList = new ArrayList<Bubble>();
 setBackground(Color.BLACK);

 u // testBubbles();
 v addMouseListener(new BubbleListener());

 }

By commenting out the call to testBubbles()u, we’ve left it in place in
case we want to draw random test bubbles again, but we’ve stopped it from
running so that we can test the interactive BubbleDraw app using the mouse.
The new line at v tells the BubblePanel to listen for mouse events and to send
them to the BubbleListener class when they happen.

With those changes in place, you should be able to run the BubbleDraw
app and use the mouse button to place bubbles anywhere you click, as shown
in Figure 9-4.

214 Chapter 9

Figure 9-4: After adding the mousePressed() handler and setting BubbleListener
as the listener for mouse events in the app, you should be able to draw by
clicking anywhere on the screen.

Very cool! You can click repeatedly to draw shapes and patterns on
the screen, but it would be easier to drag the mouse to draw bubbles. Let’s
address that next.

Listening for Mouse Motion Events

Mouse motion events are a separate type of event from mouse button
presses, but they can still be processed in a class that extends MouseAdapter,
like BubbleListener. The two types of mouse motion events are mouseMoved()
and mouseDragged().

A mouseMoved() event happens anytime the mouse is moved over the
drawing window. A mouseDragged() event occurs whenever the mouse is moved
while a button is pressed. Since we want to draw bubbles only when the user
clicks and drags the mouse, we’ll implement the mouseDragged() event handler
in the BubbleListener class first, and then we’ll add a mouse motion listener to
the BubblePanel constructor to activate the listener.

Add the mouseDragged() event handler to the BubbleListener class, as
shown here:

 private class BubbleListener extends MouseAdapter {
 public void mousePressed(MouseEvent e) {
 --snip--
 }
 public void mouseDragged(MouseEvent e) {
 bubbleList.add(new Bubble(e.getX(), e.getY(), size));
 repaint();
 }
 }

Paint Colorful Bubbles with Your Mouse! 215

You’ll notice that the code looks almost exactly like the mousePressed()
event handler, except for the name mouseDragged(). That’s because they both
handle MouseEvents. The mousePressed() method handles events when the user
presses a mouse button, and mouseDragged() is called whenever the user drags
the mouse. In this app, both events should behave the same way, adding
bubbles to bubbleList and calling the repaint() function.

Next, add BubbleListener as the mouse motion listener to the BubblePanel()
constructor with the following statement:

 public BubblePanel() {
 bubbleList = new ArrayList<Bubble>();
 setBackground(Color.BLACK);
 // testBubbles();
 addMouseListener(new BubbleListener());
 addMouseMotionListener(new BubbleListener());
 }

Once again, let’s run the app to test this new event listener. Save your
code, press the run button, and click and drag around the app window that
appears, as shown in Figure 9-5.

Figure 9-5: Now you can click and drag to draw continuous streams of bubbles!

Impressive, huh? Just by adding two event handlers for mouse button
and mouse motion events to the BubblePanel graphics app, we’ve built an
interactive, multicolored drawing app in Java.

Bonus: Handling MouseWheel Events
We’ve seen two small but powerful event handlers for mouse button presses
and mouse click-and-drag events at work in the app so far, but there’s another
event class in MouseAdapter: MouseWheelEvent. Depending on your system, you
might have a physical wheel on your mouse or trackpad that you can use

216 Chapter 9

to scroll up and down in documents and web pages. Or, you might have a
laptop with a trackpad that allows you to scroll using a gesture, such as the
two-finger swipe gesture on a MacBook or the vertical swipe along the far-
right edge of the trackpad on most Windows laptops.

Java interprets either kind of scroll event as a MouseWheelEvent. We can
add a mouseWheelMoved() listener to the BubbleListener to handle mouse wheel
events or trackpad scroll gesture events on systems that provide them, as
follows:

 private class BubbleListener extends MouseAdapter {
 public void mousePressed(MouseEvent e) {
 --snip--
 }
 public void mouseDragged(MouseEvent e) {
 --snip--
 }

 u public void mouseWheelMoved(MouseWheelEvent e) {
 v size += e.getUnitsToScroll();

 }
 }

At u, the mouseWheelMoved() method accepts a MouseWheelEvent. At v, we
get the number of units the mouse wheel scrolled from the MouseWheelEvent
e with e.getUnitsToScroll(), and we add this amount to size. The number
returned by getUnitsToScroll() can be positive or negative, depending on
your operating system and whether the wheel was scrolled up or down.

Dif f e r e nce s in Scrolli ng Be t w e e n

Ope r at ing Sys t e ms

Windows, macOS, and Linux differ when it comes to scrolling. On macOS,
scrolling or gesturing up returns a positive value, so the code we just wrote will
increase the bubble size when the user scrolls or gestures up and shrink the
size when the user scrolls down. On Windows and most Linux flavors, scroll-
ing up with the mouse wheel moves a web page or document down instead,
returning a negative number from getUnitsToScroll(). This means that scrolling
up will cause the bubbles to get smaller, while scrolling down will add to the
size and make them larger.

If you want to make your app work the same way on all three operating
systems, change the code to the following:

 public void mouseWheelMoved(MouseWheelEvent e) {
 if(System.getProperty("os.name").startsWith("Mac"))
 size += e.getUnitsToScroll();
 else
 size -= e.getUnitsToScroll();
 }

Paint Colorful Bubbles with Your Mouse! 217

Lastly, add the mouse wheel listener to the BubblePanel() constructor,
just below the previous two listeners:

 public BubblePanel() {
 bubbleList = new ArrayList<Bubble>();
 setBackground(Color.BLACK);
 // testBubbles();
 addMouseListener(new BubbleListener());
 addMouseMotionListener(new BubbleListener());
 addMouseWheelListener(new BubbleListener());
 }

Save and run the app now, and you should be able to change the bubble
size by scrolling your mouse wheel or gesturing up or down on your trackpad,
as shown in Figure 9-6.

Figure 9-6: Use your mouse wheel or trackpad to change the size of the
bubbles.

The first version of the BubbleDraw app is complete! You can click and
drag to draw with multicolored bubbles on the screen, scroll up and down to
change the bubble size, maximize the window to draw fullscreen, and more.

The if statement gets the operating system name with System.getProperty
("os.name") and checks whether the name starts with the string "Mac". If so, we
add the units scrolled to size. Otherwise, we subtract the units scrolled from size
to reverse Windows and Linux scrolling to positive for up, negative for down.

218 Chapter 9

What You Learned
You’ve designed a colorful, interactive drawing app though an object-ori-
ented programming approach by creating a Bubble class to capture the fea-
tures and behaviors of bubbles.

Here are some of the new things you’ve learned in this chapter:

•	 Building a single app with multiple classes and multiple Java source
code files

•	 Using an object-oriented programming approach to break a problem
down into smaller pieces

•	 Building the Bubble class from scratch, including attributes, methods,
and a constructor

•	 Creating random colors using the java.util.Random and java.awt.Color
classes

•	 Generating random numbers in a given range with Random.nextInt(range)

•	 Drawing graphics with the java.awt.Graphics class

•	 Using the paintComponent() method to describe what your app should
draw and using repaint() to clear the screen and redraw

•	 Writing event handlers for mouse events, including clicks, movement,
and mouse wheel events

•	 Using the java.util.ArrayList class to store a dynamic list of objects,
such as the bubbles in BubbleDraw

•	 Adding multiple event listeners to an app using a custom listener class,
BubbleListener

Programming Challenges
Try these programming challenge exercises to review and practice what
you’ve learned, as well as to expand your programming skills. Visit the
book’s website at https://www.nostarch.com/learnjava/ for sample solutions.

#1: No Bubble Too Small
If you scroll the mouse down enough, the bubbles will simply disappear
because the size value drops below 0, resulting in a circle that Java can’t
draw on the screen. In fact, a size of 2 or smaller will produce bubbles just a
single pixel tall, so let’s make sure the value of size stays at least 3 pixels by
3 pixels to keep the bubbles circular.

Add a little logic to the mouseWheelMoved() method in the BubbleListener
class in BubblePanel.java to check whether the size variable goes below a value
of 3. If so, set size equal to 3 to keep the bubble visible on the screen. Add
this new if statement to the end of the mouseWheelMoved() method so that you
check the size after it’s changed, not before.

Run the app with the change, and you should be able to scroll the mouse
wheel until the bubbles are just a couple of pixels wide, but they’ll no longer
disappear. Great work!

PROGRAMM

ING

 CHA

LL
ENGES

https://www.nostarch.com/learnjava/

Paint Colorful Bubbles with Your Mouse! 219

#2: PixelDraw!
Add just a little bit of math to the constructor for new Bubble() objects, and
you can create a cool, pixelated effect, as shown in Figure 9-7.

Figure 9-7: Changing the location of new Bubbles slightly can create a cool
pixel-drawing effect.

Let’s copy the BubbleDraw project folder to make the changes in a new
project without messing up the original app. Double-click your BubblePanel
.java tab to restore the default view and then, in the Package Explorer, press
ctrl-C or -C to copy the BubbleDraw project folder. Press ctrl-V or -V to
paste a new copy of the folder into your workspace. Change the name of the
folder to PixelDraw, as shown in Figure 9-8.

Figure 9-8: You can copy a project folder in the Package Explorer and paste it to
create a new copy.

Change the code for the Bubble() constructor inside the private class
Bubble as follows.

PROGRAMM

ING

 CHA

LLENGES

220 Chapter 9

 public Bubble(int newX, int newY, int newSize) {
 x = (newX / newSize) * newSize + newSize/2;
 y = (newY / newSize) * newSize + newSize/2;
 size = newSize;
 color = new Color(rand.nextInt(256),
 rand.nextInt(256),
 rand.nextInt(256));
 }

This new math only alters the (x, y) location of each new bubble because
of the way Java handles division of two integer values. Java keeps only the
integer, or whole number, result when you divide two integers, so divid-
ing by newSize and multiplying by newSize will make your bubbles appear
to be on a grid, as you saw back in Figure 9-7. For example, if newSize is
10 and x is 25, then x divided by newSize would be 25 / 10, which evaluates
to 2 in Java. Multiplying by 10 then gives us 20, the location of the bubble
on a 10×10 pixel grid. We add newSize/2 to each coordinate to center the
dots within the imaginary grid. Remember, scrolling the mouse wheel still
changes the size of the bubbles, so you can draw thick, blocky images or fine,
pixel-perfect drawings.

If you’d like to make the pixel effect more Minecraft-y, you can make the
bubbles into squares. To do so, change the draw() method to fill rectangles
instead of ovals by commenting out the fillOval() command and using the
fillRect() command instead:

 public void draw(Graphics canvas) {
 canvas.setColor(color);
 // canvas.fillOval(x - size/2, y - size/2, size, size);
 canvas.fillRect(x - size/2, y - size/2, size, size);
 }

Now you can draw in a pixelated style, as shown in Figure 9-9.

Figure 9-9: Drawing with rectangles instead of ovals creates
a pixelated drawing effect.

PROGRAMM

ING

 CHA

LL
ENGES

10
Addi n g A n i m a t io n a n d

C olli s io n D e t e c t io n
wi t h Ti m e r s

In this chapter, we’ll add timer-based
animation to our BubbleDraw app to

create floating, bouncing bubbles, and we’ll
enhance the app with a user-friendly GUI interface.
The enhanced app, called BubbleDrawGUI, will add
a JPanel containing the GUI components shown in
Figure 10-1, giving the user the power to animate or
pause the bubbles, change the animation speed, and
clear the screen.

222 Chapter 10

Figure 10-1: The enhanced BubbleDrawGUI app features animated, bouncing,
semitransparent bubbles, with a GUI interface to control the animation.

This version of the app is even more interactive and user-friendly than
before, allowing the user to draw with floating, bouncy bubbles as they click
and drag their mouse on the screen.

Copying the BubbleDraw Java Project to Create
BubbleDrawGUI

The new GUI app will build directly on the BubbleDraw project from
Chapter 9. So, instead of creating a new Java project from scratch, we’ll
copy the BubbleDraw project and paste it into the same workspace with a
new name. This is a useful approach anytime you want to expand and work
on a newer version of a program while keeping the previous version intact.

In Eclipse, right-click the BubbleDraw project folder in the Package
Explorer pane and select Copy. Then, right-click in the Package Explorer
pane and select Paste. The Copy Project pop-up window will allow you
to give the copied project a new name. Enter BubbleDrawGUI and click OK.
Eclipse will create a new copy of the BubbleDraw project in the Package
Explorer pane as BubbleDrawGUI.

Renaming the Main Class and Java File
Now let’s rename the BubbleDraw.java file. This is the file with a public
static void main() method that runs the application, and renaming it will
help us distinguish between the new app and the old version. Inside the
new BubbleDrawGUI project folder, right-click BubbleDraw.java and select
Refactor4Rename.

Adding Animation and Collision Detection with Timers 223

Refactoring means restructuring your code, but not its functionality.
Usually programmers refactor when they’ve thought of a better, more effi-
cient way of getting their code to do the same thing. When the Rename
Compilation Unit window pops up, enter the new name, BubbleDrawGUI, and
then click Finish. A second window may pop up, warning you that the class
contains a main() method. You can ignore this warning and just click Finish a
second time. The refactoring process will rename both the class and the Java
file to BubbleDrawGUI. We’ll leave the BubblePanel class unchanged for now.

Finally, let’s modify the JFrame window’s title to match the new GUI ver-
sion of the app. Open the BubbleDrawGUI.java file. Find the line that creates
the JFrame and modify it to say Your Name's BubbleDraw GUI App as follows:

import javax.swing.JFrame;
public class BubbleDrawGUI extends JFrame {
 public static void main(String[] args) {
 JFrame frame = new JFrame("Your Name's BubbleDraw GUI App");

No t e 	 The first time you run an app containing multiple files, such as the BubblePanel and
BubbleDrawGUI apps, you’ll need to run the file that contains the main() method.
Running the main file will create configurations that enable you to run the program
just by clicking the run button from then on. The BubblePanel class doesn’t contain
a main() method, so we must either run BubbleDrawGUI.java or right-click the
BubbleDrawGUI project folder and select Run As4Java Application.

Save your file and then run it to see the new title in the title bar at the
top of the window, as shown in Figure 10-2.

Figure 10-2: The new BubbleDrawGUI.java file opens a window with “Your
Name’s BubbleDraw GUI App” in the title bar.

224 Chapter 10

Now, let’s make one more change to make the bubbles look more
realistic.

Adding Transparency
Real bubbles often have a semitransparent look. Think about blowing a
bubble with bubble gum: once it gets big enough, you can see through the
thin surface of the bubble. We can add transparency to the bubbles in the
BubbleDrawGUI app to give them a more lifelike appearance.

In addition to the RGB color components you learned about in
Chapter 9, Java can store a fourth component in the java.awt.Color class.
This is called the alpha component, and it represents how transparent or
opaque a color should appear onscreen when it is drawn in front of other
objects. Just like the RGB color values, the alpha component can have val-
ues from 0 to 255. An alpha value of 0 will make the color invisible, 128 will
make it look semitransparent like watercolor paint, and 255 will make it
completely obscure any objects behind it.

Because the Color class’s constructor can accept the alpha value as
a fourth argument (right after the RGB color values), we only need to
change one line in the BubblePanel.java file to add transparency. Open
BubblePanel.java under the BubbleDrawGUI project’s src folder and scroll
to the bottom of the file where the Bubble class is defined:

private class Bubble {
 private int x;
 --snip--
 color = new Color(rand.nextInt(256),
 rand.nextInt(256),
 rand.nextInt(256),
 rand.nextInt(256));
 }

Here we change the color variable’s constructor by adding a fourth
random value that can range from 0 to 255. We do so by adding a comma
at the end of the third rand.nextInt(256) in the color statement and add-
ing a fourth rand.nextInt(256) before the closing parenthesis of the Color()
constructor. Be careful to check your commas and parentheses against the
code shown here, or the app won’t work.

Save the file and then run it. Click around the screen to draw dots that
overlap slightly, as shown in Figure 10-3.

You’ll see now that the bubbles have not only random colors but also
varying levels of transparency. Some bubbles are opaque and completely
cover the screen behind them, while others are so transparent they’re barely
visible. Our bubbles are more bubbly than ever! Now let’s make them float for
an even more realistic appearance.

Adding Animation and Collision Detection with Timers 225

Figure 10-3: Adding an alpha component to the color of each bubble gives
them a cool, transparent appearance.

Adding Animation: Bubbles Rising!
Animation is the illusion of movement created by showing a sequence of
images on the screen. You may have created a flipbook-style animation in
a notebook: each drawing was shifted slightly from the previous one, and
when you flipped through the notebook, you could see the animation come
to life. We’ll add this type of effect to make it look like the bubbles are float-
ing away in the BubbleDrawGUI app.

To animate the bubbles, we need to draw all the bubbles on the screen,
change their location slightly, and then draw the screen again a few times
every second. Each screen we draw is called a frame. If we redraw the objects
quickly enough, our eyes and brains fill in the gaps between frames, making
us believe the same object has moved in a smooth path. The animation’s
frame rate, or how quickly we redraw the screen, is usually around 30 frames
per second. We’ll use a new class, javax.swing.Timer, which creates timers, to
tell our program when to redraw the bubbles. We’ll also use an event handler
to update the bubbles’ location and repaint the screen each time the timer
goes off.

There are four steps to create the animated bubbles: adding a timer,
setting the timer, preparing the animation, and starting the timer. These
are the same steps you would use to add animation to a game or any other
app that uses a timer in Java.

226 Chapter 10

Adding a Timer
To add a timer to our app, we’ll need to import the javax.swing.Timer class.
At the top of your BubblePanel.java file, add the following import statement:

import javax.swing.Timer;
import java.awt.event.*;
import java.util.ArrayList;
import java.awt.Graphics;
import java.util.Random;
import java.awt.Color;
import javax.swing.JPanel;

Importing the Timer class from javax.swing enables us to create a timer
object that triggers an event as often as we choose. Notice on the second line
in the code snippet, we have already imported java.awt.event.*. This line
imports all the java.awt event handlers, including the ActionListener class
we’ll use to handle timer events.

Next, inside the BubblePanel class, add two variables: one named timer
for the timer itself and an int named delay to store how many milliseconds
the timer should wait before redrawing the screen:

public class BubblePanel extends JPanel {
 Random rand = new Random();
 ArrayList<Bubble> bubbleList;
 int size = 25;
 Timer timer;
 int delay = 33;

Timers in Java need to know how many milliseconds, or thousandths
of a second, to wait until they trigger a timer event. A millisecond is really
fast, so I’ve chosen a delay of 33 milliseconds. This will cause the screen to
be redrawn about 30 times per second, since 1 second = 1,000 milliseconds
and 1,000 / 33 = 30 drawings per second. This is about the same rate as a
cartoon on television.

Setting the Timer
Now we’re ready to set the timer. Inside the BubblePanel() constructor, add
the following line to initialize the timer and set it with the given delay:

 public BubblePanel() {
 timer = new Timer(delay, new BubbleListener());
 bubbleList = new ArrayList<Bubble>();
 setBackground(Color.BLACK);
 // testBubbles();
 addMouseListener(new BubbleListener());
 addMouseMotionListener(new BubbleListener());
 addMouseWheelListener(new BubbleListener());
 }

Adding Animation and Collision Detection with Timers 227

The constructor for a new Timer() requires two parameters: the first is
the delay in milliseconds, and the second is the event handler that will lis-
ten for timer events. A timer triggers an actionPerformed() event every time
it goes off, similar to the actionPerformed() event we handle for button clicks
in a GUI interface. A timer is sort of like an automatic button that “clicks”
itself every few milliseconds. We’ve placed the timer first in the constructor
so that we can change it in response to GUI events later.

To listen for timer events, we’re going to modify the BubbleListener class.
Scroll down in BubblePanel.java to find the private class BubbleListener that
we created earlier. Then add implements ActionListener before the opening
brace for the class:

private class BubbleListener extends MouseAdapter implements ActionListener {

This change allows the BubbleListener class to listen for actionPerformed()
events by implementing the ActionListener class from java.awt.event.*.
Implementing an event listener class is another way of handling user events.
To handle these timer events, we’ll need to add an actionPerformed() event
handler. Add the following method to the bottom of the BubbleListener class:

 private class BubbleListener extends MouseAdapter implements ActionListener {
 public void mousePressed(MouseEvent e) {
 --snip--
 }
 public void mouseDragged(MouseEvent e) {
 --snip--
 }
 public void mouseWheelMoved(MouseWheelEvent e) {
 --snip--
 }
 public void actionPerformed(ActionEvent e) {
 }
 }

This new actionPerformed() method is where we’ll add the code that
moves the bubbles and repaints the screen every time the timer goes off.
We’ll add those statements next.

Preparing the Animation
Now that we’ve added a timer and set up the BubbleListener to listen for timer
events, we need to tell Java what to do when the timer triggers an event.

Every time the timer fires off an event, it’s time to draw the next image
in the animated bubble sequence. First, we’ll tell the actionPerformed() event
handler to update the bubbles and redraw the screen. Then, we’ll tell the
Bubble class to update a bubble by moving it upward on the screen. We’ll
have the program do these steps about 30 times per second.

228 Chapter 10

Inside the actionPerformed() method that we added to the BubbleListener
class, add the following three lines of code to update the bubbles and
repaint the screen:

 public void actionPerformed(ActionEvent e) {
 u for (Bubble b : bubbleList)
 v b.update();
 w repaint();

 }

At u, we’re using the for-each version of a for statement to loop through
each Bubble b in bubbleList. Remember that bubbleList is the ArrayList con-
taining all the bubbles we’ve created by clicking and dragging the mouse
on the screen.

As we loop through each bubble in bubbleList, we call a new function
named update() v on all the bubbles. Eclipse underlines this statement in red
because we haven’t yet defined the update() method in the Bubble class, but
we’ll do that in just a moment. The update() method is where we’ll change the
location of the bubbles to make them look like they’re floating up toward the
top of the screen.

At w, we call the repaint() method to refresh the screen, clearing the
drawing window and painting the bubbles in their new, updated locations.
By doing this 30 times per second, we’ll achieve the animated effect we
want to see.

Now let’s create the update() method to tell the Bubble class how to move
bubbles each time the animation timer is triggered. In Java’s (x, y) coordi-
nate system, we need to subtract from the y value (the top of the screen is
where y equals 0). So, to make the bubbles appear to move upward, we can
subtract a small amount from the y-coordinate at each update.

Scroll down to the bottom of BubblePanel.java where we defined the
Bubble class and add the update() method just below the draw() method, as
shown here:

 public void draw(Graphics canvas) {
 canvas.setColor(color);
 canvas.fillOval(x - size/2, y - size/2, size, size);
 }
 public void update() {
 y -=5;
 }
 }
}

The function to update the position of a bubble subtracts five pixels
from the y value for that bubble. Each time a bubble is redrawn on the
screen, it will be located five pixels higher than before.

Save your file. You only have one more step before you can run the app!

Adding Animation and Collision Detection with Timers 229

Starting the Timer
The final step in animating the BubbleDrawGUI app is starting the timer.
Scroll up to the BubblePanel() constructor and add the following line:

 public BubblePanel() {
 timer = new Timer(delay, new BubbleListener());
 --snip--
 addMouseWheelListener(new BubbleListener());
 timer.start();
 }

The timer.start() method will start the timer so that it will fire events
every few milliseconds as specified, until the timer.stop() method is called
or until you exit the program.

Save and run the program now. When you draw bubbles, they should
float upward, smoothly animated by the timer event handler.

The mouse scroll wheel and every other feature we built in Chapter 9
still work with our mesmerizing animation effect. The bubbles float in only
one direction so far, but we’ve achieved the illusion of motion we were aiming
for. In the next section, you’ll learn how to make the bubbles float in every
direction.

Forever Blowing Bubbles: Adding Random Speed
and Direction

The update() function we created in the previous section changed only the
y-location of each bubble, causing the bubbles to move vertically every time
the screen was redrawn. In this section, we’ll make the bubbles move both
vertically and horizontally at random speeds so they appear to be blowing
away in every direction, as shown in Figure 10-4.

Figure 10-4: Changing both the x- and y-locations of each bubble makes
the bubbles look like they’re blowing in random directions from the mouse
pointer as we drag.

230 Chapter 10

The bubble’s horizontal speed
is how many pixels to the left or
right it moves each frame. This is
what determines the bubble’s new
x-location. Similarly, the bubble’s
vertical speed determines its new
y-location. By just moving the bubble
in the horizontal and vertical direc-
tions, we can make it move in any
direction. Figure 10-5 shows how the
horizontal speed and vertical speed
combine to create the illusion that
the bubble is moving diagonally.

First, let’s add variables to store how many pixels each bubble should
travel in the x- and y-directions each time the screen is redrawn. Add these
two lines to the top of the Bubble class:

 private class Bubble {
 --snip--
 private Color color;

 u private int xspeed, yspeed;
 v private final int MAX_SPEED = 5;

At u, we’ve declared two integer variables: xspeed for the number of
pixels the bubble will move horizontally each time the screen updates and
yspeed for the number of pixels the bubble will move vertically. At v, we add a
constant called MAX_SPEED for the maximum number of pixels a bubble should
move at one time. Constants are named values similar to variables, but con-
stants don’t change inside a program, so we declare them as final to tell Java
that the value of the constant is permanent. We also name constants in all
uppercase as a convention so we can tell them apart from regular variables.

We’ll give each bubble a random x and y speed using the rand.nextInt()
method, just as we did for the bubble’s color. Add these two lines to the
Bubble() constructor:

 public Bubble(int newX, int newY, int newSize) {
 x = newX;
 y = newY;
 size = newSize;
 color = new Color(rand.nextInt(256),
 rand.nextInt(256),
 rand.nextInt(256),
 rand.nextInt(256));
 xspeed = rand.nextInt(MAX_SPEED * 2 + 1) - MAX_SPEED;
 yspeed = rand.nextInt(MAX_SPEED * 2 + 1) - MAX_SPEED;
 }

We need the x and y speed values to allow the bubble to move in any
direction, but we have only two variables for four directions (left or right,
up or down). We can handle this by using both negative and positive values.

yspeed

xspeed

Bubble m
otion

Figure 10-5: Changing a bubble’s location
in both the x- and y-directions quickly will
make the bubble appear to move diago-
nally on the screen.

Adding Animation and Collision Detection with Timers 231

When the xspeed is negative, the bubble will move toward the left, and when
it’s positive, the bubble will move to the right. The yspeed will make the
bubble move upward when negative and downward when positive. To make
the xspeed and yspeed ranges span negative and positive values, I’ve multiplied
MAX_SPEED by 2 and added 1, which is equal to 11 since 5 * 2 + 1 = 11. This
makes rand.nextInt(MAX_SPEED * 2 + 1) equivalent to rand.nextInt(11), which
will return a number between 0 and 10. By subtracting MAX_SPEED from this
value, you’ll get a result between -5 and +5 since 0 - 5 = -5, and 10 - 5 = 5.

Finally, we need to change the update() function to move the bubble
to its new location each time the screen is redrawn. Replace the statement
y -= 5; with the following two statements:

 public void update() {
 x += xspeed;
 y += yspeed;
 }

Instead of moving up five pixels every time the screen is redrawn, each
bubble will move horizontally by the xspeed and vertically by the yspeed values
we randomly generated for that bubble. The result is a colorful explosion of
bubbles everywhere we drag the mouse!

Save and run the program with these changes, and you’ll see an ani-
mated effect like the one we saw in Figure 10-4. The effect of moving the
bubbles in the x- and y-directions over time gives each bubble the illusion
of both a random speed and direction.

One curious behavior that you might notice is that some bubbles, such as
the ones in the center of Figure 10-6, stay put. This is because we’re randomly
generating numbers between -5 and +5 for the x and y speed, and sometimes
a bubble’s xspeed and yspeed will both be 0. When this happens, the bubble
won’t move at all.

Figure 10-6: Because the random speed values can be 0, bubbles like
the ones near the center here will stay put.

232 Chapter 10

You can avoid having stuck bubbles by checking whether both xspeed
and yspeed are equal to 0 and changing one or both of them—this is
Programming Challenge #1 on page 244.

Now that our bubbles are floating away as we draw them, there are a
couple of functions we might want to add to the app: the ability to pause
the animation and to clear the screen. It’s time to build a GUI interface
within our animated, graphical app.

Building a GUI for Our Animated Drawing App
The BubbleDrawGUI app is graphical, but it doesn’t
have an interface like our other GUI apps. A Pause/
Start button and a Clear button, shown in Figure 10-7,
would make it easy for the user to understand and
interact with the app, so let’s add those next.

Setting Up the GUI Panel and Buttons
In the Package Explorer pane, right-click BubblePanel.java and select Open
With4WindowBuilder Editor. Click the Design tab, and you should see the
GUI design view.

First, let’s add a JPanel to serve as the container for the Pause/Start and
Clear buttons, as well as any other GUI components you might want to add
later. In the Palette pane, under Containers, select JPanel. Then, hover your
mouse over the design preview to the right and click the BubblePanel design
preview to place a new JPanel onto the black background.

Alternatively, you can add a new JPanel by clicking the javax.swing.JPanel
entry under the Structure pane and inside the Components pane to the left.
You’ll see a very small gray JPanel appear at the top of the black BubblePanel
design preview.

Next, let’s place the Pause/Start and Clear buttons. In the Palette pane,
scroll down to the Components section, select the JButton component, and
then hover and click inside the small JPanel we just added to place the first
JButton. Enter Pause as the button’s text, either directly in the GUI preview
or in the Properties pane. (You’ll see why we refer to it as the Pause/Start
button shortly.)

Follow the same steps for the clear button: select JButton in the Palette
pane, click inside the JPanel to place the button, and enter Clear for the
button’s text.

If it’s difficult to place the buttons in the JPanel because it is too small,
select JButton in the Palette and then click the panel in the Structure
pane to the left to place each button inside the panel, as shown expanded
in Figure 10-8. Name the buttons btnPause and btnClear either as you place
them or by changing the Variable property in the Properties pane.

Figure 10-7: The
Pause/Start and
Clear buttons

Adding Animation and Collision Detection with Timers 233

Figure 10-8: When building a GUI, you can select components
from the Palette and add them directly to the Structure pane.
Here, we’ve added btnPause and btnClear to the panel we
just created.

The Structure pane is a useful way to add components to the GUI in
situations like this, when we can’t see the JPanel well in the design preview,
or when we want to change the ordering or grouping of the components in
the GUI. Figure 10-9 shows both buttons in the finished GUI.

Figure 10-9: The Pause/Start and Clear buttons in the
finished GUI

Now that we’ve added the Pause/Start and Clear buttons to the top of
the drawing screen, it’s time to code the buttons’ event handlers.

234 Chapter 10

Coding the Clear and Pause/Start Buttons
Let’s start with the Clear button. One way to clear all the bubbles from the
screen would be to reset the bubbleList variable to a new, empty list—that way,
there are no bubbles to be drawn, and the user can begin painting afresh.
To implement this behavior, double-click the Clear button (remember that
double-clicking a button in the Design tab will create an event listener for the
button and switch you back to the Source tab) and then add the following
two lines inside the braces for bubbleList’s action listener:

 JButton btnClear = new JButton("Clear");
 btnClear.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent arg0) {

 u bubbleList = new ArrayList<Bubble>();
 v repaint();

 }
 });
 panel.add(btnClear);

At u, we clear the bubbleList variable by setting it equal to a new ArrayList
of Bubble objects. This new list will be empty, so all we have to do is repaint the
screen and we’ll have a clean, black background just like when we opened the
app. At v, we call the repaint() function to draw the new, empty screen.

Save and run the app. Then draw a few bubbles and click the Clear
button to clear the screen.

Switch back to the Design tab and double-click the Pause/Start button
to create another event listener. When the user clicks the Pause/Start but-
ton, we want to not only stop the animation by stopping the timer but also
change the text on the button to Start. Then, when the user clicks again, we
want to restart the timer to resume the animation and set the button’s text
back to Pause.

Enter the following code into the actionPerformed() method Eclipse pro-
vided when you double-clicked the Pause/Start button.

No t e 	 Make sure your ActionEvent variable in the actionPerformed() method is named e, as
highlighted in bold in this code.

 JButton btnPause = new JButton("Pause");
 btnPause.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {

 u JButton btn = (JButton)e.getSource();
 v if (btn.getText().equals("Pause")) {
 w timer.stop();
 x btn.setText("Start");

 }
 else {

 y timer.start();
 z btn.setText("Pause");

 }
 }

Adding Animation and Collision Detection with Timers 235

 });
 panel.add(btnPause);

At u, going from right to left, we use the e.getSource() method to find out
which button was clicked, cast it to a JButton variable type, and store a link to
the button as btn. The getSource() method is useful for finding out whether
a GUI element has been clicked or changed, especially when you’re writing
event handlers for multiple elements at once. In this example, we can use
getSource() to access the button’s properties, such as its text property.

At v, we check whether the text on the button is equal to the string
"Pause". If so, we stop the timer w to pause the animation, and then we
change the text on the button to the string "Start" x.

If the text on the button wasn’t "Pause"—in other words, if the animation
was already paused and the text on the button had been changed to "Start"
from a previous click—the event handler would go to the else statement
instead and start the timer y to resume the animation. Finally, the text on
the Pause/Start button will change back to "Pause" z.

Save the file and run it once more. Now you can pause the animation,
draw something, and then restart the animation to achieve the jaw-dropping,
exploding-bubbles effect shown in Figure 10-10.

Figure 10-10: Pause the animation, draw a shape, and then start the animation again to see your drawing
explode into colorful bubbles.

The BubbleDrawGUI app is a visually stunning animated app, and the
buttons give the user more control over the drawing screen. But once the
animation runs, bubbles float off the edges of the screen, never to return.
What if we could make the bubbles bounce around inside the window so
that they stayed around a bit longer?

Bouncing off the Walls with Collision Detection
Animation isn’t just for flipbook cartoons and screensavers. There’s another
place you encounter animation all the time: computer games. Whether it’s
a mobile app or the latest online or console game, animation is how game
developers give the user a sense of movement and action.

236 Chapter 10

One useful game programming concept that we can add to the final
version of the BubbleDrawGUI app is collision detection, which allows us to
check whether two objects overlap, or collide, on the screen. You might use
collision detection to tell the program what to do when a player shoots an
enemy spaceship or kicks a football in a video game. In this app, we want to
find out whether a bubble has reached the edge of the drawing screen so we
can change the bubble’s direction, making it appear to bounce off the edge
of the screen back toward the center like the bubble in Figure 10-11.

Figure 10-11: The bubble bounces off the right edge of the window, courtesy
of collision detection.

Collision detection can give virtual objects, such as our bubbles in
BubbleDrawGUI, a more realistic appearance. In your favorite computer
game, collision detection is what keeps your player from falling through the
floor or walking through walls. These objects are imaginary—they’re all
just computer graphics, so they can’t actually bump into one another—but
collision detection creates the illusion that they are solid. So, if we give our
bubbles a gentle bounce off the edges of the screen, they’ll feel more like
real objects to us. Let’s see how that works.

A Soft Bounce
First, we’ll break down how collision detection works for bubbles bouncing
off the window’s edges. We already know that each bubble has a pair of x-
and y-coordinates for its location and an xspeed and yspeed for the number of
pixels to move horizontally and vertically from one screen refresh to the next.

To figure out whether a bubble has collided with the window’s edge, we
need to know the x- and y-coordinates of the edges of the screen so we can
compare them to the bubble’s x- and y-coordinates. The left edge of the
screen is the lowest x value, or x==0. And the top of the screen is the smallest
y value, or y==0. But how about the right edge and bottom of the screen?

Every GUI component in Java inherits a pair of methods to return the
width and height of the component: getWidth() and getHeight(). Our drawing

Adding Animation and Collision Detection with Timers 237

screen for the BubbleDrawGUI app is the JPanel BubblePanel. So, if we call the
getWidth() and getHeight() functions inside BubblePanel, the maximum x value
is getWidth(), and the maximum y value is getHeight().

We check whether a bubble’s x and y value has collided with an edge
of the screen in the Bubble class’s update() method. You might remember
that the update() method is also where we change each bubble’s x- and
y-coordinates using xspeed and yspeed to give it the illusion of motion.

Let’s be more precise about what we mean by a “bounce.” Back in
Figure 10-11, the bubble is moving toward the right edge of the screen,
where x==getWidth(), meaning the bubble’s x value is at the maximum
x-coordinate, the width of the screen in pixels. To make the bubble look
like it’s bouncing, we change the direction it’s moving by reversing the
xspeed. The bubble was moving by some positive number of pixels each
time it updated; after it touches the edge of the screen, we can make it
move in the opposite direction by changing the sign of xspeed. In other
words, we can make xspeed negative to make the bubble move to the left
and away from the right edge of the screen after it bounces.

We can reverse the bubble’s horizontal speed by setting xspeed = -xspeed,
which makes xspeed the opposite of itself. So, an xspeed of 3 pixels per frame
would change to an xspeed of -3 pixels per frame after the bubble collides
with the right edge of the screen, reversing its direction after the bounce.

We can do the same with the left edge of the screen, where x==0.
If the bubble’s x value allows the bubble to touch the left edge, setting
xspeed = -xspeed flips the horizontal motion again: an xspeed of -3 would
become -(-3), or +3. This will make the bubble move to the right again,
away from the left edge of the screen.

In BubblePanel.java, scroll all the way down to the bottom of the file,
where we defined the Bubble class. Find the update() method and add the
following collision detection code for the left and right edges of the screen:

 public void update() {
 x += xspeed;
 y += yspeed;
 if (x <= 0 || x >= getWidth())
 xspeed = -xspeed;
 }

If the bubble’s x value goes below 0, or if x goes past the width of the screen,
the bubble must have touched either the left or right edge of the screen, so
we change the xspeed to send the bubble bouncing in the opposite direction.

For the top and bottom edges, we’ll do the same thing, but this time we
change the yspeed:

 public void update() {
 x += xspeed;
 y += yspeed;
 if (x <= 0 || x >= getWidth())
 xspeed = -xspeed;
 if (y <= 0 || y >= getHeight())

238 Chapter 10

 yspeed = -yspeed;
 }

If the bubble’s y value goes below 0, or past the height of the screen in
pixels, we change yspeed to -yspeed to make the bubble move in the opposite
direction.

Once you’ve made these additions to the update() method, save and
run the file again. This time, you’ll see the bubbles you create rebound
softly off all four edges. You may notice a small issue, however: the bubbles
move halfway off the screen in any direction before they seem to bounce, as
shown in Figure 10-12.

Figure 10-12: Around the edge of the window there are many bubbles that are
almost halfway off the screen before they rebound.

This “soft” bounce happens because we’re checking for a collision
between the center of each bubble and the edges of the screen. Recall that
we centered each bubble around the (x, y) coordinates of the user’s click in
Chapter 9, so each bubble’s x and y values represent the location of the cen-
ter of that bubble. To make the bubbles stay on the screen completely, we’ll
need to test for collisions between the outside edge of each bubble and the
edges of the drawing window.

A Hard Bounce
To check for collisions with the edge of each bubble, we’ll have to account for
the distance from the center of each bubble to the edge, which is the bubble’s
radius (since each bubble is a perfect circle). The radius is the same as half of
the size value of each bubble, or size/2. Modify the two if statements in the
update() method to account for the size of each bubble as shown here:

 public void update() {
 x += xspeed;

Adding Animation and Collision Detection with Timers 239

 y += yspeed;
 u if (x - size/2 <= 0 || x + size/2 >= getWidth())

 xspeed = -xspeed;
 v if (y - size/2 <= 0 || y + size/2 >= getHeight())

 yspeed = -yspeed;
 }

At u, we subtract size/2 from x to see whether the left edge of the bubble
has touched the left side of the screen, which will be true if x - size/2 is
less than or equal to 0. Division is performed before subtraction. Therefore
size/2 will be evaluated first and then subtracted from x, so we don’t need
to add parentheses around size/2. We also add size/2 to x to see whether
the right edge of the bubble is touching the right edge of the screen, which
would mean x + size/2 is greater than or equal to getWidth(). At v, we make
the same changes to check for the top edge (y - size/2) and bottom edge
(y + size/2) of each bubble to see whether they are touching the top or
bottom, respectively, of the drawing window.

Save your program and run it again. Now all the bubbles you create,
big and small, bounce solidly off the edges of the window, as shown in
Figure 10-13.

Figure 10-13: Now our bubbles make a “hard” bounce against the window’s
edges, for a more solid appearance.

Click the maximize button on the app’s title bar or double-click the title
bar to expand the window. You’ll see that the bubbles expand to bounce
off the edges of the drawing window even when the app is fullscreen. We
used the getWidth() and getHeight() methods to determine the right and
bottom edges, and those methods will always return the current width and
height, so feel free to resize the app as you draw.

Now let’s make one final addition to give the user even more control via
the GUI.

240 Chapter 10

Adding a Slider to Control the Animation Speed
At this point, we’ve given the user control over pausing and clearing the
screen, as well as the ability to create big and small bubbles. Let’s also give
them control over the animation speed by providing a slider that changes
the timer’s delay, as shown in Figure 10-14.

Figure 10-14: Adding a slider will allow the user to speed up
or slow down the animation.

First, switch back to the Design tab and add a JLabel and JSlider to the
GUI control panel. Scroll down under the Palette to find the Components
section and select JLabel. Click inside the small panel just before the
Pause/Start button in your GUI design preview to place the label. Change
the label’s text to Animation Speed:.

Next, click the JSlider component on the Palette. Then click between
the Animation Speed label and the Pause/Start button to place the slider,
as shown in Figure 10-15.

Figure 10-15: Add a label and slider to the app’s GUI control panel in the design view.

You may notice that the JPanel for all the GUI components grows as we
add elements. If you click the panel in the Structure pane, you’ll see that the
Layout property has the default value java.awt.FlowLayout. This layout expands
to fit as many GUI elements as you place inside it. We used the AbsoluteLayout
for the Hi-Lo guessing game and Secret Messages apps because we wanted to
place elements in specific positions. In this drawing app, we can be more flex-
ible, and the FlowLayout is perfect for adding GUI components on the fly.

Adding Animation and Collision Detection with Timers 241

Customizing the Slider
We’ll change a few properties to customize the slider next, so let’s figure
out what we want the slider to look like. The slider should allow the user
to change the animation speed easily and intuitively. In other words, if
the user slides the animation speed to 0, the animation should slow down
almost to a stop. If the user slides the animation speed all the way to the
right, the animation should go really fast.

Monitors usually refresh the screen between 30 and 120 times per
second, with 60 Hz (short for hertz, a measure of frequency per second)
being the most common refresh rate. If we animate the bubbles faster than
120 times per second, your monitor likely won’t be able to show all of the
individual frames in the animation. So it makes sense to set our maximum
speed value on the slider to 120 frames per second.

The number of frames per second, abbreviated fps, is often a measure
of the smoothness of the animation. A game that runs at 60 fps on your
computer will look smoother than a game that runs at 30 fps.

Select the slider in your design preview. In the Properties pane in the
lower left, set the range by specifying a maximum of 120 and a minimum of 0
(the default). To prepare the labels and tick marks, set majorTickSpacing to
30, set minorTickSpacing to 5, and select the checkboxes next to paintLabels,
paintTicks, and paintTrack to make all three values true. Finally, change the
value property to 30, the default number of frames per second. Figure 10-16
shows the Properties pane with all of our customized values, along with a
preview of the JSlider after the changes.

Figure 10-16: The Properties pane for the Animation Speed slider
with customized values (left); a preview of the slider showing the
customizations (right)

The slider is labeled from 0 to 120 in increments of 30 because you
checked paintLabels and set majorTickSpacing to 30. The small tick marks show
up between those values because you set minorTickSpacing to 5 and checked
paintTicks. We’ve got a customized slider ready to change the animation
speed, so now let’s edit the code to put the slider to work.

242 Chapter 10

Implementing the Slider Event Handler
In the Design tab’s design preview, right-click the slider and select Add
event handler4change4stateChanged. Eclipse will add a ChangeListener
with a stateChanged() method like the one we used in the Secret Messages
app’s slider implementation. The code looks like the following:

 JSlider slider = new JSlider();
 slider.addChangeListener(new ChangeListener() {
 public void stateChanged(ChangeEvent e) {
 }
 });

First, we need to declare the JSlider at the top of the class so that we’ll
be able to access the slider’s value inside the stateChanged() event handler’s
code. Scroll up to the top of the BubblePanel class and add the following line
just below the timer and delay variables:

public class BubblePanel extends JPanel {
 Random rand = new Random();
 ArrayList<Bubble> bubbleList;
 int size = 25;
 Timer timer;
 int delay = 33;
 JSlider slider;

Next, scroll back down to the slider code and remove the JSlider type
declaration from the beginning of the first line:

 slider = new JSlider(); // Remove "JSlider" from beginning of line
 slider.addChangeListener(new ChangeListener() {
 public void stateChanged(ChangeEvent e) {
 }
 });

When the user changes the slider’s position, we want to change the
speed of the animation by changing the length of delay between each
timer event. To do this, we’ll need to get the speed value from the slider,
convert the speed into a number of milliseconds, and then set the timer’s
delay to the new value. Add the following three lines inside the braces for
the stateChanged() method:

 slider = new JSlider();
 slider.addChangeListener(new ChangeListener() {
 public void stateChanged(ChangeEvent arg0) {

 u int speed = slider.getValue() + 1;
 v int delay = 1000 / speed;
 w timer.setDelay(delay);

 }
 });

Adding Animation and Collision Detection with Timers 243

At u, we use the getValue() method to get the speed value from the
slider and store it in an integer variable named speed. Notice, though, that
we add 1 to the slider value here. We’re doing this to prevent a division-by-
zero error at v, where we divide 1000 by the speed to determine the number
of milliseconds of delay between each frame. The slider can go all the way
down to 0, but by adding 1 to its value, we prevent the delay from causing
an error: 1000/0 throws a division-by-zero exception, but 1000/1 gives us a
very slow 1,000 milliseconds between frames that feels like the animation
is nearly stopped. This means that when the user moves the slider to 0, the
animation won’t actually stop. In order to stop the animation completely,
they’ll need to click the Pause/Start button instead.

Finally, we update the timer by setting the new delay value in milli
seconds w. This will slow down or speed up the animation by changing the
amount of time between timer events.

Save the file and run it. Move the slider back and forth, and you’ll see
you now have control over the speed of the animation.

The BubbleDrawGUI app is our most interactive, entertaining, visually
engaging app so far—a graphical, animated drawing app with a GUI inter-
face that gives the user complete control over the animation. Play around
with it for a while—and congratulate yourself on a job well done!

Sh a r e a nd Sh a r e Ali ke

This would also be a great app to share with friends. To export a runnable
JAR file from Eclipse, go to File4Export. Then, expand the Java folder and
click Runnable JAR file. Click Next and, under Launch configuration, click the
drop-down list and choose BubbleDrawGUI – BubbleDrawGUI.

Under Export destination, click Browse, and then select the destination
folder you’d like to save your finished app in, perhaps Desktop. Give your pro-
gram file a name, such as Bryson’s BubbleDraw.jar. Click Save, then Finish.

Find where you saved your JAR file, run it, and share it with a friend. Even
if your friend doesn’t have Eclipse, as long as they have Java installed, they’ll
be able to run your BubbleDrawGUI app. Enjoy!

What You Learned
We built on the BubbleDraw app from Chapter 9 to produce an animated
GUI version with bouncing bubbles. Here are some of the skills we’ve added
in this chapter:

•	 Combining a graphical app with a GUI interface

•	 Copying a project and pasting a new version in the Package Explorer in
Eclipse

244 Chapter 10

•	 Renaming a class or object by refactoring

•	 Using transparency by setting the alpha component in RGBA colors

•	 Creating, setting, and starting a Timer object

•	 Handling Timer object events

•	 Creating an animation by moving graphical objects with a timer

•	 Making virtual objects bounce via collision detection

•	 Using getWidth() and getHeight() to find the edges of the window

•	 Using a slider to change a timer’s delay

•	 Varying an animation’s speed by changing the delay property of a timer

Programming Challenges
Try these programming challenge exercises to review and practice what
you’ve learned, as well as to expand your programming skills. Visit the
book’s website at https://www.nostarch.com/learnjava/ for sample solutions.

#1: No Bubble Left Behind
One problem we noted in the chapter was that some bubbles get a random
speed of 0, causing them to seem stuck in place while the other bubbles
float away. This happens when the bubble’s xspeed and yspeed are both set
to 0. For this challenge, add some code to make sure that no bubbles get a
random speed of 0. To do so, you’ll test the xspeed and yspeed values to see
whether they’re both equal to 0. If they are, all you need to do is set the two
values to something else, like 1.

Hi n t 	 Add the if statement inside the Bubble() constructor, after the xspeed and yspeed
values are created.

private class Bubble {
 --snip--
 public Bubble(int newX, int newY, int newSize) {
 --snip--
 xspeed = rand.nextInt(MAX_SPEED * 2) - MAX_SPEED;
 yspeed = rand.nextInt(MAX_SPEED * 2) - MAX_SPEED;
 if // Add your code here
 }

Make your changes, save and run the file, and voilà—no more stranded
bubbles!

#2: Flexi-Draw!
Because of the random speed values, the bubbles move in every direction,
which is the effect we originally wanted. But what if we wanted to draw
shapes and have them stay together?

PROGRAMM

ING

 CHA

LL
ENGES

https://www.nostarch.com/learnjava/

Adding Animation and Collision Detection with Timers 245

Setting the speed of every bubble to the same fixed value creates a
funky, flexible, twisty effect as the objects bounce off the edges of the
screen, as shown in Figure 10-17.

Figure 10-17: Giving all bubbles the same xspeed and yspeed creates a flexible, bouncy effect that keeps
shapes together as they rebound and twist off the edges of the screen.

For this challenge, create a new copy of the app so that the original
version is still available. Copy and paste the BubbleDrawGUI project in the
Package Explorer pane, renaming it FlexiDraw or another app name of your
choice. In the BubblePanel file, change the Bubble() constructor so that instead
of creating random xspeed and yspeed variables, it sets them equal to the same
value, perhaps like this:

 xspeed = yspeed = 2;

This line of code makes use of an interesting feature of the assignment
operator (=). This is called a chained assignment, because both xspeed and
yspeed are being assigned the value of 2, and the equal sign allows us to assign
the same value to several variables in a chain sequence.

You can pick a higher or lower number for your speed value. The
important point to note is that we’ve replaced the random speeds with a
fixed starting speed and direction for every bubble. Each bubble will move
right two pixels and down two pixels the first time it’s drawn, so the bubbles
will form groups as you draw.

Save the file, right-click the FlexiDraw folder in the Package Explorer,
and select Run As4Java Application. Pause the animation to draw, and
then press Start to see your shapes bend, twist, and bounce as they move
around the screen! You can even draw as the animation runs for a cool
spiral effect.

#3: PixelDraw 2.0
For this challenge, you’ll reuse the PixelDraw code from Chapter 9
(Programming Challenge #2 on page 219). Adding the pixelated effect to
the animated drawing program will allow you to draw square pixel shapes
and animate them. Combine this effect with the FlexiDraw trick from the
previous challenge exercise, and you’ve got a bouncing, bending Minecraft -
esque drawing app like the one shown in Figure 10-18.

PROGRAMM

ING

 CHA

LLENGES

246 Chapter 10

Figure 10-18: The PixelDraw 2.0 effect (left); the same shape after bouncing off the sides and twisting upside
down and backward (right)

Pause the animation to keep the blocks in a clean, gridlike shape like
the example in Figure 10-18. Draw with the animation going to achieve a
stacked, 3D look like the example in Figure 10-19.

Figure 10-19: The PixelDraw 2.0 code creates a stacked, 3D effect if you drag
the mouse while the animation is running.

Here’s a hint to help with the math: to achieve the blocky style, you need
to “divide” the screen into a grid based on the size of each block, and then
draw a block at that grid location. This time, try changing your x and y vari-
ables at the top of the Bubble() constructor to something like the following:

 x = (newX / newSize) * newSize + newSize/2;
 y = (newY / newSize) * newSize + newSize/2;

The first part of the formula, (newX / newSize) * newSize, divides the
screen into grid blocks based on newSize, the size of the current bubble. In

PROGRAMM

ING

 CHA

LL
ENGES

Adding Animation and Collision Detection with Timers 247

order to align the x- and y-positions with a newSize by newSize grid, we need
them to be multiples of newSize. For the x-coordinate, we do this by divid-
ing newX by newSize, which results in an integer without decimal points that
we multiply by newSize to make an integer that is a multiple of newSize. This
places the x-coordinate of the bubble at the edge of the grid block the
user clicks in. For example, if newSize is 10, the division and multiplication
“snap” the x-coordinate to 10 by 10 gridlines by making x a multiple of 10.
If we stopped there, this would result in a bubble with its center at the
point where the gridlines meet. Since we want the bubble to be contained
within a grid block instead, the second part (+ newSize/2) shifts the bubble
to the center of that block.

Finally, draw blocks instead of bubbles by changing the draw() method
to fill rectangles instead of ovals using fillRect().

That’s it! But you can—and should!—make additional changes to cus-
tomize the new app even further and make it your own. Change the JFrame
title in the BubbleDrawGUI.java file or even refactor/rename the files if
you’d like. The sky’s the limit!

After making those changes, you’ll be able to draw beautiful, blocky,
pixelized, and animated creations. Take a screenshot and tweet it to your
friends. Use the hashtag #JavaTheEasyWay or tag me @brysonpayne, and
I’ll retweet it to a few thousand of my friends as well!

PROGRAMM

ING

 CHA

LLENGES

11
M a k i n g B u bbl e D r a w a

M u l t i t o u c h A n d r oid App

Our final app will be a multitouch
Android version of BubbleDraw that

enables the user to draw bubbles with the
touch of a finger—or all 10 fingers!

The processors in Android devices are usually much smaller and
slower than desktop CPUs. If you’ve ever gotten an “App Not Responding”
error, you’ve seen what happens when an app consumes too much of a
device’s processing power. So, instead of a timer, this version of the app
will use a new approach to animation called threading, which will make the
app use less processing power. Threading is what makes it possible for us to
run multiple apps at the same time, or multitask.

The new BubbleDraw app will also make use of multitouch. Take a look
at Figure 11-1, which shows bubbles pouring out of several different loca-
tions, where my younger son Max touched his fingers to the screen.

250 Chapter 11

Figure 11-1: The Android version of the BubbleDraw
app will use multitouch so that the user can draw
bubbles on multiple locations of the screen at once.

The mobile BubbleDraw app will reuse a lot of the features from the
desktop and GUI versions, such as the source code from the Bubble class we
finished building in Chapter 10. There are a couple of differences in how
we draw graphics on Android, however, and since we’re also adding thread-
ing and multitouch, you’ll need to learn some new app-building techniques.
You’ll develop these new skills using the BubbleDraw app as a foundation.

Setting Up the BubbleDraw Project
Open Android Studio, close any open projects, and click Start a new Android
Studio project. In the Create New Project window, enter BubbleDraw in the
Application Name field, leave Company Domain the same (example.com or
your website name), and then click Next.

This time, we want to choose a newer API level than we used for our
previous apps. Both the Hi-Lo guessing game and Secret Messages apps
used GUI interfaces that would work on older Android devices. In this
app, however, we’ll need the drawOval() method to draw the bubbles, which
requires API level 21 or higher. Select API 21: Android 5.0 (Lollipop) as
the Minimum SDK.

Making BubbleDraw a Multitouch Android App 251

An additional difference is that instead of the basic activity we used in
the Hi-Lo guessing game and Secret Messages apps, in this app we’ll use
an empty activity because we don’t need a basic GUI interface. Instead of a
regular GUI app layout, we’re going to create an interactive, touch-enabled
drawing canvas. On the Add an Activity to Mobile screen, choose Empty
Activity and click Next.

We’ll keep MainActivity as the Activity Name, as we did in our previous
apps, but uncheck the Backwards Compatibility checkbox and click Finish.
Turning off backward compatibility will keep our code simpler.

As in the previous two desktop versions of the BubbleDraw app, we’re
going to use two Java files to keep our bubble code separate from the main
app code. Once your project opens, click the Project tab along the left edge
of the screen to display the Project Explorer pane, if it’s not already visible.
Then, select the Android tab at the top of the Project Explorer pane. Under
app4java, find the main BubbleDraw package (don’t select the androidTest
or test packages). Right-click your BubbleDraw package in the Project
Explorer and select New4Java Class, as shown in Figure 11-2.

Figure 11-2: Add a new Java class to your main BubbleDraw package for the
bubble code.

In the Create New Class pop-up window, name the new class BubbleView.
In Android, a View is any GUI component. The BubbleView class serves the
same function as the BubblePanel class did in the desktop app. All our bubble
drawing code will go in this class.

Android Studio’s Create New Class window allows us to set the super-
class and interfaces easily. First, we’ll make our new BubbleView class inherit
the ability to draw graphics easily. In the Superclass text field, begin typing
ImageView and then click ImageView (android.widget) in the autocomplete
drop-down list to make the new class’s parent class ImageView. This will dis-
play as android.widget.ImageView after you click it.

Next we’ll implement an OnTouchListener interface to enable our app
to handle touch events, similar to the mouse events we used in the pre-
vious versions of the app. In the Interface(s) text field, begin typing

252 Chapter 11

OnTouchListener and then click OnTouchListener (android.view.View)
in the autocomplete drop-down list. Once you click it, it will display as
android.view.View.OnTouchListener.

Click OK. You should now see the BubbleView class inside your
com.<yourdomain>.bubbledraw package. Double-click the BubbleView class
in the Project Explorer to begin editing the file. The BubbleView class may
be underlined in red to let you know it’s missing some code, but we’ll fill
in those required pieces as we code the app in the next few sections.

Creating the BubbleView Constructor
Double-click the BubbleView.java tab to expand it to fullscreen in the app for
easier editing. Let’s begin building the BubbleView class by adding variables
similar to those in the BubblePanel class. Just as in our desktop and GUI ver-
sions of the app, we’ll need a random number generator and an ArrayList
for the bubbles the user has drawn, as well as some integer variables for the
default bubble size and the animation delay in milliseconds.

Adding the Animation Variables
We’ll want random colors and speeds for our bubbles, so inside the open-
ing brace for the BubbleView class, begin typing private Random and then click
Random ( java.util) in the autocomplete drop-down list.

We’ll click the automatic code completion list items every time we add a
new type of object in our code. Remember, Android Studio’s code comple-
tion feature not only helps you code faster, it reduces errors from mistyped
or misspelled class names and import statements.

Finish declaring your private Random rand = new Random();. Then, add
each of the variables shown in the following code. Check your import state-
ments afterward to make sure they match the ones here:

package com.yourdomain.bubbledraw; // Note: your package name may differ
import android.widget.ImageView;
import android.view.View;
import java.util.ArrayList;
import java.util.Random;
public class BubbleView extends ImageView implements View.OnTouchListener {

 u private Random rand = new Random();
 v private ArrayList<Bubble> bubbleList;
 w private int size = 50;
 x private int delay = 33;

}

These four lines are similar to the variables we declared at the top of the
BubblePanel class in Chapters 9 and 10, with a few changes for the Android ver-
sion of the app. The declaration for a random number generator at u is iden-
tical to our old version, because both use java.util.Random. The same goes for

Making BubbleDraw a Multitouch Android App 253

the line at v, where we declare an ArrayList of Bubble objects called bubbleList.
This will again be where we store the bubbles created by the user. The Bubble
type specifier should show up in red, letting us know we haven’t defined a
Bubble class yet.

At w, we’re declaring an integer variable for the default bubble size, but
we’ve made it bigger for the Android app because of the smaller pixel size
on mobile devices. Your mobile phone or tablet often has a much smaller
screen size and denser resolution than your desktop computer, so we’ll set
our default bubble size to 50 to make the bubbles easier to see in the app.
You can edit this line later to make your bubbles bigger or smaller depend-
ing on how you want them to look on your device.

At x, we’re keeping the animation speed at 30 fps by setting the delay
between frames to 33 milliseconds. Remember, to get the animation speed,
we divide 1,000 milliseconds by the number of frames per second, 30 fps, to
get the number of milliseconds per frame, 1,000 ÷ 30 = 33.

Both the graphics and animation will be slightly different on Android
than they were on desktops, so we’ll need to add two new variables:

public class BubbleView extends ImageView implements View.OnTouchListener {
 private Random rand = new Random();
 private ArrayList<Bubble> bubbleList;
 private int size = 50;
 private int delay = 33;

 u private Paint myPaint = new Paint();
 v private Handler h = new Handler();

}

The line at u declares an android.graphics.Paint object called myPaint.
Think of this as a paintbrush for drawing bubbles on the Android screen.
You must have a Paint object to be able to draw shapes on an Android
Canvas. Press enter after typing Paint to accept the code completion sugges-
tion, or click Paint after typing it and press alt-enter (or option-enter) to
automatically import the android.graphics.Paint class.

The line at v declares another new type of variable, an android.os
.Handler named h. Make sure you import the android.os version of the Handler
class since there are other classes with similar names. This Handler object
will enable us to work with threading to accomplish the animation, and
you can think of it as analogous to the Timer in the desktop app. Unlike a
Timer, however, the Handler will allow us to communicate with a thread, which
is an individual process in a multitasking environment where we might be
running several apps at once. A Handler won’t keep the CPU busy count-
ing off the time between events as a Timer would; instead, it will release the
CPU and allow other tasks to run until it’s time to redraw another frame of
animation.

Next, let’s add a constructor to the app and start drawing bubbles.

254 Chapter 11

Creating the BubbleView() Constructor
The next step will be writing the constructor for the BubbleView class. Below
the variables we just declared, enter the constructor code as follows:

public class BubbleView extends ImageView implements View.OnTouchListener {
 private Random rand = new Random();
 private ArrayList<Bubble> bubbleList;
 private int size = 50;
 private int delay = 33;
 private Paint myPaint = new Paint();
 private Handler h = new Handler();
 public BubbleView(Context context, AttributeSet attributeSet) {
 super(context, attributeSet);
 }
}

Use automatic code completion to import android.content.Context and
android.util.AttributeSet. Android uses these two classes to store informa-
tion about the current application, and we need to import them to be able
to call the super() method. The super() method sets up the app and drawing
screen by calling the constructor of the parent class, ImageView.

For now, the only statement we’ll add to the constructor is a line to ini-
tialize the bubbleList:

public BubbleView(Context context, AttributeSet attributeSet) {
 super(context, attributeSet);
 bubbleList = new ArrayList<Bubble>();
}

Initializing the bubbleList by setting it equal to a new, empty ArrayList of
Bubble objects works the same way here as it did in the previous versions
of the app. We’ll be able to store new bubbles in bubbleList as the user
touches the screen.

Preparing the Layout to Use BubbleView
Now that we’ve begun building the BubbleView class, it’s time to tell our GUI
layout file to display BubbleView when the app runs. In the Project Explorer,
open app4res4layout4activity_main.xml and switch to the Text tab at the
bottom of the window.

Replace the contents of the activity_main.xml file with the following,
substituting your app’s package name in place of mine:

<?xml version="1.0" encoding="utf-8"?>
u <RelativeLayout xmlns:android="http://schemas.android. com/apk/res/android"

 xmlns:tools="http://schemas.android. com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"

 v android:background="#000000"
 w tools:context="com.yourdomain.bubbledraw.BubbleView">
 x <com.yourdomain.bubbledraw.BubbleView

Making BubbleDraw a Multitouch Android App 255

 y android:layout_width="match_parent"
 z android:layout_height="match_parent"

 />
</RelativeLayout>

This app uses the default RelativeLayout u, which will allow us to easily
place other GUI components later. Much of the RelativeLayout properties
are the same as the default, but we’ve added a background color of #000000 v,
or black.

When you replace the package name com.yourdomain.bubbledraw at w
and x with your package name, Android helps you by making a code
completion suggestion at x.

The line at x places the BubbleView into the layout, and the lines at y
and z tell the program to match the width and height of the activity_main
.xml window, which is the parent object of BubbleView.

The activity_main.xml file is the default GUI layout view that your
app loads when it runs. Telling activity_main.xml to load BubbleView as the
only item in the layout and match the layout’s width and height results in
the BubbleView app taking up the full screen. So, with these changes, the
activity_main.xml file now knows to call on BubbleView to show our bubble
drawing canvas.

Speaking of bubbles, let’s reuse the Bubble class from the desktop ver-
sion of this app.

Modifying the Bubble Class
Open the BubbleDrawGUI project from Chapter 10 in Eclipse to access the
old Bubble class. Open the BubblePanel.java class and scroll to the bottom
of the file where we defined the Bubble class. Copy the class’s entire source
code, from private class Bubble all the way down to the next-to-last closing
brace. The final brace in the file is the closing brace for BubblePanel, so
make sure you copy only the closing braces for update() and the Bubble class.

Now that you’ve copied the Bubble class, switch back to Android Studio
and place the cursor directly after the closing brace for the BubbleView()
constructor. Press enter to insert a blank line before the final closing brace
at the bottom of the file.

Most of the code from the desktop version of Bubble will work, but we’ll
need to make a few changes to account for differences in the way Android
draws graphics. Let’s start near the top of the Bubble class. In Android
graphics, color values are stored as integers instead of Color objects, so
change private Color color to private int color as shown here:

private class Bubble {
 private int x;
 private int y;
 private int size;
 private int color;
 private int xspeed, yspeed;
 private final int MAX_SPEED = 5;

256 Chapter 11

All the other variables remain the same.
We’ll also need to change the color entry in the Bubble() constructor.

Delete new Color and replace it with Color.argb, as shown here:

public Bubble(int newX, int newY, int newSize) {
 x = newX;
 y = newY;
 size = newSize;
 color = Color.argb(rand.nextInt(256),
 rand.nextInt(256),
 rand.nextInt(256),
 rand.nextInt(256));
 xspeed = rand.nextInt(MAX_SPEED * 2) - MAX_SPEED;
 yspeed = rand.nextInt(MAX_SPEED * 2) - MAX_SPEED;
}

Be sure to remove the keyword new, since Color.argb() doesn’t create a
new object. Instead, the Color.argb() method will convert four ARGB values
(alpha, red, green, and blue) into a single color integer that can be used to
change paint colors in Android.

This is the first time we’ve used the Color class in this app, so it will
show up in red in the Android Studio text editor. You can either manually
add import android.graphics.Color; to the import statements at the top of the
file, or you can click the word Color and press alt-enter (or option-enter)
to have Android Studio perform the import for you. Pressing alt-enter is
similar to accepting a code completion suggestion, except that you can use
alt-enter to import a class even after you’ve typed your code.

Next, we’ll need to change the entire draw() method in the Bubble class.
Replace the draw() method we copied with the following:

 xspeed = rand.nextInt(MAX_SPEED * 2) - MAX_SPEED;
 yspeed = rand.nextInt(MAX_SPEED * 2) - MAX_SPEED;
 }

 u public void draw(Canvas canvas) {
 v myPaint.setColor(color);
 w canvas.drawOval(x - size/2, y - size/2,

 x + size/2, y + size/2, myPaint);
 }
 public void update() {

At u, the draw() method accepts a parameter of type android.graphics
.Canvas instead of java.awt.Graphics. Be sure to import the Canvas class either
as you type or by clicking it and pressing alt-enter (or option-enter)
afterward.

At v, we set the color for the myPaint object to use this bubble’s color value.
The line at w differs from the desktop version in several places. First,

the command to draw an oval on an Android Canvas is drawOval() instead
of fillOval(). Second, we specify the bounding box that will hold the oval
using its left, top, right, bottom values instead of left, top, width, height. The
left and top remain the same, at x - size/2 and y - size/2. (Remember, we

Making BubbleDraw a Multitouch Android App 257

subtract half the width and height of the bubble to center it on the (x, y)
location where the user touched the screen.) The right side of the bubble’s
bounding box is x + size/2, and the bottom of the bubble is y + size/2, as
shown in Figure 11-3. Instead of using the width and height to calculate
the bottom-right corner of the bounding box for the oval, as we did in the
desktop version, Android requires us to specify the x- and y-coordinates of
the bottom-right corner, or x + size/2, y + size/2. Finally, the drawOval()
method requires a Paint object, so we pass it myPaint.

size
si
ze

(size/2)
(x, y)

(s
iz
e/
2)

(x - size/2,
 y - size/2)

(x + size/2,
 y + size/2)

Figure 11-3: Android’s drawOval() method takes the top-left and bottom-right
coordinates of an imaginary bounding box instead of the top, left, width, and
height values we saw in the desktop Swing toolkit.

Those are the only changes needed to port the Bubble class from desk-
top to Android. Save your file after making these changes. Next, we’ll draw
all the bubbles on the screen.

Drawing in Android with the onDraw() Method
We want to test the app’s ability to draw bubbles on the screen, so next we’ll
add an onDraw() method to our BubbleView class. The onDraw() method in a
View class is similar to the paintComponent() method in a JPanel: it tells Java
what to draw whenever the screen is refreshed.

We want to draw the list of bubbles, so add the following code below the
BubbleView() constructor in BubbleView.java and above the Bubble class:

public BubbleView(Context context, AttributeSet attributeSet) {
 super(context, attributeSet);
 bubbleList = new ArrayList<Bubble>();
}

258 Chapter 11

u protected void onDraw(Canvas canvas) {
 v for (Bubble b : bubbleList)

 b.draw(canvas);
}
private class Bubble {

At u, the onDraw() method must be declared as protected with one
parameter, a Canvas object, to work because it must exactly match the
default View.onDraw() method that we’re overriding. We need this method
because it’s required in all View subclasses and BubbleView is a child class of
ImageView, which is a subclass of View. The onDraw() method will be called
anytime the screen containing our BubbleView needs to be refreshed.

The inside of the onDraw() method reuses the for-each loop at v that
calls each bubble’s draw() function. The line at v could be read as follows:
“For each Bubble b in bubbleList, draw b on the Android Canvas.”

There are just a couple of steps left before we can test our app’s ability
to draw colorful bubbles. Let’s knock those out to see an early beta test of
the Android BubbleDraw app.

Testing BubbleDraw with 100 Bubbles
We wrote a short method called testBubbles() in the first version of the
BubbleDraw desktop app. It looked like the following:

 public void testBubbles() {
 for(int n = 0; n < 100; n++) {
 int x = rand.nextInt(600);
 int y = rand.nextInt(400);
 int size = rand.nextInt(50);
 bubbleList.add(new Bubble(x, y, size));
 }
 repaint();
 }

The purpose of testBubbles() was to see whether we could draw bubbles
on the screen before we had implemented the mouse and timer event
handlers. Let’s do the same for the Android version of the app.

Adding testBubbles()
First, let’s add a slightly modified version of the testBubbles() function just
below the onDraw() method in BubbleView.java:

protected void onDraw(Canvas canvas) {
 for (Bubble b : bubbleList)
 b.draw(canvas);
}
public void testBubbles() {
 for(int n = 0; n < 100; n++) {

 u int x = rand.nextInt(600);
 v int y = rand.nextInt(600);

Making BubbleDraw a Multitouch Android App 259

 w int s = rand.nextInt(size) + size;
 x bubbleList.add(new Bubble(x, y, s));

 }
 y invalidate();

}
private class Bubble {

The first two lines are identical to the Eclipse version of testBubbles().
These lines declare the function and set up a for loop to run 100 times.
At u, we keep the range of x values the same and set it to 600, but you can
make this larger if you know the resolution of your device. At v, we change
the range for the random y value to 600 for the bubble’s vertical location.

At w, we generate larger bubbles by adding a random number between
0 and size to the default value size. In this case, we’ll have bubbles ranging
from 50 to 100 pixels in diameter.

At x, we create a new Bubble object using the three random values we
just created and add it to the bubbleList.

Finally, at y we’re using a new function, invalidate(), which works simi-
larly to the repaint() function in the desktop version of BubbleDraw. It tells
Java that the screen needs to be updated, or refreshed. The invalidate() func-
tion clears the screen and calls the onDraw() method, which will draw all the
bubbles in bubbleList.

Now that we’ve defined the testBubbles() method, we just need to call
that method from the BubbleView() constructor to try it out:

public BubbleView(Context context, AttributeSet attributeSet) {
 super(context, attributeSet);
 bubbleList = new ArrayList<Bubble>();
 testBubbles();
}

Now, when the app loads, the testBubbles() method will be called to
populate the bubbleList with 100 random bubbles.

Fixing the OnTouchListener Error
There’s only one issue left to fix before we can test our app: the BubbleView
class is still underlined in red to let us know there’s a possible compile error.
Mouse over the line public class BubbleView, and you’ll see an error that tells
us we’re missing an onTouch() method for the OnTouchListener. In other words,
this error reminds us that we’ve defined the BubbleView class as implement-
ing an OnTouchListener, but we haven’t yet added an onTouch() method to
handle touch events.

To fix this error, mouse over it and click the red lightbulb warning icon.
In the drop-down menu under the red lightbulb, click Implement methods.
A pop-up window will appear, asking you to select which methods to imple-
ment, as shown in Figure 11-4.

260 Chapter 11

Figure 11-4: Android Studio implements the onTouch()
method to complete the OnTouchListener.

Click OK, and Android Studio will insert an onTouch() method into your
code to clear the error:

@Override
public boolean onTouch(View view, MotionEvent motionEvent) {
 return false;
}

If the code Android Studio inserted doesn’t match what you see here,
correct the parameter names in your code to match view and motionEvent as
shown. This is the method that we’ll modify to handle touch events later,
but for now let’s give our app a test run to see it draw 100 bubbles!

Running the BubbleDraw App
Press the green run button to test your app. In the Select Deployment
Target window, choose your emulator or device, as we did in “Running the
App on the Android Emulator” on page 94. I’m selecting my Nexus 6P
emulator, shown in Figure 11-5.

Figure 11-5: Press the run button to compile and run your app. Then select your
emulator or device and click OK.

Click OK to start your device and deploy the BubbleDraw app we’ve
developed to this point. You should see bubbles fill the upper-left portion
of your screen, as shown in Figure 11-6. The bubbles appear in the upper

Making BubbleDraw a Multitouch Android App 261

left because we only generated x- and y-coordinates between 0 and 600 and
most Android devices can display 1,000 or more pixels in each direction.
Remember, in Java, the (0,0) coordinate is in the upper left.

Figure 11-6: A successful test run of the BubbleDraw app to this
point; 100 bubbles appear in the upper left of the screen.

Similar to the first test run of the desktop version of the app, there’s no
animation or touch interaction, because we haven’t added them yet. But our
app runs on the emulator and draws our bubbles correctly on the screen.

Next, let’s add animation to make the bubbles move. And then we’ll
add the final touch—touch!

Using Threaded Animation and Multitasking in Java
The threading we’ll use to achieve smooth animation in the BubbleDraw
Android app is just like the threading you’d add to any multitasking app
in Java. We mentioned earlier that one advantage of using threading for
animation is that it doesn’t tie up the processor while it waits between
redrawing each frame. But threading can also be used in any other apps
you develop that run multiple processes at once, such as apps that query a

262 Chapter 11

database or upload a file in the background. Using threading allows your
app to do background tasks without freezing up the GUI interface while it
waits for a process to finish.

Threading is especially important on devices such as phones and
tablets that have limited processing power. Unresponsive apps are espe-
cially annoying, and threading will help prevent the BubbleDraw app from
becoming one.

The Handler h object that we created earlier in the chapter is what lets us
communicate with a thread. In this app, we’ll create a thread that executes
the animation by updating the positions of all the bubbles. Then, we’ll use
our handler, h, to tell the thread when to run. This will allow the handler
and thread to function like our Timer animation in the previous chapters,
but without hogging the CPU between frames.

There are two ways to add threading to your applications in Java: by
extending the Thread class or by implementing the Runnable interface. We’ll
choose the Runnable approach.

A class that implements Runnable() needs a run() method that tells the
thread what to do when the thread is running. For BubbleDraw, we want
the run() method to perform the animation by moving the bubbles and
redrawing the screen.

Let’s create a Runnable object called r and place it right below the
BubbleView() constructor:

public BubbleView(Context context, AttributeSet attributeSet) {
 super(context, attributeSet);
 bubbleList = new ArrayList<Bubble>();
 testBubbles();
}

u private Runnable r = new Runnable() {
 @Override

 v public void run() {
 }

w };
protected void onDraw(Canvas canvas) {

As you type the second half of the declaration at u, a code completion
suggestion will pop up to complete the new Runnable() object. Accept the
java.lang.Runnable code completion, and Android Studio will automatically
add the public void run() method stub for you v. Notice the semicolon after
the closing brace for the Runnable object w—this is required because we’re
defining r and assigning it to a new Runnable object all at the same time. The
semicolon at w actually completes the statement we started back at u. The
automatic code completion doesn’t add the semicolon after the closing
brace at w, though, so make sure you’ve added it to avoid a compiler error.

Now we need to add the code inside the run() method to tell Java what
we want to happen every time our Runnable thread r is called:

private Runnable r = new Runnable() {
 @Override
 public void run() {

Making BubbleDraw a Multitouch Android App 263

 u for(Bubble b : bubbleList)
 v b.update();
 w invalidate();

 }
};
protected void onDraw(Canvas canvas) {
 for (Bubble b : bubbleList)
 b.draw(canvas);
}

At u, we use the for-each statement again to loop through every Bubble
b in bubbleList. At each iteration of the loop, we call b.update() v to update
the location of each bubble for the next frame of animation.

At w, we call the invalidate() function after the loop has finished run-
ning to clear the screen and tell Java to redraw the view by calling the onDraw()
method.

The final step to adding thread-based animation is to connect the Handler
h to the Runnable thread r. We’ll do this at the end of the onDraw() method:

protected void onDraw(Canvas canvas) {
 for (Bubble b : bubbleList)
 b.draw(canvas);
 h.postDelayed(r, delay);
}

The postDelayed() method sends a
message from the handler to our thread
r, telling it to run again after a delay of
33 milliseconds, the value of delay.

Save these changes and run the app
again. You’ll see the 100 test bubbles
slowly spread out to fill the screen, as
shown in Figure 11-7.

Even at a rate of 30 frames per
second, your fastest bubbles probably
seem quite slow. This is because of the
larger number of pixels on your Android
device or emulator. You may recall that
we set a MAX_SPEED in the Bubble class of
just 5 pixels per frame. The Nexus 6P
phone that we’re emulating has a screen
resolution of 1,440 × 2,560, meaning it
would take more than 500 frames, or
more than 15 seconds, for the fastest
bubbles to travel the full length of the
screen.

Figure 11-7: We have liftoff! Our
bubbles are finally animated, cour-
tesy of threaded animation.

264 Chapter 11

Let’s speed that up just a bit by changing MAX_SPEED to a higher value,
like 15 pixels per frame:

private class Bubble {
 private int x;
 private int y;
 private int size;
 private int color;
 private int xspeed, yspeed;
 private final int MAX_SPEED = 15;

Save the file and run it again. Your bubbles will move around the screen
more fluidly now. Feel free to increase or decrease the value to suit your taste.

Now that we’ve implemented the animation, it’s time to add touch to
make the app respond to the user.

Using Touch to Draw with Your Finger
One feature that made the desktop BubbleDraw app so much fun was the
fact that we could click and drag the mouse to draw bubbles anywhere we
wanted. We’re going to bring that same level of enjoyment to the Android
app, and then we’ll turn it up to 11 when we add multitouch!

You’ve already seen where we need to add the touch event handler
code—in the onTouch() function we added earlier.

To handle touch events, first we need to determine the location of the
user’s touch. Then we’ll add a bubble at that location.

To find out the x- and y-coordinates of the user’s touch, we can use
motionEvent.getX() and motionEvent.getY(). Let’s add the full onTouch() method
and then break it down:

public boolean onTouch(View view, MotionEvent motionEvent) {
 u int x = (int) motionEvent.getX();
 v int y = (int) motionEvent.getY();
 w int s = rand.nextInt(size) + size;
 x bubbleList.add(new Bubble(x, y, s));
 y return true;

}

At u, we get the x-location of the user’s touch with the method
motionEvent.getX(). Notice, however, that we have to cast the value to an
integer—the motionEvent.getX() returns a floating-point value in Android,
so we cast it with (int). The y-location v works the same way, and at w, we
generate a random size as we did in testBubbles() and store it in s.

At x, we create a Bubble object with the given x, y, and s values and add
it to bubbleList.

Making BubbleDraw a Multitouch Android App 265

The last line, at y, requires a bit of explanation. Notice that the return
type of the onTouch() method is a boolean. This means that the onTouch()
method must return a true or false value. In Android, the onTouch() method
should return true if you’ve fully handled the touch event. If you want
Android to handle a touch event, such as scrolling or zooming, after your
onTouch() event handler is finished, return false.

For the drawing app, we don’t need Android to scroll the screen when
the user swipes—we’ve handled the touch event completely for our app by
adding a bubble where the user touched, so we return the value true.

The last step is similar to the steps for the mouse listener in the desk-
top versions of BubbleDraw: we need to add the listener in the constructor.
Scroll up to the BubbleView() constructor, comment out the testBubbles()
function, and add the line of code shown here:

public BubbleView(Context context, AttributeSet attributeSet) {
 super(context, attributeSet);
 bubbleList = new ArrayList<Bubble>();
 // testBubbles();
 setOnTouchListener(this);
}

We comment out the call to
testBubbles() because we don’t need
the 100 test bubbles anymore. We’re
going to add bubbles by touching the
screen on our Android device or by
clicking and dragging the mouse to sim-
ulate a touch on the Android emulator.
The setOnTouchListener(this) statement
adds a listener for touch events, telling
Java that this, an object of the BubbleView
class, will handle the touch events.

With these changes, we’re ready to
try out our app. Save your code and run
the app on your emulator. Click and
drag on the emulator window to simulate
dragging your finger across the screen.
You’ll see bubbles flow from the location
you touch, as shown in Figure 11-8.

You can also run this on your physi-
cal Android device. We’ll review how to
do that in the next section, after add-
ing the ability to handle multiple touch
events on the screen at the same time. Figure 11-8: Click and drag the

mouse to simulate a one-finger touch
on the emulator, and a stream of
bubbles will flow out.

266 Chapter 11

Using Multitouch to Draw with 10 Fingers at a Time!
You may have played an app that makes use of multitouch, like a two-player
game in which you control objects on one side of the screen with one or
more fingers, while your friend controls objects on the other side of the
screen. If you have, you understand the awesome power that multitouch
brings to apps and games.

The great news is that the code to handle multiple touch events in
Android is almost as simple as the code to handle a single touch! In fact,
we’ll just add a statement and modify a couple of lines in onTouch(), and our
app will handle multitouch events.

The method that tells us how many touch events are happening at the
same time is getPointerCount(). It returns how many pointers—touch events
or fingers—are on the screen in the current MotionEvent.

We can add a for loop to add bubbles for every pointer in the current
touch event:

public boolean onTouch(View view, MotionEvent motionEvent) {
 u for (int n = 0; n < motionEvent.getPointerCount(); n++) {
 v int x = (int) motionEvent.getX(n);
 w int y = (int) motionEvent.getY(n);

 int s = rand.nextInt(size) + size;
 bubbleList.add(new Bubble(x, y, s));

 x }
 return true;
}

At u, we add a for loop that increments the variable n from 0 up to the
number of pointers in the current touch event. The function motionEvent
.getPointerCount() returns the number of pointers. If there is only one touch
event, getPointerCount() will return 1, and the loop will run only once, for
n = 0. For two touch events, n will get the values 0 and 1, and so on.

At v, we modify the motionEvent.getX() method by inserting an n in the
parentheses after getX(). Pointers are numbered in touch events, so passing
the variable n as an argument to motionEvent.getX() will get the x-location
of the nth touch pointer in the current touch event. So, getX(0) will return
the x-location of the first touch, getX(1) will return the x-coordinate of the
second touch, and so on. At w, we do the same for the y-coordinates of each
touch with getY(n). Finally, don’t forget to close the brace of the for loop
at x.

That’s all it takes! Java and Android make processing multitouch
events easy.

Testing Multitouch Events on an Android Device
Save your code so that we can run the app again. This time, we’re going to
run the app on a physical Android device. Unfortunately, we can’t easily

Making BubbleDraw a Multitouch Android App 267

simulate multitouch events with a single mouse on the Android emulator,
so you’ll need to run the app on a real phone or tablet.

First, plug your Android device into the computer running Android
Studio using a USB cable. Allow USB debugging from the computer on the
device (see “Running the App on a Real Android Device” on page 100).
Close the BubbleDraw app in your emulator, if it’s running. Then, press
the run button or go to Run4Run ‘app’.

In the Select Deployment Target window, find and select your device—
mine is the Asus Nexus 7—and click OK. Android Studio will recompile the
app and deploy it to your device.

When the app starts, it looks like a black screen with “BubbleDraw” in
the title bar. Once you place one or more fingers on the screen, though,
things get much more interesting, as shown in Figure 11-9.

Figure 11-9: Touching the screen of my Android device with two (left), three (center), or
four fingers (right) creates multiple streams of colorful, bouncing bubbles.

As you drag your fingers across the screen, bubbles seem to flow from
your fingertips, whether you use one finger, two, five, or even ten!

There’s one other cool feature we didn’t mention yet: to clear the
screen, just turn your device sideways (make sure your device’s orientation
lock is set to Auto-rotate, not Portrait view). The change in orientation
forces the app to reinitialize the BubbleView, which resets the bubbleList and
clears the screen. It’s a cool effect, and it makes the app feel even more
tactile and interactive.

There’s just one more customization we’ll make to our final BubbleDraw
app. We’ll replace the default Android app icon with an icon of our own.

268 Chapter 11

Changing the App Launcher Icon
All our apps so far have used the default Android app
launcher icons, which feature Android’s friendly green
droid. But what if you wanted to use your own, custom
icon for the BubbleDraw app—for example, your com-
pany’s logo or a screenshot from the app like the one
shown in Figure 11-10?

In order to give your app its own custom icon,
you’ll need to create your own ic_launcher.png file,
paste it into the app4src4main4res4drawable folder,
and then modify the AndroidManifest.xml file to use
your new icon as the app launcher icon for your app.

Creating a Custom App Icon
By default, Android names the launcher icon for your app ic_launcher.png.
If you open the app4src4main4res4mipmap folder, you’ll see several
ic_launcher.png files of various sizes—stored inside folders labeled mipmap
_mdpi, mipmap_xxhdpi, and so on—that correlate to the various screen sizes
of different phones and tablets.

We’ll call our new image ic_launcher.png as well, just for convenience.
Using your favorite image-editing program, create a PNG file with the image
you want to use for your app launcher icon. (The site http://www.gimp.org/ has
a great, free image editor, and https://www.pixlr.com/editor/ is also free over the
web.) It’s best to use a square image, but Android can also work with files that
aren’t perfectly square. My image measures 156 × 156 pixels, but anything
between 64 × 64 and 256 × 256 should work fine.

No t e 	 If you want to use a screenshot of the app like I did, taking a screenshot is easy: press
and hold your Android device’s sleep/wake button and the volume-down button at the
same time until the screen flashes to let you know the image is saved. In your Photos
app, find Screenshots, and you should see the image. You can edit the image to be
256 × 256 pixels or smaller by emailing it to yourself so you can access it on your
regular computer, or by cropping the image directly on your Android device and then
emailing it to yourself.

Save or export your file from the image editor as ic_launcher.png. In the
next step, we’ll copy this image and paste it into the BubbleDraw project in
Android Studio.

Adding the Custom Icon to Your App
Once you’ve created your own ic_launcher.png app icon file, open the folder
you saved it into and copy the file.

Figure 11-10: A
custom image cut
from a BubbleDraw
screenshot

http://www.gimp.org
https://pixlr.com/editor/

Making BubbleDraw a Multitouch Android App 269

In Android Studio, under the Project Explorer pane for your
BubbleDraw app, find the app4res4drawable or app4src4main4res4
drawable folder and paste your new ic_launcher.png image into it, as shown
in Figure 11-11.

Figure 11-11: Paste your new, custom app icon into the app4src4main4 res4drawable
folder.

You’ll see an Android Copy window verifying the location of the file.
Click OK.

When the icon copies into your drawable folder, you’ll be able to open
the folder and double-click ic_launcher.png to preview it in Android Studio.

We now have the new icon we created in the BubbleDraw project’s struc-
ture, so we can tell Android to use this image as the app icon.

Displaying Your New Icon
For this last step, we’ll edit the AndroidManifest.xml file for your app. The
AndroidManifest.xml file describes some of the basic structure, properties,
and functionality of your app to the Android operating system.

Under app4src4main (or app4manifests), open AndroidManifest.xml.
Near the top of the file, find the entry for android:icon, and change it to the
new file you just placed in the drawable folder:

<application
 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"

We’re telling Android to look inside this project’s drawable folder and
find an image file named ic_launcher. We leave the .png extension off in the
manifest.

270 Chapter 11

Now, save the AndroidManifest.xml
file and press the run button to compile
and deploy the app with the new icon.
Once the app updates on your emula-
tor or Android device, you’ll see the
new icon for BubbleDraw, as shown in
Figure 11-12.

The custom PNG image we created
is now the icon for the app in Android!

Changing the App Name
You can also customize the app’s name
as it appears on both the app icon and
the title bar inside the app. In your
Project Explorer tab on the left, under
app4src4main4res4values, open
strings.xml. The strings.xml file stores the
app_name string that’s used both on the
launcher icon, as shown in Figure 11-12,
and in the title bar of the app while it’s
running.

Since BubbleDraw without a space
between the words is a bit strange, we’ll
add a space between the words in the
line of XML that defines the app_name
variable in strings.xml:

<resources>
 <string name="app_name">Bubble Draw</string>
</resources>

Of course, you can make this app name anything you want, like Your
Name\'s Bubble Draw App, but only about 11 or 12 characters will fit below the
app icon, so you’d see something like Your Name's... on your home screen.
You also would need to escape any special characters in the app name,
including the single quote, with the backslash character.

Now that you know how, go back and customize your Hi-Lo guessing
game and Secret Messages apps with their own icons as well. Keep refin-
ing your apps and trying new things—it’s the best way to keep learning as
you code.

What You Learned
You’ve come a long way since Chapter 1. After building three complete
mobile and desktop apps, you’ve gained significant computing skills and
put those newfound abilities to use. Perhaps most importantly of all, you

Figure 11-12: We’ve customized
the app launcher icon for the
BubbleDraw app.

Making BubbleDraw a Multitouch Android App 271

learned how to improve the apps step-by-step by adding more and more
functionality until each app does exactly what you want it to do.

In this chapter, you reinforced several skills and added the following
abilities to your coding tool chest:

•	 Drawing graphics in Android

•	 Adding a new class to an Android Studio project

•	 Setting up variables and importing classes

•	 Building a class constructor from scratch

•	 Converting Java AWT graphics to Android Canvas graphics

•	 Drawing on an ImageView using the onDraw() method

•	 Creating a Runnable object to implement threading in Java

•	 Using a Handler to communicate with a separate thread in Java

•	 Using threading to improve animation efficiency

•	 Handling multiple touch events and using MotionEvent methods to
locate touch events onscreen

•	 Customizing the app launcher icon and app name

Programming Challenges
Try these programming challenge exercises to review and practice what
you’ve learned, as well as to expand your programming skills. Visit the
book’s website at https://www.nostarch.com/learnjava/ for sample solutions.

#1: Combining One-Finger and Multitouch Events, v1.0
In this chapter, we learned to handle a single-touch event and multiple-
touch events. In this challenge, your task is to tell the difference between
a single-touch and a multitouch event. You’ll change the logic inside the
onTouch() method to draw bigger bubbles when one finger is touching the
screen and smaller bubbles when more fingers touch the screen.

Remember, you can find out the number of touch events using the
getPointerCount() on your MotionEvent object inside the onTouch() method.

For extra practice, code your app so that more fingers will result in
smaller and smaller bubbles.

#2: Combining One-Finger and Multitouch Events, v2.0
Once you’ve mastered Programming Challenge #1, give this one a try.
Modify both the Bubble class and the onTouch() listener to group bubbles
when you draw with one finger by giving them all the same xspeed and yspeed
values, but still allow multitouch to blow bubbles in every direction.

This will require changes to the onTouch() listener similar to those in
Programming Challenge #1. But, to group the bubbles, you’ll need a way
to draw some bubbles with fixed speeds and other bubbles with random

PROGRAMM

ING

 CHA

LLENGES

https://www.nostarch.com/learnjava/

272 Chapter 11

speeds. The bubbles drawn during a single-touch event should all move at
the same fixed speed so that they appear grouped, and bubbles drawn with
multitouch should continue to be assigned random speed values.

To accomplish this, you can create a second Bubble() constructor. It
will be similar to the Bubble(x, y, size) constructor that we created for the
Bubble class originally, but it will have a different number of parameters.

For example, you could create a second Bubble() constructor that takes
the five parameters x, y, size, xspeed, and yspeed. Then, you could use that
constructor whenever the user touches the screen with just one finger to give
all the bubbles the same speed values. You’d use the original constructor
whenever the user touches more than one finger to the screen so the bubbles
flow in random directions.

PROGRAMM

ING

 CHA

LL
ENGES

D e b u g g i n g a n d A v oidi n g
C o m m o n E r r o r s i n J a v a

While working through this book, you’ve
probably made a few typos or mistakes

along the way. In this appendix, I’ll go over
a few common programming pitfalls to avoid.

One nice feature of both Eclipse and Android Studio
that is helpful when debugging is syntax coloring. Class
names, functions, variable types, strings, comments,
and so on are each colored differently in the IDE
based on their syntax.

Syntax coloring can help you spot typos and other problems quickly.
For example, if you forget to close a string with a second pair of double
quotes, the semicolon at the end of that line will be colored differently
from the other semicolons on the screen. As we go through these common
errors, try introducing them into one of the apps you’ve written and look

274 Appendix ﻿

for the warnings given by Eclipse and Android Studio. It’s okay if you break
an app—you can always go back and fix it, either by using the original code
listing in the book or by pressing ctrl-Z (-Z) or clicking Edit4Undo.

Spelling and Case
Spelling is important in any programming language, but in Java, case
matters, too. For example, if you use a lowercase s to make a scanner or
string, the text editor in Eclipse will underline the class name in red, and
Android Studio will color the text red. It might seem silly, but Java only
understands String, not string.

The same goes for variable names, such as playAgain or theNumber. For
example, if we accidentally capitalize the P and use a lowercase a, spelling
Playagain, Java doesn’t understand that we mean the variable playAgain. Let’s
take a look at how each IDE helps us find and fix typographical errors like
these, first in Eclipse and then in Android Studio.

Correcting Typos in Eclipse
Eclipse will alert us to an error by underlining the misspelled word in red,
and Android will color the text. Figure A-1 shows how Eclipse highlights
two errors I’ve introduced into the Hi-Lo guessing game from Chapter 2.

Figure A-1: Eclipse helps us find misspellings and errors in capitalization.

Where I’ve used a lowercase s in system, Eclipse underlines the misspell-
ing and adds an error alert along the left border of the screen that you can
see by mousing over that line. The Java compiler issues the error "system
cannot be resolved". That means Java can’t figure out what system is supposed
to be because it only understands System with a capital S. Eclipse does the
same with playagain on the next line—it should be playAgain.

Remember that you can use the content assist feature in Eclipse to fix
many errors like these. Click one of the misspelled words from Figure A-1,
and you’ll see a content assist menu like the ones shown in Figure A-2.

Figure A-2: Eclipse’s content assist feature provides information about
errors and offers possible fixes.

Debugging and Avoiding Common Errors in Java 275

For the first misspelling, Eclipse not only tells us that it can’t resolve or
understand system but also offers several possible corrections, including,
fourth from the bottom in Figure A-2, Change to 'System' (java.lang). The
content assist feature doesn’t always have the right answer, but in this case,
one of the 11 quick fixes offered is the correct capitalization of System. For
the second misspelling, the first quick fix Eclipse offers is the right answer,
Change to 'playAgain'. If Eclipse’s content assist offers the right fix, click the
correct entry, and your spelling or capitalization error will be replaced by
the correct code.

Correcting Typos in Android Studio
Android Studio tries to help us find errors by coloring the suspected prob-
lem in red. In the example shown in Figure A-3, I’ve misspelled the key-
word public by typing Public with a capital P.

Figure A-3: Android Studio alerts us to an incorrectly capitalized keyword.

Notice that the error is similar to the one we saw in Eclipse earlier: Java
is telling us that it can’t resolve or understand the symbol 'Public'. However,
Android Studio may not always provide the same level of support in fixing
errors, as shown in Figure A-4.

Figure A-4: Pressing alt-enter (or option-enter) in Android Studio offers a quick fix, but
not quite the right fix for this error.

In Figure A-4, I’ve incorrectly typed newGame() as NewGame() with a capital
N. Android Studio correctly colored the code red to let me know there’s an
error, but notice what happens when I click the code and press alt-enter
to attempt a quick fix. Instead of suggesting newGame as the correct spelling,
Android Studio offers to create another method with the name NewGame.
This isn’t the right fix for the mistyped method name, so you’ll need to find
the correct spelling where the method public void newGame() was defined
and manually fix the typo.

Both Android Studio and Eclipse will do their best to help you find
errors, and they’ll often provide possible quick fixes, but knowing that spell-
ing and capitalization are common issues can help you avoid and quickly
correct errors as they pop up in your code.

276 Appendix ﻿

Avoiding Other Common Spelling Errors
One error that is particularly difficult to debug is when the name of an
event handler or other overridden method is mistyped. These typos can
range from typing OnCreate() or OnDraw() instead of the correct onCreate()
and onDraw(), to mistyping public void actionPerformed(ActionEvent e) inside
an ActionListener for a button in a Java GUI app, or leaving off the “ed” in
the mousePressed(), mouseClicked(), or mouseDragged() event handlers.

We have programming conventions in order to avoid these types of
errors. Forgetting to use lowercase to start method or variable names but
uppercase to start class names may not necessarily be an error, but it’s bad
form in Java. If you get into the habit of using Java conventions like these
from the beginning, you’ll save time and avoid frustration in the future.

Comparison Trouble
Remember that the double equal sign (==) is the comparison operator
for “is equal to.” Don’t confuse it with the assignment operator (=). For
example, to assign the value 5 to a variable named number, you would enter:

int number = 5; // Assigns the value 5 to number

But, to compare the value of the variable, you use the double equal sign:

if (number == 5) // If number "is equal to" 5

Also, remember that we check strings using the equals() method instead
of the == operator. For example, the condition if (playAgain == "y") would
always evaluate to false. The correct if statement would be this:

if (playAgain.equals("y"))

The equals() method of the String class checks whether the contents of
the strings match, which is usually what we want when we compare strings.
The equals() method is also what we use whenever we compare two objects,
as in if (bubble1.equals(bubble2)) to see whether two Bubble variables refer to
the same Bubble object in the BubbleDraw app, for example.

Grouping Symbols
When coding in Java, it’s also important to keep your parentheses, brackets,
and braces balanced. We call these grouping symbols because they group other
programming elements together and because you should never have an
opening grouping symbol without a closing grouping symbol. Both Eclipse
and Android Studio offer different ways to spot and fix unclosed grouping
symbols.

Debugging and Avoiding Common Errors in Java 277

Quick Fixes in Eclipse
Eclipse can help us with grouping symbols in a couple of ways. If you leave
out a parenthesis from a condition or function, Eclipse will indicate the error
with a red underline beneath the word closest to the missing parenthesis, as
shown in Figure A-5.

Figure A-5: Eclipse helps find errors with parentheses and sometimes offers a fix.

Again, Eclipse will do its best to help you spot errors while you type.
In Figure A-5, I left out closing parentheses at the ends of two lines, which
Eclipse marked with a red error symbol. Clicking the red error marker on
the left margin of the editor for the first line offers the suggestion to insert
a closing parenthesis.

If you place the cursor beside a closing or opening brace, Eclipse will
outline the corresponding brace that either opens or closes that block
of text. Try it out by clicking the cursor next to a brace in any of your
programs.

Also, remember that Eclipse can correct indentation for us if we high-
light the code to indent and press ctrl-I. For short programs, this may just
be a nice convenience, but for longer programs that span multiple pages,
correct indentation can be very helpful in avoiding errors due to missing or
misplaced braces.

Code Completion in Android Studio
Android Studio offers even more help for missing grouping symbols. The
code completion feature in Android Studio can automatically fill in both
opening and closing parentheses, brackets, or braces.

For example, open the GuessingGame project from Chapter 4 and,
inside the onCreate() function, find the line that calls a new game:

lblOutput = (TextView) findViewById(R.id.lblOutput);
newGame();
btnGuess.setOnClickListener(new View.OnClickListener() {

Delete the parentheses and the semicolon at the end of the line:

lblOutput = (TextView) findViewById(R.id.lblOutput);
newGame
btnGuess.setOnClickListener(new View.OnClickListener() {

Android Studio will color the text red to let you know there’s an error,
and then you can use code completion to fill in the missing parentheses

278 Appendix ﻿

and semicolon. To complete the statement automatically, position the cur-
sor just after newGame, as shown in Figure A-6, and press ctrl-space to per-
form basic code completion.

Figure A-6: Place the cursor next to a line with missing parentheses (top) and press
ctrl-space to finish the statement using Android Studio’s code completion (bottom).

Notice that code completion filled in both the missing parentheses
and the semicolon to end the line. The ctrl-space combination is just
the first of three code completion shortcuts in Android Studio. The sec-
ond one, ctrl-shift-space, is called smart completion and displays relevant
options in a pop-up window. Press the keyboard shortcut twice to expand
the list of code completion options. Finally, statement completion (ctrl-shift-
enter on Windows and Linux, -shift-enter on macOS) will add closing
parentheses/brackets/braces and a finishing semicolon if needed. Try state-
ment completion by deleting just the closing parenthesis from a method, if
statement, or for loop and pressing ctrl-shift-enter. The statement com-
pletion feature in Android Studio will often close your grouping symbols
and add semicolons or braces wherever they’re needed, making your job
easier and faster and helping you avoid errors while you code.

Summary
These are far from the only errors you’ll run across while programming
in Java, but you can see that both Eclipse and Android Studio offer very
helpful tools for beginners and experienced professionals alike. You’ll get
better at spotting and correcting errors the more you code in Java, but your
code will probably never be completely error-free. I’ve been programming
for over 30 years, and I still have to debug my code. To avoid, find, and fix
errors in your code as you go, it’s important to learn good programming
practices from the beginning and to take advantage of the support built
into professional tools such as Eclipse and Android Studio.

Symbols
+ (addition operator), 12
= (assignment operator), 13–15,

245, 276
{ } (braces), 23
+ (concatenation operator), 12–13, 27,

30, 130–131
-- (decrement operator), 130
. (dot operator), 59, 68
" (double quotation marks), 27
== (equal-to operator), 30, 276
// (forward slashes), 23, 28
> (greater-than operator), 30, 60
++ (increment operator), 129
< (less-than operator), 30, 60
% (modulo operator), 139
!= (not-equal-to operator), 29
; (semicolon), 24
~ (tilde), 16
* (wildcard character), 46

A
About screen, 113–114
AbsoluteLayout value, 240
ActionListener class, 63–64, 226
action listeners, 46–47, 68, 234
actionPerformed() method, 63, 154–156,

227–228, 234
addActionListener() method, 63
addMouseListener() method, 213
addition operator (+), 12
AlertDialog class, 113–114
alert dialog pop-up, 113–114
Android devices

connecting to computer, 101
Developer mode, 100–101
preparing to run apps, 100
testing apps on, 100–102

Android emulator
BubbleDraw app, 260–261
Hi-Lo guessing game, 94–99
Secret Messages app, 188–189

Android package files (APK),
101–102

Android Studio, 1. See also
BubbleDraw app
(Android mobile version);
Hi-Lo guessing game
(Android mobile version);
Secret Messages app
(Android mobile version)

activity selection, 78–79
Android emulator, 94–99
code completion, 91–92, 278
correcting spelling errors, 275
default project view, 80
Design tab, 80–81
grouping symbols, 277–278
importing classes automatically, 86
installing, 8–9
SDK or API levels, 78
starting projects, 76–80
Target Android Devices window, 78
updating, 176
widgets, 81

animation, 225–229. See also
BubbleDraw app
(Android mobile version);
BubbleDraw app
(GUI version)

adding timer, 226
frame rate, 225, 241, 253
preparing, 227–228
setting timer, 226–227
starting timer, 229
threading, 249

anonymous inner classes, 63, 91, 155,
167, 184, 210

APK (Android package files), 101–102
application program interface (API)

levels, 78
apply() method, 119
arguments, 155
arithmetic operators (+, -, *, /), 12
ArrayList data structure, 205–210, 253

I n d e x

280 Index

assignment operator (=), 13–15,
245, 276

attributes, 26

B
binary search, 40
bin folder, 1, 11–12, 141–143
Boolean expressions, 65
braces ({ }), 23
break statement, 113
Bubble class, 200–205, 255–257

attributes for, 201
defining bubbles, 200–202
methods for, 202–205
modifying, 255–257

BubbleDraw app (Android mobile
version)

adding animation variables,
252–253

adding testBubbles() method,
258–259

BubbleView() constructor, 254
custom app launcher icon, 268–270

adding, 268–269
changing app name, 270
creating, 268
displaying, 269–270

drawing with onDraw() method,
257–258

handling OnTouchListener events,
259–260, 264-265

modifying Bubble class, 255–257
running in Android emulator,

260–261
setting up project, 250–252
testing, 258–261, 266–267
threading and multitasking,

261–264
touch event handler code, 264–265

combining single-pointer
and multitouch events,
271–272

multitouch, 266–267
BubbleDraw app (desktop version)

building frame, 199
creating Bubble class, 200–205

attributes for, 201
defining bubbles, 200–202
methods for, 202–205

creating project files, 198–199

mouse events, 210–217
clicks, 212–214
creating reusable event listener,

211–212
drags, 214–215
wheel events, 215–217

pixelated effect, 219–220
size variable limits, 218
storing bubbles in ArrayList,

205–210
adding constructor, 206–207
adding method, 207–208

testing BubblePanel class, 208–210
BubbleDraw app (GUI version)

adding transparency, 224–225
animation, 225–229

adding timer, 226
frame rate, 225, 241
preparing, 227–228
setting timer, 226–227
starting timer, 229

building GUI, 232–235
event handlers, 234–235
setting up panel and buttons,

232–233
collision detection, 235–239

hard bounces, 238–239
soft bounces, 236–238

copying project and renaming Java
file, 222–223

fixed speed, 244–245
pixelated effect, 245–247
preventing stationary bubbles, 244
random speed and direction,

229–232
sharing app as runnable

JAR file, 243
speed control slider, 240–243

customizing, 241
event handler, 242–243

BubbleDraw class, 199
BubbleListener class, 212–214, 227
Bubble() method, 202–204
BubblePanel class, 199, 201, 203,

206–209, 214–215
BubbleView class, 251–255
BubbleView() constructor, 254
Button component, 82, 84, 87, 180
buttons

adding, 82
adding event listeners, 62–64,

91–94

Index 281

adding labeled, 46–47, 54
Clear button, 232–235
Click me! button, 46–47
Encode/Decode button, 152,

154–156, 159–164, 167,
179–180, 182–186

floating action button (fab), 84–85,
190–193

Guess! button, 54–55, 62–63,
66–69, 82, 93, 99

Move Up ^ button, 172–173, 196
OK button, 114
Pause/Start button, 232–235
Play Again button, 66, 73–74
showing and hiding, 73–74

C
Caesar cipher, 125–126
camel case, 14, 21
Canvas class, 256
case sensitivity, 14, 21, 274
casts (type casts), 24, 132
chained assignment, 245
charAt() method, 130–132
char data type, 132
checkGuess() method, 58–59, 65, 68–69,

73, 88–89, 106, 116, 120
child classes, 49
classes, 21, 86–87

anonymous inner classes, 63, 91,
155, 167, 184, 210

creating, 21–23, 200–204
extending, 49
importing, 25
public, 23
superclasses, 48

Clear button, 232–235
Click me! button, 46–47
close() method, 37, 135
code completion, 91–92, 278
code recommenders, 59, 274–275
collision detection, 235–239

hard bounces, 238–239
soft bounces, 236–238

Color Chooser dialog (in Eclipse),
160, 165

Color class, 201, 203, 224, 255–256
command line apps, running without

Eclipse, 141–144
opening command line window,

142–144
workspace folders, 141–142

comments, 23, 28
comparison operators

equal to (==), 30, 276
greater than (>), 30, 60
less than (<), 30, 60
not equal to (!=), 29

compiler directives, 91
concatenation operator (+), 12–13,

27, 30, 130–131
conditional expressions, 30
conditions, 28
confirm dialogs, 163
content assist, 59, 274–275
content panes, 52

D
data structures, 205
debugging, 28

case sensitivity, 274
code completion, 278
commenting out, 28
grouping symbols, 276–278
spelling errors, 274–276
statement completion, 278
syntax coloring, 273
USB debugging, 100–102, 188, 267

decrement operator (--), 130
defaultCloseOperation property, 51–52
Dimension class, 64–65
dismiss() method, 114
dot notation, 26
dot operator (.), 59, 68
double quotation marks ("), 27
double variable type (double-precision

floating point), 14
do-while loops, 33–35
draw() method, 204–205, 247, 256
drawOval() method, 250, 256–257
drawRect() method, 204

E
Eclipse, 1. See also BubbleDraw app

(GUI version);
Hi-Lo guessing game
(GUI version); Secret
Messages app (GUI version)

automatic indentation clean-up, 35
content assist and code

recommenders, 59,
274–275

282 Index

Eclipse (continued)
correcting spelling errors, 274–275
creating classes, 21–23
creating new Java project, 20–21
customizing appearance of, 7–8
grouping symbols, 277
installing, 3–4
perspectives, 21
saving code, 25
setting up

default workspace storage
location, 4–5

installing WindowBuilder
Editor, 6–7

modifying to run with Java 9, 5
setting up GUI projects, 48–49
themes, 7
WindowBuilder Editor, 50

Design tab, 50
installing, 6–7
Palette pane, 52–54
Properties pane, 51–52
Source tab, 56

workspace folders, 4–5, 141–142
/edit command, 16
editor action, 103
EditText component, 82, 84, 87, 102,

107, 178, 185
else-if statements, 138–139
else statements, 31
encapsulation, 201
Encode/Decode button, 152, 154–156,

159–164, 167, 179–180,
182–186

encode() method, 151–155, 182–185
equalsIgnoreCase() method, 34
equals() method, 34, 276
equal-to operator (==), 30, 276
escape character sequence (\n),

107, 178
event listeners, 62, 117. See also mouse

events; touch events
for buttons, 62–64, 91–94
creating reusable, 211–212
for enter key, 103–104

exception handlers, 70–72
exceptions, 70
/exit command, 16
expressions, evaluating in JShell,

12–13
extending classes, 49

F
fab (floating action button) icon,

84–85, 190–193
fillOval() method, 204–205
fillRect() method, 220, 247
finally block, 71–72
findViewById() method, 87
floating action button (fab) icon,

84–85, 190–193
floating-point numbers, 14
FlowLayout value, 240
focus, 69
Font Chooser dialog (in Eclipse), 159
for-each loops, 228, 263
for loops, 129–134
forward slashes (//), 23, 28

G
game loops (do-while loops), 33–35
getHeight() method, 236–238
getInt() method, 120
getMenuInflator() method, 111
getPointerCount() method, 266, 271
getProgress() method, 186
getSource() method, 235
getStringExtra() method, 194
getText() method, 59, 155, 185
getUnitsToScroll() method, 216
getValue() method, 167–168, 243
getWidth() method, 236–238
Graphics class, 204
greater-than operator (>), 30, 60
grouping symbols, 276–278
Guess! button, 54–55, 62–63, 66–69,

82, 93, 99

H
Handler class, 253, 262
"Hello, Java!" test code, 9
/help command, 16
HiLo class, 21–23
Hi-Lo guessing game (Android mobile

version)
adding method to begin new game,

90–91
adding method to check player’s

guess, 88–89
building GUI layout, 80–83

Index 283

changing guessing range, 114–117
adding variable, 115
dialog to allow user to select

range, 116–117
modifying behavior of app to

use variable, 115–116
changing number of tries, 122–123
event listeners, 91–94
options menu, 109–114

adding items to XML file,
110–111

alert dialog pop-up for About
screen, 113–114

displaying, 111–112
responding to user selections,

112–113
ratio of wins to losses, 123
running in Android emulator,

94–99
running on real Android device,

100–102
setting up project, 76–80
storing game stats, 120–122
storing user preferences, 118–120
Toast messages, 106
UX improvements, 102–105

aligning text field, 104
centering input in text

field, 103
event listener for enter key,

103–104
visual improvements, 107
wiring up, 83–88

Hi-Lo guessing game (command line
version)

completed code for, 37–38
counting tries, 40–41
creating HiLo class, 21–23
creating new Java project, 20–21
generating random numbers,

23–25
getting keyboard input, 25–27
increasing range of numbers, 40
loops, 28–35

if statements, 30–32
play again feature, 33–35

making program print output,
27–28

overview of, 19–20
planning basic version of, 20
prompting for user input, 26

testing, 36–37
thank-you for playing, 36–37

Hi-Lo guessing game (GUI version)
adding method to check player’s

guess, 58
converting strings to numbers,

60–61
getting text from text field,

59–60
designing GUI, 50–58

aligning elements, 54–55
customizing components,

52–54
setting properties, 51–52
wiring up, 55–58

event listeners, 62–64
handling bad input, 69–72
new game (picking new random

number), 61–62
play again feature, 66–67, 73–74
setting up GUI window, 64–65
setting up project, 48–49
showing and hiding Play Again

button, 73–74
showing number of tries, 73
testing, 66
UX improvements, 67–70

automatically removing old
guesses, 68–69

pressing enter to guess, 68
/history command, 16

I
if-else statements, 31, 135
if statements, 30–32, 134
image editors, 268
ImageView class, 251, 253
/imports command, 16
increment operator (++), 129
indentation, 30, 35, 277
indexes, 129
inflate() method, 111
inheritance, 48
input dialogs, 163
Integer class, 60
int variable type (integer), 13
invalidate() method, 259, 263
isSpace() method, 135
<item> tag, 111
iteration, 128

284 Index

J
JAR (Java archive) files, 169–171, 243
Java, 1

as first programming language, xx
modifying Eclipse to run with

Java 9, 5
as object-oriented programming

language, 21
printing output in, 15
testing setup using JShell, 9–17

Java archive (JAR) files, 169–171, 243
Java Development Kit (JDK), 2–3, 10
Java Perspective (in Eclipse), 21
Java Runtime Environment (JRE)

software, 1–2, 141
Java Virtual Machine (JVM) software,

1–2, 141
JButton component, 46, 52, 54, 63, 74,

151, 232
JCheckBox component, 52
JDK (Java Development Kit), 2–3, 10
JFrame class, 44, 48–49, 199, 223
JLabel component, 52–54, 57, 61, 74,

151, 240
JOptionPane component, 164
JPanel component, 46, 198–199,

207–208, 232, 240
JRE (Java Runtime Environment)

software, 1–2, 141
JScrollPane component, 173–174
JShell, 9

commands, 16–17
creating GUIs in, 44–47
declaring Java variables in, 13–15
evaluating Java expressions in,

12–13
"Hello, Java!" test code, 9
opening code in, 16
printing output, 15
running, 9–11

from command line, 10–11
confirming installed version

of JDK, 10
from shortcut, 11–12

saving code created in, 16
starting new code snippets, 17
testing Java setup, 9–17

JShell Edit Pad, 46–47
JSlider component, 164–167
JTextArea component, 150–152

scroll bars for, 173–174
wrapping text, 162

JTextField component, 52–53, 56–57,
59–60, 68–69, 151–152

JVM (Java Virtual Machine) software,
1–2, 141

K
key/value pairs, 118

L
labels

adding, 52–54, 81–82
alignment, 53
editing, 53, 81–82
font, 53
naming for coding, 56

length() method, 129–131
less-than operator (<), 30, 60
lineWrap property, 162
/list command, 16
logarithms, 123
log() method, 123
loops, 28–35, 144–145

do-while loops, 33–35
for-each loops, 228, 263
for loops, 129–134
nested, 38
while loops, 28–30

M
MadLibs class, 41
MadLibs game

Android mobile version, 107
command line version, 41
GUI version, 74

main() method
BubbleDraw app

desktop version, 210
GUI version, 222–223

Hi-Lo guessing game
command line version, 22–23,

25, 29, 35
GUI version, 48, 64–65

Secret Messages app
command line version,

127–128, 135–136
GUI version, 148, 156–157

majorTickSpacing property, 165, 241
makeText() method, 106
manifest file, 193

Index 285

Math class, 23
math expressions, 12
MenuInflator class, 111
<menu> tag, 110–111
message dialogs, 163–164
methods, 22, 200–210

designing, 202–205, 207–208
displaying available methods with

content assist, 68–69
method signature, 207
minorTickSpacing property, 165, 241
modulo operator (%), 139
MouseAdapter class, 212
mouseClicked() method, 212
mouseDragged() method, 214–215
MouseEvent class, 212–213
mouse events, 210–217

clicks, 212–214
creating reusable event listener,

211–212
drags, 214–215
wheel events, 215–217

mouseMoved() method, 214
mousePressed() method, 212–214
mouseReleased() method, 212
MouseWheelEvent class, 215–216
mouseWheelMoved() method, 216, 218
Move Up ^ button, 172–173, 196
multitasking, 249, 261–264
multitouch, 249, 266–267

N
\n (escape character sequence),

107, 178
nested loops, 38
newGame() method, 61–62, 64, 66–67,

90, 113–115, 120
New Java Class dialog (in Eclipse),

22–23, 49, 148
New Java Project dialog (in Eclipse),

20–21
newline character, 107, 178
nextInt() method, 25, 27–28, 203–204,

224, 231
nextLine() method, 25, 128
not-equal-to operator (!=), 29
numeric variables, 13–14

O
object-oriented programming, 21, 198
objects, 21

OK button, 114
OnClickListener event handler class,

91–92, 184
onClick() method, 93, 114, 184–185, 191
onCreate() method, 87, 90–91, 115, 120,

182, 191
onCreateOptionsMenu() method, 111
onDraw() method, 257–258, 263
online resources, xxi–xxii
onOptionsItemSelected() method, 112,

116, 118–119, 121
onProgressChanged() method, 188
OnSeekBarChangeListener event handler,

187–188
onStartTrackingTouch() method, 188
onStopTrackingTouch() method, 188
OnTouchListener interface, 251–252,

259–260
onTouch() method, 259–260,

264–265, 271
/open command, 16
operators

arithmetic (+, -, *, /), 12
assignment (=), 13–15, 245, 276
comparison

equal to (==), 30, 276
greater than (>), 30, 60
less than (<), 30, 60
not equal to (!=), 29

concatenation, 12–13, 27, 30,
130–131

decrement (--), 130
dot (.), 59, 68
increment (++), 129
modulo (%), 139

options menu, adding in Android,
109–114

adding items to XML file, 110–111
alert dialog pop-up for About

screen, 113–114
displaying, 111–112
responding to user selections,

112–113

P
package declarations, 85–86
Paint class, 253
paintComponent() method, 207
parameters, 153
parent classes (superclasses), 48
parseInt() method, 155, 185

286 Index

parsing, 60
Pause/Start button, 232–235
persistent information, storing,

118–121
pixelated effect, 219–220, 245–247
Play Again button, 66, 73–74
pointers, 266
postDelayed() method, 263
println() method, 15, 26–27
private modifier, 57
procedural programming, 198
public modifier, 58

R
Random class, 203
random() method, 24, 203
range settings dialog, 116–117
refactoring, 223
RelativeLayout value, 255
repaint() method, 209, 213, 215,

228, 234
requestFocus() method, 164
/reset command, 16
resource leaks, 37, 135
return statement, 113
run() method, 262
Runnable interface, 262

S
/save command, 16
Scanner class, 25, 37
scrolling

different operating systems and,
216–217

mouse wheel events, 215–217
scroll bars, 173–174

SDK (software development kit)
levels, 78

Secret Messages app (Android mobile
version)

connecting Encode button to
encode() method, 182–185

customizing fab icon, 190–193
designing GUI, 177–181
Move Up ^ button, 196
receiving secret messages from

other apps, 193–195
running in Android emulator,

188–189

running on real Android device,
188–190

SeekBar component, 187–188, 196
setting up project, 176–177
testing, 185–187
wiring up, 182–188

Secret Messages app (command line
version)

adding loops to, 144–145
Caesar cipher, 125–126
character values, 132–133
closing all input/output resources,

135–136
custom key values, 137–138
encoding digits, 138–141
encoding only letters, 133–135
full version of, 140–141
languages other than English, 135
reversing and encoding, 145
setting up project, 126–131

asking user for input, 128
creating project in Eclipse, 127
message reverser, 128–131
strings, 128–131

try-catch blocks, 145
Secret Messages app (GUI version)

building main() method, 156–157
creating encode() method, 151–154
designing GUI, 148–151
event handling, 154–156
full source code, 157–159
handling bad input, 156, 162–164
improving GUI, 159–169
line and word wrap, 161–162
Move Up ^ button, 172–173
numeric slider

adding, 164–166
code cracking with, 166,

168–169
moving when value in text field

changes, 174
scroll bars, 173–174
setting up project, 148
sharing as runnable JAR file,

169–171
wiring up, 148–151

SecretMessagesGUI class, 152
SeekBar component, 179–180,

187–188, 196
selectAll() method, 69, 164

Index 287

Select Deployment Target dialog (in
Android Studio), 98, 198

semicolon (;), 24
setBackground() method, 207
setButton() method, 114
setColor() method, 204
setItems() method, 117
setOnClickListener() method,

183–184, 191
setOnSeekBarChangeListener()

method, 187
setOnTouchListener() method, 265
setSize() method, 64
setText() method, 61, 107, 156, 167
setVisible() method, 45, 65
shared preferences, 118–121
showMessageDialog() method, 163
show() method, 106
sliders

numeric
adding, 164–166
code cracking with, 166,

168–169
moving when value in text field

changes, 174
speed control, 240–243

customizing, 241
event handler, 242–243

smart completion, 278
Snackbar pop-up messages, 191
software development kit (SDK)

levels, 78
spelling errors, 274–276
src (source code) folder, 22, 48, 127,

141, 148
start() method, 229
stateChanged() method, 166–167, 242
statement completion, 278
stop() method, 229
storeRange() method, 119
strings, 12
String variable type, 14–15, 33
stubs, 22
superclasses (parent classes), 48
super() method, 253
switch statement, 113
syntax coloring, 273
System class, 26
System.in object, 25
System.out object, 26

T
temporary variables, 12
Terminal, 142
testBubbles() method, 208–210, 213,

258–259, 265
Text class, 88
text fields

adding, 82
aligning, 104
centering input in, 103
declaring at top level of class,

56–57
getting text from, 59
sizing, 83
wiring up, 55–56, 83–84

TextView component, 81–82, 84, 87, 104,
107, 114–116, 177

Thread class, 262
threading, 249, 261–264
threads, 253
tilde (~), 16
Timer class, 225–227
title property, 51
Toast messages, 106
toString() method, 88, 185
touch events, 251–252, 259–260,

264–267, 271–272
transparency, 224–225
try-catch statements, 71–72, 145, 156,

162–163
type casts (casts), 24, 132

U
undo, 55
Unicode, 132
update() method, 228, 237–238, 255
USB debugging in Android, 100–101
user experience (UX), 67

V
variables

declaring and initializing, 26
declaring at top level of class,

56–58
declaring in JShell, 13–15
temporary, 12

/vars command, 16
void modifier, 58

288 Index

W
what-you-see-is-what-you-get

(WYSIWYG) interfaces, 50
while loops, 28–30
wildcard character (*), 46
WindowBuilder Editor (in Eclipse),

50–52
Design tab, 50
installing, 6–7
Palette pane, 52–54
Properties pane, 51–52
Source tab, 56

windows
close operation, 51–52
content panes, 52
creating, 44–45
sizing, 64
titles, 51

wrapStyleWord property, 162
WYSIWYG (what-you-see-is-what-

you-get) interfaces, 50

Learn Java the Easy Way  is set in New Baskerville, Futura, Dogma, and
TheSansMono Condensed.

RESOURCES
Visit https://www.nostarch.com/learnjava/ for resources, errata, and more
information.

phone:
1.800.420.7240 or

1.415.863.9900

email:
sales@nostarch.com

web:
www.nostarch.com

Teach Your Kids to Code
A Parent-Friendly Guide to
Python Programming
by bryson payne

april 2015, 336 pp., $29.95
isbn 978-1-59327-614-0
full color

Automate the Boring Stuff
with Python
Practical Programming for
Total Beginners
by al sweigart

april 2015, 504 pp., $29.95
isbn 978-1-59327-599-0

Eloquent JavaScript,
2nd Edition
A Modern Introduction to Programming
by marijn haverbeke

december 2014, 472 pp., $39.95
isbn 978-1-59327-584-6

Python Crash Course
A Hands-On, Project-Based
Introduction to Programming
by eric matthes

november 2015, 560 pp., $39.95
isbn 978-1-59327-603-4

The Linux Command Line
A Complete Introduction
by william e. shotts, jr.
january 2012, 480 pp., $39.95
isbn 978-1-59327-389-7

More no-nonsense books from No Starch Press

Coding iPhone Apps for Kids
A Playful Introduction to Swift
by gloria winquist and
matt mccarthy

june 2017, 336 pp., $29.95
isbn 978-1-59327-756-7
full color

https://www.nostarch.com/learnjava/

	Brief Contents
	Contents in Detail
	Acknowledgments
	Introduction
	Why Should I Learn to Code?
	Why Should I Learn Java?
	What’s in This Book
	What Tools Do I Need?
	Online Resources
	Start Now!

	Chapter 1: Getting Started
	Java on Windows, macOS, and Linux
	Installing Java 8 and 9 for Developers
	Installing the Eclipse IDE for Java Developers
	Setting Up Eclipse
	Installing the WindowBuilder Editor
	Customizing Eclipse’s Look and Feel

	Installing Android Studio for Mobile App Development
	Getting to Know Java with JShell
	Running JShell
	Working with Java Expressions in JShell
	Declaring Java Variables in JShell
	Printing Output in Java
	JShell Commands

	What You Learned

	Chapter 2: Build a Hi-Lo Guessing Game App!
	Planning the Game Step-by-Step
	Creating a New Java Project
	Creating the HiLo Class
	Generating a Random Number
	Getting User Input from the Keyboard
	Making the Program Print Output

	Loops: Ask, Check, Repeat
	if Statements: Testing for the Right Conditions
	Adding a Play Again Loop

	Testing the Game
	What You Learned
	Programming Challenges
	#1: Expanding Your Range
	#2: Counting Tries
	#3: Playing MadLibs

	Chapter 3: Creating a GUI for Our Guessing Game
	Practicing with JShell
	Creating a GUI in Four Lines of Code
	Creating an Interactive GUI in 10 Lines of Code!

	Setting Up the GUI App in Eclipse
	GUI Design with Eclipse’s WindowBuilder Editor
	Designing the User Interface
	Setting GUI Properties in the Properties Pane
	Customizing GUI Components in the Palette Pane
	Aligning GUI Elements
	Naming GUI Components for Coding
	Connecting the GUI to Your Java Code

	Adding a Method to Check the Player’s Guess
	Getting Text from a JTextField
	Converting Strings to Numbers

	Starting a New Game
	Listening for User Events: Click to Guess!
	Setting Up the GUI Window
	Time to Play!
	Adding a Play Again Feature
	Improving the UX
	Allowing Users to Press Enter to Guess
	Automatically Removing Old Guesses

	Handling Bad User Input
	What You Learned
	Programming Challenges
	#1: Showing Users How Many Tries They Took
	#2: Showing and Hiding a Play Again Button
	#3: Creating a GUI MadLib

	Chapter 4: Creating Your First Android App
	Starting a New Android Studio App Project
	Building the GUI Layout in Design View
	Naming GUI Components in Android Studio
	Connecting the GUI to Java in Android Studio
	Adding Methods to Check the Guess and Begin a New Game
	Handling Events in Android
	Running the App on the Android Emulator
	Running the App on a Real Android Device
	Preparing Your Device
	Connecting Your Device
	Running the App on Your Device

	Improving the UX
	Centering the User’s Guess in the Text Field
	Adding a Listener for the Enter Key
	Adding One More Finishing Touch

	What You Learned
	Programming Challenges
	#1: “Toast”-ing to the Number of Tries
	#2: Adding Visual Appeal
	#3: Creating a MadLibs Mobile App

	Chapter 5: Polishing Your App by Adding Menus and Preferences
	Adding an Options Menu in Android
	Adding Items to the Menu’s XML File
	Displaying the Options Menu
	Responding to User Selections
	Creating an Alert Dialog Pop-up for the About Page

	Changing the Guessing Range
	Adding a Variable for the Range
	Using the range Variable
	Building the Dialog to Allow the User to Select the Range

	Storing User Preferences and Game Stats
	Storing and Retrieving the User’s Preferred Range
	Storing the Number of Games Won

	What You Learned
	Programming Challenges
	#1: You Win Some, You Lose Some
	#2: Ratio of Wins to Losses

	Chapter 6: Deciphering Secret Messages
	The Caesar Cipher
	Setting Up the Secret Messages App
	Creating the Secret Messages Project in Eclipse
	Beginning to Code SecretMessages.java
	Messing with Strings

	Characters and Values in Java
	Encoding Just the Letters
	Closing the Scanner
	Adding a Custom Key Value
	Encoding Digits
	Running Command Line Apps Without Eclipse
	Finding Your Workspace Folders
	Opening a Command Line Window

	What You Learned
	Programming Challenges
	#1: Looping the Loop
	#2: Reversing and Encoding
	#3: Safely Handling Keys with try and catch

	Chapter 7: Creating Advanced GUIs and Sharing Your App
	Setting Up the Secret Messages GUI App Project
	Designing the GUI and Naming Components
	Coding the Secret Messages GUI App
	Creating the encode() Method
	Writing the Event Handler for the Encode/Decode Button
	Handling Bad Input and User Errors
	Building the main() Method and Running the App

	Improving the GUI
	Setting Line Wrap and Word Wrap
	Handling Bad Input and User Errors: Part 2
	Adding a Slider to the Secret Messages GUI

	Code Cracking with the Slider
	Bonus: Sharing Your App as a Runnable JAR File
	What You Learned
	Programming Challenges
	#1: Movin’ On Up!
	#2: Scrolling Away!
	#3: Changing the Text to Change the Slider

	Chapter 8: Make Secret Messages a Phone App to Share with Friends!
	Setting Up the Mobile GUI
	Designing the Mobile GUI
	Wiring the GUI to the Java Code
	Connecting the Encode Button to the encode() Method
	Testing the App
	Working with the SeekBar

	Running the App on the Emulator and on an Android Device
	Bonus: Customizing the Floating Action Button
	Receiving Secret Messages from Other Apps
	What You Learned
	Programming Challenges
	#1: Creating a Move Up Button
	#2: Changing the SeekBar’s Progress

	Chapter 9: Paint Colorful Bubbles with Your Mouse!
	Creating the BubbleDraw Project Files
	Building the BubbleDraw Frame
	Creating a Class for Bubbles
	Defining a Bubble
	Designing a Bubble’s Methods

	Storing Bubbles in an ArrayList
	Adding a Constructor to the BubblePanel Class
	Adding a Method to Draw on the Screen
	Testing the BubblePanel Class

	Handling Mouse Events from the User
	Creating a Reusable Event Listener
	Handling Clicks and Drags
	Bonus: Handling MouseWheel Events

	What You Learned
	Programming Challenges
	#1: No Bubble Too Small
	#2: PixelDraw!

	Chapter 10: Adding Animation and Collision Detection with Timers
	Copying the BubbleDraw Java Project to Create BubbleDrawGUI
	Renaming the Main Class and Java File
	Adding Transparency

	Adding Animation: Bubbles Rising!
	Adding a Timer
	Setting the Timer
	Preparing the Animation
	Starting the Timer

	Forever Blowing Bubbles: Adding Random Speed and Direction
	Building a GUI for Our Animated Drawing App
	Setting Up the GUI Panel and Buttons
	Coding the Clear and Pause/Start Buttons

	Bouncing off the Walls with Collision Detection
	A Soft Bounce
	A Hard Bounce

	Adding a Slider to Control the Animation Speed
	Customizing the Slider
	Implementing the Slider Event Handler

	What You Learned
	Programming Challenges
	#1: No Bubble Left Behind
	#2: Flexi-Draw!
	#3: PixelDraw 2.0

	Chapter 11: Making BubbleDraw a Multitouch Android App
	Setting Up the BubbleDraw Project
	Creating the BubbleView Constructor
	Adding the Animation Variables
	Creating the BubbleView() Constructor
	Preparing the Layout to Use BubbleView

	Modifying the Bubble Class
	Drawing in Android with the onDraw() Method
	Testing BubbleDraw with 100 Bubbles
	Adding testBubbles()
	Fixing the OnTouchListener Error
	Running the BubbleDraw App

	Using Threaded Animation and Multitasking in Java
	Using Touch to Draw with Your Finger
	Using Multitouch to Draw with 10 Fingers at a Time!
	Testing Multitouch Events on an Android Device

	Changing the App Launcher Icon
	Creating a Custom App Icon
	Adding the Custom Icon to Your App
	Displaying Your New Icon
	Changing the App Name

	What You Learned
	Programming Challenges
	#1: Combining One-Finger and Multitouch Events, v1.0
	#2: Combining One-Finger and Multitouch Events, v2.0

	Appendix: Debugging and Avoiding Common Errors in Java
	Spelling and Case
	Correcting Typos in Eclipse
	Correcting Typos in Android Studio
	Avoiding Other Common Spelling Errors

	Comparison Trouble
	Grouping Symbols
	Quick Fixes in Eclipse
	Code Completion in Android Studio

	Summary

	Index

	Blank Page
	Blank Page

