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It’s all in the name: Learn You a Haskell 
for Great Good! is a hilarious, illustrated 
guide to this complex functional language. 
Packed with the author’s original artwork, 
pop culture references, and, most impor-
tantly, useful example code, this book 
teaches functional fundamentals in a way 
you never thought possible. 

You’ll start with the kid stuff: basic syntax, 
recursion, types, and type classes. Then 
once you’ve got the basics down, the real 
black-belt master class begins: you’ll learn to 
use applicative functors, monads, zippers, 
and all the other mythical Haskell constructs 
you’ve only read about in storybooks.

As you work your way through the author’s 
imaginative (and occasionally insane) 
examples, you’ll learn to:

• Laugh in the face of side effects as you 
wield purely functional programming 
techniques

• Use the magic of Haskell’s “laziness” to 
play with infinite sets of data 

• Organize your programs by creating 
your own types, type classes, and 
modules

• Use Haskell’s elegant input/output 
system to share the genius of your 
programs with the outside world

Short of eating the author’s brain, you will 
not find a better way to learn this powerful 
language than reading Learn You a Haskell 
for Great Good!
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INTRODUCTION

Haskell is fun, and that’s what it’s all about!
This book is aimed at people who have experience programming in im-

perative languages—such as C++, Java, and Python—and now want to try out
Haskell. But even if you don’t have any significant programming experience,
I’ll bet a smart person like you will be able to follow along and learn Haskell.

My first reaction to Haskell was that the language was just too weird. But
after getting over that initial hurdle, it was smooth sailing. Even if Haskell
seems strange to you at first, don’t give up. Learning Haskell is almost like
learning to program for the first time all over again. It’s fun, and it forces
you to think differently.

NOTE If you ever get really stuck, the IRC channel #haskell on the freenode network is a
great place to ask questions. The people there tend to be nice, patient, and understand-
ing. They’re a great resource for Haskell newbies.

So, What’s Haskell?
Haskell is a purely functional programming language.

In imperative programming languages, you give the computer a sequence
of tasks, which it then executes. While executing them, the computer can
change state. For instance, you can set the variable a to 5 and then do some
stuff that might change the value of a. There are also flow-control structures
for executing instructions several times, such as for and while loops.



Purely functional programming is differ-
ent. You don’t tell the computer what to do—
you tell it what stuff is. For instance, you can tell
the computer that the factorial of a number
is the product of every integer from 1 to that
number or that the sum of a list of numbers is
the first number plus the sum of the remaining
numbers. You can express both of these opera-
tions as functions.

In functional programming, you can’t set a
variable to one value and then set it to some-
thing else later on. If you say a is 5, you can’t just change your mind and
say it’s something else. After all, you said it was 5. (What are you, some kind
of liar?)

In purely functional languages, a function has no side effects. The only
thing a function can do is calculate something and return the result. At
first, this seems limiting, but it actually has some very nice consequences. If
a function is called twice with the same parameters, it’s guaranteed to return
the same result both times. This property is called referential transparency. It
lets the programmer easily deduce (and even prove) that a function is cor-
rect. You can then build more complex functions by gluing these simple
functions together.

Haskell is lazy. This means that
unless specifically told otherwise,
Haskell won’t execute functions
until it needs to show you a result.
This is made possible by referential
transparency. If you know that the
result of a function depends only
on the parameters that function is
given, it doesn’t matter when you
actually calculate the result of the
function. Haskell, being a lazy lan-
guage, takes advantage of this fact
and defers actually computing re-
sults for as long as possible. Once
you want your results to be displayed, Haskell will do just the bare minimum
computation required to display them. Laziness also allows you to make
seemingly infinite data structures, because only the parts of the data struc-
tures that you choose to display will actually be computed.

Let’s look at an example of Haskell’s laziness. Say you have a list of num-
bers, xs = [1,2,3,4,5,6,7,8], and a function called doubleMe that doubles every
element and returns the result as a new list. If you want to multiply your list
by 8, your code might look something like this:

doubleMe(doubleMe(doubleMe(xs)))
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An imperative language would probably pass through the list once, make
a copy, and then return it. It would then pass through the list another two
times, making copies each time, and return the result.

In a lazy language, calling doubleMe on a list without forcing it to show
you the result just makes the program tell you, “Yeah yeah, I’ll do it later!”
Once you want to see the result, the first doubleMe calls the second one and
says it wants the result immediately. Then the second one says the same
thing to the third one, and the third one reluctantly gives back a doubled
1, which is 2. The second doubleMe receives that and returns 4 to the first
one. The first doubleMe then doubles this result and tells you that the first ele-
ment in the final resulting list is 8. Because of Haskell’s laziness, the doubleMe

calls pass through the list just once, and only when you really need that to
happen.

Haskell is statically typed. This means that
when you compile your program, the compiler
knows which piece of code is a number, which
is a string, and so on. Static typing means that a
lot of possible errors can be caught at compile
time. If you try to add together a number and
a string, for example, the compiler will whine
at you.

Haskell uses a very good type system that
has type inference. This means that you don’t
need to explicitly label every piece of code with a type, because Haskell’s
type system can intelligently figure it out. For example, if you say a = 5 + 4,
you don’t need to tell Haskell that a is a number—it can figure that out by
itself. Type inference makes it easier for you to write code that’s more gen-
eral. If you write a function that takes two parameters and adds them to-
gether, but you don’t explicitly state their type, the function will work on
any two parameters that act like numbers.

Haskell is elegant and concise. Because it uses a lot of high-level con-
cepts, Haskell programs are usually shorter than their imperative equiva-
lents. Shorter programs are easier to maintain and have fewer bugs.

Haskell was made by some really smart guys (with PhDs). Work on
Haskell began in 1987 when a committee of researchers got together to
design a kick-ass language. The Haskell Report, which defines a stable ver-
sion of the language, was published in 1999.

What You Need to Dive In
In short, to get started with Haskell, you need a text editor and a Haskell
compiler. You probably already have your favorite text editor installed, so we
won’t waste time on that. The most popular Haskell compiler is the Glasgow
Haskell Compiler (GHC), which we will be using throughout this book.

The best way to get what you need is to download the Haskell Platform.
The Haskell Platform includes not only the GHC compiler but also a bunch
of useful Haskell libraries! To get the Haskell Platform for your system, go to
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http://hackage.haskell.org/platform/ and follow the instructions for your oper-
ating system. Make sure to choose the full installer.

GHC can compile Haskell scripts (usually with an .hs extension), and
it also has an interactive mode. From there, you can load functions from 
scripts and then call them directly to see immediate results. Especially when 
you’re learning, it’s much easier to use the interactive mode than it is to 
compile and run your code every time you make a change.

Once you’ve installed the Haskell Platform, open a new terminal win-
dow, assuming you’re on a Linux or Mac OS X system. If your operating sys-
tem of choice is Windows, go to the command prompt. Once there, type
ghci and press ENTER to start the interactive mode. (If your system fails to 
find the GHCi program, you can try rebooting your computer.)

If you’ve defined some functions in a script—for example, myfunctions.hs—
you can load these functions into GHCi by typing :l myfunctions. (Make sure 
that myfunctions.hs is in the same folder from which you started GHCi.)

If you change the .hs script, run :l myfunctions to load the file again or 
run :r, which reloads the current script. My usual workflow is to define some 
functions in an .hs file, load it into GHCi, mess around with it, change the 
file, and repeat. This is what we’ll be doing in this book.

Acknowledgments
Thanks to everyone who sent in corrections, suggestions, and words of en-
couragement. Also thanks to Keith, Sam, and Marilyn for making me look
like a real writer.
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1
STARTING OUT

If you’re the horrible sort of person who doesn’t read
introductions, you might want to go back and read the
last section anyway—it explains how to use this book,
as well as how to load functions with GHC.

First, let’s start GHC’s interactive mode and call some functions, so we
can get a very basic feel for Haskell. Open a terminal and type ghci. You will
be greeted with something like this:

GHCi, version 8.0.1: http://www.haskell.org/ghc/ :? for help 

Prelude>

NOTE GHCi’s default prompt is Prelude>, but we’ll be using ghci> as our prompt for the ex-
amples in this book. To make your prompt match the book’s, enter :set prompt "ghci> "

into GHCi. If you don’t want to do this every time you run GHCi, create a file called
.ghci in your home folder and set its contents to :set prompt "ghci> ".



Congratulations, you’re in GHCi! Now let’s try some simple arithmetic:

ghci> 2 + 15

17

ghci> 49 * 100

4900

ghci> 1892 - 1472

420

ghci> 5 / 2

2.5

If we use several operators in one expression,
Haskell will execute them in an order that takes
into account the precedence of the operators.
For instance, * has higher precedence than -, so
50 * 100 - 4999 is treated as (50 * 100) - 4999.

We can also use parentheses to explicitly specify
the order of operations, like this:

ghci> (50 * 100) - 4999

1

ghci> 50 * 100 - 4999

1

ghci> 50 * (100 - 4999)

-244950

Pretty cool, huh? (Yeah, I know it’s not, yet, but bear with me.)
One pitfall to watch out for is negative number constants. It’s always

best to surround these with parentheses wherever they occur in an arith-
metic expression. For example, entering 5 * -3 will make GHCi yell at you,
but entering 5 * (-3) will work just fine.

Boolean algebra is also straightforward in Haskell. Like many other pro-
gramming languages, Haskell has the Boolean values True and False, and
uses the && operator for conjunction (Boolean and), the || operator for dis-
junction (Boolean or), and the not operator to negate a True or False value:

ghci> True && False

False

ghci> True && True

True

ghci> False || True

True

ghci> not False

True

ghci> not (True && True)

False
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We can test two values for equality or inequality with the == and /= opera-
tors, like this:

ghci> 5 == 5

True

ghci> 1 == 0

False

ghci> 5 /= 5

False

ghci> 5 /= 4

True

ghci> "hello" == "hello"

True

Watch out when mixing and matching values, however! If we enter some-
thing like 5 + "llama", we get the following error message:

No instance for (Num [Char]) arising from the use of `+'  

In the expression: 5 + "llama"

In an equation for `it': it = 5 + "llama"

What GHCi is telling us here is that "llama" is not a number, so it does
not know how to add it to 5. The + operator expects both of its inputs to be
numbers.

On the other hand, the == operator works on any two items that can
be compared, with one catch: they both have to be of the same type. For
instance, if we tried entering True == 5, GHCi would complain.

NOTE 5 + 4.0 is a valid expression, because although 4.0 isn’t an integer, 5 is sneaky and
can act like either an integer or a floating-point number. In this case, 5 adapts to
match the type of the floating-point value 4.0.

We’ll take a closer look at types a bit later.

Calling Functions
You may not have realized it, but we’ve actually
been using functions this whole time. For in-
stance, * is a function that takes two numbers
and multiplies them. As you’ve seen, we apply
(or call) it by sandwiching it between the two
numbers we want to multiply. This is called an
infix function.

Most functions, however, are prefix func-
tions. When calling prefix functions in Haskell,
the function name comes first, then a space,
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then its parameters (also separated by spaces). As an example, we’ll try call-
ing one of the most boring functions in Haskell, succ:

ghci> succ 8

9

The succ function takes one parameter that can be anything that has a
well-defined successor, and returns that value. The successor of an integer
value is just the next higher number.

Now let’s call two prefix functions that take multiple parameters, min
and max:

ghci> min 9 10

9

ghci> min 3.4 3.2

3.2

ghci> max 100 101

101

The min and max functions each take two parameters that can be put
in some order (like numbers!), and they return the one that’s smaller or
larger, respectively.

Function application has the highest precedence of all the operations in
Haskell. In other words, these two statements are equivalent.

ghci> succ 9 + max 5 4 + 1

16

ghci> (succ 9) + (max 5 4) + 1

16

This means that if we want to get the successor of 9 * 10, we couldn’t
simply write

ghci> succ 9 * 10

Because of the precedence of operations, this would evaluate as the suc-
cessor of 9 (which is 10) multiplied by 10, yielding 100. To get the result we
want, we need to instead enter

ghci> succ (9 * 10)

This returns 91.
If a function takes two parameters, we can also call it as an infix function

by surrounding its name with backticks (`). For instance, the div function
takes two integers and executes an integral division, as follows:

ghci> div 92 10

9
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However, when we call it like that, there may be some confusion as to
which number is being divided by which. By using backticks, we can call it as
an infix function, and suddenly it seems much clearer:

ghci> 92 `div` 10

9

Many programmers who are used to imperative languages tend to stick
to the notion that parentheses should denote function application, and they
have trouble adjusting to the Haskell way of doing things. Just remember,
if you see something like bar (bar 3), it means that we’re first calling the bar

function with 3 as the parameter, then passing that result to the bar function
again. The equivalent expression in C would be something like bar(bar(3)).

Baby’s First Functions
The syntax of a function definition is similar
to that of a function call: the function name is
followed by parameters, which are separated by
spaces. But then the parameter list is followed
by the = operator, and the code that makes up
the body of the function follows that.

As an example, we’ll write a simple func-
tion that takes a number and multiplies it by
two. Open up your favorite text editor and type
in the following:

doubleMe x = x + x

Save this file as baby.hs. Now run ghci, mak-
ing sure that baby.hs is in your current directory.
Once in GHCi, enter :l baby to load the file.
Now we can play with our new function:

ghci> :l baby

[1 of 1] Compiling Main ( baby.hs, interpreted )

Ok, modules loaded: Main.

ghci> doubleMe 9

18

ghci> doubleMe 8.3

16.6

Because + works on integers as well as on floating point numbers (in-
deed, on anything that can be considered a number), our function also
works with any of these types.
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Now let’s make a function that takes two numbers, multiplies each by
two, then adds them together. Append the following code to baby.hs:

doubleUs x y = x * 2 + y * 2

NOTE Functions in Haskell don’t have to be defined in any particular order, so it doesn’t
matter which function comes first in the baby.hs file.

Now save the file, and enter :l baby in GHCi to load your new function.
Testing this function yields predictable results:

ghci> doubleUs 4 9

26

ghci> doubleUs 2.3 34.2

73.0

ghci> doubleUs 28 88 + doubleMe 123

478

Functions that you define can also call each other. With that in mind,
we could redefine doubleUs in the following way:

doubleUs x y = doubleMe x + doubleMe y

This is a very simple example of a common pattern you will see when
using Haskell: Basic, obviously correct functions can be combined to form
more complex functions. This is a great way to avoid code repetition. For
example, what if one day mathematicians figure out that 2 and 3 are actually
the same, and you have to change your program? You could just redefine
doubleMe to be x + x + x, and since doubleUs calls doubleMe, it would now also
automatically work correctly in this strange new world where 2 is equal to 3.

Now let’s write a function that multiplies a number by 2, but only if that
number is less than or equal to 100 (because numbers bigger than 100 are
big enough as it is!).

doubleSmallNumber x = if x > 100

then x

else x*2

This example introduces Haskell’s if statement. You’re probably already
familiar with if statements from other languages, but what makes Haskell’s
unique is that the else part is mandatory.

Programs in imperative languages are essentially a series of steps that
the computer executes when the program is run. When there is an if state-
ment that doesn’t have a corresponding else, and the condition isn’t met,
then the steps that fall under the if statement don’t get executed. Thus, in
imperative languages, an if statement can just do nothing.

On the other hand, a Haskell program is a collection of functions. Func-
tions are used to transform data values into result values, and every function
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should return some value, which can in turn be used by another function.
Since every function has to return something, this implies that every if has
to have a corresponding else. Otherwise, you could write a function that has
a return value when a certain condition is met but doesn’t have one when
that condition isn’t met! Briefly: Haskell’s if is an expression that must return
a value, and not a statement.

Let’s say we want a function that adds one to every number that would
be produced by our previous doubleSmallNumber function. The body of this
new function would look like this:

doubleSmallNumber' x = (if x > 100 then x else x*2) + 1

Note the placement of the parentheses. If we had omitted them, the
function would only add one if x is less than or equal to 100. Also note the
apostrophe (') at the end of the function’s name. The apostrophe doesn’t
have any special meaning in Haskell’s syntax, which means it’s a valid char-
acter to use in a function name. We usually use ' to denote either a strict ver-
sion of a function (i.e., one that isn’t lazy), or a slightly modified version of a
function or variable with a similar name.

Since ' is a valid character for function names, we can write a function
that looks like this:

conanO'Brien = "It's a-me, Conan O'Brien!"

There are two things to note here. The first is that we didn’t capitalize 
Conan in the name of the function. In Haskell, functions can’t begin with 
capital letters. (We’ll see why a bit later.) The second thing to note is that 
conanO'Brien doesn’t take any parameters. This means that it's not a func-
tion, but a definition or a name. Because we cannot change what names (or 
functions) mean once we have defined them, conanO'Brien and the string 
"It's a-me, Conan O'Brien!" can be used interchangeably.

An Intro to Lists
Lists in Haskell are homogeneous data structures,
which means they store several elements of the same
type. We can have a list of integers or a list of charac-
ters, for example, but we can’t have a list made up of
both integers and characters.

Lists are surrounded by square brackets, and the
list values are separated by commas:

ghci> let lostNumbers = [4,8,15,16,23,42]

ghci> lostNumbers

[4,8,15,16,23,42]
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NOTE Use the let keyword to define a name in GHCi. Entering let a = 1 in GHCi is equiv-
alent to writing a = 1 in a script, then loading it with :l.

Concatenation
One of the most common operations when working with lists is concatena-
tion. In Haskell, this is done using the ++ operator:

ghci> [1,2,3,4] ++ [9,10,11,12]

[1,2,3,4,9,10,11,12]

ghci> "hello" ++ " " ++ "world"

"hello world"

ghci> ['w','o'] ++ ['o','t']

"woot"

NOTE In Haskell, strings are really just lists of characters. For example, the string "hello" is
actually the same as the list ['h','e','l','l','o']. Because of this, we can use list
functions on strings, which is really handy.

Be careful when repeatedly using the ++ operator on long strings. When
you put together two lists, Haskell has to walk through the entire first list
(the one on the left side of ++). That’s not a problem when dealing with
smaller lists, but appending something to the end of a list with fifty million
entries is going to take a while.

However, adding something to the beginning of a list is a nearly in-
stantaneous operation. We do this with the : operator (also called the cons
operator):

ghci> 'A':" SMALL CAT"

"A SMALL CAT"

ghci> 5:[1,2,3,4,5]

[5,1,2,3,4,5]

Notice how in the first example, : takes a character and a list of charac-
ters (a string) as its arguments. Similarly, in the second example, : takes a
number and a list of numbers. The first argument to the : operator always
needs to be a single item of the same type as the values in the list it’s being
added to.

The ++ operator, on the other hand, always takes two lists as arguments.
Even if you’re only adding a single element to the end of a list with ++, you
still have to surround that item with square brackets, so Haskell will treat it
like a list:

ghci> [1,2,3,4] ++ [5]

[1,2,3,4,5]

Writing [1,2,3,4] ++ 5 is wrong, because both parameters to ++ should be
lists, and 5 isn’t a list; it’s a number.
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Interestingly, in Haskell, [1,2,3] is just syntactic sugar for 1:2:3:[]. [] is
an empty list. If we prepend 3 to that, it becomes [3]. Then if we prepend 2

to that, it becomes [2,3], and so on.

NOTE [], [[]] and [[],[],[]] are all different things. The first is an empty list, the second
is a list that contains one empty list, and the third is a list that contains three empty
lists.

Accessing List Elements
If you want to get an element of a list by index, use the !! operator. As with
most programming languages, the indices start at 0:

ghci> "Steve Buscemi" !! 6

'B'

ghci> [9.4,33.2,96.2,11.2,23.25] !! 1

33.2

However, if you try (say) to get the sixth element from a list that only has
four elements, you’ll get an error, so be careful!

Lists Inside Lists
Lists can contain lists as elements, and lists can contain lists that contain lists,
and so on. . . .

ghci> let b = [[1,2,3,4],[5,3,3,3],[1,2,2,3,4],[1,2,3]]

ghci> b

[[1,2,3,4],[5,3,3,3],[1,2,2,3,4],[1,2,3]]

ghci> b ++ [[1,1,1,1]]

[[1,2,3,4],[5,3,3,3],[1,2,2,3,4],[1,2,3],[1,1,1,1]]

ghci> [6,6,6]:b

[[6,6,6],[1,2,3,4],[5,3,3,3],[1,2,2,3,4],[1,2,3]]

ghci> b !! 2

[1,2,2,3,4]

Lists within a list can be of different lengths, but they can’t be of differ-
ent types. Just like you can’t have a list that has some characters and some
numbers as elements, you also can’t have a list that contains some lists of
characters and some lists of numbers.

Comparing Lists
Lists can be compared if the items they contain can be compared. When
using <, <=, >= and > to compare two lists, they are compared in lexicograph-
ical order. This means that first the two list heads are compared, and if
they’re equal, the second elements are compared. If the second elements
are also equal, the third elements are compared, and so on, until differing
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elements are found. The order of the two lists is determined by the order of
the first pair of differing elements.

For example, when we evaluate [3,4,2] < [3,4,3], Haskell sees that 3 and
3 are equal, so it compares 4 and 4. Those two are also equal, so it compares
2 and 3. 2 is smaller than 3, so it comes to the conclusion that the first list is
smaller than the second one. The same goes for <=, >=, and >.

ghci> [3,2,1] > [2,1,0]

True

ghci> [3,2,1] > [2,10,100]

True

ghci> [3,4,2] < [3,4,3]

True

ghci> [3,4,2] > [2,4]

True

ghci> [3,4,2] == [3,4,2]

True

Also, a nonempty list is always considered to be greater than an empty
one. This makes the ordering of two lists well defined in all cases, including
when one is a proper initial segment of the other.

More List Operations
Here are some more basic list functions, followed by examples of their
usage.

The head function takes a list and returns its head, or first element:

ghci> head [5,4,3,2,1]

5

The tail function takes a list and returns its tail. In other words, it chops
off a list’s head:

ghci> tail [5,4,3,2,1]

[4,3,2,1]

The last function returns a list’s last element:

ghci> last [5,4,3,2,1]

1

The init function takes a list and returns everything except its last
element:

ghci> init [5,4,3,2,1]

[5,4,3,2]
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To help us visualize these functions, we can think of a list as a monster,
like this:

But what happens if we try to get the head of an empty list?

ghci> head []

*** Exception: Prelude.head: empty list

Oh my—it blows up in our face! If there’s no monster, it doesn’t have
a head. When using head, tail, last, and init, be careful not to use them on
empty lists. This error cannot be caught at compile time, so it’s always good
practice to take precautions against accidentally telling Haskell to give you
elements from an empty list.

The length function takes a list and returns its length:

ghci> length [5,4,3,2,1]

5

The null function checks if a list is empty. If it is, it returns True, other-
wise it returns False.

ghci> null [1,2,3]

False

ghci> null []

True

The reverse function reverses a list:

ghci> reverse [5,4,3,2,1]

[1,2,3,4,5]
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The take function takes a number and a list. It extracts the specified
number elements from the beginning of the list, like this:

ghci> take 3 [5,4,3,2,1]

[5,4,3]

ghci> take 1 [3,9,3]

[3]

ghci> take 5 [1,2]

[1,2]

ghci> take 0 [6,6,6]

[]

If we try to take more elements than there are in the list, Haskell just
returns the entire list. If we take 0 elements, we get an empty list.

The drop function works in a similar way, only it drops (at most) the
specified number of elements from the beginning of a list:

ghci> drop 3 [8,4,2,1,5,6]

[1,5,6]

ghci> drop 0 [1,2,3,4]

[1,2,3,4]

ghci> drop 100 [1,2,3,4]

[]

The maximum function takes a list of items that can be put in some kind of
order and returns the largest element. The minimum function is similar, but it
returns the smallest item:

ghci> maximum [1,9,2,3,4]

9

ghci> minimum [8,4,2,1,5,6]

1

The sum function takes a list of numbers and returns their sum. The
product function takes a list of numbers and returns their product:

ghci> sum [5,2,1,6,3,2,5,7]

31

ghci> product [6,2,1,2]

24

ghci> product [1,2,5,6,7,9,2,0]

0

The elem function takes an item and a list of items and tells us if that
item is an element of the list. It’s usually called as an infix function because
it’s easier to read that way.
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ghci> 4 `elem` [3,4,5,6]

True

ghci> 10 `elem` [3,4,5,6]

False

Texas Ranges
What if we need a list made up of the num-
bers between 1 and 20? Sure, we could just
type them all out, but that’s not a solution
for gentlemen who demand excellence from
their programming languages. Instead, we’ll
use ranges. Ranges are used to make lists
composed of elements that can be enumer-
ated, or counted off in order.

For example, numbers can be enu-
merated: 1, 2, 3, 4, and so on. Characters
can also be enumerated: the alphabet is
an enumeration of characters from A to
Z. Names, however, can’t be enumerated.
(What comes after “John?” I don’t know!)

To make a list containing all the natu-
ral numbers from 1 to 20, you can just type
[1..20]. In Haskell, this is exactly the same as typing
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]. The only difference be-
tween the two is that writing out long enumeration sequences manually is
stupid.

Here are a few more examples:

ghci> [1..20]

[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]

ghci> ['a'..'z']

"abcdefghijklmnopqrstuvwxyz"

ghci> ['K'..'Z']

"KLMNOPQRSTUVWXYZ"

You can also specify a step between items in your range. What if we want
a list of every even number between 1 and 20? Or every third number be-
tween 1 and 20? It’s simply a matter of separating the first two elements with
a comma and specifying the upper limit:

ghci> [2,4..20]

[2,4,6,8,10,12,14,16,18,20]

ghci> [3,6..20]

[3,6,9,12,15,18]
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While they are pretty convenient, ranges with steps aren’t always as smart
as people expect them to be. For example, you can’t enter [1,2,4,8,16..100]

and expect to get all the powers of 2 that are no greater than 100. For one
thing, you can only specify a single step size. Also, some sequences that aren’t
arithmetic can’t be specified unambiguously by giving only their first few
terms.

NOTE To make a list with all the numbers from 20 down to 1, you can’t just type [20..1],
you have to type [20,19..1]. When you use a range without steps (like [20..1]),
Haskell will start with an empty list and then keep increasing the starting element
by one until it reaches or surpasses the end element in the range. Because 20 is
already greater than 1, the result will just be an empty list.

You can also use ranges to make infinite lists by not specifying an upper
limit. For example, let’s create a list containing the first 24 multiples of 13.
Here’s one way to do it:

ghci> [13,26..24*13]

[13,26,39,52,65,78,91,104,117,130,143,156,169,182,195,208,221,234,247,260,273,286,299,312]

But there’s actually a better way—using an infinite list:

ghci> take 24 [13,26..]

[13,26,39,52,65,78,91,104,117,130,143,156,169,182,195,208,221,234,247,260,273,286,299,312]

Because Haskell is lazy, it won’t try to evaluate the entire infinite list im-
mediately (which is good because it would never finish anyway). Instead, it
will wait to see which elements you need to get from that infinite list. In the
above example, it sees that you just want the first 24 elements, and it gladly
obliges.

Here are a few functions that can be used to produce long or infinite
lists:

• cycle takes a list and replicates its elements indefinitely to form an infi-
nite list. If you try to display the result, it will go on forever, so make sure
to slice it off somewhere:

ghci> take 10 (cycle [1,2,3])

[1,2,3,1,2,3,1,2,3,1]

ghci> take 12 (cycle "LOL ")

"LOL LOL LOL "

• repeat takes an element and produces an infinite list of just that element.
It’s like cycling a list with only one element:

ghci> take 10 (repeat 5)

[5,5,5,5,5,5,5,5,5,5]
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• replicate is an easier way to create a list composed of a single item. It
takes the length of the list and the item to replicate, as follows:

ghci> replicate 3 10

[10,10,10]

One final note about ranges: watch out when using them with floating-
point numbers! Because floating-point numbers, by their nature, only have
finite precision, using them in ranges can yield some pretty funky results, as
you can see here:

ghci> [0.1, 0.3 .. 1]

[0.1,0.3,0.5,0.7,0.8999999999999999,1.0999999999999999]

I’m a List Comprehension
List comprehensions are a way to filter,
transform, and combine lists.

They’re very similar to the mathe-
matical concept of set comprehensions.
Set comprehensions are normally used
for building sets out of other sets. An
example of a simple set comprehension
is: {2 · x |x ∈ N, x ≤ 10}. The exact
syntax used here isn’t crucial—what’s
important is that this statement says,
“take all the natural numbers less than
or equal to 10, multiply each one by 2,
and use these results to create a new set.”

If we wanted to write the same thing in Haskell, we could do something
like this with list operations: take 10 [2,4..]. However, we could also do the
same thing using list comprehensions, like this:

ghci> [x*2 | x <- [1..10]]

[2,4,6,8,10,12,14,16,18,20]

Let’s take a closer look at the list comprehension in this example to bet-
ter understand list comprehension syntax.

In [x*2 | x <- [1..10]], we say that we draw our elements from the list
[1..10]. [x <- [1..10]] means that x takes on the value of each element that
is drawn from [1..10]. In other words, we bind each element from [1..10] to
x. The part before the vertical pipe (|) is the output of the list comprehen-
sion. The output is the part where we specify how we want the elements that
we’ve drawn to be reflected in the resulting list. In this example, we say that
we want each element that is drawn from the list [1..10] to be doubled.

Starting Out 15



This may seem longer and more complicated than the first example,
but what if we want to do something more complex than just doubling these
numbers? This is where list comprehensions really come in handy.

For example, let’s add a condition (also called a predicate) to our com-
prehension. Predicates go at the end of the list comprehension and are sep-
arated from the rest of the comprehension by a comma. Let’s say we want
only the elements which, after being doubled, are greater than or equal
to 12:

ghci> [x*2 | x <- [1..10], x*2 >= 12]

[12,14,16,18,20]

What if we want all numbers from 50 to 100 whose remainder when
divided by 7 is 3? Easy:

ghci> [ x | x <- [50..100], x `mod` 7 == 3]

[52,59,66,73,80,87,94]

NOTE Weeding out parts of lists using predicates is also called filtering.

Now for another example. Let’s say we want a comprehension that
replaces every odd number greater than 10 with "BANG!", and every odd num-
ber less than 10 with "BOOM!". If a number isn’t odd, we throw it out of our
list. For convenience, we’ll put that comprehension inside a function so we
can easily reuse it:

boomBangs xs = [ if x < 10 then "BOOM!" else "BANG!" | x <- xs, odd x]

NOTE Remember, if you’re trying to define this function inside GHCi, you have to include a
let before the function name. However, if you’re defining this function inside a script
and then loading that script into GHCi, you don’t have to mess around with let.

The odd function returns True when passed an odd number, otherwise
it returns False. The element is included in the list only if all the predicates
evaluate to True.

ghci> boomBangs [7..13]

["BOOM!","BOOM!","BANG!","BANG!"]

We can include as many predicates as we want, all separated by commas.
For instance, if we wanted all numbers from 10 to 20 that are not 13, 15 or
19, we’d do:

ghci> [ x | x <- [10..20], x /= 13, x /= 15, x /= 19]

[10,11,12,14,16,17,18,20]
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Not only can we have multiple predicates in list comprehensions, we can
also draw values from several lists. When drawing values from several lists, ev-
ery combination of elements from these lists is reflected in the resulting list:

ghci> [x+y | x <- [1,2,3], y <- [10,100,1000]]

[11,101,1001,12,102,1002,13,103,1003]

Here, x is drawn from [1,2,3] and y is drawn from [10,100,1000]. These
two lists are combined in the following way. First, x becomes 1, and while x

is 1, y takes on every value from [10,100,1000]. Because the output of the list
comprehension is x+y, the values 11, 101, and 1001 are added to the beginning
of the resulting list (1 is added to 10, 100, and 1000). After that, x becomes
2 and the same thing happens, resulting in the elements 12, 102, and 1002

being added to the resulting list. The same goes when x draws the value 3.
In this manner, each element x from [1,2,3] is combined with each

element y from [10,100,1000] in all possible ways, and x+y is used to make
the resulting list from those combinations.

Here’s another example: if we have two lists, [2,5,10] and [8,10,11], and
we want to get the products of all possible combinations of numbers in those
lists, we could use the following comprehension:

ghci> [ x*y | x <- [2,5,10], y <- [8,10,11]]

[16,20,22,40,50,55,80,100,110]

As expected, the length of the new list is 9. Now, what if we wanted all
possible products that are more than 50? We can just add another predicate:

ghci> [ x*y | x <- [2,5,10], y <- [8,10,11], x*y > 50]

[55,80,100,110]

For epic hilarity, let’s make a list comprehension that combines a list of
adjectives and a list of nouns.

ghci> let nouns = ["hobo","frog","pope"]

ghci> let adjectives = ["lazy","grouchy","scheming"]

ghci> [adjective ++ " " ++ noun | adjective <- adjectives, noun <- nouns]

["lazy hobo","lazy frog","lazy pope","grouchy hobo","grouchy frog",

"grouchy pope","scheming hobo","scheming frog","scheming pope"]

We can even use list comprehensions to write our own version of the
length function! We’ll call it length'. This function will replace every element
in a list with 1, then add them all up with sum, yielding the length of the list.

length' xs = sum [1 | _ <- xs]
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Here we use underscore (_) as a temporary variable to store the items
as we draw them from the input list, since we don’t actually care about the
values.

Remember, strings are lists too, so we can use list comprehensions to
process and produce strings. Here’s an example of a function that takes a
string and removes all the lowercase letters from it:

removeNonUppercase st = [ c | c <- st, c `elem` ['A'..'Z']]

The predicate here does all the work. It says that the character will be
included in the new list only if it’s an element of the list ['A'..'Z']. We can
load the function in GHCi and test it out:

ghci> removeNonUppercase "Hahaha! Ahahaha!"

"HA"

ghci> removeNonUppercase "IdontLIKEFROGS"

"ILIKEFROGS"

You can also create nested list comprehensions if you’re operating on
lists that contain lists. For example, let’s take a list that contains several lists
of numbers and remove all the odd numbers without flattening the list:

ghci> let xxs = [[1,3,5,2,3,1,2,4,5],[1,2,3,4,5,6,7,8,9],[1,2,4,2,1,6,3,1,3,2,3,6]]

ghci> [ [ x | x <- xs, even x ] | xs <- xxs]

[[2,2,4],[2,4,6,8],[2,4,2,6,2,6]]

Here the output of the outer list comprehension is another list compre-
hension. A list comprehension always results in a list of something, so we
know that the result here will be a list of lists of numbers.

NOTE You can split list comprehensions across several lines to improve their readability. If
you’re not in GHCi, this can be a great help, especially when dealing with nested
comprehensions.

Tuples
Tuples are used to store several heterogeneous
elements as a single value.

In some ways, tuples are a lot like lists. How-
ever, there are some fundamental differences.
First, as mentioned, tuples are heterogeneous.
This means that a single tuple can store elements
of several different types. Second, tuples have
a fixed size—you need to know how many ele-
ments you’ll be storing ahead of time.
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Tuples are surrounded by parentheses, and their components are sepa-
rated by commas:

ghci> (1, 3)

(1,3)

ghci> (3, 'a', "hello")

(3,'a',"hello")

ghci> (50, 50.4, "hello", 'b')

(50,50.4,"hello",'b')

Using Tuples
As an example of when tuples would be useful, let’s think about how we’d
represent a two-dimensional vector in Haskell. One way would be to use a
two item list, in the form of [x,y]. But suppose we wanted to make a list of
vectors, to represent the corners of a two-dimensional shape in a coordinate
plane. We could just create a list of lists, like this: [[1,2],[8,11],[4,5]].

The problem with this method, however, is that we could also make a
list like [[1,2],[8,11,5],[4,5]] and try to use it in the place of a list of vectors.
Even though it doesn’t make sense as a list of vectors, Haskell has no prob-
lem with this list appearing wherever the previous list can, since both are of
the same type (a list of lists of numbers). This could make it more compli-
cated to write functions to manipulate vectors and shapes.

In contrast, a tuple of size two (also called a pair) and a tuple of size
three (also called a triple) are treated as two distinct types, which means a list
can’t be composed of both pairs and triples. This makes tuples much more
useful for representing vectors.

We can change our vectors to tuples by surrounding them with paren-
theses instead of square brackets, like this: [(1,2),(8,11),(4,5)]. Now, if we
try to mix pairs and triples, we get an error, like this:

ghci> [(1,2),(8,11,5),(4,5)]

<interactive>:1:8: error:

    Couldn't match expected type `(t, t1)'

        with actual type `(Integer, Integer, Integer)'

    In the expression: (8, 11, 5)

    In the expression: [(1, 2), (8, 11, 5), (4, 5)]

    In an equation for `it': it = [(1, 2), (8, 11, 5), (4, 5)]

    Relevant bindings include

        it :: [(t, t1)] (bound at <interactive>:1:1)

Haskell also considers tuples that have the same length but contain 
different types of data to be distinct types of tuples. For example, you can’t 
make a list of tuples like [(1,2),("One",2)], because the first is a pair of num-
bers, and the second is a pair containing a string followed by a number.

Tuples can be used to easily represent a wide variety of data. For in-
stance, if we wanted to represent someone’s name and age in Haskell, we 
could use a triple: ("Christopher", "Walken", 55).
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Remember, tuples are of a fixed size—you should only use them when
you know in advance how many elements you’ll need. The reason tuples are
so rigid in this way is that, as mentioned, the size of a tuple is treated as part
of its type. Unfortunately, this means that you can’t write a general function
to append an element to a tuple—you’d have to write a function for append-
ing to a pair (to produce a triple), another one for appending to a triple (to
produce a 4-tuple), another one for appending to a 4-tuple, and so on.

Like lists, tuples can be compared with each other if their components
can be compared. However, unlike lists, you can’t compare two tuples of
different sizes.

Although there are singleton lists, there’s no such thing as a singleton
tuple. It makes sense when you think about it: a singleton tuple’s properties
would simply be those of the value it contains, so distinguishing a new type
wouldn’t give us any benefit.

Using Pairs
Storing data in pairs is very common in Haskell, and there are some useful
functions in place to manipulate them. Here are two functions that operate
on pairs:

• fst takes a pair and returns its first component:

ghci> fst (8, 11)

8

ghci> fst ("Wow", False)

"Wow"

• snd takes a pair and—surprise!—returns its second component:

ghci> snd (8, 11)

11

ghci> snd ("Wow", False)

False

NOTE These functions only operate on pairs. They won’t work on triples, 4-tuples, 5-tuples,
etc. We’ll go over extracting data from tuples in different ways a bit later.

The zip function is a cool way to produce a list of pairs. It takes two lists,
then “zips” them together into one list by joining the matching elements
into pairs. It’s a really simple function, but it can be very useful when you
want to combine two lists in a particular way or traverse two lists simultane-
ously. Here’s a demonstration:

ghci> zip [1,2,3,4,5] [5,5,5,5,5]

[(1,5),(2,5),(3,5),(4,5),(5,5)]

ghci> zip [1..5] ["one", "two", "three", "four", "five"]

[(1,"one"),(2,"two"),(3,"three"),(4,"four"),(5,"five")]

20 Chapter 1



Notice that because pairs can have different types in them, zip can take
two lists that contain elements of different types. But what happens if the
lengths of the lists don’t match?

ghci> zip [5,3,2,6,2,7,2,5,4,6,6] ["im","a","turtle"]

[(5,"im"),(3,"a"),(2,"turtle")]

As you can see in the above example, only as much of the longer list is
used as needed—the rest is simply ignored. And because Haskell uses lazy
evaluation, we can even zip finite lists with infinite lists:

ghci> zip [1..] ["apple", "orange", "cherry", "mango"]

[(1,"apple"),(2,"orange"),(3,"cherry"),(4,"mango")]

Finding the Right Triangle
Let’s wrap things up with a problem that combines tuples and list com-
prehensions. We’ll use Haskell to find a right triangle that fits all of these
conditions:

• The lengths of the three sides are all integers.

• The length of each side is less than or equal to 10.

• The triangle’s perimeter (the sum of the side lengths) is equal to 24.

A triangle is a right triangle if one of its
angles is a right angle (a 90-degree angle).
Right triangles have the useful property
that if you square the lengths of the sides
forming the right angle and then add those
squares, that sum is equal to the square of
the length of the side that’s opposite the
right angle. In the picture, the sides that lie
next to the right angle are labeled a and b,
and the side opposite the right angle is la-
beled c. We call that side the hypotenuse.

As a first step, let’s generate all possible triples with elements that are
less than or equal to 10:

ghci> let triples = [ (a,b,c) | c <- [1..10], a <- [1..10], b <- [1..10] ]

We’re drawing from three lists on the right-hand side of the compre-
hension, and the output expression on the left combines them into a list of
triples. If you evaluate triples in GHCi, you’ll get a list that is 1,000 entries
long, so we won’t show it here.

Next, we’ll filter out triples that don’t represent right triangles by adding
a predicate that checks to see if the Pythagorean theorem (a^2 + b^2 == c^2)
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holds. We’ll also modify the function to ensure that side a isn’t larger than
the hypotenuse c, and that side b isn’t larger than side a:

ghci> let rightTriangles = [ (a,b,c) | c <- [1..10], a <- [1..c], b <- [1..a],

a^2 + b^2 == c^2]

Notice how we changed the ranges in the lists that we draw values from.
This ensures that we don’t check unnecessary triples, such as ones where
side b is larger than the hypotenuse (in a right triangle, the hypotenuse is
always the longest side). We also assumed that side b is never larger than
side a. This doesn’t harm anything, because for every triple (a,b,c) with
a^2 + b^2 == c^2 and b > a that is left out of consideration, the triple (b,a,c)

is included—and is the same triangle, just with the legs reversed. (Other-
wise, our list of results would contain pairs of triangles that are essentially
the same.)

NOTE In GHCi, you can’t break up definitions and expressions across multiple lines. In this
book, however, we occasionally need to break up a single line so the code can all fit on
the page. (Otherwise the book would have to be really wide, and it wouldn’t fit on any
normal shelf—and then you’d have to buy bigger shelves!)

We’re almost done. Now, we just need to modify the function to only
output the triangles whose perimeter equals 24:

ghci> let rightTriangles' = [ (a,b,c) | c <- [1..10], a <- [1..c], b <- [1..a],

a^2 + b^2 == c^2, a+b+c == 24]

ghci> rightTriangles'

[(6,8,10)]

And there’s our answer! This is a common pattern in functional pro-
gramming: you start with a certain set of candidate solutions, and succes-
sively apply transformations and filters to them until you’ve narrowed the
possibilities down to the one solution (or several solutions) that you’re
after.
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2
BELIEVE THE TYPE

One of Haskell’s greatest
strengths is its powerful type
system.

In Haskell, every expression’s type
is known at compile time, which leads
to safer code. If you write a program
that tries to divide a Boolean type with
a number, it won’t compile. This is
good because it’s better to catch those

kinds of errors at compile time, rather than having your program crash later
on. Everything in Haskell has a type, so the compiler can reason quite a lot
about your program before compiling it.

Unlike Java or Pascal, Haskell has type inference. If we write a number,
for example, we don’t need to tell Haskell it’s a number, because it can infer
that on its own.

So far, we’ve covered some of the basics of Haskell with only a very su-
perficial glance at types, but understanding the type system is a very impor-
tant part of learning Haskell.



Explicit Type Declaration
We can use GHCi to examine the types of some expressions. We’ll do that
by using the :t command which, followed by any valid expression, tells us its
type. Let’s give it a whirl:

ghci> :t 'a'

'a' :: Char

ghci> :t True

True :: Bool

ghci> :t "HELLO!"

"HELLO!" :: [Char]

ghci> :t (True, 'a')

(True, 'a') :: (Bool, Char)

ghci> :t 4 == 5

4 == 5 :: Bool

The :: operator here is read as “has
type of.” Explicit types are always de-
noted with the first letter in uppercase.
'a' has a type of Char, which stands for
character. True is a Bool, or a Boolean
type. "HELLO!", which is a string, shows
its type as [Char]. The square brack-
ets denote a list, so we read that as it
being a list of characters. Unlike lists,
each tuple length has its own type.
So the tuple (True, 'a') has a type of
(Bool, Char), and ('a','b','c') has a
type of (Char, Char, Char). 4 == 5 will
always return False, so its type is Bool.

Functions also have types. When writing our own functions, we can choose
to give them an explicit type declaration. This is generally considered to be
good practice (except when writing very short functions). From here on,
we’ll give all the functions that we make type declarations.

Remember the list comprehension we made in Chapter 1—the one
that filters out a string’s lowercase letters? Here’s how it looks with a type
declaration:

removeNonUppercase :: [Char] -> [Char]

removeNonUppercase st = [ c | c <- st, c `elem` ['A'..'Z']]

The removeNonUppercase function has a type of [Char] -> [Char], meaning
that it takes one string as a parameter and returns another as a result.
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But how do we specify the type of a function that takes several param-
eters? Here’s a simple function that takes three integers and adds them
together:

addThree :: Int -> Int -> Int -> Int

addThree x y z = x + y + z

The parameters and the return type are separated by -> characters, with
the return type always coming last in the declaration. (In Chapter 5, you’ll
see why they’re all separated with ->, instead of having a more explicit
distinction.)

If you want to give your function a type declaration, but are unsure as to
what it should be, you can always just write the function without it, and then
check it with :t. Since functions are expressions, :t works on them in the
same way as you saw at the beginning of this section.

Common Haskell Types
Let’s take a look at some common Haskell types, which are used for repre-
senting basic things like numbers, characters, and Boolean values. Here’s an
overview:

NOTE

• Int stands for integer. It’s used for whole numbers. 7 can be an Int, but 
7.2 cannot. Int is bounded, which means that it has a minimum value and 
a maximum value.
We’re using the GHC compiler, where the range of Int is determined by the size of 
a machine word on your computer. So if you have a 64-bit CPU, it’s likely that the 
lowest Int on your system is −263, and the highest is 263−1. 

• Integer is also used to store integers, but it’s not bounded, so it can be
used to represent really big numbers. (And I mean really big!) However,
Int is more efficient. As an example, try saving the following function to
a file:

factorial :: Integer -> Integer

factorial n = product [1..n]

Then load it into GHCi with :l and test it:

ghci> factorial 50

30414093201713378043612608166064768844377641568960512000000000000

• Float is a real floating-point number with single precision. Add the fol-
lowing function to the file you’ve been working in:

circumference :: Float -> Float

circumference r = 2 * pi * r
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Then load and test it:

ghci> circumference 4.0

25.132742

• Double is a real floating-point number with double the precision. Double-
precision numeric types use twice as many bits to represent numbers.
The extra bits increase their precision at the cost of hogging more mem-
ory. Here’s another function to add to your file:

circumference' :: Double -> Double

circumference' r = 2 * pi * r

Now load and test it. Pay particular attention to the difference in
precision between circumference and circumference'.

ghci> circumference' 4.0

25.132741228718345

• Bool is a Boolean type. It can have only two values: True and False.

• Char represents a Unicode character. It’s denoted by single quotes. A list
of characters is a string.

• Tuples are types, but their definition depends on their length as well as
the types of their components. So, theoretically, there is an infinite num-
ber of tuple types. (In practice, tuples can have at most 62 elements—far
more than you’ll ever need.) Note that the empty tuple () is also a type,
which can have only a single value: ().

Type Variables
It makes sense for some functions to be able to operate on various types. For
instance, the head function takes a list and returns the head element of that
list. It doesn’t really matter if the list contains numbers, characters, or even
more lists! The function should be able to work with lists that contain just
about anything.

What do you think the type of the head function is? Let’s check with the
:t function:

ghci> :t head

head :: [a] -> a

What is this a? Remember that type names start with capital letters, so
it can’t be a type. This is actually an example of a type variable, which means
that a can be of any type.
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Type variables allow functions to operate
on values of various types in a type-safe manner.
This is a lot like generics in other programming
languages. However, Haskell’s version is much
more powerful, since it allows us to easily write
very general functions.

Functions that use type variables are called
polymorphic functions. The type declaration of

head states that it takes a list of any type and returns one element of that type.

NOTE Although type variables can have names that are longer than one character, we usually
give them names like a, b, c, d, and so on.

Remember fst? It returns the first item in a pair. Let’s examine its type:

ghci> :t fst

fst :: (a, b) -> a

You can see that fst takes a tuple and returns an element that is of the
same type as its first item. That’s why we can use fst on a pair that contains
items of any two types. Note that even though a and b are different type vari-
ables, they don’t necessarily need to be different types. This just means that
the first item’s type and the return value’s type will be the same.

Type Classes 101
A type class is an interface that de-
fines some behavior. If a type is an
instance of a type class, then it sup-
ports and implements the behavior
the type class describes.

More specifically, a type class
specifies a bunch of functions, and
when we decide to make a type
an instance of a type class, we de-
fine what those functions mean for
that type.

A type class that defines equality is a good example. The values of many
types can be compared for equality by using the == operator. Let’s check the
type signature of this operator:

ghci> :t (==)

(==) :: (Eq a) => a -> a -> Bool

Note that the equality operator (==) is actually a function. So are +, *,
-, /, and almost every other operator. If a function is composed of only
special characters, it’s considered an infix function by default. If we want
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to examine its type, pass it to another function, or call it as a prefix function,
we need to surround it in parentheses, as in the preceding example.

This example shows something new: the => symbol. Everything before
this symbol is called a class constraint. We can read this type declaration like
this: The equality function takes any two values that are of the same type and
returns a Bool. The type of those two values must be an instance of the Eq

class.
The Eq type class provides an interface for testing for equality. If it makes

sense for two items of a particular type to be compared for equality, then
that type can be an instance of the Eq type class. All standard Haskell types
(except for input/output types and functions) are instances of Eq.

NOTE It’s important to note that type classes are not the same as classes in object-oriented
programming languages.

Let’s look at some of the most common Haskell type classes, which en-
able our types to be easily compared for equality and order, printed as strings,
and so on.

The Eq Type Class
As we’ve discussed, Eq is used for types that support equality testing. The
functions its instances implement are == and /=. This means that if there’s
an Eq class constraint for a type variable in a function, it uses == or /= some-
where inside its definition. When a type implements a function, that means
it defines what the function does when used with that particular type. Here
are some examples of performing these operations on various instances
of Eq:

ghci> 5 == 5

True

ghci> 5 /= 5

False

ghci> 'a' == 'a'

True

ghci> "Ho Ho" == "Ho Ho"

True

ghci> 3.432 == 3.432

True

The Ord Type Class
Ord is a type class for types whose values can be put in some order. For exam-
ple, let’s look at the type of the greater-than (>) operator:

ghci> :t (>)

(>) :: (Ord a) => a -> a -> Bool
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The type of > is similar to the type of ==. It takes two items as parameters
and returns a Bool, which tells us if some relation between those two things
holds or not.

All the types we’ve covered so far (again, except for functions) are in-
stances of Ord. Ord covers all the standard comparison functions such as >, <,
>=, and <=.

The compare function takes two values whose type is an Ord instance and
returns an Ordering. Ordering is a type that can be GT, LT, or EQ, which repre-
sent greater than, lesser than, or equal, respectively.

ghci> "Abrakadabra" < "Zebra"

True

ghci> "Abrakadabra" `compare` "Zebra"

LT

ghci> 5 >= 2

True

ghci> 5 `compare` 3

GT

ghci> 'b' > 'a'

True

The Show Type Class
Values whose types are instances of the Show type class can be represented
as strings. All the types we’ve covered so far (except for functions) are in-
stances of Show. The most commonly used function that operates on instances
of this type class is show, which prints the given value as a string:

ghci> show 3

"3"

ghci> show 5.334

"5.334"

ghci> show True

"True"

The Read Type Class
Read can be considered the opposite type class of Show. Again, all the types
we’ve covered so far are instances of this type class. The read function takes a
string and returns a value whose type is an instance of Read:

ghci> read "True" || False

True

ghci> read "8.2" + 3.8

12.0

ghci> read "5" - 2

3
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ghci> read "[1,2,3,4]" ++ [3]

[1,2,3,4,3]

So far so good. But what happens if we try entering read "4"?

ghci> read "4"

*** Exception: Prelude.read:no parse

GHCi is telling us that it doesn’t know what we want in return. Notice
that in the previous uses of read, we did something with the result afterward,
which let GHCi infer the kind of result we wanted. If we used it as a Boolean,
for example, it knew it had to return a Bool. But now it knows we want some
type that is part of the Read class, but it doesn’t know which one. Let’s take a
look at the type signature of read:

ghci> :t read

read :: (Read a) => String -> a

NOTE String is just another name for [Char]. String and [Char] can be used interchange-
ably, but we’ll mostly be sticking to String from now on because it’s easier to write and
more readable.

We can see that the read function returns a value whose type is an in-
stance of Read, but if we use that result in some way, it has no way of knowing
which type. To solve this problem, we can use type annotations.

Type annotations are a way to explicitly tell Haskell what the type of an
expression should be. We do this by adding :: to the end of the expression
and then specifying a type:

ghci> read "5" :: Int

5

ghci> read "5" :: Float

5.0

ghci> (read "5" :: Float) * 4

20.0

ghci> read "[1,2,3,4]" :: [Int]

[1,2,3,4]

ghci> read "(3, 'a')" :: (Int, Char)

(3, 'a')

The compiler can infer the type of most expressions by itself. However,
sometimes the compiler doesn’t know whether to return a value of type
Int or Float for an expression like read "5". To see what the type is, Haskell
would need to actually evaluate read "5". But since Haskell is a statically
typed language, it needs to know all the types before the code is compiled
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(or in the case of GHCi, evaluated). So we need to tell Haskell, “Hey, this
expression should have this type, in case you didn’t know!”

We can give Haskell only the minimum amount of information it needs
to figure out which type of value read should return. For instance, if we’re
using read and then cramming its result into a list, Haskell can use the list to
figure out which type we want by looking at the other elements of the list:

ghci> [read "True", False, True, False]

[True, False, True, False]

Since we used read "True" as an element in a list of Bool values, Haskell
sees that the type of read "True" must also be Bool.

The Enum Type Class
Enum instances are sequentially ordered types—their values can be enumer-
ated. The main advantage of the Enum type class is that we can use its values
in list ranges. They also have defined successors and predecessors, which we
can get with the succ and pred functions. Some examples of types in this class
are (), Bool, Char, Ordering, Int, Integer, Float, and Double.

ghci> ['a'..'e']

"abcde"

ghci> [LT .. GT]

[LT,EQ,GT]

ghci> [3 .. 5]

[3,4,5]

ghci> succ 'B'

'C'

The Bounded Type Class
Instances of the Bounded type class have an upper bound and a lower bound,
which can be checked by using the minBound and maxBound functions:

ghci> minBound :: Int

-2147483648

ghci> maxBound :: Char

'\1114111'

ghci> maxBound :: Bool

True

ghci> minBound :: Bool

False

The minBound and maxBound functions are interesting because they have a
type of (Bounded a) => a. In a sense, they are polymorphic constants.
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Note that tuples whose components are all instances of Bounded are also
considered to be instances of Bounded themselves:

ghci> maxBound :: (Bool, Int, Char)

(True,2147483647,'\1114111')

The Num Type Class
Num is a numeric type class. Its instances can act like numbers. Let’s examine
the type of a number:

ghci> :t 20

20 :: (Num t) => t

It appears that whole numbers are also polymorphic constants. They can
act like any type that’s an instance of the Num type class (Int, Integer, Float, or
Double):

ghci> 20 :: Int

20

ghci> 20 :: Integer

20

ghci> 20 :: Float

20.0

ghci> 20 :: Double

20.0

For example, we can examine the type of the * operator:

ghci> :t (*)

(*) :: (Num a) => a -> a -> a

This shows that * accepts two numbers and returns a number of the
same type. Because of this type constraint, (5 :: Int) * (6 :: Integer) will
result in a type error, while 5 * (6 :: Integer) will work just fine. 5 can act
like either an Integer or an Int, but not both at the same time.

To be an instance of Num, a type must already be in Show and Eq.

The Floating Type Class
The Floating type class includes the Float and Double types, which are used to
store floating-point numbers.

Functions that take and return values that are instances of the Floating

type class need their results to be represented with floating-point numbers in
order to do meaningful computations. Some examples are sin, cos, and sqrt.
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The Integral Type Class
Integral is another numeric type class. While Num includes all numbers, in-
cluding real number integers, the Integral class includes only integral (whole)
numbers. This type class includes the Int and Integer types.

One particularly useful function for dealing with numbers is fromIntegral.
It has the following type declaration:

fromIntegral :: (Integral a, Num b) => a -> b

NOTE Notice that fromIntegral has several class constraints in its type signature. That’s
completely valid—multiple class constraints are separated by commas inside the
parentheses.

From its type signature, we can see that fromIntegral takes an integral
number and turns it into a more general number. This is very useful when
you want integral and floating-point types to work together nicely. For in-
stance, the length function has this type declaration:

length :: [a] -> Int

This means that if we try to get the length of a list and add it to 3.2, we’ll
get an error (because we tried to add an Int to a floating-point number).
To get around this, we can use fromIntegral, like this:

ghci> fromIntegral (length [1,2,3,4]) + 3.2

7.2

Some Final Notes on Type Classes
Because a type class defines an abstract interface, one type can be an in-
stance of many type classes, and one type class can have many types as in-
stances. For example, the Char type is an instance of many type classes, two
of them being Eq and Ord, because we can check if two characters are equal
as well as compare them in alphabetical order.

Sometimes a type must first be an instance of one type class to be al-
lowed to become an instance of another. For example, to be an instance
of Ord, a type must first be an instance of Eq. In other words, being an in-
stance of Eq is a prerequisite for being an instance of Ord. This makes sense if
you think about it, because if you can compare two things for ordering, you
should also be able to tell if those things are equal.
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3
SYNTAX IN FUNCTIONS

In this chapter, we’ll take a look at the syntax that en-
ables you to write Haskell functions in a readable and
sensible manner. We’ll look at how to quickly decon-
struct values, avoid big if else chains, and store the
results of intermediate computations so that you can
reuse them multiple times.

Pattern Matching

Pattern matching is used to specify patterns to which
some data should conform and to deconstruct the
data according to those patterns.

When defining functions in Haskell, you can
create separate function bodies for different pat-
terns. This leads to simple, readable code. You
can pattern match on pretty much any data type—



numbers, characters, lists, tuples, and so on. For example, let’s write a sim-
ple function that checks if the number we pass to it is a 7:

lucky :: Int -> String

lucky 7 = "LUCKY NUMBER SEVEN!"

lucky x = "Sorry, you're out of luck, pal!"

When you call lucky, the patterns will be checked from top to bottom.
When the passed argument conforms to a specified pattern, the correspond-
ing function body will be used. The only way a number can conform to the
first pattern here is if it is a 7. In that case, the function body "LUCKY NUMBER

SEVEN!" is used. If it’s not a 7, it falls through to the second pattern, which
matches anything and binds it to x.

When we use a name that starts with a lowercase letter (like x, y, or
myNumber) in our pattern instead of an actual value (like 7), it will act as a
catchall pattern. That pattern will always match the supplied value, and we
will be able to refer to that value by the name that we used for the pattern.

The sample function could have also been easily implemented by using
an if expression. However, what if we wanted to write a function that takes a
number and prints it out as a word if it’s between 1 and 5; otherwise, it prints
"Not between 1 and 5"? Without pattern matching, we would need to make a
pretty convoluted if/then/else tree. However, pattern matching makes this a
simple function to write:

sayMe :: Int -> String

sayMe 1 = "One!"

sayMe 2 = "Two!"

sayMe 3 = "Three!"

sayMe 4 = "Four!"

sayMe 5 = "Five!"

sayMe x = "Not between 1 and 5"

Note that if we moved the last pattern (sayMe x) to the top, the function
would always print "Not between 1 and 5", because the numbers wouldn’t have
a chance to fall through and be checked for any other patterns.

Remember the factorial function we implemented in the previous chap-
ter? We defined the factorial of a number n as product [1..n]. We can also
define a factorial function recursively. A function is defined recursively if it
calls itself inside its own definition. The factorial function is usually defined
this way in mathematics. We start by saying that the factorial of 0 is 1. Then
we state that the factorial of any positive integer is that integer multiplied by
the factorial of its predecessor. Here’s how that looks translated into Haskell
terms:

factorial :: Int -> Int

factorial 0 = 1

factorial n = n * factorial (n - 1)

36 Chapter 3



This is the first time we’ve defined a function recursively. Recursion is
important in Haskell, and we’ll take a closer look at it in Chapter 4.

Pattern matching can also fail. For instance, we can define a function
like this:

charName :: Char -> String

charName 'a' = "Albert"

charName 'b' = "Broseph"

charName 'c' = "Cecil"

This function seems to work fine at first. However, if we try to call it with
an input that it didn’t expect, we get an error:

ghci> charName 'a'

"Albert"

ghci> charName 'b'

"Broseph"

ghci> charName 'h'

"*** Exception: tut.hs:(53,0)-(55,21): Non-exhaustive patterns in function charName

It complains that we have “non-exhaustive patterns,” and rightfully so.
When making patterns, we should always include a catchall pattern at the
end so our program doesn’t crash if we get some unexpected input.

Pattern Matching with Tuples
Pattern matching can also be used on tuples. What if we wanted to write a
function that takes two vectors in 2D space (represented as pairs) and adds
them together? (To add two vectors, we add their x components separately
and their y components separately.) Here’s how we might have done this if
we didn’t know about pattern matching:

addVectors :: (Double, Double) -> (Double, Double) -> (Double, Double)

addVectors a b = (fst a + fst b, snd a + snd b)

Well, that works, but there’s a better way to do it. Let’s modify the func-
tion so that it uses pattern matching:

addVectors :: (Double, Double) -> (Double, Double) -> (Double, Double)

addVectors (x1, y1) (x2, y2) = (x1 + x2, y1 + y2)

This is much better. It makes it clear that the parameters are tuples, and
increases readability by giving names to the tuple components right away.
Note that this is already a catchall pattern. The type of addVectors is the same
in both cases, so we are guaranteed to get two pairs as parameters:

ghci> :t addVectors

addVectors :: (Double, Double) -> (Double, Double) -> (Double, Double)
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fst and snd extract the components of pairs. But what about triples?
Well, there are no provided functions to extract the third component in a
triple, but we can make our own:

first :: (a, b, c) -> a

first (x, _, _) = x

second :: (a, b, c) -> b

second (_, y, _) = y

third :: (a, b, c) -> c

third (_, _, z) = z

The _ character means the same thing it does in list comprehensions.
We really don’t care about that part, so we just use a _ to represent a generic
variable.

Pattern Matching with Lists and List Comprehensions
You can also use pattern matching in list comprehensions, like this:

ghci> let xs = [(1,3),(4,3),(2,4),(5,3),(5,6),(3,1)]

ghci> [a+b | (a, b) <- xs]

[4,7,6,8,11,4]

If a pattern match fails, the list comprehension will just move on to the
next element, and the element that failed won’t be included in the result-
ing list.

Regular lists can also be used in pattern matching. You can match with
the empty list [] or any pattern that involves : and the empty list. (Remem-
ber that [1,2,3] is just syntactic sugar for 1:2:3:[].) A pattern like x:xs will
bind the head of the list to x and the rest of it to xs. If the list has only a sin-
gle element, then xs will simply be the empty list.

NOTE Haskell programmers use the x:xs pattern often, especially with recursive functions.
However, patterns that include the : character will match only against lists of length
one or more.

Now that we’ve looked at how to pattern match against lists, let’s make
our own implementation of the head function:

head' :: [a] -> a

head' [] = error "Can't call head on an empty list, dummy!"

head' (x:_) = x

38 Chapter 3



After loading the function, we can test it, like this:

ghci> head' [4,5,6]

4

ghci> head' "Hello"

'H'

Notice that if we want to bind something to several variables (even if
one of them is just _), we must surround them in parentheses so Haskell can
properly parse them.

Also notice the use of the error function. This function takes a string as
an argument and generates a runtime error using that string. It essentially
crashes your program, so it’s not good to use it too much. (But calling head

on an empty list just doesn’t make sense!)
As another example, let’s write a simple function that takes a list and

prints its elements out in a wordy, inconvenient format:

tell :: (Show a) => [a] -> String

tell [] = "The list is empty"

tell (x:[]) = "The list has one element: " ++ show x

tell (x:y:[]) = "The list has two elements: " ++ show x ++ " and " ++ show y

tell (x:y:_) = "This list is long. The first two elements are: " ++ show x

++ " and " ++ show y

Note that (x:[]) and (x:y:[]) could be rewritten as [x] and [x,y]. How-
ever, we can’t rewrite (x:y:_) using square brackets, because it matches any
list of length 2 or more.

Here are some examples of using this function:

ghci> tell [1]

"The list has one element: 1"

ghci> tell [True,False]

"The list has two elements: True and False"

ghci> tell [1,2,3,4]

"This list is long. The first two elements are: 1 and 2"

ghci> tell []

"The list is empty"

The tell function is safe to use because it can match to the empty list,
a singleton list, a list with two elements, and a list with more than two ele-
ments. It knows how to handle lists of any length, and so it will always return
a useful value.
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How about if instead we defined a function that only knows how to han-
dle lists with three elements? Here’s an example of such a function:

badAdd :: (Num a) => [a] -> a

badAdd (x:y:z:[]) = x + y + z

Here’s what happens when we give it a list that it doesn’t expect:

ghci> badAdd [100,20]

*** Exception: examples.hs:8:0-25: Non-exhaustive patterns in function badAdd

Yikes! Not cool! If this happened inside a compiled program instead of
in GHCi, the program would crash.

One final thing to note about pattern matching with lists: You can’t
use the ++ operator in pattern matches. (Remember that the ++ operator
joins two lists into one.) For instance, if you tried to pattern match against
(xs ++ ys), Haskell wouldn’t be able to tell what would be in the xs list and
what would be in the ys list. Though it seems logical to match stuff against
(xs ++ [x,y,z]), or even just (xs ++ [x]), because of the nature of lists, you
can’t.

As-patterns
There’s also a special type of pattern called an as-pattern. As-patterns allow
you to break up an item according to a pattern, while still keeping a refer-
ence to the entire original item. To create an as-pattern, precede a regular
pattern with a name and an @ character.

For instance, we can create the following as-pattern: xs@(x:y:ys). This
pattern will match exactly the same lists that x:y:ys would, but you can easily
access the entire original list using xs, instead of needing to type out x:y:ys
every time. Here’s an example of a simple function that uses an as-pattern:

firstLetter :: String -> String

firstLetter "" = "Empty string, whoops!"

firstLetter all@(x:xs) = "The first letter of " ++ all ++ " is " ++ [x]

After loading the function, we can test it as follows:

ghci> firstLetter "Dracula"

"The first letter of Dracula is D"

Guards, Guards!
We use patterns to check if the values passed to our functions are constructed
in a certain way. We use guards when we want our function to check if some
property of those passed values is true or false. That sounds a lot like an if
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expression, and it is very similar. However, guards are a lot
more readable when you have several conditions, and they
play nicely with patterns.

Let’s dive in and write a function that uses guards. This
function will tell you different things depending on your
body mass index (BMI). Your BMI is calculated by divid-
ing your weight (in kilograms) by your height (in meters)
squared. If your BMI is less than 18.5, you’re considered
underweight. If it’s anywhere from 18.5 to 25, you’re con-
sidered normal. A BMI of 25 to 30 is overweight, and more
than 30 is obese. (Note that this function won’t actually cal-
culate your BMI; it just takes it as an argument and then
tells you something.) Here’s the function:

bmiTell :: Double -> String

bmiTell bm

| bmi <= 18.5 = "You're underweight, eat more!"

| bmi <= 25.0 = "Looking good!"

| bmi <= 30.0 = "You're overweight. Let's work out together!"

| otherwise = "You're obese. Go see a doctor."

A guard is indicated by a pipe character (|), followed by a Boolean ex-
pression, followed by the function body that will be used if that expression
evaluates to True. If the expression evaluates to False, the function drops
through to the next guard, and the process repeats. Guards must be in-
dented by at least one space. (I like to indent them by four spaces so that
the code is more readable.)

For instance, if we call this function with a BMI of 24.3, it will first check
if that’s less than or equal to 18.5. Because it isn’t, it falls through to the next
guard. The check is carried out with the second guard, and because 24.3 is
less than 25.0, the second string is returned.

Guards are very reminiscent of a big if/else tree in imperative languages,
though they’re far more readable. While big if/else trees are usually frowned
upon, sometimes a problem is defined in such a discrete way that you can’t
get around them. Guards are a very nice alternative in these cases.

Many times, the last guard in a function is otherwise, which catches ev-
erything. If all the guards in a function evaluate to False, and we haven’t
provided an otherwise catchall guard, evaluation falls through to the next
pattern. (This is how patterns and guards play nicely together.) If no suit-
able guards or patterns are found, an error is thrown.

Of course, we can also use guards with functions that take multiple pa-
rameters. Let’s modify bmiTell so that it takes a height and weight, and calcu-
lates the BMI for us:

bmiTell :: Double -> Double -> String

bmiTell weight height

| weight / height ^ 2 <= 18.5 = "You're underweight, eat more!"

| weight / height ^ 2 <= 25.0 = "Looking good!"
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| weight / height ^ 2 <= 30.0 = "You're overweight. Let's work out together!"

| otherwise = "You're obese. Go see a doctor."

Now, let’s try it out:

ghci> bmiTell 85 1.90

"Looking good!"

Nice, Haskell says I look good.

NOTE A common newbie mistake is to put an equal sign (=) after the function name and
parameters, before the first guard. This will cause a syntax error.

As another simple example, let’s implement our own max function to
compare two items and return the larger one:

max' :: (Ord a) => a -> a -> a

max' a b

| a <= b = b

| otherwise = a

We can also implement our own compare function using guards:

myCompare :: (Ord a) => a -> a -> Ordering

a `myCompare` b

| a == b = EQ

| a <= b = LT

| otherwise = GT

ghci> 3 `myCompare` 2

GT

NOTE Not only can we call functions as infix with backticks, we can also define them using
backticks. Sometimes this makes them easier to read.

where?!
When programming, we usually want to avoid calculating the same value
over and over again. It’s much easier to calculate something only once and
store the result. In imperative programming languages, you would solve this
problem by storing the result of a computation in a variable. In this section,
you’ll learn how to use Haskell’s where keyword to store the results of inter-
mediate computations, which provides similar functionality.
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In the previous section, we defined a BMI calculator function like this:

bmiTell :: Double -> Double -> String

bmiTell weight height

| weight / height ^ 2 <= 18.5 = "You're underweight, eat more!"

| weight / height ^ 2 <= 25.0 = "Looking good!"

| weight / height ^ 2 <= 30.0 = "You're overweight. Let's work out together!"

| otherwise = "You're obese. Go see a doctor."

Notice that we repeat the BMI calculation three times in this code. We
can avoid this by using the where keyword to bind that value to a variable and
then using that variable in place of the BMI calculation, like this:

bmiTell :: Double -> Double -> String

bmiTell weight height

| bmi <= 18.5 = "You're underweight, eat more!"

| bmi <= 25.0 = "Looking good!"

| bmi <= 30.0 = "You're overweight. Let's work out together!"

| otherwise = "You're obese. Go see a doctor."

where bmi = weight / height ^ 2

We put the where keyword after the guards and then use it to define
one or more variables or functions. These names are visible across all the
guards. If we decide that we want to calculate BMI a bit differently, we need
to change it only once. This technique also improves readability by giving
names to things, and it can even make our programs faster, since our values
are calculated just once.

If we wanted to, we could even go a bit overboard and write our function
like this:

bmiTell :: Double -> Double -> String

bmiTell weight height

| bmi <= skinny = "You're underweight, eat more!"

| bmi <= normal = "Looking good!"

| bmi <= overweight = "You're overweight. Let's work out together!"

| otherwise = "You're obese. Go see a doctor."

where bmi = weight / height ^ 2

skinny = 18.5

normal = 25.0

overweight = 30.0

NOTE Notice that all the variable names are aligned in a single column. If you don’t align
them like this, Haskell will get confused, and it won’t know that they’re all part of the
same block.
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where’s Scope
The variables we define in the where section of a function are visible only to
that function, so we don’t need to worry about them polluting the name-
space of other functions. If we want to use a variable like this in several dif-
ferent functions, we must define it globally.

Also, where bindings are not shared across function bodies of different
patterns. For instance, suppose we want to write a function that takes a name
and greets the person nicely if it recognizes that name, but not so nicely if it
doesn’t. We might define it like this:

greet :: String -> String

greet "Juan" = niceGreeting ++ " Juan!"

greet "Fernando" = niceGreeting ++ " Fernando!"

greet name = badGreeting ++ " " ++ name

where niceGreeting = "Hello! So very nice to see you,"

badGreeting = "Oh! Pfft. It's you."

This function won’t work as written. Because where bindings aren’t shared
across function bodies of different patterns, only the last function body sees
the greetings defined by the where binding. To make this function work cor-
rectly, badGreeting and niceGreeting must be defined globally, like this:

badGreeting :: String

badGreeting = "Oh! Pfft. It's you."

niceGreeting :: String

niceGreeting = "Hello! So very nice to see you,"

greet :: String -> String

greet "Juan" = niceGreeting ++ " Juan!"

greet "Fernando" = niceGreeting ++ " Fernando!"

greet name = badGreeting ++ " " ++ name

Pattern Matching with where
You can also use where bindings to pattern match. We could have written the
where section of our BMI function like this:

...

where bmi = weight / height ^ 2

(skinny, normal, fat) = (18.5, 25.0, 30.0)

As an example of this technique, let’s write a function that gets a first
name and last name, and returns the initials:

initials :: String -> String -> String

initials firstname lastname = [f] ++ ". " ++ [l] ++ "."
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where (f:_) = firstname

(l:_) = lastname

We could have also done this pattern matching directly in the function’s
parameters (it would have been shorter and more readable), but this exam-
ple shows that it’s possible to do it in the where bindings as well.

Functions in where Blocks
Just as we’ve defined constants in where blocks, we can also define functions.
Staying true to our healthy programming theme, let’s make a function that
takes a list of weight/height pairs and returns a list of BMIs:

calcBmis :: [(Double, Double)] -> [Double]

calcBmis xs = [bmi w h | (w, h) <- xs]

where bmi weight height = weight / height ^ 2

And that’s all there is to it! The reason we needed to introduce bmi as
a function in this example is that we can’t just calculate one BMI from the
function’s parameters. We need to examine the list passed to the function,
and there’s a different BMI for every pair in there.

let It Be
let expressions are very similar to where

bindings. where allows you bind to vari-
ables at the end of a function, and those
variables are visible to the entire function,
including all its guards. let expressions,
on the other hand, allow you to bind to
variables anywhere and are expressions
themselves. However, they’re very local,
and they don’t span across guards. Just
like any Haskell construct that’s used to
bind values to names, let expressions can
be used in pattern matching.

Now let’s see let in action. The following function returns a cylinder’s
surface area, based on its height and radius:

cylinder :: Double -> Double -> Double

cylinder r h =

let sideArea = 2 * pi * r * h

topArea = pi * r ^ 2

in sideArea + 2 * topArea

let expressions take the form of let <bindings> in <expression>. The vari-
ables that you define with let are visible within the entire let expression.
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Yes, we could have also defined this with a where binding. So what’s the
difference between the two? At first, it seems that the only difference is that
let puts the bindings first and the expression later, whereas it’s the other
way around with where.

Really, the main difference between the two is that let expressions
are . . . well . . . expressions, whereas where bindings aren’t. If something is
an expression, then it has a value. "boo!" is an expression, as are 3 + 5 and
head [1,2,3]. This means that you can use let expressions almost anywhere
in your code, like this:

ghci> 4 * (let a = 9 in a + 1) + 2

42

Here are a few other useful ways to use let expressions:

• They can be used to introduce functions in a local scope:

ghci> [let square x = x * x in (square 5, square 3, square 2)]

[(25,9,4)]

• They can be separated with semicolons, which is helpful when you want
to bind several variables inline and can’t align them in columns:

ghci> (let a = 100; b = 200; c = 300 in a*b*c, let foo="Hey "; bar = "there!" in foo ++ bar)

(6000000,"Hey there!")

• Pattern matching with let expressions can be very useful for quickly dis-
mantling a tuple into components and binding those components to
names, like this:

ghci> (let (a, b, c) = (1, 2, 3) in a+b+c) * 100

600

Here, we use a let expression with a pattern match to deconstruct
the triple (1,2,3). We call its first component a, its second component
b, and its third component c. The in a+b+c part says that the whole let

expression will have the value of a+b+c. Finally, we multiply that value
by 100.

• You can use let expressions inside list comprehensions. We’ll take a
closer look at this next.

If let expressions are so cool, why not use them all the time? Well, since
let expressions are expressions, and are fairly local in their scope, they can’t
be used across guards. Also, some people prefer where bindings because their
variables are defined after the function they’re being used in, rather than
before. This allows the function body to be closer to its name and type dec-
laration, which can make for more readable code.
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let in List Comprehensions
Let’s rewrite our previous example of calculating lists of weight/height pairs,
but we’ll use a let expression inside a list comprehension instead of defining
an auxiliary function with where:

calcBmis :: [(Double, Double)] -> [Double]

calcBmis xs = [bmi | (w, h) <- xs, let bmi = w / h ^ 2]

Each time the list comprehension takes a tuple from the original list and
binds its components to w and h, the let expression binds w / h ^ 2 to the
name bmi. Then we just present bmi as the output of the list comprehension.

We include a let inside a list comprehension much as we would use a
predicate, but instead of filtering the list, it only binds values to names. The
names defined in this let are visible to the output (the part before the |)
and everything in the list comprehension that comes after the let. So, us-
ing this technique, we could make our function return only the BMIs of fat
people, like this:

calcBmis :: [(Double, Double)] -> [Double]

calcBmis xs = [bmi | (w, h) <- xs, let bmi = w / h ^ 2, bmi > 25.0]

The (w, h) <- xs part of the list comprehension is called the generator.
We can’t refer to the bmi variable in the generator, because that is defined
prior to the let binding.

let in GHCi
The in part of the binding can also be omitted when defining functions
and constants directly in GHCi. If we do that, then the names will be visible
throughout the entire interactive session:

ghci> let zoot x y z = x * y + z

ghci> zoot 3 9 2

29

ghci> let boot x y z = x * y + z in boot 3 4 2

14

ghci> boot

<interactive>:1:0: Not in scope: `boot'

Because we omitted the in part in our first line, GHCi knows that we’re
not using zoot in that line, so it remembers it for the rest of the session. How-
ever, in the second let expression, we included the in part and called boot

immediately with some parameters. A let expression that doesn’t leave out
the in part is an expression in itself and represents a value, so GHCi just
printed that value.
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case Expressions
case expressions allow you to execute blocks of
code for specific values of a particular variable.
Essentially, they are a way to use pattern match-
ing almost anywhere in your code. Many lan-
guages (like C, C++, and Java) have some kind
of case statement, so you may already be familiar
with the concept.

Haskell takes that concept and one-ups it.
As the name implies, case expressions are expres-
sions, much like if else expressions and let expressions. Not only can we
evaluate expressions based on the possible cases of the value of a variable,
we can also do pattern matching.

This is very similar to performing pattern matching on parameters in
function definitions, where you take a value, pattern match it, and evaluate
pieces of code based on that value. In fact, that kind of pattern matching
is just syntactic sugar for case expressions. For example, the following two
pieces of code do the same thing and are interchangeable:

head' :: [a] -> a

head' [] = error "No head for empty lists!"

head' (x:_) = x

head' :: [a] -> a

head' xs = case xs of [] -> error "No head for empty lists!"

(x:_) -> x

Here’s the syntax for a case expression:

case expression of pattern -> result

pattern -> result

pattern -> result

...

This is pretty simple. The first pattern that matches the expression is
used. If it falls through the whole case expression and no suitable pattern is
found, a runtime error occurs.

Pattern matching on function parameters can be done only when defin-
ing functions, but case expressions can be used anywhere. For instance, you
can use them to perform pattern matching in the middle of an expression,
like this:

describeList :: [a] -> String

describeList ls = "The list is " ++ case ls of [] -> "empty."

[x] -> "a singleton list."

xs -> "a longer list."
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Here, the case expression works like this: ls is first checked against the
pattern of an empty list. If ls is empty, the whole case expression then as-
sumes the value of "empty". If ls is not an empty list, then it’s checked against
the pattern of a list with a single element. If the pattern match succeeds, the
case expression then has the value of "a singleton list". If neither of those
two patterns match, then the catchall pattern, xs, applies. Finally, the re-
sult of the case expression is joined together with the string "The list is".
Each case expression represents a value. That’s why we were able to use ++

between the string "The list is" and our case expression.
Because pattern matching in function definitions is the same as us-

ing case expressions, we could have also defined the describeList function
like this:

describeList :: [a] -> String

describeList ls = "The list is " ++ what ls

where what [] = "empty."

what [x] = "a singleton list."

what xs = "a longer list."

This function acts just like the one in the previous example, although we
used a different syntactic construct to define it. The function what gets called
with ls, and then the usual pattern-matching action takes place. Once this
function returns a string, it’s joined with "The list is".
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4
HELLO RECURSION!

In this chapter, we’ll take a look at recursion. We’ll
learn why it’s important in Haskell programming and
how we can find very concise and elegant solutions to
problems by thinking recursively.

Recursion is a way of defining func-
tions in which a function is applied in-
side its own definition. In other words,
the function calls itself. If you still don’t
know what recursion is, read this sen-
tence. (Haha! Just kidding!)

Kidding aside, the strategy of a re-
cursively defined function is to break
down the problem at hand into smaller
problems of the same kind and then
try to solve those subproblems, breaking them down further if necessary.
Eventually we reach the base case (or base cases) of the problem, which can’t
be broken down any more and whose solutions need to be explicitly (non-
recursively) defined by the programmer.

Definitions in mathematics are often recursive. For instance, we can
specify the Fibonacci sequence recursively as follows: We define the first two
Fibonacci numbers directly by saying that F (0) = 0 and F (1) = 1, meaning



that the zeroth and first Fibonacci numbers are 0 and 1, respectively. These
are our base cases.

Then we specify that for any natural number other than 0 or 1, the cor-
responding Fibonacci number is the sum of the previous two Fibonacci num-
bers. In other words, F (n) = F (n − 1) + F (n − 2). For example, F (3) is
F (2) + F (1), which in turn breaks down as (F (1) + F (0)) + F (1). Because
we’ve now come down to nothing but nonrecursively defined Fibonacci
numbers, we can safely say that the value of F (3) is 2.

Recursion is important in Haskell because, unlike with imperative lan-
guages, you do computations in Haskell by declaring what something is
rather than specifying how you compute it. That’s why Haskell isn’t about
issuing your computer a sequence of steps to execute, but rather about di-
rectly defining what the desired result is, often in a recursive manner.

Maximum Awesome
Let’s take a look at an existing Haskell function and see how we can
write the function ourselves if we shift our brains into the “R” gear (for
“recursion”).

The maximum function takes a list of things that can be put in order (i.e.,
instances of the Ord type class) and returns the largest of them. It can be ex-
pressed very elegantly using recursion.

Before we discuss a recursive solution, think about how you might imple-
ment the maximum function imperatively. You’d probably set up a variable to
hold the current maximum value, then you’d loop through every element
of the list. If the current element is bigger than the current maximum value,
you’d replace the maximum value with that element. The maximum value
that remains at the end of the loop would be the final result.

Now let’s see how we’d define it recursively. First, we need to define a
base case: We say that the maximum of a singleton list is equal to the only
element in it. But what if the list has more than one element? Well, then we
check which is bigger: the first element (the head) or the maximum of the
rest of the list (the tail). Here’s the code for our recursive maximum' function:

maximum' :: (Ord a) => [a] -> a

maximum' [] = error "maximum of empty list!"

maximum' [x] = x

maximum' (x:xs) = max x (maximum' xs)

As you can see here, pattern matching is really useful for defining re-
cursive functions. Being able to match and deconstruct values makes it easy
to break down the maximum-finding problem into the relevant cases and
recursive subproblems.

The first pattern says that if the list is empty, the program should crash.
This makes sense, because we just can’t say what the maximum of an empty
list is. The second pattern says that if maximum' is passed a singleton list, it
should just return that list’s only element.
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Our third pattern represents the meat of the recursion. The list is split
into a head and a tail. We call the head x and the tail xs. Then, we make use
of our old friend, the max function. The max function takes two things and re-
turns whichever of them is larger. If x is larger than the largest element in xs,
our function will return x, otherwise it will return the largest element in xs.
But how does our maximum' find the largest element in xs? Simple—by calling
itself, recursively!

Let’s work through this code with a specific example, just in case you’re
having trouble visualizing how maximum' works. If we call maximum' on [2,5,1],
the first two patterns don’t match the function call. However, the third pat-
tern does, so the list value is split into 2 and [5,1], and maximum' is called
with [5,1].

For this new call to maximum', [5,1] matches the third pattern, and once
again the input list is split—this time into 5 and [1]—and maximum' is recur-
sively called on [1]. This is a singleton list, so the newest call now matches
one of our base cases and returns 1 as a result.

Now, we go up a level, comparing 5 to 1 with the use of the max function.
1 was the result of our last recursive call. Since 5 is larger, we now know that
the maximum of [5,1] is 5.

Finally, comparing 2 to the maximum of [5,1], which we now know is 5,
we obtain the answer to the original problem. Since 5 is greater than 2, we
can now say that 5 is the maximum of [2,5,1].

A Few More Recursive Functions
Now that we’ve seen how to think recursively, let’s implement a few more
functions this way. Like maximum, these functions already exist in Haskell, but
we’re going to write our own versions to exercise the recursive muscle fibers
in the recursive muscles of our recursive muscle groups. Let’s get buff!

replicate
First off, we’ll implement replicate. Remember that replicate takes an Int

and a value, and returns a list that has several repetitions of that value (namely,
however many the Int specifies). For instance, replicate 3 5 returns a list of
three fives: [5,5,5].
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Let’s think about the base cases. We immediately know what to return if
we’re asked to replicate something zero or fewer times. If we try to replicate
something zero times, we should get an empty list. And we declare that the
result should be the same for negative numbers, because replicating an item
fewer than zero times doesn’t make sense.

In general, a list with n repetitions of x is a list with x as its head and a tail
consisting of x replicated n-1 times. We get the following code:

replicate' :: Int -> a -> [a]

replicate' n x

| n <= 0 = []

| otherwise = x : replicate' (n-1) x

We used guards here instead of patterns because we’re testing for a
Boolean condition.

take
Next up, we’ll implement take. This function returns a specified number of
elements from a specified list. For instance, take 3 [5,4,3,2,1] will return
[5,4,3]. If we try to take zero or fewer elements from a list, we should get an
empty list, and if we try to take anything at all from an empty list, we should
get an empty list. Notice that those are our two base cases. Now let’s write
the function:

Notice that in the first pat-
tern, which specifies that we get
an empty list if we try to take
zero or fewer elements from a
list, we use the _ placeholder
to match the list value, because
we don’t really care what it is
in this case. Also notice that
we use a guard, but without an
otherwise part. That means that
if n turns out to be more than 0,
the matching will fall through
to the next pattern.

The second pattern indicates that if we try to take any number of things
at all from an empty list, we get an empty list.

The third pattern breaks the list into a head and a tail. We call the head
x and the tail xs. Then we state that taking n elements from a list is the same
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take' :: Int -> [a] -> [a]

take' n _

| n <= 0 = []

take' _ [] = []

take' n (x:xs) = x : take' (n-1) xs



as creating a list that has x as its first element and n-1 elements from xs as its
remaining elements.

reverse
The reverse function takes a list and returns a list with the same elements,
but in the reverse order. Once again, the empty list is the base case, since
trying to reverse an empty list just results in the empty list. What about the
rest of the function? Well, if we split the original list into its head and tail,
the reversed list that we want is the reverse of the tail, with the head stuck
at the end:

reverse' :: [a] -> [a]

reverse' [] = []

reverse' (x:xs) = reverse' xs ++ [x]

repeat
The repeat function takes an element and returns an infinite list composed
of that element. A recursive implementation of repeat is really easy:

repeat' :: a -> [a]

repeat' x = x:repeat' x

Calling repeat 3 will give us a list that starts with 3 as the head and has an
infinite amount of 3s as the tail. So calling repeat 3 evaluates to 3:repeat 3,
which evaluates to 3:(3:repeat 3), which evaluates to 3:(3:(3:repeat 3)), and
so on. repeat 3 will never finish evaluating. However, take 5 (repeat 3) will
give us a list of five 3s. Essentially, it’s like calling replicate 5 3.

This is a nice example of how we can successfully use recursion that
doesn’t have a base case to make infinite lists—we just have to be sure to
chop them off somewhere along the way.

zip
zip is another function for working with lists that we’ve met in Chapter 1. It
takes two lists and zips them together. For instance, calling zip [1,2,3] [7,8]

returns [(1,7),(2,8)] (the function truncates the longer list to match the
length of the shorter one).

Zipping something with an empty list just returns an empty list, which
gives us our base case. However, zip takes two lists as parameters, so there
are actually two base cases:

zip' :: [a] -> [b] -> [(a,b)]

zip' _ [] = []

zip' [] _ = []

zip' (x:xs) (y:ys) = (x,y):zip' xs ys

Hello Recursion! 55



The first two patterns are our base cases: If the first or second list is
empty, we return an empty list. The third pattern says that zipping two lists
together is equivalent to pairing up their heads, then appending their zip-
ped tails to that.

For example, if we call zip' with [1,2,3] and ['a','b'], the function will
form (1,'a') as the first element of the result, then zip together [2,3] and [b]

to obtain the rest of the result. After one more recursive call, the function
will try to zip [3] with [], which matches one of the base case patterns. The
final result is then computed directly as (1,'a'):((2,'b'):[]), which is just
[(1,'a'),(2,'b')].

elem
Let’s implement one more standard library function: elem. This function
takes a value and a list, and checks whether the value is a member of the list.
Once again, the empty list is a base case—an empty list contains no values, so
it certainly can’t have the one we’re looking for. In general, the value we’re
looking for might be at the head of the list if we’re lucky; otherwise, we have
to check whether it’s in the tail. Here’s the code:

elem' :: (Eq a) => a -> [a] -> Bool

elem' a [] = False

elem' a (x:xs)

| a == x = True

| otherwise = a `elem'` xs

Quick, Sort!
The problem of sorting a list containing
elements that can be put in order (like
numbers) naturally lends itself to a recur-
sive solution. There are many approaches
to recursively sorting lists, but we’ll look at
one of the coolest ones: quicksort. First we’ll
go over how the algorithm works, and then
we’ll implement it in Haskell.

The Algorithm
The quicksort algorithm works like this.
You have a list that you want to sort, say
[5,1,9,4,6,7,3]. You select the first element,
which is 5, and put all the other list elements
that are less than or equal to 5 on its left side. Then you take the ones that
are greater than 5 and put them on its right side. If you did this, you’d have
a list that looks like this: [1,4,3,5,9,6,7]. In this example, 5 is called the pivot,
because we chose to compare the other elements to it and move them to its
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left and right sides. The only reason we chose the first element as the pivot
is because it will be easy to snag using pattern matching. But really, any ele-
ment can be the pivot.

Now, we recursively sort all the elements that are on the left and right
sides of the pivot by calling the same function on them. The final result is a
completely sorted list!

The above diagram illustrates how quicksort works on our example.
When we want to sort [5,1,9,4,6,7,3], we decide that the first element is our
pivot. Then we sandwich it in between [1,4,3] and [9,6,7]. Once we’ve done
that, we sort [1,4,3] and [9,6,7] by using the same approach.

To sort [1,4,3], we choose the first element, 1, as the pivot and we make
a list of elements that are less than or equal to 1. That turns out to be the
empty list, [], because 1 is the smallest element in [1,4,3]. The elements
larger than 1 go to its right, so that’s [4,3]. Again, [4,3] is sorted in the same
way. It too will eventually be broken up into empty lists and put back together.

The algorithm then returns to the right side of 1, which has the empty
list on its left side. Suddenly, we have [1,3,4], which is sorted. This is kept on
the left side of the 5.

Once the elements on the right side of the 5 are sorted in the same way,
we will have a completely sorted list: [1,3,4,5,6,7,9].

The Code
Now that we’re familiar with the quicksort algorithm, let’s dive into its imple-
mentation in Haskell:

quicksort :: (Ord a) => [a] -> [a]

quicksort [] = []

quicksort (x:xs) =

let smallerOrEqual = [a | a <- xs, a <= x]

larger = [a | a <- xs, a > x]

in quicksort smallerOrEqual ++ [x] ++ quicksort larger
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The type signature of our function is quicksort :: (Ord a) => [a] -> [a],
and the empty list is the base case, as we just saw.

Remember, we’ll put all the elements less than or equal to x (our
pivot) to its left. To retrieve those elements, we use the list comprehension
[a | a <- xs, a <= x]. This list comprehension will draw from xs (all the el-
ements that aren’t our pivot) and keep only those that satisfy the condition
a <= x, meaning those elements that are less than or equal to x. We then get
the list of elements larger than x in a similar fashion.

We use let bindings to give the two lists handy names: smallerOrEqual and
larger. Finally, we use the list concatenation operator (++) and a recursive
application of our quicksort function to express that we want our final list to
be made of a sorted smallerOrEqual list, followed by our pivot, followed by a
sorted larger list.

Let’s give our function a test drive to see if it behaves correctly:

ghci> quicksort [10,2,5,3,1,6,7,4,2,3,4,8,9]

[1,2,2,3,3,4,4,5,6,7,8,9,10]

ghci> quicksort "the quick brown fox jumps over the lazy dog"

" abcdeeefghhijklmnoooopqrrsttuuvwxyz"

Now that’s what I’m talking about!

Thinking Recursively
We’ve used recursion quite a bit in this chapter, and as you’ve probably
noticed, there’s a pattern to it. You start by defining a base case: simple,
nonrecursive solution that holds when the input is trivial. For example,
the result of sorting an empty list is the empty list, because—well, what
else could it be?

Then, you break your problem down into one or many subproblems
and recursively solve those by applying the same function to them. You then
build up your final solution from those solved subproblems. For instance,
when sorting, we broke our list into two lists, plus a pivot. We sorted each of
those lists separately by applying the same function to them. When we got
the results, we joined them into one big sorted list.

The best way to approach recursion is to
identify base cases and think about how you
can break the problem at hand into something
similar, but smaller. If you’ve correctly chosen
the base cases and subproblems, you don’t even
have to think about the details of how everything
will happen. You can just trust that the solutions
of the subproblems are correct, and then you
can just build up your final solutions from those
smaller solutions.
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5
HIGHER-ORDER FUNCTIONS

Haskell functions can take functions as parameters and
return functions as return values. A function that does
either of these things is called a higher-order function.
Higher-order functions are a really powerful way of
solving problems and thinking about programs, and
they’re indispensable when using a functional program-
ming language like Haskell.

Curried Functions

Every function in Haskell officially takes
only one parameter. But we have de-
fined and used several functions that
take more than one parameter so far—
how is that possible?

Well, it’s a clever trick! All the func-
tions we’ve used so far that accepted
multiple parameters have been curried
functions. A curried function is a function
that, instead of taking several parame-
ters, always takes exactly one parameter.



Then when it’s called with that parameter, it returns a function that takes
the next parameter, and so on.

This is best explained with an example. Let’s take our good friend, the
max function. It looks as if it takes two parameters and returns the one that’s
bigger. For instance, consider the expression max 4 5. We call the function
max with two parameters: 4 and 5. First, max is applied to the value 4. When
we apply max to 4, the value that is returned is actually another function,
which is then applied to the value 5. The act of applying this function to 5

finally returns a number value. As a consequence, the following two calls
are equivalent:

ghci> max 4 5

5

ghci> (max 4) 5

5

To understand how this works, let’s examine the type of the max function:

ghci> :t max

max :: (Ord a) => a -> a -> a

This can also be written as follows:

max :: (Ord a) => a -> (a -> a)

Whenever we have a type signature that fea-
tures the arrow ->, that means it’s a function that
takes whatever is on the left side of the arrow and
returns a value whose type is indicated on the right
side of the arrow. When we have something like
a -> (a -> a), we’re dealing with a function that
takes a value of type a, and it returns a function
that also takes a value of type a and returns a value
of type a.

So how is that beneficial to us? Simply speaking, if we call a function
with too few parameters, we get back a partially applied function, which is a
function that takes as many parameters as we left out. For example, when
we did max 4, we got back a function that takes one parameter. Using partial
application (calling functions with too few parameters, if you will) is a neat
way to create functions on the fly, so we can pass them to other functions.

Take a look at this simple little function:

multThree :: Int -> Int -> Int -> Int

multThree x y z = x * y * z
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What really happens when we call multThree 3 5 9, or ((multThree 3) 5) 9?
First, multThree is applied to 3, because they’re separated by a space. That cre-
ates a function that takes one parameter and returns a function. Then that
function is applied to 5, which creates a function that will take one param-
eter, multiply 3 and 5 together, and then multiply that by the parameter.
That function is applied to 9, and the result is 135.

You can think of functions as tiny factories that take some materials
and produce something. Using that analogy, we feed our multThree factory
the number 3, but instead of producing a number, it churns out a slightly
smaller factory. That factory receives the number 5 and also spits out a fac-
tory. The third factory receives the number 9, and then produces our result-
ing number, 135.

Remember that this function’s type can also be written as follows:

multThree :: Int -> (Int -> (Int -> Int))

The type (or type variable) before the -> is the type of the values that
a function takes, and the type after it is the type of the values it returns.
So our function takes a value of type Int and returns a function of type
(Int -> (Int -> Int). Similarly, this function takes a value of type Int and
returns a function of type Int -> Int. And finally, this function just takes a
value of type Int and returns another value of type Int.

Let’s look at an example of how we can create a new function by calling
a function with too few parameters:

ghci> let multTwoWithNine = multThree 9

ghci> multTwoWithNine 2 3

54

In this example, the expression multThree 9 results in a function that
takes two parameters. We name that function multTwoWithNine, because
multThree 9 is a function that takes two parameters. If both parameters
are supplied, it will multiply the two parameters between them, and then
multiply that by 9, because we got the multTwoWithNine function by applying
multThree to 9.

What if we wanted to create a function that takes an Int and compares it
to 100? We could do something like this:

compareWithHundred :: Int -> Ordering

compareWithHundred x = compare 100 x

As an example, let’s try calling the function with 99:

ghci> compareWithHundred 99

GT
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100 is greater than 99, so the function returns GT, or greater than.
Now let’s think about what compare 100 would return: a function that

takes a number and compares it with 100, which is exactly what we were
trying to get in our example. In other words, the following definition and
the previous one are equivalent:

compareWithHundred :: Int -> Ordering

compareWithHundred = compare 100

The type declaration stays the same, because compare 100 returns a func-
tion. compare has a type of (Ord a) => a -> (a -> Ordering). When we apply it
to 100, we get a function that takes a number and returns an Ordering.

Sections
Infix functions can also be partially applied by using sections. To section an
infix function, simply surround it with parentheses and supply a parameter
on only one side. That creates a function that takes one parameter and then
applies it to the side that’s missing an operand. Here’s an insultingly trivial
example:

divideByTen :: (Floating a) => a -> a

divideByTen = (/10)

As you can see in the following code, calling divideByTen 200 is equivalent
to calling 200 / 10 or (/10) 200:

ghci> divideByTen 200

20.0

ghci> 200 / 10

20.0

ghci> (/10) 200

20.0

Let’s look at another example. This function checks if a character sup-
plied to it is an uppercase letter:

isUpperAlphanum :: Char -> Bool

isUpperAlphanum = (`elem` ['A'..'Z'])

The only thing to watch out for with sections is when you’re using the
- (negative or minus) operator. From the definition of sections, (-4) would
result in a function that takes a number and subtracts 4 from it. However,
for convenience, (-4) means negative four. So if you want to make a function
that subtracts 4 from the number it gets as a parameter, you can partially
apply the subtract function like so: (subtract 4).
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Printing Functions
So far, we’ve bound our partially applied functions to names and then sup-
plied the remaining parameters to view the results. However, we never tried
to print the functions themselves to the terminal. Let’s give that a go then,
shall we? What happens if we try entering multThree 3 4 into GHCi, instead of
binding it to a name with a let or passing it to another function?

ghci> multThree 3 4 

<interactive>:13:1: error:

GHCi is telling us that the expression produced a function of type a -> a,
but it doesn’t know how to print it to the screen. Functions aren’t instances
of the Show type class, so we can’t get a neat string representation of a func-
tion. This is different, for example, than when we enter 1 + 1 at the GHCi
prompt. In that case, GHCi calculates 2 as the result, and then calls show on 2

to get a textual representation of that number. The textual representation of
2 is just the string "2", which is then printed to the screen.

NOTE Make sure you thoroughly understand how curried functions and partial application
work, because they’re really important!

Some Higher-Orderism Is in Order
In Haskell, functions can take other functions as parameters, and as you’ve
seen, they can also return functions as return values. To demonstrate this
concept, let’s write a function that takes a function, and then applies it twice
to some value:

applyTwice :: (a -> a) -> a -> a

applyTwice f x = f (f x)

Notice the type declaration. For our ear-
lier examples, we didn’t need parentheses when
declaring function types, because -> is naturally
right-associative. However, here parentheses
are mandatory. They indicate that the first pa-
rameter is a function that takes one parameter
and returns a value of the same type (a -> a).
The second parameter is something of type a,
and the return value’s type is also a. Notice that
it doesn’t matter what type a is—it can be Int,
String, or whatever—but all the values must be
the same type.
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NOTE You now know that under the hood, functions that seem to take multiple parameters
are actually taking a single parameter and returning a partially applied function.
However, to keep things simple, I’ll continue to say that a given function takes multi-
ple parameters.

The body of the applyTwice function is very simple. We just use the pa-
rameter f as a function, applying x to it by separating the f and x with a space.
We then apply the result to f again. Here are some examples of the function
in action:

ghci> applyTwice (+3) 10

16

ghci> applyTwice (++ " HAHA") "HEY"

"HEY HAHA HAHA"

ghci> applyTwice ("HAHA " ++) "HEY"

"HAHA HAHA HEY"

ghci> applyTwice (multThree 2 2) 9

144

ghci> applyTwice (3:) [1]

[3,3,1]

The awesomeness and usefulness of partial application is evident. If our
function requires us to pass it a function that takes only one parameter, we
can just partially apply a function to the point where it takes only one param-
eter and then pass it. For instance, the + function takes two parameters, and
in this example, we partially applied it so that it takes only one parameter by
using sections.

Implementing zipWith
Now we’re going to use higher-order programming to implement a really
useful function in the standard library called zipWith. It takes a function and
two lists as parameters, and then joins the two lists by applying the function
between corresponding elements. Here’s how we’ll implement it:

zipWith' :: (a -> b -> c) -> [a] -> [b] -> [c]

zipWith' _ [] _ = []

zipWith' _ _ [] = []

zipWith' f (x:xs) (y:ys) = f x y : zipWith' f xs ys

First let’s look at the type declaration. The first parameter is a function
that takes two arguments and returns one value. They don’t have to be of
the same type, but they can be. The second and third parameters are lists,
and the final return value is also a list.

The first list must be a list of type a values, because the joining function
takes a types as its first argument. The second must be a list of b types, be-
cause the second parameter of the joining function is of type b. The result is
a list of type c elements.
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NOTE Remember that if you’re writing a function (especially a higher-order function), and
you’re unsure of the type, you can try omitting the type declaration and checking what
Haskell infers it to be by using :t.

This function is similar to the normal zip function. The base cases are
the same, although there’s an extra argument (the joining function). How-
ever, that argument doesn’t matter in the base cases, so we can just use the
_ character for it. The function body in the last pattern is also similar to zip,
though instead of doing (x, y), it does f x y.

Here’s a little demonstration of all the different things our zipWith' func-
tion can do:

ghci> zipWith' (+) [4,2,5,6] [2,6,2,3]

[6,8,7,9]

ghci> zipWith' max [6,3,2,1] [7,3,1,5]

[7,3,2,5]

ghci> zipWith' (++) ["foo ", "bar ", "baz "] ["fighters", "hoppers", "aldrin"]

["foo fighters","bar hoppers","baz aldrin"]

ghci> zipWith' (*) (replicate 5 2) [1..]

[2,4,6,8,10]

ghci> zipWith' (zipWith' (*)) [[1,2,3],[3,5,6],[2,3,4]] [[3,2,2],[3,4,5],[5,4,3]]

[[3,4,6],[9,20,30],[10,12,12]]

As you can see, a single higher-order function can be used in very versa-
tile ways.

Implementing flip
Now we’ll implement another function in the standard library, called flip.
The flip function takes a function and returns a function that is like our
original function, but with the first two arguments flipped. We can imple-
ment it like this:

flip' :: (a -> b -> c) -> (b -> a -> c)

flip' f = g

where g x y = f y x

You can see from the type declaration that flip' takes a function that
takes a and b types, and returns a function that takes b and a types. But
because functions are curried by default, the second pair of parentheses
actually is not necessary. The arrow -> is right-associative by default, so
(a -> b -> c) -> (b -> a -> c) is the same as (a -> b -> c) -> (b -> (a -> c)),
which is the same as (a -> b -> c) -> b -> a -> c. We wrote that g x y = f y x.
If that’s true, then f y x = g x y must also hold, right? Keeping that in mind,
we can define this function in an even simpler manner:

flip' :: (a -> b -> c) -> b -> a -> c

flip' f y x = f x y
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In this new version of flip', we take advantage of the fact that functions
are curried. When we call flip' f without the parameters y and x, it will re-
turn an f that takes those two parameters but calls them flipped.

Even though flipped functions are usually passed to other functions,
we can take advantage of currying when making higher-order functions by
thinking ahead and writing what their end result would be if they were fully
applied.

ghci> zip [1,2,3,4,5] "hello"

[(1,'h'),(2,'e'),(3,'l'),(4,'l'),(5,'o')]

ghci> flip' zip [1,2,3,4,5] "hello"

[('h',1),('e',2),('l',3),('l',4),('o',5)]

ghci> zipWith div [2,2..] [10,8,6,4,2]

[0,0,0,0,1]

ghci> zipWith (flip' div) [2,2..] [10,8,6,4,2]

[5,4,3,2,1]

If we flip' the zip function, we get a function that is like zip, except that
the items from the first list are placed into the second components of the
tuples and vice versa. The flip' div function takes its second parameter and
divides that by its first, so when the numbers 2 and 10 are passed to flip' div,
the result is the same as using div 10 2.

The Functional Programmer’s Toolbox
As functional programmers, we seldom want to operate on just one value.
We usually want to take a bunch of numbers, letters, or some other type of
data, and transform the set to produce our results. In this section, we’ll look
at some useful functions that can help us work with multiple values.

The map Function
The map function takes a function and a list, and applies that function to ev-
ery element in the list, producing a new list. Here is its definition:

map :: (a -> b) -> [a] -> [b]

map _ [] = []

map f (x:xs) = f x : map f xs

The type signature says that map takes a function from a to b and a list of a
values, and returns a list of b values.

map is a versatile higher-order function that can be used in many differ-
ent ways. Here it is in action:

ghci> map (+3) [1,5,3,1,6]

[4,8,6,4,9]

ghci> map (++ "!") ["BIFF", "BANG", "POW"]

["BIFF!","BANG!","POW!"]
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ghci> map (replicate 3) [3..6]

[[3,3,3],[4,4,4],[5,5,5],[6,6,6]]

ghci> map (map (^2)) [[1,2],[3,4,5,6],[7,8]]

[[1,4],[9,16,25,36],[49,64]]

ghci> map fst [(1,2),(3,5),(6,3),(2,6),(2,5)]

[1,3,6,2,2]

You’ve probably noticed that each of these examples could also be
achieved with a list comprehension. For instance, map (+3) [1,5,3,1,6] is
technically the same as [x+3 | x <- [1,5,3,1,6]]. However, using the map

function tends to make your code much more readable, especially once
you start dealing with maps of maps.

The filter Function
The filter function takes a predicate and a list, and returns the list of ele-
ments that satisfy that predicate. (Remember that a predicate is a function
that tells whether something is true or false; that is, a function that returns
a Boolean value.) The type signature and implementation look like this:

filter :: (a -> Bool) -> [a] -> [a]

filter _ [] = []

filter p (x:xs)

| p x = x : filter p xs

| otherwise = filter p xs

If p x evaluates to True, the element is included in the new list. If it doesn’t
evaluate to True, it isn’t included in the new list.

Here are some filter examples:

ghci> filter (>3) [1,5,3,2,1,6,4,3,2,1]

[5,6,4]

ghci> filter (==3) [1,2,3,4,5]

[3]

ghci> filter even [1..10]

[2,4,6,8,10]

ghci> let notNull x = not (null x) in filter notNull [[1,2,3],[],[3,4,5],[2,2],[],[],[]]

[[1,2,3],[3,4,5],[2,2]]

ghci> filter (`elem` ['a'..'z']) "u LaUgH aT mE BeCaUsE I aM diFfeRent"

"uagameasadifeent"

ghci> filter (`elem` ['A'..'Z']) "i LAuGh at you bEcause u R all the same"

"LAGER"

As with the map function, all of these examples could also be achieved
by using comprehensions and predicates. There’s no set rule for when to
use map and filter versus using list comprehensions. You just need to decide
what’s more readable depending on the code and the context.
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The filter equivalent of applying several predicates in a list comprehen-
sion is either filtering something several times or joining the predicates with
the logical && function. Here’s an example:

ghci> filter (<15) (filter even [1..20])

[2,4,6,8,10,12,14]

In this example, we take the list [1..20] and filter it so that only even
numbers remain. Then we pass that list to filter (<15) to get rid of numbers
15 and up. Here’s the list comprehension version:

ghci> [x | x <- [1..20], x < 15, even x]

[2,4,6,8,10,12,14]

We use a list comprehension where we draw from the list [1..20], and
then say what conditions need to hold for a number to be in the resulting list.

Remember our quicksort function from Chapter 4? We used list com-
prehensions to filter out the list elements that were less than (or equal to)
or greater than the pivot. We can achieve the same functionality in a more
readable way by using filter:

quicksort :: (Ord a) => [a] -> [a]

quicksort [] = []

quicksort (x:xs) =

let smallerOrEqual = filter (<= x) xs

larger = filter (> x) xs

in quicksort smallerOrEqual ++ [x] ++ quicksort larger

More Examples of map and filter
As another example, let’s find the largest num-
ber under 100,000 that’s divisible by 3,829. To do
that, we’ll just filter a set of possibilities in which
we know the solution lies:

largestDivisible :: Integer

largestDivisible = head (filter p [99999,99999..])

where p x = x `mod` 3829 == 0

First, we make a descending list of all numbers less than 100,000. Then
we filter it by our predicate. Because the numbers are sorted in a descending
manner, the largest number that satisfies our predicate will be the first ele-
ment of the filtered list. And because we end up using only the head of the
filtered list, it doesn’t matter if the filtered list is finite or infinite. Haskell’s
laziness causes the evaluation to stop when the first adequate solution is
found.
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As our next example, we’ll find the sum of all odd squares that are smaller
than 10,000. In our solution, we’ll use the takeWhile function. This function
takes a predicate and a list. Starting at the beginning of the list, it returns
the list’s elements as long as the predicate holds true. Once an element is
found for which the predicate doesn’t hold true, the function stops and re-
turns the resulting list. For example, to get the first word of a string, we can
do the following:

ghci> takeWhile (/=' ') "elephants know how to party"

"elephants"

To find the sum of all odd squares that are less than 10,000, we begin
by mapping the (^2) function over the infinite list [1..]. Then we filter this
list so we get only the odd elements. Next, using takeWhile, we take elements
from that list only while they are smaller than 10,000. Finally, we get the sum
of that list (using the sum function). We don’t even need to define a function
for this example, because we can do it all in one line in GHCi:

ghci> sum (takeWhile (<10000) (filter odd (map (^2) [1..])))

166650

Awesome! We start with some initial data (the infinite list of all natu-
ral numbers), and then we map over it, filter it, and cut it until it suits our
needs. Finally, we just sum it up!

We could have also written this example using list comprehensions,
like this:

ghci> sum (takeWhile (<10000) [m | m <- [n^2 | n <- [1..]], odd m])

166650

For our next problem, we’ll be dealing with Collatz sequences. A Collatz
sequence (also known as a Collatz chain) is defined as follows:

• Start with any natural number.

• If the number is 1, stop.

• If the number is even, divide it by 2.

• If the number is odd, multiply it by 3 and add 1.

• Repeat the algorithm with the resulting number.

In essence, this gives us a chain of numbers. Mathematicians theorize
that for all starting numbers, the chain will finish at the number 1. For ex-
ample, if we start with the number 13, we get this sequence: 13, 40, 20, 10,
5, 16, 8, 4, 2, 1. (13 × 3 + 1 equals 40. 40 divided by 2 equals 20, and so on.)
We can see that the chain that starts with 13 has 10 terms.
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Here is the problem we want to solve: For all starting numbers between
1 and 100, how many Collatz chains have a length greater than 15?

Our first step will be to write a function that produces a chain:

chain :: Integer -> [Integer]

chain 1 = [1]

chain n

| even n = n:chain (n `div` 2)

| odd n = n:chain (n*3 + 1)

This is a pretty standard recursive function. The base case is one, be-
cause all our chains will end at one. We can test the function to see if it’s
working correctly:

ghci> chain 10

[10,5,16,8,4,2,1]

ghci> chain 1

[1]

ghci> chain 30

[30,15,46,23,70,35,106,53,160,80,40,20,10,5,16,8,4,2,1]

Now we can write the numLongChains function, which actually answers our
question:

numLongChains :: Int

numLongChains = length (filter isLong (map chain [1..100]))

where isLong xs = length xs > 15

We map the chain function to [1..100] to get a list of chains, which are
themselves represented as lists. Then we filter them by a predicate that checks
whether a list’s length is longer than 15. Once we’ve done the filtering, we
see how many chains are left in the resulting list.

NOTE This function has a type of numLongChains :: Int because length returns an Int in-
stead of a Num a. If we wanted to return a more general Num a, we could have used
fromIntegral on the resulting length.

Mapping Functions with Multiple Parameters
So far, we’ve mapped functions that take only one parameter (like map (*2)

[0..]). However, we can also map functions that take multiple parameters.
For example, we could do something like map (*) [0..]. In this case, the
function *, which has a type of (Num a) => a -> a -> a, is applied to each
number in the list.

As you’ve seen, giving only one parameter to a function that takes two
parameters will cause it to return a function that takes one parameter. So if
we map * to the list [0..], we will get back a list of functions that take only
one parameter.
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Here’s an example:

ghci> let listOfFuns = map (*) [0..]

ghci> (listOfFuns !! 4) 5

20

Getting the element with the index 4 from our list returns a function
that’s equivalent to (4*). Then we just apply 5 to that function, which is the
same as (4*) 5, or just 4 * 5.

Lambdas
Lambdas are anonymous functions
that we use when we need a function
only once.

Normally, we make a lambda with
the sole purpose of passing it to a
higher-order function. To declare a
lambda, we write a \ (because it kind of
looks like the Greek letter lambda (λ)
if you squint hard enough), and then
we write the function’s parameters, sep-
arated by spaces. After that comes a ->,
and then the function body. We usually
surround lambdas with parentheses.

In the previous section, we used
a where binding in our numLongChains

function to make the isLong function for the sole purpose of passing it to
filter. Instead of doing that, we can also use a lambda, like this:

numLongChains :: Int

numLongChains = length (filter (\xs -> length xs > 15) (map chain [1..100]))

Lambdas are expressions, which is why we can
just pass them to functions like this. The expres-
sion (\xs -> length xs > 15) returns a function that
tells us whether the length of the list passed to it is
greater than 15.

People who don’t understand how currying and
partial application work often use lambdas where they are not necessary. For
instance, the following expressions are equivalent:

ghci> map (+3) [1,6,3,2]

[4,9,6,5]

ghci> map (\x -> x + 3) [1,6,3,2]

[4,9,6,5]
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Both (+3) and (\x -> x + 3) are functions that take a number and add 3
to it, so these expressions yield the same results. However, we don’t want to
make a lambda in this case, because using partial application is much more
readable.

Like normal functions, lambdas can take any number of parameters:

ghci> zipWith (\a b -> (a * 30 + 3) / b) [5,4,3,2,1] [1,2,3,4,5]

[153.0,61.5,31.0,15.75,6.6]

And like normal functions, you can pattern match in lambdas. The only
difference is that you can’t define several patterns for one parameter (like
making a [] and a (x:xs) pattern for the same parameter and then having
values fall through).

ghci> map (\(a,b) -> a + b) [(1,2),(3,5),(6,3),(2,6),(2,5)]

[3,8,9,8,7]

NOTE If a pattern match fails in a lambda, a runtime error occurs, so be careful!

Let’s look at another interesting example:

addThree :: Int -> Int -> Int -> Int 

addThree x y z = x + y + z

addThree' :: Int -> Int -> Int -> Int 

addThree' = \x -> \y -> \z -> x + y + z

Due to the way functions are curried by default, these two functions are
equivalent. Yet the first addThree function is far more readable. The second
one is little more than a gimmick to illustrate currying.

NOTE Notice that in the second example, the lambdas are not surrounded with parentheses.
When you write a lambda without parentheses, it assumes that everything to the right
of the arrow -> belongs to it. So in this case, omitting the parentheses saves some typ-
ing. Of course, you can include the parentheses if you prefer them.

However, there are times when using the currying notation instead is
useful. I think that the flip function is the most readable when it’s defined
like this:

flip' :: (a -> b -> c) -> b -> a -> c

flip' f = \x y -> f y x

Even though this is the same as writing flip' f x y = f y x, our new no-
tation makes it obvious that this will often be used for producing a new func-
tion.The most common use case with flip is calling it with just the function
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parameter, or the function parameter and one extra parameter, and then
passing the resulting function on to a map or a zipWith:

ghci> zipWith (flip (++)) ["love you", "love me"] ["i ", "you "]

["i love you","you love me"]

ghci> map (flip subtract 20) [1,2,3,4]

[19,18,17,16]

You can use lambdas this way in your own functions when you want to
make it explicit that your functions are meant to be partially applied and
then passed on to other functions as a parameter.

I Fold You So
Back when we were dealing with
recursion in Chapter 4, many of
the recursive functions that op-
erated on lists followed the same
pattern. We had a base case for
the empty list, we introduced the
x:xs pattern, and then we per-
formed some action involving a
single element and the rest of the
list. It turns out this is a very com-
mon pattern, so the creators of
Haskell introduced some useful
functions, called folds, to encapsu-
late it. Folds allow you to reduce
a data structure (like a list) to a
single value.

Folds can be used to implement any function where you traverse a list
once, element by element, and then return something based on that. When-
ever you want to traverse a list to return something, chances are you want
a fold.

A fold takes a binary function (one that takes two parameters, such as + or
div), a starting value (often called the accumulator), and a list to fold up.

Lists can be folded up from the left or from the right. The fold function
calls the given binary function, using the accumulator and the first (or last)
element of the list as parameters. The resulting value is the new accumula-
tor. Then the fold function calls the binary function again with the new ac-
cumulator and the new first (or last) element of the list, resulting in another
new accumulator. This repeats until the function has traversed the entire list
and reduced it down to a single accumulator value.
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Left Folds with foldl
First, let’s look at the foldl function. This is called a left fold, since it folds the
list up from the left side. In this case, the binary function is applied between
the starting accumulator and the head of the list. That produces a new accu-
mulator value, and the binary function is called with that value and the next
element, and so on.

Let’s implement the sum function again, this time using a fold instead of
explicit recursion:

sum' :: (Num a) => [a] -> a

sum' xs = foldl (\acc x -> acc + x) 0 xs

Now we can test it:

ghci> sum' [3,5,2,1]

11

Let’s take an in-depth look at how this fold
happens. \acc x -> acc + x is the binary function.
0 is the starting value, and xs is the list to be folded
up. First, 0 and 3 are passed to the binary function
as the acc and x parameters, respectively. In this
case, the binary function is simply an addition, so
the two values are added, which produces 3 as the
new accumulator value. Next, 3 and the next list
value (5) are passed to the binary function, and
they are added together to produce 8 as the new
accumulator value. In the same way, 8 and 2 are
added together to produce 10, and then 10 and 1

are added together to produce the final value of
11. Congratulations, you’ve folded your first list!

The diagram on the left illustrates how a fold
happens, step by step. The number that’s on the
left side of the + is the accumulator value. You
can see how the list is consumed up from the left
side by the accumulator. (Om nom nom nom!)
If we take into account that functions are curried,
we can write this implementation even more suc-
cinctly, like so:

sum' :: (Num a) => [a] -> a

sum' = foldl (+) 0

The lambda function (\acc x -> acc + x) is the same as (+). We can omit
the xs as the parameter because calling foldl (+) 0 will return a function that
takes a list. Generally, if you have a function like foo a = bar b a, you can
rewrite it as foo = bar b because of currying.
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Right Folds with foldr
The right fold function, foldr, is similar to the left fold, except the accumu-
lator eats up the values from the right. Also, the order of the parameters in
the right fold’s binary function is reversed: The current list value is the first
parameter, and the accumulator is the second. (It makes sense that the right
fold has the accumulator on the right, since it folds from the right side.)

The accumulator value (and hence, the result) of a fold can be of any
type. It can be a number, a Boolean, or even a new list. As an example, let’s
implement the map function with a right fold. The accumulator will be a list,
and we’ll be accumulating the mapped list element by element. Of course,
our starting element will need to be an empty list:

map' :: (a -> b) -> [a] -> [b]

map' f xs = foldr (\x acc -> f x : acc) [] xs

If we’re mapping (+3) to [1,2,3], we approach the list from the right
side. We take the last element, which is 3, and apply the function to it, which
gives 6. Then we prepend it to the accumulator, which was []. 6:[] is [6], so
that’s now the accumulator. We then apply (+3) to 2, yielding 5, and prepend
(:) that to the accumulator. Our new accumulator value is now [5,6]. We
then apply (+3) to 1 and prepend the result to the accumulator again, giving
a final result of [4,5,6].

Of course, we could have implemented this function with a left fold in-
stead, like this:

map' :: (a -> b) -> [a] -> [b]

map' f xs = foldl (\acc x -> acc ++ [f x]) [] xs

However, the ++ function is much slower than :, so we usually use right
folds when we’re building up new lists from a list.

One big difference between the two types of folds is that right folds work
on infinite lists, whereas left ones don’t!

Let’s implement one more function with a right fold. As you know, the
elem function checks whether a value is part of a list. Here’s how we can use
foldr to implement it:

elem' :: (Eq a) => a -> [a] -> Bool

elem' y ys = foldr (\x acc -> if x == y then True else acc) False ys

Here, the accumulator is a Boolean value. (Remember that the type of
the accumulator value and the type of the end result are always the same
when dealing with folds.) We start with a value of False, since we’re assuming
the value isn’t in the list to begin with. This also gives us the correct value if
we call it on the empty list, since calling a fold on an empty list just returns
the starting value.
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Next, we check if the current element
is the element we want. If it is, we set the
accumulator to True. If it’s not, we just
leave the accumulator unchanged. If it
was False before, it stays that way because
this current element is not the one we’re
seeking. If it was True, it stays that way as
the rest of the list is folded up.

The foldl and foldr1 Functions
The foldl1 and foldr1 functions work much like foldl and foldr, except that
you don’t need to provide them with an explicit starting accumulator. They
assume the first (or last) element of the list to be the starting accumulator,
and then start the fold with the element next to it. With that in mind, the
maximum function can be implemented like so:

maximum' :: (Ord a) => [a] -> a

maximum' = foldl1 max

We implemented maximum by using a foldl1. Instead of providing a starting
accumulator, foldl1 just assumes the first element as the starting accumula-
tor and moves on to the second one. So all foldl1 needs is a binary function
and a list to fold up! We start at the beginning of the list and then compare
each element with the accumulator. If it’s greater than our accumulator, we
keep it as the new accumulator; otherwise, we keep the old one. We passed
max to foldl1 as the binary function because it does exactly that: takes two val-
ues and returns the one that’s larger. By the time we’ve finished folding our
list, only the largest element remains.

Because they depend on the lists they’re called with having at least one
element, these functions cause runtime errors if called with empty lists. foldl
and foldr, on the other hand, work fine with empty lists.

NOTE When making a fold, think about how it acts on an empty list. If the function doesn’t
make sense when given an empty list, you can probably use a foldl1 or foldr1 to im-
plement it.

Some Fold Examples
To demonstrate how powerful folds are, let’s implement some standard li-
brary functions using folds. First, we’ll write our own version of reverse:

reverse' :: [a] -> [a]

reverse' = foldl (\acc x -> x : acc) []

Here, we reverse a list by using the empty list as a starting accumulator
and then approaching our original list from the left and placing the current
element at the start of the accumulator.
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The function \acc x -> x : acc is just like the : function, except that
the parameters are flipped. That’s why we could have also written reverse'

like so:

reverse' :: [a] -> [a]

reverse' = foldl (flip (:)) []

Next, we’ll implement product:

product' :: (Num a) => [a] -> a

product' = foldl (*) 1

To calculate the product of all the numbers in the list, we start with 1

as the accumulator. Then we fold left with the * function, multiplying each
element with the accumulator.

Now we’ll implement filter:

filter' :: (a -> Bool) -> [a] -> [a]

filter' p = foldr (\x acc -> if p x then x : acc else acc) []

Here, we use an empty list as the starting accumulator. Then we fold
from the right and inspect each element. p is our predicate. If p x is True—
meaning that if the predicate holds for the current element—we put it at the
beginning of the accumulator. Otherwise, we just reuse our old accumulator.

Finally, we’ll implement last:

last' :: [a] -> a

last' = foldl1 (\_ x -> x)

To get the last element of a list, we use a foldl1. We start at the first el-
ement of the list, and then use a binary function that disregards the accu-
mulator and always sets the current element as the new accumulator. Once
we’ve reached the end, the accumulator—that is, the last element—will be
returned.

Another Way to Look at Folds
Another way to picture right and left folds is as successive applications of
some function to elements in a list. Say we have a right fold, with a binary
function f and a starting accumulator z. When we right fold over the list
[3,4,5,6], we’re essentially doing this:

f 3 (f 4 (f 5 (f 6 z)))

f is called with the last element in the list and the accumulator, then
that value is given as the accumulator to the next-to-last value, and so on.
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If we take f to be + and the starting accumulator value to be 0, we’re do-
ing this:

3 + (4 + (5 + (6 + 0)))

Or if we write + as a prefix function, we’re doing this:

(+) 3 ((+) 4 ((+) 5 ((+) 6 0)))

Similarly, doing a left fold over that list with g as the binary function and
z as the accumulator is the equivalent of this:

g (g (g (g z 3) 4) 5) 6

If we use flip (:) as the binary function and [] as the accumulator (so
we’re reversing the list), that’s the equivalent of the following:

flip (:) (flip (:) (flip (:) (flip (:) [] 3) 4) 5) 6

And sure enough, if you evaluate that expression, you get [6,5,4,3].

Folding Infinite Lists
Viewing folds as successive function applications on values of a list can give
you insight as to why foldr sometimes works perfectly fine on infinite lists.
Let’s implement the and function with a foldr, and then write it out as a se-
ries of successive function applications, as we did with our previous exam-
ples. You’ll see how foldr works with Haskell’s laziness to operate on lists
that have infinite length.

The and function takes a list of Bool values and returns False if one or
more elements are False; otherwise, it returns True. We’ll approach the list
from the right and use True as the starting accumulator. We’ll use && as the
binary function, because we want to end up with True only if all the elements
are True. The && function returns False if either of its parameters is False, so
if we come across an element in the list that is False, the accumulator will be
set as False and the final result will also be False, even if all the remaining
elements are True:

and' :: [Bool] -> Bool

and' xs = foldr (&&) True xs

Knowing how foldr works, we see that the expression and' [True,False,True]

will be evaluated like this:

True && (False && (True && True))
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The last True represents our starting accumulator, whereas the first three
Bool values are from the list [True,False,True]. If we try to evaluate the previ-
ous expression, we will get False.

Now what if we try this with an infinite list, say repeat False, which has an
infinite number of elements, all of which are False? If we write that out, we
get something like this:

False && (False && (False && (False ...

Haskell is lazy, so it will compute only what it really must. And the &&

function works in such a way that if its first parameter is False, it disregards
its second parameter, because the && function returns True only if both of its
parameters are True:

(&&) :: Bool -> Bool -> Bool

True && x = x

False && _ = False

In the case of the endless list of False values, the second pattern matches,
and False is returned without Haskell needing to evaluate the rest of the infi-
nite list:

ghci> and' (repeat False)

False

foldr will work on infinite lists when the binary function that we’re pass-
ing to it doesn’t always need to evaluate its second parameter to give us some
sort of answer. For instance, && doesn’t care what its second parameter is if
its first parameter is False.

Scans
The scanl and scanr functions are like foldl and foldr, except they report
all the intermediate accumulator states in the form of a list. The scanl1 and
scanr1 functions are analogous to foldl1 and foldr1. Here are some examples
of these functions in action:

ghci> scanl (+) 0 [3,5,2,1]

[0,3,8,10,11]

ghci> scanr (+) 0 [3,5,2,1]

[11,8,3,1,0]

ghci> scanl1 (\acc x -> if x > acc then x else acc) [3,4,5,3,7,9,2,1]

[3,4,5,5,7,9,9,9]

ghci> scanl (flip (:)) [] [3,2,1]

[[],[3],[2,3],[1,2,3]]

When using a scanl, the final result will be in the last element of the re-
sulting list. scanr will place the result in the head of the list.
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Scans are used to monitor the progress of a function that can be imple-
mented as a fold. As an exercise in using scans, let’s try answering this ques-
tion: How many elements does it take for the sum of the square roots of all
natural numbers to exceed 1,000?

To get the square roots of all natural numbers, we just call map sqrt [1..].
To get the sum, we could use a fold. However, because we’re interested in
how the sum progresses, we’ll use a scan instead. Once we’ve done the scan,
we can check how many sums are under 1,000.

sqrtSums :: Int

sqrtSums = length (takeWhile (<1000) (scanl1 (+) (map sqrt [1..]))) + 1

We use takeWhile here instead of filter because filter wouldn’t cut off
the resulting list once a number that’s equal to or over 1,000 is found; it
would keep searching. Even though we know the list is ascending, filter
doesn’t, so we use takeWhile to cut off the scan list at the first occurrence of
a sum greater than 1,000.

The first sum in the scan list will be 1. The second will be 1 plus the
square root of 2. The third will be that plus the square root of 3. If there are
x sums under 1,000, then it takes x+1 elements for the sum to exceed 1,000:

ghci> sqrtSums

131

ghci> sum (map sqrt [1..131])

1005.0942035344083

ghci> sum (map sqrt [1..130])

993.6486803921487

And behold, our answer is correct! If we sum the first 130 square roots,
the result is just below 1,000, but if we add another one to that, we go over
our threshold.

Function Application with $
Now we’ll look at the $ function, also called the function application operator.
First, let’s see how it’s defined:

($) :: (a -> b) -> a -> b

f $ x = f x

What the heck? What is this useless function? It’s
just function application! Well, that’s almost true,
but not quite. Whereas normal function application
(putting a space between two things) has a really high
precedence, the $ function has the lowest precedence.
Function application with a space is left-associative (so
f a b c is the same as ((f a) b) c), while function ap-
plication with $ is right-associative.
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So how does this help us? Most of the time, it’s a convenience function
that lets us write fewer parentheses. For example, consider the expression
sum (map sqrt [1..130]). Because $ has such a low precedence, we can rewrite
that expression as sum $ map sqrt [1..130]. When a $ is encountered, the ex-
pression on its right is applied as the parameter to the function on its left.

How about sqrt 3 + 4 + 9? This adds together 9, 4, and the square root
of 3. However, if we wanted the square root of 3 + 4 + 9, we would need to
write sqrt (3 + 4 + 9). With $, we can also write this as sqrt $ 3 + 4 + 9. You
can imagine $ as almost being the equivalent of writing an opening paren-
thesis and then writing a closing parenthesis on the far right side of the
expression.

Let’s look at another example:

ghci> sum (filter (> 10) (map (*2) [2..10]))
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Whoa, that’s a lot of parentheses! It looks kind of ugly. Here, (*2) is
mapped onto [2..10], then we filter the resulting list to keep only those
numbers that are larger than 10, and finally those numbers are added
together.

We can use the $ function to rewrite our previous example and make it
a little easier on the eyes:

ghci> sum $ filter (> 10) (map (*2) [2..10])

80

The $ function is right-associative, meaning that something like f $ g $ x

is equivalent to f $ (g $ x). With that in mind, the preceding example can
once again be rewritten as follows:

ghci> sum $ filter (> 10) $ map (*2) [2..10]
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Apart from getting rid of parentheses, $ lets us treat function applica-
tion like just another function. This allows us to, for instance, map function
application over a list of functions, like this:

ghci> map ($ 3) [(4+), (10*), (^2), sqrt]

[7.0,30.0,9.0,1.7320508075688772]

Here, the function ($ 3) gets mapped over the list. If you think about
what the ($ 3) function does, you’ll see that it takes a function and then ap-
plies that function to 3. So every function in the list gets applied to 3, which
is evident in the result.
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Function Composition
In mathematics, function composition is defined like this: (f ◦ g)(x) = f(g(x)).
This means that composing two functions is the equivalent of calling one
function with some value and then calling another function with the result
of the first function.

In Haskell, function composition is pretty much the same thing. We do
function composition with the . function, which is defined like this:

(.) :: (b -> c) -> (a -> b) -> a -> c

f . g = \x -> f (g x)

Notice the type declaration. f must
take as its parameter a value that has the
same type as g’s return value. So the result-
ing function takes a parameter of the same
type that g takes and returns a value of the
same type that f returns. For example, the
expression negate . (* 3) returns a function
that takes a number, multiplies it by 3, and
then negates it.

One use for function composition is
making functions on the fly to pass to other
functions. Sure, we can use lambdas for

that, but many times, function composition is clearer and more concise.
For example, say we have a list of numbers and we want to turn them all

into negative numbers. One way to do that would be to get each number’s
absolute value and then negate it, like so:

ghci> map (\x -> negate (abs x)) [5,-3,-6,7,-3,2,-19,24]

[-5,-3,-6,-7,-3,-2,-19,-24]

Notice the lambda and how it looks like the result of function composi-
tion. Using function composition, we can rewrite that as follows:

ghci> map (negate . abs) [5,-3,-6,7,-3,2,-19,24]

[-5,-3,-6,-7,-3,-2,-19,-24]

Fabulous! Function composition is right-associative, so we can com-
pose many functions at a time. The expression f (g (z x)) is equivalent to
(f . g . z) x. With that in mind, we can turn something messy, like this:

ghci> map (\xs -> negate (sum (tail xs))) [[1..5],[3..6],[1..7]]

[-14,-15,-27]
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into something much cleaner, like this:

ghci> map (negate . sum . tail) [[1..5],[3..6],[1..7]]

[-14,-15,-27]

negate . sum . tail is a function that takes a list, applies the tail function
to it, then applies the sum function to the result of that, and finally applies
negate to the previous result. So it’s equivalent to the preceding lambda.

Function Composition with Multiple Parameters
But what about functions that take several parameters? Well, if we want to
use them in function composition, we usually must partially apply them so
that each function takes just one parameter. Consider this expression:

sum (replicate 5 (max 6.7 8.9))

This expression can be rewritten as follows:

(sum . replicate 5) (max 6.7 8.9)

which is equivalent to this:

sum . replicate 5 $ max 6.7 8.9

The function replicate 5 is applied to the result of max 6.7 8.9, and then
sum is applied to that result. Notice that we partially applied the replicate

function to the point where it takes only one parameter, so that when the
result of max 6.7 8.9 gets passed to replicate 5, the result is a list of numbers,
which is then passed to sum.

If we want to rewrite an expression with a lot of parentheses using func-
tion composition, we can start by first writing out the innermost function
and its parameters. Then we put a $ before it and compose all the functions
that came before by writing them without their last parameter and putting
dots between them. Say we have this expression:

replicate 2 (product (map (*3) (zipWith max [1,2] [4,5])))

We can write this as follows:

replicate 2 . product . map (*3) $ zipWith max [1,2] [4,5]

How did we turn the first example into the second one? Well, first we
look at the function on the far right and its parameters, just before the bunch

Higher-Order Functions 83



of closing parentheses. That function is zipWith max [1,2] [4,5]. We’re going
to keep that as it is, so now we have this:

zipWith max [1,2] [4,5]

Then we look at which function was applied to zipWith max [1,2] [4,5]

and see that it was map (*3). So we put a $ between it and what we had before:

map (*3) $ zipWith max [1,2] [4,5]

Now we start the compositions. We check which function was applied to
all this, and we see that it was product, so we compose it with map (*3):

product . map (*3) $ zipWith max [1,2] [4,5]

And finally, we see that the function replicate 2 was applied to all this,
and we can write the expression as follows:

replicate 2 . product . map (*3) $ zipWith max [1,2] [4,5]

If the expression ends with three parentheses, chances are that if you
translate it into function composition by following this procedure, it will
have two composition operators.

Point-Free Style
Another common use of function composition is defining functions in the
point-free style. For example, consider a function we wrote earlier:

sum' :: (Num a) => [a] -> a

sum' xs = foldl (+) 0 xs

The xs is on the far right on both sides of the equal sign. Because of cur-
rying, we can omit the xs on both sides, since calling foldl (+) 0 creates a
function that takes a list. In this way, we are writing the function in point-
free style:

sum' :: (Num a) => [a] -> a

sum' = foldl (+) 0

As another example, let’s try writing the following function in point-free
style:

fn x = ceiling (negate (tan (cos (max 50 x))))

We can’t just get rid of the x on both right sides, since the x in the func-
tion body is surrounded by parentheses. cos (max 50) wouldn’t make sense—
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you can’t get the cosine of a function. What we can do is express fn as a com-
position of functions, like this:

fn = ceiling . negate . tan . cos . max 50

Excellent! Many times, a point-free style is more readable and concise,
because it makes you think about functions and what kinds of functions
composing them results in, instead of thinking about data and how it’s shuf-
fled around. You can take simple functions and use composition as glue to
form more complex functions.

However, if a function is too complex, writing it in point-free style can
actually be less readable. For this reason, making long chains of function
composition is discouraged. The preferred style is to use let bindings to give
labels to intermediary results or to split the problem into subproblems that
are easier for someone reading the code to understand.

Earlier in the chapter, we solved the problem of finding the sum of all
odd squares that are smaller than 10,000. Here’s what the solution looks like
when put into a function:

oddSquareSum :: Integer

oddSquareSum = sum (takeWhile (<10000) (filter odd (map (^2) [1..])))

With our knowledge of function composition, we can also write the func-
tion like this:

oddSquareSum :: Integer

oddSquareSum = sum . takeWhile (<10000) . filter odd $ map (^2) [1..]

It may seem a bit weird at first, but you will get used to this style quickly.
There’s less visual noise because we removed the parentheses. When reading
this, you can just say that filter odd is applied to the result of map (^2) [1..],
then takeWhile (<10000) is applied to the result of that, and finally sum is ap-
plied to that result.
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6
MODULES

A Haskell module is essen-
tially a file that defines
some functions, types,
and type classes. A Has-
kell program is a collection
of modules.

A module can have many func-
tions and types defined inside it, and
it exports some of them. This means
that it makes them available for the outside world to see and use.

Having code split up into several modules has many advantages. If a
module is generic enough, the functions it exports can be used in a multi-
tude of different programs. If your own code is separated into self-contained
modules that don’t rely on each other too much (we also say they are loosely
coupled), you can reuse them later. Your code is more manageable when you
split it into several parts.

The Haskell standard library is split into modules, and each of them
contains functions and types that are somehow related and serve some com-
mon purpose. There are modules for manipulating lists, concurrent pro-
gramming, dealing with complex numbers, and so on. All the functions,



types, and type classes that we’ve dealt with so far are part of the Prelude

module, which is imported by default.
In this chapter, we’re going to examine a few useful modules and their

functions. But first, you need to know how to import modules.

Importing Modules
The syntax for importing modules in a Haskell script is import ModuleName.
This must be done before defining any functions, so imports are usually at
the top of the file. One script can import several modules—just put each
import statement on a separate line.

An example of a useful module is Data.List, which has a bunch of func-
tions for working with lists. Let’s import that module and use one of its
functions to create our own function that tells us how many unique ele-
ments a list has.

import Data.List

numUniques :: (Eq a) => [a] -> Int

numUniques = length . nub

When you import Data.List, all the functions that Data.List exports be-
come available; you can call them from anywhere in the script. One of those
functions is nub, which takes a list and weeds out duplicate elements. Com-
posing length and nub with length . nub produces a function that’s the equiva-
lent of \xs -> length (nub xs).

NOTE To search for functions or to find out where they’re located, use Hoogle, which can
be found at http://www.haskell.org/hoogle/. It’s a really awesome Haskell
search engine that allows you to search by function name, module name, or even
type signature.

You can also get access to functions of modules when using GHCi. If
you’re in GHCi and you want to be able to call the functions exported by
Data.List, enter this:

ghci> :m + Data.List

If you want to access several modules from GHCi, you don’t need to
enter :m + several times. You can load several modules at once, as in this
example:

ghci> :m + Data.List Data.Map Data.Set

However, if you’ve loaded a script that already imports a module, you
don’t need to use :m + to access that module. If you need only a couple of
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functions from a module, you can selectively import just those functions. For
example, here’s how you could import only the nub and sort functions from
Data.List:

import Data.List (nub, sort)

You can also choose to import all of the functions of a module except a
few select ones. That’s often useful when several modules export functions
with the same name and you want to get rid of the offending ones. Say you
already have your own function called nub and you want to import all the
functions from Data.List except the nub function. Here’s how to do that:

import Data.List hiding (nub)

Another way of dealing with name clashes is to do qualified imports. Con-
sider the Data.Map module, which offers a data structure for looking up val-
ues by key. This module exports a lot of functions with the same name as
Prelude functions, such as filter and null. So if we imported Data.Map and
then called filter, Haskell wouldn’t know which function to use. Here’s
how we solve this:

import qualified Data.Map

Now if we want to reference Data.Map’s filter function, we must use
Data.Map.filter. Entering just filter still refers to the normal filter we all
know and love. But typing Data.Map in front of every function from that mod-
ule is kind of tedious. That’s why we can rename the qualified import to
something shorter:

import qualified Data.Map as M

Now to reference Data.Map’s filter function, we just use M.filter.
As you’ve seen, the . symbol is used to reference functions from mod-

ules that have been imported as qualified, such as M.filter. We also use it to
perform function composition. So how does Haskell know what we mean
when we use it? Well, if we place it between a qualified module name and a
function, without whitespace, it’s regarded as just referring to the imported
function; otherwise, it’s treated as function composition.

NOTE A great way to pick up new Haskell knowledge is to just click through the standard
library documentation and explore the modules and their functions. You can also view
the Haskell source code for each module. Reading the source code of some modules will
give you a solid feel for Haskell.
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Solving Problems with Module Functions
The modules in the standard libraries provide many functions that can make
our lives easier when coding in Haskell. Let’s look at some examples of how
to use functions from various Haskell modules to solve problems.

Counting Words
Suppose we have a string that contains a bunch of words, and we want to
know how many times each word appears in the string. The first module
function we’ll use is words from Data.List. The words function converts a
string into a list of strings where each string is one word. Here’s a quick
demonstration:

ghci> words "hey these are the words in this sentence"

["hey","these","are","the","words","in","this","sentence"]

ghci> words "hey these are the words in this sentence"

["hey","these","are","the","words","in","this","sentence"]

Then we’ll use the group function, which also lives in Data.List, to group
together words that are identical. This function takes a list and groups adja-
cent elements into sublists if they are equal:

ghci> group [1,1,1,1,2,2,2,2,3,3,2,2,2,5,6,7]

[[1,1,1,1],[2,2,2,2],[3,3],[2,2,2],[5],[6],[7]]

But what happens if the elements that are equal aren’t adjacent in
our list?

ghci> group ["boom","bip","bip","boom","boom"]

[["boom"],["bip","bip"],["boom","boom"]]

We get two lists that contain the string "boom", even though we want all
occurrences of some word to end up in the same list. What are we to do?
Well, we could sort our list of words beforehand! For that, we’ll use the sort

function, which hangs its hat in Data.List. It takes a list of things that can
be ordered and returns a new list that is like the old one, but ordered from
smallest to largest:

ghci> sort [5,4,3,7,2,1]

[1,2,3,4,5,7]

ghci> sort ["boom","bip","bip","boom","boom"]

["bip","bip","boom","boom","boom"]

Notice that the strings are put in an alphabetical order.
We have all the ingredients for our recipe. Now we just need to write it

down. We’ll take a string, break it down into a list of words, sort those words,
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and then group them. Finally, we’ll use some mapping magic to get tuples
like ("boom", 3), meaning that the word "boom" occurs three times.

import Data.List

wordNums :: String -> [(String,Int)]

wordNums = map (\ws -> (head ws, length ws)) . group . sort . words

We used function composition to make our final function. It takes
a string, such as "wa wa wee wa", and then applies words to that string, re-
sulting in ["wa","wa","wee","wa"]. Then sort is applied to that, and we get
["wa","wa","wa","wee"]. Applying group to this result groups adjacent words
that are equal, so we get a list of lists of strings: [["wa","wa","wa"],["wee"]].
Then we map a function that takes a list and returns a tuple, where the first
component is the head of the list and the second component is its length,
over the grouped words. Our final result is [("wa",3),("wee",1)].

Here’s how we could write this function without function composition:

wordNums xs = map (\ws -> (head ws,length ws)) (group (sort (words xs)))

Wow, parentheses overload! I think it’s easy to see how function compo-
sition makes this function more readable.

Needle in the Haystack
For our next mission, should we choose to accept it, we will make a function
that takes two lists and tells us if the first list is wholly contained anywhere in
the second list. For instance, the list [3,4] is contained in[1,2,3,4,5], whereas
[2,5] isn’t. We’ll refer to the list that’s being searched as the haystack and the
list that we’re searching for as the needle.

For this escapade, we’ll use the tails function, which dwells in Data.List.
tails takes a list and successively applies the tail function to that list. Here’s
an example:

ghci> tails "party"

["party","arty","rty","ty","y",""]

ghci> tails [1,2,3]

[[1,2,3],[2,3],[3],[]]

At this point, it may not be obvious why we need tails at all. Another
example will clarify this.

Let’s say that we’re searching for the string "art" inside the string "party".
First, we use tails to get all the tails of the list. Then we examine each tail,
and if any one starts with the string "art", we’ve found the needle in our
haystack! If we were looking for "boo" inside "party", no tail would start with
the string "boo".
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To see if one string starts with another, we’ll use the isPrefixOf function,
which is also found in Data.List. It takes two lists and tells us if the second
one starts with the first one.

ghci> "hawaii" `isPrefixOf` "hawaii joe"

True

ghci> "haha" `isPrefixOf` "ha"

False

ghci> "ha" `isPrefixOf` "ha"

True

Now we just need to check if any tail of our haystack starts with our nee-
dle. For that, we can use the any function from Data.List. It takes a predicate
and a list, and it tells us if any element from the list satisfies the predicate.
Behold:

ghci> any (> 4) [1,2,3]

False

ghci> any (=='F') "Frank Sobotka"

True

ghci> any (\x -> x > 5 && x < 10) [1,4,11]

False

Let’s put these functions together:

import Data.List

isIn :: (Eq a) => [a] -> [a] -> Bool

needle `isIn` haystack = any (needle `isPrefixOf`) (tails haystack)

That’s all there is to it! We use tails to generate a list of tails of our
haystack and then see if any of them starts with our needle. Let’s give it a
test run:

ghci> "art" `isIn` "party"

True

ghci> [1,2] `isIn` [1,3,5]

False

Oh, wait a minute! It turns out that the function that we just made is
already in Data.List! Curses! It’s called isInfixOf, and it does the same work
as our isIn function.

Caesar Cipher Salad
Gaius Julius Caesar has entrusted upon us an important task. We must trans-
port a top-secret message to Mark Antony in Gaul. Just in case we get captured,
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we’re going to use some functions from Data.Char

to be a bit sneaky and encode messages by using
the Caesar cipher.

The Caesar cipher is a primitive method of
encoding messages by shifting each character
by a fixed number of positions in the alphabet.
We can easily create a sort of Caesar cipher of
our own, and we won’t constrict ourselves to the
alphabet—we’ll use the whole range of Unicode
characters.

To shift characters forward and backward
in the alphabet, we’re going to use the Data.Char

module’s ord and chr functions, which convert
characters to their corresponding numbers and
vice versa:

ghci> ord 'a'

97

ghci> chr 97

'a'

ghci> map ord "abcdefgh"

[97,98,99,100,101,102,103,104]

ord 'a' returns 97 because 'a' is the ninety-seventh character in the Uni-
code table of characters.

The difference between the ord values of two characters is equal to how
far apart they are in the Unicode table.

Let’s write a function that takes a number of positions to shift and a
string, and returns that string where every character is shifted forward in the
alphabet by that many positions.

import Data.Char

encode :: Int -> String -> String

encode offset msg = map (\c -> chr $ ord c + offset) msg

Encoding a string is as simple as taking our message and mapping over
it a function that takes a character, converts it to its corresponding number,
adds an offset, and then converts it back to a character. A composition cow-
boy would write this function as (chr . (+ offset) . ord).

ghci> encode 3 "hey mark"

"kh|#pdun"

ghci> encode 5 "please instruct your men"

"uqjfxj%nsxywzhy%~tzw%rjs"

ghci> encode 1 "to party hard"

"up!qbsuz!ibse"
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That’s definitely encoded!
Decoding a message is basically just shifting it back by the number of

places it was shifted by in the first place.

decode :: Int -> String -> String

decode shift msg = encode (negate shift) msg

Now we can test it by decoding Caesar’s message:

ghci> decode 3 "kh|#pdun"

"hey mark"

ghci> decode 5 "uqjfxj%nsxywzhy%~tzw%rjs"

"please instruct your men"

ghci> decode 1 "up!qbsuz!ibse"

"to party hard"

On Strict Left Folds
In the previous chapter, you saw how foldl works and how you can use it to
implement all sorts of cool functions. However, there’s a catch to foldl that
we haven’t yet explored: Using foldl can sometimes lead to so-called stack
overflow errors, which occur when your program uses too much space in a
specific part of your computer’s memory. To demonstrate, let’s use foldl

with the + function to sum a list that consists of a hundred 1s:

ghci> foldl (+) 0 (replicate 100 1)

100

This seems to work. What if we want to use foldl to sum a list that has, as
Dr. Evil would put it, one million 1s?

ghci> foldl (+) 0 (replicate 1000000 1)

*** Exception: stack overflow

Ooh, that is truly evil! Now why does this
happen? Haskell is lazy, and so it defers actual
computation of values for as long as possible.
When we use foldl, Haskell doesn’t compute
(that is, evaluate) the actual accumulator on
every step. Instead, it defers its evaluation. In
the next step, it again doesn’t evaluate the accu-
mulator, but defers the evaluation. It also keeps
the old deferred computation in memory, be-
cause the new one often refers to its result. So as
the fold merrily goes along its way, it builds up a

bunch of deferred computations, each taking a not insignificant amount of
memory. Eventually, this can cause a stack overflow error.

94 Chapter 6



Here’s how Haskell evaluates the expression foldl (+) 0 [1,2,3]:

foldl (+) 0 [1,2,3] =

foldl (+) (0 + 1) [2,3] =

foldl (+) ((0 + 1) + 2) [3] =

foldl (+) (((0 + 1) + 2) + 3) [] =

((0 + 1) + 2) + 3 =

(1 + 2) + 3 =

3 + 3 =

6

As you can see, it first builds up a big stack of deferred computations.
Then, once it reaches the empty list, it goes about actually evaluating those
deferred computations. This isn’t a problem for small lists, but for large lists
that contain upward of a million elements, you get a stack overflow, because
evaluating all these deferred computations is done recursively. Wouldn’t it
be nice if there was a function named, say, foldl', that didn’t defer computa-
tions? It would work like this:

foldl' (+) 0 [1,2,3] =

foldl' (+) 1 [2,3] =

foldl' (+) 3 [3] =

foldl' (+) 6 [] =

6

Computations wouldn’t be deferred between steps of foldl, but would
get evaluated immediately. Well, we’re in luck, because Data.List offers this
stricter version of foldl, and it is indeed called foldl'. Let’s try to compute
the sum of a million 1s with foldl':

ghci> foldl' (+) 0 (replicate 1000000 1)

1000000

Great success! So, if you get stack overflow errors when using foldl, try
switching to foldl'. There’s also a stricter version of foldl1, named foldl1'.

Let’s Find Some Cool Numbers
You’re walking along the street, and an old lady
comes up to you and says, “Excuse me, what’s the
first natural number such that the sum of its digits
equals 40?”

Well, what now, hotshot? Let’s use some Has-
kell magic to find such a number. For instance, if
we sum the digits of the number 123, we get 6, be-
cause 1 + 2 + 3 equals 6. So, what is the first num-
ber that has such a property that its digits add up
to 40?
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First, let’s make a function that takes a number and tells us the sum of
its digits. We’re going to use a cool trick here. First, we’ll convert our num-
ber to a string by using the show function. Once we have a string, we’ll turn
each character in that string into a number and then just sum that list of
numbers. To turn a character into a number, we’ll use a handy function
from Data.Char called digitToInt. It takes a Char and returns an Int:

ghci> digitToInt '2'

2

ghci> digitToInt 'F'

15

ghci> digitToInt 'z'

*** Exception: Char.digitToInt: not a digit 'z'

It works on the characters in the range from '0' to '9' and from 'A' to
'F' (they can also be in lowercase).

Here’s our function that takes a number and returns the sum of its digits:

import Data.Char

import Data.List

digitSum :: Int -> Int

digitSum = sum . map digitToInt . show

We convert it to a string, map digitToInt over that string, and then sum
the resulting list of numbers.

Now we need to find the first natural number such that when we apply
digitSum to it, we get 40 as the result. To do that, we’ll use the find function,
which resides in Data.List. It takes a predicate and a list and returns the first
element of the list that matches the predicate. However, it has a rather pecu-
liar type declaration:

ghci> :t find

find :: (a -> Bool) -> [a] -> Maybe a

The first parameter is a predicate, and the
second parameter is a list—no big deal here.
But what about the return value? It says Maybe a.
That’s a type you haven’t met before. A value
with a type of Maybe a is sort of like a list of type
[a]. Whereas a list can have zero, one, or many
elements, a Maybe a typed value can have ei-
ther zero elements or just one element. We
use it when we want to represent possible fail-
ure. To make a value that holds nothing, we
just use Nothing. This is analogous to the empty
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list. To construct a value that holds something, say the string "hey", we write
Just "hey". Here’s a quick demonstration:

ghci> Nothing

Nothing

ghci> Just "hey"

Just "hey"

ghci> Just 3

Just 3

ghci> :t Just "hey"

Just "hey" :: Maybe [Char]

ghci> :t Just True

Just True :: Maybe Bool

As you can see, a value of Just True has a type of Maybe Bool, kind of like
how a list that holds Booleans would have a type of [Bool].

If find finds an element that satisfies the predicate, it will return that
element wrapped in a Just. If it doesn’t, it will return a Nothing:

ghci> find (> 4) [3,4,5,6,7]

Just 5

ghci> find odd [2,4,6,8,9]

Just 9

ghci> find (=='z') "mjolnir"

Nothing

Now let’s get back to making our function. We have our digitSum func-
tion and know how find works, so all that’s left to do is put these two to-
gether. Remember that we want to find the first number whose digits add
up to 40.

firstTo40 :: Maybe Int

firstTo40 = find (\x -> digitSum x == 40) [1..]

We just take the infinite list [1..], and then find the first number whose
digitSum is 40.

ghci> firstTo40

Just 49999

There’s our answer! If we want to make a more general function that is
not fixed on 40 but takes our desired sum as the parameter, we can change
it like so:

firstTo :: Int -> Maybe Int

firstTo n = find (\x -> digitSum x == n) [1..]
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Here’s a quick test:

ghci> firstTo 27

Just 999

ghci> firstTo 1

Just 1

ghci> firstTo 13

Just 49

Mapping Keys to Values
When dealing with data in some sort of collection, we often don’t care if it’s
in some kind of order; we just want to be able to access it by a certain key.
For example, if we want to know who lives at a certain address, we want to
look up the name based on the address. When doing such things, we say that
we looked up our desired value (someone’s name) by some sort of key (that
person’s address).

Almost As Good: Association Lists
There are many ways to achieve key/value mappings. One of them is the as-
sociation list. Association lists (also called dictionaries) are lists that are used to
store key/value pairs where ordering doesn’t matter. For instance, we might
use an association list to store phone numbers, where phone numbers would
be the values and people’s names would be the keys. We don’t care in which
order they’re stored; we just want to get the right phone number for the
right person.

The most obvious way to represent association lists in Haskell would be
by having a list of pairs. The first component in the pair would be the key,
and the second component would be the value. Here’s an example of an
association list with phone numbers:

phoneBook =

[("betty", "555-2938")

,("bonnie", "452-2928")

,("patsy", "493-2928")

,("lucille", "205-2928")

,("wendy", "939-8282")

,("penny", "853-2492")

]

Despite this seemingly odd indentation, this is just a list of pairs of strings.
The most common task when dealing with association lists is looking

up some value by key. Let’s make a function that looks up some value given
a key.
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findKey :: (Eq k) => k -> [(k, v)] -> v

findKey key xs = snd . head . filter (\(k, v) -> key == k) $ xs

This is pretty simple. The function takes a key and a list, filters the list so
that only matching keys remain, gets the first key/value pair that matches,
and returns the value.

But what happens if the key we’re looking for isn’t in the association list?
Hmm. Here, if a key isn’t in the association list, we’ll end up trying to get
the head of an empty list, which throws a runtime error. We should avoid
making our programs so easy to crash, so let’s use the Maybe data type. If
we don’t find the key, we’ll return a Nothing. If we find it, we’ll return Just

something, where something is the value corresponding to that key.

findKey :: (Eq k) => k -> [(k, v)] -> Maybe v

findKey key [] = Nothing

findKey key ((k,v):xs)

| key == k = Just v

| otherwise = findKey key xs

Look at the type declaration. It takes a key that can be equated and an
association list, and then it maybe produces a value. Sounds about right.

This is a textbook recursive function that operates on a list. Base case,
splitting a list into a head and a tail, recursive calls—they’re all there. This is
the classic fold pattern, so let’s see how this would be implemented as a fold.

findKey :: (Eq k) => k -> [(k, v)] -> Maybe v

findKey key xs = foldr (\(k, v) acc -> if key == k then Just v else acc) Nothing xs

NOTE It’s usually better to use folds for this standard list recursion pattern, rather than ex-
plicitly writing the recursion, because they’re easier to read and identify. Everyone
knows it’s a fold when they see the foldr call, but it takes some more thinking to read
explicit recursion.

ghci> findKey "penny" phoneBook

Just "853-2492"

ghci> findKey "betty" phoneBook

Just "555-2938"

ghci> findKey "wilma" phoneBook

Nothing

This works like a charm! If we have the girl’s phone number, we Just get
the number; otherwise, we get Nothing.
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Enter Data.Map
We just implemented the lookup function
from Data.List. If we want the value that cor-
responds to a key, we need to traverse all the
elements of the list until we find it.

It turns out that the Data.Map module of-
fers association lists that are much faster, and
it also provides a lot of utility functions. From
now on, we’ll say we’re working with maps in-
stead of association lists.

Because Data.Map exports functions that
clash with the Prelude and Data.List ones, we’ll
do a qualified import.

import qualified Data.Map as Map

Put this import statement into a script, and then load the script via GHCi.
We’re going to turn an association list into a map by using the fromList

function from Data.Map. fromList takes an association list (in the form of a
list) and returns a map with the same associations. Let’s play around a bit
with fromList first:

ghci> Map.fromList [(3,"shoes"),(4,"trees"),(9,"bees")]

fromList [(3,"shoes"),(4,"trees"),(9,"bees")]

ghci> Map.fromList [("kima","greggs"),("jimmy","mcnulty"),("jay","landsman")]

fromList [("jay","landsman"),("jimmy","mcnulty"),("kima","greggs")]

When a map from Data.Map is displayed on the terminal, it’s shown as
fromList and then an association list that represents the map, even though
it’s not a list anymore.

If there are duplicate keys in the original association list, the duplicates
are just discarded:

ghci> Map.fromList [("MS",1),("MS",2),("MS",3)]

fromList [("MS",3)]

This is the type signature of fromList:

Map.fromList :: (Ord k) => [(k, v)] -> Map.Map k v

It says that it takes a list of pairs of type k and v, and returns a map that
maps from keys of type k to values of type v. Notice that when we were do-
ing association lists with normal lists, the keys only needed to be equatable
(their type belonging to the Eq type class), but now they must be orderable.
That’s an essential constraint in the Data.Map module. It needs the keys to be
orderable so it can arrange and access them more efficiently.
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Now we can modify our original phoneBook association list to be a map.
We’ll also add a type declaration, just because we can:

import qualified Data.Map as Map

phoneBook :: Map.Map String String

phoneBook = Map.fromList $

[("betty", "555-2938")

,("bonnie", "452-2928")

,("patsy", "493-2928")

,("lucille", "205-2928")

,("wendy", "939-8282")

,("penny", "853-2492")

]

Cool! Let’s load this script into GHCi and play around with our phoneBook.
First, we’ll use lookup to search for some phone numbers. lookup takes a key
and a map, and tries to find the corresponding value in the map. If it suc-
ceeds, it returns the value wrapped in a Just; otherwise, it returns a Nothing:

ghci> :t Map.lookup

Map.lookup :: (Ord k) => k -> Map.Map k a -> Maybe a

ghci> Map.lookup "betty" phoneBook

Just "555-2938"

ghci> Map.lookup "wendy" phoneBook

Just "939-8282"

ghci> Map.lookup "grace" phoneBook

Nothing

For our next trick, we’ll make a new map from phoneBook by inserting a
number. insert takes a key, a value, and a map, and returns a new map that’s
just like the old one, but with the key and value inserted:

ghci> :t Map.insert

Map.insert :: (Ord k) => k -> a -> Map.Map k a -> Map.Map k a

ghci> Map.lookup "grace" phoneBook

Nothing

ghci> let newBook = Map.insert "grace" "341-9021" phoneBook

ghci> Map.lookup "grace" newBook

Just "341-9021"

Let’s check how many numbers we have. We’ll use the size function
from Data.Map, which takes a map and returns its size. This is pretty straight-
forward:

ghci> :t Map.size

Map.size :: Map.Map k a -> Int
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ghci> Map.size phoneBook

6

ghci> Map.size newBook

7

The numbers in our phone book are rep-
resented as strings. Suppose we would rather
use lists of Ints to represent phone numbers.
So, instead of having a number like "939-8282",
we want to have [9,3,9,8,2,8,2]. First, we’re
going to make a function that converts a
phone number string to a list of Ints. We can
try to map digitToInt from Data.Char over our
string, but it won’t know what to do with the
dash! That’s why we need to get rid of any-
thing in that string that isn’t a number. To do
this, we’ll seek help from the isDigit function
from Data.Char, which takes a character and

tells us if it represents a digit. Once we’ve filtered our string, we’ll just map
digitToInt over it.

string2digits :: String -> [Int]

string2digits = map digitToInt . filter isDigit

Oh, be sure to import Data.Char, if you haven’t already.
Let’s try this out:

ghci> string2digits "948-9282"

[9,4,8,9,2,8,2]

Very cool! Now, let’s use the map function from Data.Map to map
string2digits over our phoneBook:

ghci> let intBook = Map.map string2digits phoneBook

ghci> :t intBook

intBook :: Map.Map String [Int]

ghci> Map.lookup "betty" intBook

Just [5,5,5,2,9,3,8]

The map from Data.Map takes a function and a map, and applies that func-
tion to each value in the map.

Let’s extend our phone book. Say that a person can have several num-
bers, and we have an association list set up like this:

phoneBook =

[("betty", "555-2938")

,("betty", "342-2492")

,("bonnie", "452-2928")
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,("patsy", "493-2928")

,("patsy", "943-2929")

,("patsy", "827-9162")

,("lucille", "205-2928")

,("wendy", "939-8282")

,("penny", "853-2492")

,("penny", "555-2111")

]

If we just use fromList to put that into a map, we’ll lose a few numbers!
Instead, we’ll use another function found in Data.Map: fromListWith. This
function acts like fromList, but instead of discarding duplicate keys, it uses
a function supplied to it to decide what to do with them.

phoneBookToMap :: (Ord k) => [(k, String)] -> Map.Map k String

phoneBookToMap xs = Map.fromListWith add xs

where add number1 number2 = number1 ++ ", " ++ number2

If fromListWith finds that the key is already there, it uses the function sup-
plied to it to join those two values into one and replaces the old value with
the one it got by passing the conflicting values to the function:

ghci> Map.lookup "patsy" $ phoneBookToMap phoneBook 

Just "827-9162, 943-2929, 493-2928"

ghci> Map.lookup "wendy" $ phoneBookToMap phoneBook 

Just "939-8282"

ghci> Map.lookup "betty" $ phoneBookToMap phoneBook 

Just "342-2492, 555-2938"

We could also first make all the values in the association list singleton
lists and then use ++ to combine the numbers:

phoneBookToMap :: (Ord k) => [(k, a)] -> Map.Map k [a]

phoneBookToMap xs = Map.fromListWith (++) $ map (\(k, v) -> (k, [v])) xs

Let’s test this in GHCi:

ghci> Map.lookup "patsy" $ phoneBookToMap phoneBook 

Just ["827-9162","943-2929","493-2928"]

Pretty neat!
Now suppose we’re making a map from an association list of numbers,

and when a duplicate key is found, we want the biggest value for the key to
be kept. We can do that like so:

ghci> Map.fromListWith max [(2,3),(2,5),(2,100),(3,29),(3,22),(3,11),(4,22),(4,15)]

fromList [(2,100),(3,29),(4,22)]
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Or we could choose to add together values that share keys:

ghci> Map.fromListWith (+) [(2,3),(2,5),(2,100),(3,29),(3,22),(3,11),(4,22),(4,15)]

fromList [(2,108),(3,62),(4,37)]

So, you’ve seen that Data.Map and the other modules provided by Haskell
are pretty cool. Next, we’ll look at how to make your own module.

Making Our Own Modules
As I said at the beginning of this chapter,
when you’re writing programs, it’s good
practice to take functions and types that
work toward a similar purpose and put
them in a separate module. That way,
you can easily reuse those functions in
other programs by just importing your
module.

We say that a module exports functions. When you import a module, you
can use the functions that it exports. A module can also define functions
that it uses internally, but we can see and use only the ones that it exports.

A Geometry Module
To demonstrate, we’ll create a little module that provides some functions for
calculating the volume and area of a few geometrical objects. We’ll start by
creating a file called Geometry.hs.

At the beginning of a module, we specify the module name. If we have a
file called Geometry.hs, then we should name our module Geometry. We specify
the functions that it exports, and then we can add the functions. So we’ll
start with this:

module Geometry

( sphereVolume

, sphereArea

, cubeVolume

, cubeArea

, cuboidArea

, cuboidVolume

) where

As you can see, we’ll be doing areas and volumes for spheres, cubes, and
cuboids. A sphere is a round thing like a grapefruit, a cube is like a game die,
and a (rectangular) cuboid is like a box of cigarettes. (Kids, don’t smoke!)
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Now let’s define our functions:

module Geometry

( sphereVolume

, sphereArea

, cubeVolume

, cubeArea

, cuboidArea

, cuboidVolume

) where

sphereVolume :: Float -> Float

sphereVolume radius = (4.0 / 3.0) * pi * (radius ^ 3)

sphereArea :: Float -> Float

sphereArea radius = 4 * pi * (radius ^ 2)

cubeVolume :: Float -> Float

cubeVolume side = cuboidVolume side side side

cubeArea :: Float -> Float

cubeArea side = cuboidArea side side side

cuboidVolume :: Float -> Float -> Float -> Float

cuboidVolume a b c = rectArea a b * c

cuboidArea :: Float -> Float -> Float -> Float

cuboidArea a b c = rectArea a b * 2 + rectArea a c * 2 +

rectArea c b * 2

rectArea :: Float -> Float -> Float

rectArea a b = a * b

This is pretty standard geometry, but there are a few items to note. One
is that because a cube is only a special case of a cuboid, we define its area
and volume by treating it as a cuboid whose sides are all of the same length.
We also define a helper function called rectArea, which calculates a rectan-
gle’s area based on the lengths of its sides. It’s rather trivial because it’s just
multiplication. Notice that we used it in our functions in the module (in
cuboidArea and cuboidVolume), but we didn’t export it! This is because we want
our module to present just functions for dealing with three-dimensional
objects.

When making a module, we usually export only those functions that act
as a sort of interface to our module so that the implementation is hidden.
People who use our Geometry module don’t need to concern themselves with
functions that we don’t export. We can decide to change those functions
completely or delete them in a newer version (we could delete rectArea and
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just use * instead), and no one will mind, because we didn’t export them in
the first place.

To use our module, we just do this:

import Geometry

However, Geometry.hs must be in the same folder as the module that’s
importing it.

Hierarchical Modules
Modules can also be given a hierarchical structure. Each module can have
a number of submodules, which can have submodules of their own. Let’s
section our geometry functions so that Geometry is a module that has three
submodules: one for each type of object.

First, we’ll make a folder called Geometry. In it, we’ll place three files:
Sphere.hs, Cuboid.hs, and Cube.hs. Let’s look at what each of the files contains.

Here are the contents of Sphere.hs:

module Geometry.Sphere

( volume

, area

) where

volume :: Float -> Float

volume radius = (4.0 / 3.0) * pi * (radius ^ 3)

area :: Float -> Float

area radius = 4 * pi * (radius ^ 2)

The Cuboid.hs file looks like this:

module Geometry.Cuboid

( volume

, area

) where

volume :: Float -> Float -> Float -> Float

volume a b c = rectArea a b * c

area :: Float -> Float -> Float -> Float

area a b c = rectArea a b * 2 + rectArea a c * 2 + rectArea c b * 2

rectArea :: Float -> Float -> Float

rectArea a b = a * b
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And our last file, Cube.hs, has these contents:

module Geometry.Cube

( volume

, area

) where

import qualified Geometry.Cuboid as Cuboid

volume :: Float -> Float

volume side = Cuboid.volume side side side

area :: Float -> Float

area side = Cuboid.area side side side

Notice how we placed Sphere.hs in a folder call-
ed Geometry, and then defined the module name as
Geometry.Sphere. We did the same for the cube and
cuboid objects. Also notice how in all three sub-
modules, we defined functions with the same names.
We can do this because they’re in separate modules.

So, now we can do this:

import Geometry.Sphere

And then we can call area and volume, and they’ll
give us the area and volume for a sphere.

If we want to juggle two or more of these modules, we need to do quali-
fied imports because they export functions with the same names. Here’s an
example:

import qualified Geometry.Sphere as Sphere

import qualified Geometry.Cuboid as Cuboid

import qualified Geometry.Cube as Cube

And then we can call Sphere.area, Sphere.volume, Cuboid.area, and so on,
and each will calculate the area or volume for its corresponding object.

The next time you find yourself writing a file that’s really big and has a
lot of functions, look for functions that serve some common purpose and
consider putting them in their own module. Then you’ll be able to just im-
port your module the next time you’re writing a program that requires some
of the same functionality.
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7
MAKING OUR OWN TYPES AND TYPE

CLASSES

So far, we’ve run into a lot of
data types: Bool, Int, Char, Maybe,
and so on. But how do we make
our own? In this chapter, you’ll
learn how to create custom
types and put them to work!

Defining a New Data Type

One way to make our own type is to use the data keyword. Let’s see how the
Bool type is defined in the standard library.

data Bool = False | True

Using the data keyword like this means that a new data type is being de-
fined. The part before the equal sign denotes the type, which in this case is
Bool. The parts after the equal sign are value constructors. They specify the
different values that this type can have. The | is read as or. So we can read
this as saying that the Bool type can have a value of True or False. Note that



both the type name and the value constructors must start with an uppercase
letter.

In a similar fashion, we can think of the Int type as being defined like this:

data Int = -2147483648 | -2147483647 | ... | -1 | 0 | 1 | 2 | ... | 2147483647

The first and last value constructors are the minimum and maximum
possible values of Int. It’s not actually defined like this—you can see I’ve
omitted a bunch of numbers—but this is useful for illustrative purposes.

Now let’s think about how we would represent a shape in Haskell. One
way would be to use tuples. A circle could be denoted as (43.1, 55.0, 10.4),
where the first and second fields are the coordinates of the circle’s center
and the third field is the radius. The problem is that those could also repre-
sent a 3D vector or anything else that could be identified by three numbers.
A better solution would be to make our own type to represent a shape.

Shaping Up
Let’s say that a shape can be a circle or a rectangle. Here’s one possible
definition:

data Shape = Circle Float Float Float | Rectangle Float Float Float Float

What does it mean? Think of it like this: The Circle value constructor
has three fields, which take floats. So when we write a value constructor, we
can optionally add some types after it, and those types define the types of
values it will contain. Here, the first two fields are the coordinates of its cen-
ter, and the third one is its radius. The Rectangle value constructor has four
fields that accept floats. The first two act as the coordinates to its upper-left
corner, and the second two act as coordinates to its lower-right corner.

Value constructors are actually functions that ultimately return a value
of a data type. Let’s take a look at the type signatures for these two value
constructors.

ghci> :t Circle

Circle :: Float -> Float -> Float -> Shape

ghci> :t Rectangle

Rectangle :: Float -> Float -> Float -> Float -> Shape

So value constructors are functions like everything else. Who would have
thought? The fields that are in the data type act as parameters to its value
constructors.
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Now let’s make a function that takes a Shape and returns its area.

area :: Shape -> Float

area (Circle _ _ r) = pi * r ^ 2

area (Rectangle x1 y1 x2 y2) = (abs $ x2 - x1) * (abs $ y2 - y1)

First, note the type declaration. It says that the function takes a Shape

and returns a Float. We couldn’t write a type declaration of Circle -> Float,
because Circle is not a type, while Shape is (just as we can’t write a function
with a type declaration of True -> Int, for example).

Next, notice that we can pattern match against constructors. We’ve al-
ready done this against values like [], False, and 5, but those values didn’t
have any fields. In this case, we just write a constructor and then bind its
fields to names. Because we’re interested in only the radius, we don’t actu-
ally care about the first two fields, which tell us where the circle is.

ghci> area $ Circle 10 20 10

314.15927

ghci> area $ Rectangle 0 0 100 100

10000.0

Yay, it works! But if we try to just print out Circle 10 20 5 from the prompt,
we’ll get an error. That’s because Haskell doesn’t know how to display our
data type as a string (yet). Remember that when we try to print a value out
from the prompt, Haskell first applies the show function to it to get the string
representation of our value, and then it prints that to the terminal.

To make our Shape type part of the Show type class, we modify it like this:

data Shape = Circle Float Float Float | Rectangle Float Float Float Float

deriving (Show)

We won’t concern ourselves with deriving too much for now. Let’s just
say that if we add deriving (Show) at the end of a data declaration (it can go
on the same line or the next one—it doesn’t matter), Haskell automatically
makes that type part of the Show type class. We’ll be taking a closer look at
deriving in “Derived Instances” on page 122.

So now we can do this:

ghci> Circle 10 20 5

Circle 10.0 20.0 5.0

ghci> Rectangle 50 230 60 90

Rectangle 50.0 230.0 60.0 90.0
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Value constructors are functions, so we can map them, partially apply
them, and so on. If we want a list of concentric circles with different radii,
we can do this:

ghci> map (Circle 10 20) [4,5,6,6]

[Circle 10.0 20.0 4.0,Circle 10.0 20.0 5.0,Circle 10.0 20.0 6.0,Circle 10.0

20.0 6.0]

Improving Shape with the Point Data Type
Our data type is good, but it could be better. Let’s make an intermediate
data type that defines a point in two-dimensional space. Then we can use
that to make our shapes more understandable.

data Point = Point Float Float deriving (Show)

data Shape = Circle Point Float | Rectangle Point Point deriving (Show)

Notice that when defining a point, we used the same name for the data
type and the value constructor. This has no special meaning, although it’s
common if there’s only one value constructor. So now the Circle has two
fields: One is of type Point and the other of type Float. This makes it easier
to understand what’s what. The same goes for Rectangle. Now we need to
adjust our area function to reflect these changes.

area :: Shape -> Float

area (Circle _ r) = pi * r ^ 2

area (Rectangle (Point x1 y1) (Point x2 y2)) = (abs $ x2 - x1) * (abs $ y2 - y1)

The only thing we needed to change were the patterns. We disregarded
the whole point in the Circle pattern. In the Rectangle pattern, we just used
nested pattern matching to get the fields of the points. If we wanted to refer-
ence the points themselves for some reason, we could have used as-patterns.

Now we can test our improved version:

ghci> area (Rectangle (Point 0 0) (Point 100 100))

10000.0

ghci> area (Circle (Point 0 0) 24)

1809.5574

How about a function that nudges a shape? It takes a shape, the amount
to move it on the x axis, and the amount to move it on the y axis. It returns a
new shape that has the same dimensions but is located somewhere else.

nudge :: Shape -> Float -> Float -> Shape

nudge (Circle (Point x y) r) a b = Circle (Point (x+a) (y+b)) r

nudge (Rectangle (Point x1 y1) (Point x2 y2)) a b

= Rectangle (Point (x1+a) (y1+b)) (Point (x2+a) (y2+b))
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This is pretty straightforward. We add the nudge amounts to the points
that denote the position of the shape. Let’s test it:

ghci> nudge (Circle (Point 34 34) 10) 5 10

Circle (Point 39.0 44.0) 10.0

If we don’t want to deal with points directly, we can make some auxiliary
functions that create shapes of some size at the zero coordinates and then
nudge those.

First, let’s make a function that takes a radius and makes a circle that is
located at the origin of the coordinate system, with the radius we supplied:

baseCircle :: Float -> Shape

baseCircle r = Circle (Point 0 0) r

Now let’s make a function that takes a width and a height and makes
a rectangle with those dimensions and its bottom-left corner located at the
origin:

baseRect :: Float -> Float -> Shape

baseRect width height = Rectangle (Point 0 0) (Point width height)

Now we can use these functions to make shapes that are located at the
origin of the coordinate system and then nudge them to where we want
them to be, which makes it easier to create shapes:

ghci> nudge (baseRect 40 100) 60 23

Rectangle (Point 60.0 23.0) (Point 100.0 123.0)

Exporting Our Shapes in a Module
You can also export your data types in your custom modules. To do that, just
write your type along with the functions you are exporting, and then add
some parentheses that specify the value constructors that you want to export,
separated by commas. If you want to export all the value constructors for a
given type, just write two dots (..).

Suppose we want to export our shape functions and types in a module.
We start off like this:

module Shapes

( Point(..)

, Shape(..)

, area

, nudge

, baseCircle

, baseRect

) where
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By using Shape(..), we export all the value constructors for Shape.
This means that people who import our module can make shapes by us-
ing the Rectangle and Circle value constructors. It’s the same as writing
Shape (Rectangle, Circle), but shorter.

Also, if we decide to add some value constructors to our type later on,
we don’t need to modify the exports. That’s because using .. automatically
exports all value constructors for a given type.

Alternatively, we could opt to not export any value constructors for Shape

by just writing Shape in the export statement, without the parentheses. That
way, people who import our module could make shapes only by using the
auxiliary functions baseCircle and baseRect.

Remember that value constructors are just functions that take the fields
as parameters and return a value of some type (like Shape). So when we
choose not to export them, we prevent the person importing our module
from using those value constructors directly. Not exporting the value con-
structors of our data types makes them more abstract, since we’re hiding
their implementation. Also, whoever uses our module can’t pattern match
against the value constructors. This is good if we want people who import
our module to be able to interact with our type only via the auxiliary func-
tions that we supply in our module. That way, they don’t need to know about
the internal details of our module, and we can change those details when-
ever we want, as long as the functions that we export act the same.

Data.Map uses this approach. You can’t create a map by directly using its
value constructor, whatever it may be, because it’s not exported. However,
you can make a map by using one of the auxiliary functions like Map.fromList.
The people in charge of Data.Map can change the way that maps are inter-
nally represented without breaking existing programs.

But for simpler data types, exporting the value constructors is perfectly
fine, too.

Record Syntax
Now let’s look at how we can create an-
other kind of data type. Say we’ve been
tasked with creating a data type that
describes a person. The information
that we want to store about that person
is first name, last name, age, height,
phone number, and favorite ice cream
flavor. (I don’t know about you, but
that’s all I ever want to know about a
person.) Let’s give it a go!

data Person = Person String String Int Float String String deriving (Show)
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The first field is the first name, the second is the last name, the third is
the age, and so on. Now let’s make a person.

ghci> let guy = Person "Buddy" "Finklestein" 43 184.2 "526-2928" "Chocolate"

ghci> guy

Person "Buddy" "Finklestein" 43 184.2 "526-2928" "Chocolate"

That’s kind of cool, although slightly unreadable.
Now what if we want to create functions to get specific pieces of infor-

mation about a person? We need a function that gets some person’s first
name, a function that gets some person’s last name, and so on. Well, we
would need to define them like this:

firstName :: Person -> String

firstName (Person firstname _ _ _ _ _) = firstname

lastName :: Person -> String

lastName (Person _ lastname _ _ _ _) = lastname

age :: Person -> Int

age (Person _ _ age _ _ _) = age

height :: Person -> Float

height (Person _ _ _ height _ _) = height

phoneNumber :: Person -> String

phoneNumber (Person _ _ _ _ number _) = number

flavor :: Person -> String

flavor (Person _ _ _ _ _ flavor) = flavor

Whew! I certainly did not enjoy writing that! But despite being very
cumbersome and boring to write, this method works.

ghci> let guy = Person "Buddy" "Finklestein" 43 184.2 "526-2928" "Chocolate"

ghci> firstName guy

"Buddy"

ghci> height guy

184.2

ghci> flavor guy

"Chocolate"

“Still, there must be a better way!” you say. Well, no, there isn’t, sorry.
Just kidding—there is. Hahaha!
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Haskell gives us an alternative way to write data types. Here’s how we
could achieve the same functionality with record syntax:

data Person = Person { firstName :: String

, lastName :: String

, age :: Int

, height :: Float

, phoneNumber :: String

, flavor :: String } deriving (Show)

So instead of just naming the field types one after another and separat-
ing them with spaces, we use curly brackets. First, we write the name of the
field (for instance, firstName), followed by a double colon (::), and then the
type. The resulting data type is exactly the same. The main benefit of us-
ing this syntax is that it creates functions that look up fields in the data type.
By using record syntax to create this data type, Haskell automatically makes
these functions: firstName, lastName, age, height, phoneNumber, and flavor. Take
a look:

ghci> :t flavor

flavor :: Person -> String

ghci> :t firstName

firstName :: Person -> String

There’s another benefit to using record syntax. When we derive Show

for the type, it displays it differently if we use record syntax to define and
instantiate the type.

Say we have a type that represents a car. We want to keep track of the
company that made it, the model name, and its year of production. We can
define this type without using record syntax, like so:

data Car = Car String String Int deriving (Show)

A car is displayed like this:

ghci> Car "Ford" "Mustang" 1967

Car "Ford" "Mustang" 1967

Now let’s see what happens when we define it using record syntax:

data Car = Car { company :: String

, model :: String

, year :: Int

} deriving (Show)
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We can make a car like this:

ghci> Car {company="Ford", model="Mustang", year=1967}

Car {company = "Ford", model = "Mustang", year = 1967}

When making a new car, we don’t need to put the fields in the proper
order, as long as we list all of them. But if we don’t use record syntax, we
must specify them in order.

Use record syntax when a constructor has several fields and it’s not
obvious which field is which. If we make a 3D vector data type by doing
data Vector = Vector Int Int Int, it’s pretty obvious that the fields are the
components of a vector. However, in our Person and Car types, the fields
are not so obvious, and we greatly benefit from using record syntax.

Type Parameters
A value constructor can take some parameters and then produce a new
value. For instance, the Car constructor takes three values and produces a
car value. In a similar manner, type constructors can take types as parame-
ters to produce new types. This might sound a bit too meta at first, but it’s
not that complicated. (If you’re familiar with templates in C++, you’ll see
some parallels.) To get a clear picture of how type parameters work in ac-
tion, let’s take a look at how a type we’ve already met is implemented.

data Maybe a = Nothing | Just a

The a here is the type parameter.
And because there’s a type parameter
involved, we call Maybe a type construc-
tor. Depending on what we want this
data type to hold when it’s not Nothing,
this type constructor can end up pro-
ducing a type of Maybe Int, Maybe Car,
Maybe String, and so on. No value can
have a type of just Maybe, because that’s
not a type—it’s a type constructor. In
order for this to be a real type that a
value can be part of, it must have all its
type parameters filled up.

So if we pass Char as the type pa-
rameter to Maybe, we get a type of
Maybe Char. The value Just 'a' has a
type of Maybe Char, for example.

Most of the time, we don’t pass types as parameters to type constructors
explicitly. That’s because Haskell has type inference. So when we make a
value Just 'a', for example, Haskell figures out that it’s a Maybe Char.
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If we want to explicitly pass a type as a type parameter, we must do it in
the type part of Haskell, which is usually after the :: symbol. This can come
in handy if, for example, we want a value of Just 3 to have the type Maybe Int.
By default, Haskell will infer the type (Num a) => Maybe a for that value. We
can use an explicit type annotation to restrict the type a bit:

ghci> Just 3 :: Maybe Int

Just 3

You might not know it, but we used a type that has a type parameter be-
fore we used Maybe: the list type. Although there’s some syntactic sugar in
play, the list type takes a parameter to produce a concrete type. Values can
have an [Int] type, a [Char] type, or a [[String]] type, but you can’t have a
value that just has a type of [].

NOTE We say that a type is concrete if it doesn’t take any type parameters at all (like Int or
Bool), or if it takes type parameters and they’re all filled up (like Maybe Char). If you
have some value, its type is always a concrete type.

Let’s play around with the Maybe type:

ghci> Just "Haha"

Just "Haha"

ghci> Just 84

Just 84

ghci> :t Just "Haha"

Just "Haha" :: Maybe [Char]

ghci> :t Just 84

Just 84 :: (Num a) => Maybe a

ghci> :t Nothing

Nothing :: Maybe a

ghci> Just 10 :: Maybe Double

Just 10.0

Type parameters are useful because they allow us to make data types
that can hold different things. For instance, we could make a separate Maybe-
like data type for every type that it could contain, like so:

data IntMaybe = INothing | IJust Int

data StringMaybe = SNothing | SJust String

data ShapeMaybe = ShNothing | ShJust Shape

But even better, we could use type parameters to make a generic Maybe

that can contain values of any type at all!
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Notice that the type of Nothing is Maybe a. Its type is polymorphic, which
means that it features type variables, namely the a in Maybe a. If some func-
tion requires a Maybe Int as a parameter, we can give it a Nothing, because
a Nothing doesn’t contain a value anyway, so it doesn’t matter. The Maybe a

type can act like a Maybe Int if it must, just as 5 can act like an Int or a Double.
Similarly, the type of the empty list is [a]. An empty list can act like a list of
anything. That’s why we can do [1,2,3] ++ [] and ["ha","ha","ha"] ++ [].

Should We Parameterize Our Car?
When does using type parameters make sense? Usually, we use them when
our data type would work regardless of the type of the value it then holds, as
with our Maybe a type. If our type acts as some kind of box, it’s good to use
parameters.

Consider our Car data type:

data Car = Car { company :: String

, model :: String

, year :: Int

} deriving (Show)

We could change it to this:

data Car a b c = Car { company :: a

, model :: b

, year :: c

} deriving (Show)

But would we really benefit? Probably not, because we would just end
up defining functions that work on only the Car String String Int type. For
instance, given our first definition of Car, we could make a function that dis-
plays the car’s properties in an easy-to-read format.

tellCar :: Car -> String

tellCar (Car {company = c, model = m, year = y}) =

"This " ++ c ++ " " ++ m ++ " was made in " ++ show y

We could test it like this:

ghci> let stang = Car {company="Ford", model="Mustang", year=1967}

ghci> tellCar stang

"This Ford Mustang was made in 1967"

It’s a good little function! The type declaration is cute, and it works
nicely.
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Now what if Car was Car a b c?

tellCar :: (Show a) => Car String String a -> String

tellCar (Car {company = c, model = m, year = y}) =

"This " ++ c ++ " " ++ m ++ " was made in " ++ show y

We would need to force this function to take a Car type of (Show a) =>

Car String String a. You can see that the type signature is more complicated,
and the only actual benefit would be that we could use any type that’s an
instance of the Show type class as the type for c:

ghci> tellCar (Car "Ford" "Mustang" 1967)

"This Ford Mustang was made in 1967"

ghci> tellCar (Car "Ford" "Mustang" "nineteen sixty seven")

"This Ford Mustang was made in \"nineteen sixty seven\""

ghci> :t Car "Ford" "Mustang" 1967

Car "Ford" "Mustang" 1967 :: (Num t) => Car [Char] [Char] t

ghci> :t Car "Ford" "Mustang" "nineteen sixty seven"

Car "Ford" "Mustang" "nineteen sixty seven" :: Car [Char] [Char] [Char]

In real life though, we would end up using Car String String Int most of
the time. So, parameterizing the Car type isn’t worth it.

We usually use type parameters when the type that’s contained inside the
data type’s various value constructors isn’t really that important for the type
to work. A list of stuff is a list of stuff, and it doesn’t matter what the type of
that stuff is. If we need to sum a list of numbers, we can specify later in the
summing function that we specifically want a list of numbers. The same goes
for Maybe, which represents an option of either having nothing or having one
of something. It doesn’t matter what the type of that something is.

Another example of a parameterized type that you’ve already met is
Map k v from Data.Map. The k is the type of the keys in a map, and v is the type
of the values. This is a good example of where type parameters are very use-
ful. Having maps parameterized enables us to have mappings from any type
to any other type, as long as the type of the key is part of the Ord type class. If
we were defining a mapping type, we could add a type class constraint in the
data declaration:

data (Ord k) => Map k v = ...

However, it’s a very strong convention in Haskell to never add type class
constraints in data declarations. Why? Well, because it doesn’t provide much
benefit, and we end up writing more class constraints, even when we don’t
need them. If we put the Ord k constraint in the data declaration for Map k v,
we still need to put the constraint into functions that assume the keys in a
map can be ordered. If we don’t put the constraint in the data declaration,
then we don’t need to put (Ord k) => in the type declarations of functions
that don’t care whether the keys can be ordered. An example of such a func-
tion is toList, which just takes a mapping and converts it to an associative list.
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Its type signature is toList :: Map k a -> [(k, a)]. If Map k v had a type con-
straint in its data declaration, the type for toList would need to be toList ::

(Ord k) => Map k a -> [(k, a)], even though the function doesn’t compare
keys by order.

So don’t put type constraints into data declarations, even if it seems to
make sense. You’ll need to put them into the function type declarations ei-
ther way.

Vector von Doom
Let’s implement a 3D vector type and add some operations for it. We’ll
make it a parameterized type, because even though it will usually contain
numeric types, it will still support several of them, like Int, Integer, and
Double, to name a few.

data Vector a = Vector a a a deriving (Show)

vplus :: (Num a) => Vector a -> Vector a -> Vector a

(Vector i j k) `vplus` (Vector l m n) = Vector (i+l) (j+m) (k+n)

dotProd :: (Num a) => Vector a -> Vector a -> a

(Vector i j k) `dotProd` (Vector l m n) = i*l + j*m + k*n

vmult :: (Num a) => Vector a -> a -> Vector a

(Vector i j k) `vmult` m = Vector (i*m) (j*m) (k*m)

Imagine a vector as an arrow in space—a line that points somewhere.
The vector Vector 3 4 5 would be a line that starts at the coordinates (0,0,0)
in 3D space and ends at (and points to) the coordinates (3,4,5).

The vector functions work as follows:

• The vplus function adds two vectors together. This is done just by adding
their corresponding components. When you add two vectors, you get a
vector that’s the same as putting the second vector at the end of the first
one and then drawing a vector from the beginning of the first one to the
end of the second one. So adding two vectors together results in a third
vector.

• The dotProd function gets the dot product of two vectors. The result
of a dot product is a number, and we get it by multiplying the compo-
nents of a vector pairwise and then adding all that together. The dot
product of two vectors is useful when we want to figure out the angle
between two vectors.

• The vmult function multiplies a vector with a number. If we multiply a
vector with a number, we multiply every component of the vector with
that number, effectively elongating (or shortening it), but it keeps on
pointing in the same general direction.
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These functions can operate on any type in the form of Vector a, as long
as the a is an instance of the Num type class. For instance, they can operate on
values of type Vector Int, Vector Integer, Vector Float, and so on, because Int,
Integer, and Float are all instances of the Num type class. However, they won’t
work on values of type Vector Char or Vector Bool.

Also, if you examine the type declaration for these functions, you’ll see
that they can operate only on vectors of the same type, and the numbers in-
volved must also be of the type that is contained in the vectors. We can’t add
together a Vector Int and a Vector Double.

Notice that we didn’t put a Num class constraint in the data declaration.
As explained in the previous section, even if we put it there, we would still
need to repeat it in the functions.

Once again, it’s very important to distinguish between the type construc-
tor and the value constructor. When declaring a data type, the part before
the = is the type constructor, and the constructors after it (possibly separated
by | characters) are value constructors. For instance, giving a function the
following type would be wrong:

Vector a a a -> Vector a a a -> a

This doesn’t work because the type of our vector is Vector a, and not
Vector a a a. It takes only one type parameter, even though its value con-
structor has three fields.

Now, let’s play around with our vectors.

ghci> Vector 3 5 8 `vplus` Vector 9 2 8

Vector 12 7 16

ghci> Vector 3 5 8 `vplus` Vector 9 2 8 `vplus` Vector 0 2 3

Vector 12 9 19

ghci> Vector 3 9 7 `vmult` 10

Vector 30 90 70

ghci> Vector 4 9 5 `dotProd` Vector 9.0 2.0 4.0

74.0

ghci> Vector 2 9 3 `vmult` (Vector 4 9 5 `dotProd` Vector 9 2 4)

Vector 148 666 222

Derived Instances
In “Type Classes 101” on page 27, you learned that a type class
is a sort of an interface that defines some behavior, and that a
type can be made an instance of a type class if it supports that
behavior. For example, the Int type is an instance of the Eq

type class because the Eq type class defines behavior for stuff
that can be equated. And because integers can be equated, Int
was made a part of the Eq type class. The real usefulness comes
with the functions that act as the interface for Eq, namely ==

and /=. If a type is a part of the Eq type class, we can use the
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== functions with values of that type. That’s why expressions like 4 == 4 and
"foo" == "bar" type check.

Haskell type classes are often confused with classes in languages like
Java, Python, C++ and the like, which trips up a lot of programmers. In those
languages, classes are a blueprint from which we create objects that can do
some actions. But we don’t make data from Haskell type classes. Instead, we
first make our data type, and then we think about how it can act. If it can act
like something that can be equated, we make it an instance of the Eq type
class. If it can act like something that can be ordered, we make it an instance
of the Ord type class.

Let’s see how Haskell can automatically make our type an instance of
any of the following type classes: Eq, Ord, Enum, Bounded, Show, and Read. Haskell
can derive the behavior of our types in these contexts if we use the deriving

keyword when making our data type.

Equating People
Consider this data type:

data Person = Person { firstName :: String

, lastName :: String

, age :: Int

}

It describes a person. Let’s assume that no two people have the same
combination of first name, last name, and age. If we have records for two
people, does it make sense to see if they represent the same person? Sure
it does. We can try to equate them to see if they are equal. That’s why it
would make sense for this type to be part of the Eq type class. We’ll derive
the instance.

data Person = Person { firstName :: String

, lastName :: String

, age :: Int

} deriving (Eq)

When we derive the Eq instance for a type and then try to compare two
values of that type with == or /=, Haskell will see if the value constructors
match (there’s only one value constructor here though), and then it will
check if all the data contained inside matches by testing each pair of fields
with ==. However, there’s a catch: The types of all the fields also must be
part of the Eq type class. But since that’s the case with both String and Int,
we’re okay.

First, let’s make a few people. Put the following in a script:

mikeD = Person {firstName = "Michael", lastName = "Diamond", age = 43}

adRock = Person {firstName = "Adam", lastName = "Horovitz", age = 41}

mca = Person {firstName = "Adam", lastName = "Yauch", age = 44}
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Now let’s test our Eq instance:

ghci> mca == adRock

False

ghci> mikeD == adRock

False

ghci> mikeD == mikeD

True

ghci> mikeD == Person {firstName = "Michael", lastName = "Diamond", age = 43}

True

Of course, since Person is now in Eq, we can use it as the a for all func-
tions that have a class constraint of Eq a in their type signature, such as elem.

ghci> let beastieBoys = [mca, adRock, mikeD]

ghci> mikeD `elem` beastieBoys

True

Show Me How to Read
The Show and Read type classes are for things that can be converted to or from
strings, respectively. As with Eq, if a type’s constructors have fields, their type
must be a part of Show or Read if we want to make our type an instance of
them.

Let’s make our Person data type a part of Show and Read as well.

data Person = Person { firstName :: String

, lastName :: String

, age :: Int

} deriving (Eq, Show, Read)

Now we can print a person out to the terminal.

ghci> mikeD

Person {firstName = "Michael", lastName = "Diamond", age = 43}

ghci> "mikeD is: " ++ show mikeD

"mikeD is: Person {firstName = \"Michael\", lastName = \"Diamond\", age = 43}"

If we had tried to print a person on the terminal before making the
Person data type part of Show, Haskell would have complained, claiming it
didn’t know how to represent a person as a string. But since we first derived
a Show instance for the data type, we didn’t get any complaints.

Read is pretty much the inverse type class of Show. It’s for converting
strings to values of our type. Remember though, that when we use the read

function, we might need to use an explicit type annotation to tell Haskell
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which type we want to get as a result. To demonstrate this, let’s put a string
that represents a person in a script and then load that script in GHCi:

mysteryDude = "Person { firstName =\"Michael\"" ++

", lastName =\"Diamond\"" ++

", age = 43}"

We wrote our string across several lines like this for increased readabil-
ity. If we want to read that string, we need to tell Haskell which type we ex-
pect in return:

ghci> read mysteryDude :: Person

Person {firstName = "Michael", lastName = "Diamond", age = 43}

If we use the result of our read later in a way that Haskell can infer that it
should read it as a person, we don’t need to use type annotation.

ghci> read mysteryDude == mikeD

True

We can also read parameterized types, but we must give Haskell enough
information so that it can figure out which type we want. If we try the follow-
ing, we’ll get an error:

ghci> read "Just 3" :: Maybe a

In this case, Haskell doesn’t know which type to use for the type parame-
ter a. But if we tell it that we want it to be an Int, it works just fine:

ghci> read "Just 3" :: Maybe Int

Just 3

Order in the Court!
We can derive instances for the Ord type class, which is for types that have
values that can be ordered. If we compare two values of the same type that
were made using different constructors, the value that was defined first is
considered smaller. For instance, consider the Bool type, which can have a
value of either False or True. For the purpose of seeing how it behaves when
compared, we can think of it as being implemented like this:

data Bool = False | True deriving (Ord)

Because the False value constructor is specified first and the True value
constructor is specified after it, we can consider True as greater than False.
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ghci> True `compare` False

GT

ghci> True > False

True

ghci> True < False

False

If two values were made using the same constructor, they are considered
to be equal, unless they have fields. If they have fields, the fields are com-
pared to see which is greater. (Note that in this case, the types of the fields
also must be part of the Ord type class.)

In the Maybe a data type, the Nothing value constructor is specified before
the Just value constructor, so the value of Nothing is always smaller than the
value of Just something, even if that something is minus one billion trillion.
But if we specify two Just values, then it will compare what’s inside them.

ghci> Nothing < Just 100

True

ghci> Nothing > Just (-49999)

False

ghci> Just 3 `compare` Just 2

GT

ghci> Just 100 > Just 50

True

However, we can’t do something like Just (*3) > Just (*2), because (*3)

and (*2) are functions, which are not instances of Ord.

Any Day of the Week
We can easily use algebraic data types to make enumerations, and the Enum

and Bounded type classes help us with that. Consider the following data type:

data Day = Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | Sunday

Because all the type’s value constructors are nullary (that is, they don’t
have any fields), we can make it part of the Enum type class. The Enum type
class is for things that have predecessors and successors. We can also make
it part of the Bounded type class, which is for things that have a lowest possible
value and highest possible value. And while we’re at it, let’s also make it an
instance of all the other derivable type classes.

data Day = Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | Sunday

deriving (Eq, Ord, Show, Read, Bounded, Enum)
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Now let’s see what we can do with our new Day type. Because it’s part of
the Show and Read type classes, we can convert values of this type to and from
strings.

ghci> Wednesday

Wednesday

ghci> show Wednesday

"Wednesday"

ghci> read "Saturday" :: Day

Saturday

Because it’s part of the Eq and Ord type classes, we can compare or
equate days.

ghci> Saturday == Sunday

False

ghci> Saturday == Saturday

True

ghci> Saturday > Friday

True

ghci> Monday `compare` Wednesday

LT

It’s also part of Bounded, so we can get the lowest and highest day.

ghci> minBound :: Day

Monday

ghci> maxBound :: Day

Sunday

As it’s an instance of Enum, we can get predecessors and successors of days
and make list ranges from them!

ghci> succ Monday

Tuesday

ghci> pred Saturday

Friday

ghci> [Thursday .. Sunday]

[Thursday,Friday,Saturday,Sunday]

ghci> [minBound .. maxBound] :: [Day]

[Monday,Tuesday,Wednesday,Thursday,Friday,Saturday,Sunday]

Type Synonyms
As mentioned earlier, when writing types, the [Char] and String types are
equivalent and interchangeable. That’s implemented with type synonyms.
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Type synonyms don’t really do anything per se—
they’re just about giving some types different names
so that they make more sense to someone reading our
code and documentation. Here’s how the standard li-
brary defines String as a synonym for [Char]:

type String = [Char]

The type keyword here might be misleading, be-
cause a new type is not being created (that’s done with the data keyword).
Rather, this defines a synonym for an existing type.

If we make a function that converts a string to uppercase and call it
toUpperString, we can give it a type declaration of this:

toUpperString :: [Char] -> [Char]

Alternatively, we can use this type declaration:

toUpperString :: String -> String

The two are essentially the same, but the latter is nicer to read.

Making Our Phonebook Prettier
When we were dealing with the Data.Map module, we first represented a
phonebook with an association list (a list of key/value pairs) before con-
verting it into a map. Here’s that version:

phoneBook :: [(String, String)]

phoneBook =

[("betty", "555-2938")

,("bonnie", "452-2928")

,("patsy", "493-2928")

,("lucille", "205-2928")

,("wendy", "939-8282")

,("penny", "853-2492")

]

The type of phoneBook is [(String, String)]. That tells us that it’s an asso-
ciation list that maps from strings to strings, but not much else. Let’s make a
type synonym to convey some more information in the type declaration.

type PhoneBook = [(String,String)]

Now the type declaration for our phonebook can be phoneBook ::

PhoneBook. Let’s make a type synonym for String as well.
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type PhoneNumber = String

type Name = String

type PhoneBook = [(Name, PhoneNumber)]

Haskell programmers give type synonyms to the String type when they
want to convey more information about the strings in their functions—what
they actually represent.

So now, when we implement a function that takes a name and a number
and checks if that name and number combination is in our phonebook, we
can give it a very pretty and descriptive type declaration.

inPhoneBook :: Name -> PhoneNumber -> PhoneBook -> Bool

inPhoneBook name pnumber pbook = (name, pnumber) `elem` pbook

If we decided not to use type synonyms, our function would have this
type:

inPhoneBook :: String -> String -> [(String, String)] -> Bool

In this case, the type declaration that takes advantage of type synonyms
is easier to understand. However, you shouldn’t go overboard with these syn-
onyms. We introduce type synonyms either to describe what some existing
type represents in our functions (and thus our type declarations become bet-
ter documentation) or when something has a longish type that’s repeated a
lot (like [(String, String)]) but represents something more specific in the
context of our functions.

Parameterizing Type Synonyms
Type synonyms can also be parameterized. If we want a type that represents
an association list type, but still want it to be general so it can use any type as
the keys and values, we can do this:

type AssocList k v = [(k, v)]

Now a function that gets the value by a key in an association list can
have a type of (Eq k) => k -> AssocList k v -> Maybe v. AssocList is a type con-
structor that takes two types and produces a concrete type—for instance,
AssocList Int String.

Just as we can partially apply functions to get new functions, we can par-
tially apply type parameters and get new type constructors from them. When
we call a function with too few parameters, we get back a new function. In
the same way, we can specify a type constructor with too few type parame-
ters and get back a partially applied type constructor. If we wanted a type
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that represents a map (from Data.Map) from integers to something, we could
do this:

type IntMap v = Map Int v

Or we could do it like this:

type IntMap = Map Int

Either way, the IntMap type constructor takes one parameter, and that is
the type of what the integers will point to.

If you’re going to try to implement this, you probably will want to do a
qualified import of Data.Map. When you do a qualified import, type construc-
tors also need to be preceded with a module name.

type IntMap = Map.Map Int

Make sure that you really understand the distinction between type con-
structors and value constructors. Just because we made a type synonym call-
ed IntMap or AssocList doesn’t mean that we can do stuff like AssocList [(1,2),

(4,5),(7,9)]. All it means is that we can refer to its type by using different
names. We can do [(1,2),(3,5),(8,9)] :: AssocList Int Int, which will make
the numbers inside assume a type of Int. However, we can still use that list
in the same way that we would use any normal list that has pairs of integers.

Type synonyms (and types generally) can be used only in the type por-
tion of Haskell. Haskell’s type portion includes data and type declarations,
as well as after a :: in type declarations or type annotations.

Go Left, Then Right
Another cool data type that takes two types as its parameters is the Either a b

type. This is roughly how it’s defined:

data Either a b = Left a | Right b deriving (Eq, Ord, Read, Show)

It has two value constructors. If Left is used, then its contents are of type
a; if Right is used, its contents are of type b. So we can use this type to en-
capsulate a value of one type or another. Then when we get a value of type
Either a b, we usually pattern match on both Left and Right, and we do dif-
ferent stuff based on which one matches.

ghci> Right 20

Right 20

ghci> Left "w00t"

Left "w00t"

ghci> :t Right 'a'

Right 'a' :: Either a Char
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ghci> :t Left True

Left True :: Either Bool b

In this code, when we examine the type of Left True, we see that the type
is Either Bool b. The first type parameter is Bool, because we made our value
with the Left value constructor, whereas the second type parameter remains
polymorphic. This is similar to how a Nothing value has the type Maybe a.

So far, you’ve seen Maybe a mostly used to represent the results of com-
putations that could have failed. But sometimes, Maybe a isn’t good enough,
because Nothing doesn’t convey much information other than that something
has failed. That’s fine for functions that can fail in only one way, or if we’re
not interested in how or why they failed. For instance, a Data.Map lookup fails
only if the key wasn’t in the map, so we know exactly what happened.

However, when we’re interested in how or why some function failed,
we usually use the result type of Either a b, where a is a type that can tell us
something about the possible failure, and b is the type of a successful compu-
tation. Hence, errors use the Left value constructor, and results use Right.

As an example, suppose that a high school has lockers so that students
have some place to put their Guns N’ Roses posters. Each locker has a code
combination. When students need to be assigned a locker, they tell the
locker supervisor which locker number they want, and he gives them the
code. However, if someone is already using that locker, the student needs to
pick a different one. We’ll use a map from Data.Map to represent the lockers.
It will map from locker numbers to a pair that indicates whether the locker
is in use and the locker code.

import qualified Data.Map as Map

data LockerState = Taken | Free deriving (Show, Eq)

type Code = String

type LockerMap = Map.Map Int (LockerState, Code)

We introduce a new data type to represent whether a locker is taken
or free, and we make a type synonym for the locker code. We also make a
type synonym for the type that maps from integers to pairs of locker state
and code.

Next, we’ll make a function that searches for the code in a locker map.
We’ll use an Either String Code type to represent our result, because our
lookup can fail in two ways: The locker can be taken, in which case we can’t
tell the code, or the locker number might not exist. If the lookup fails, we’re
just going to use a String to indicate what happened.

lockerLookup :: Int -> LockerMap -> Either String Code

lockerLookup lockerNumber map = case Map.lookup lockerNumber map of

Nothing -> Left $ "Locker " ++ show lockerNumber ++ " doesn't exist!"

Just (state, code) -> if state /= Taken
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then Right code

else Left $ "Locker " ++ show lockerNumber

++ " is already taken!"

We do a normal lookup in the map. If we get a Nothing, we return a
value of type Left String, saying that the locker doesn’t exist. If we do find
it, then we do an additional check to see if the locker is in use. If it is, we
return a Left saying that it’s already taken. If it isn’t, we return a value
of type Right Code, in which we give the student the correct code for the
locker. It’s actually a Right String (which is a Right [Char]), but we added
that type synonym to introduce some additional documentation into the
type declaration.

Here’s an example map:

lockers :: LockerMap

lockers = Map.fromList

[(100,(Taken, "ZD39I"))

,(101,(Free, "JAH3I"))

,(103,(Free, "IQSA9"))

,(105,(Free, "QOTSA"))

,(109,(Taken, "893JJ"))

,(110,(Taken, "99292"))

]

Now let’s try looking up some locker codes.

ghci> lockerLookup 101 lockers

Right "JAH3I"

ghci> lockerLookup 100 lockers

Left "Locker 100 is already taken!"

ghci> lockerLookup 102 lockers

Left "Locker number 102 doesn't exist!"

ghci> lockerLookup 110 lockers

Left "Locker 110 is already taken!"

ghci> lockerLookup 105 lockers

Right "QOTSA"

We could have used a Maybe a to represent the result, but then we
wouldn’t know why we couldn’t get the code. But now we have informa-
tion about the failure in our result type.

Recursive Data Structures
As you’ve seen, a constructor in an algebraic data type can have several fields
(or none at all), and each field must be of some concrete type. So we can
make types that have themselves as types in their fields! And that means we
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can create recursive data types, where one value of some type contains values
of that type, which in turn contain more values of the same type, and so on.

Think about this list: [5]. That’s just syntactic
sugar for 5:[]. On the left side of the :, there’s a
value; on the right side, there’s a list. In this case,
it’s an empty list. Now how about the list [4,5]? Well,
that desugars to 4:(5:[]). Looking at the first :, we
see that it also has an element on its left side and a
list, (5:[]), on its right side. The same goes for a list
like 3:(4:(5:6:[])), which could be written either like
that or like 3:4:5:6:[] (because : is right-associative)
or [3,4,5,6].

A list can be an empty list, or it can be an ele-
ment joined together with a : with another list (that
might be an empty list).

Let’s use algebraic data types to implement our
own list!

data List a = Empty | Cons a (List a) deriving (Show, Read, Eq, Ord)

This follows our definition of lists. It’s either an
empty list or a combination of a head with some value and a list. If you’re
confused about this, you might find it easier to understand in record syntax.

data List a = Empty | Cons { listHead :: a, listTail :: List a}

deriving (Show, Read, Eq, Ord)

You might also be confused about the Cons constructor here. Informally
speaking, Cons is another word for :. In lists, : is actually a constructor that
takes a value and another list and returns a list. In other words, it has two
fields: One field is of the type of a, and the other is of the type List a.

ghci> Empty

Empty

ghci> 5 `Cons` Empty

Cons 5 Empty

ghci> 4 `Cons` (5 `Cons` Empty)

Cons 4 (Cons 5 Empty)

ghci> 3 `Cons` (4 `Cons` (5 `Cons` Empty))

Cons 3 (Cons 4 (Cons 5 Empty))

We called our Cons constructor in an infix manner so you can see how
it’s just like :. Empty is like [], and 4 `Cons` (5 `Cons` Empty) is like 4:(5:[]).

Improving Our List
We can define functions to be automatically infix by naming them using
only special characters. We can also do the same with constructors, since
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they’re just functions that return a data type. There is one restriction how-
ever: Infix constructors must begin with a colon. So check this out:

infixr 5 :-:

data List a = Empty | a :-: (List a) deriving (Show, Read, Eq, Ord)

First, notice a new syntactic construct: the fixity declaration, which is the
line above our data declaration. When we define functions as operators, we
can use that to give them a fixity (but we don’t have to). A fixity states how
tightly the operator binds and whether it’s left-associative or right-associative.
For instance, the * operator’s fixity is infixl 7 *, and the + operator’s fixity
is infixl 6. That means that they’re both left-associative (in other words,
4 * 3 * 2 is the same as (4 * 3) * 2), but * binds tighter than +, because it
has a greater fixity. So 5 * 4 + 3 is equivalent to (5 * 4) + 3.

Otherwise, we just wrote a :-: (List a) instead of Cons a (List a). Now,
we can write out lists in our list type like so:

ghci> 3 :-: 4 :-: 5 :-: Empty

3 :-: (4 :-: (5 :-: Empty))

ghci> let a = 3 :-: 4 :-: 5 :-: Empty

ghci> 100 :-: a

100 :-: (3 :-: (4 :-: (5 :-: Empty)))

Let’s make a function that adds two of our lists together. This is how ++

is defined for normal lists:

infixr 5 ++

(++) :: [a] -> [a] -> [a]

[] ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

We’ll just steal that for our own list. We’ll name the function ^++.

infixr 5 ^++

(^++) :: List a -> List a -> List a

Empty ^++ ys = ys

(x :-: xs) ^++ ys = x :-: (xs ^++ ys)

Now let’s try it:

ghci> let a = 3 :-: 4 :-: 5 :-: Empty

ghci> let b = 6 :-: 7 :-: Empty

ghci> a ^++ b

3 :-: (4 :-: (5 :-: (6 :-: (7 :-: Empty))))

If we wanted, we could implement all of the functions that operate on
lists on our own list type.
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Notice how we pattern matched on (x :-: xs). That works because pat-
tern matching is actually about matching constructors. We can match on :-:

because it is a constructor for our own list type, and we can also match on
: because it is a constructor for the built-in list type. The same goes for [].
Because pattern matching works (only) on constructors, we can match for
normal prefix constructors or stuff like 8 or 'a', which are basically construc-
tors for the numeric and character types, respectively.

Let’s Plant a Tree
To get a better feel for recursive data
structures in Haskell, we’re going to im-
plement a binary search tree.

In a binary search tree, an element
points to two elements—one on its left
and one on its right. The element to the
left is smaller; the element to the right is
bigger. Each of those elements can also
point to two elements (or one or none).
In effect, each element has up to two
subtrees.

A cool thing about binary search trees is that we know that all the ele-
ments at the left subtree of, say, 5, will be smaller than 5. Elements in the
right subtree will be bigger. So if we need to find if 8 is in our tree, we start
at 5, and then because 8 is greater than 5, we go right. We’re now at 7, and
because 8 is greater than 7, we go right again. And we’ve found our element
in three hops! If this were a normal list (or a tree, but really unbalanced), it
would take us seven hops to see if 8 is in there.

NOTE Sets and maps from Data.Set and Data.Map are implemented using trees, but instead of
normal binary search trees, they use balanced binary search trees. A tree is balanced
if its left and right subtrees are of approximately the same height. This makes searching
through the tree faster. But for our examples, we’ll just be implementing normal binary
search trees.

Here’s what we’re going to say: A tree is either an empty tree or it’s an
element that contains some value and two trees. Sounds like a perfect fit for
an algebraic data type!

data Tree a = EmptyTree | Node a (Tree a) (Tree a) deriving (Show)

Instead of manually building a tree, we’ll make a function that takes a
tree and an element and inserts an element. We do this by comparing the
new value to the tree’s root node. If it’s smaller than the root, we go left; if
it’s larger, we go right. We then do the same for every subsequent node until
we reach an empty tree. Once we’ve reached an empty tree, we insert a node
with our new value.
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In languages like C, we would do this by modifying the pointers and
values inside the tree. In Haskell, we can’t modify our tree directly, so we
need to make a new subtree each time we decide to go left or right. In the
end, the insertion function returns a completely new tree, because Haskell
doesn’t have a concept of pointers, just values. Hence, the type for our in-
sertion function will be something like a -> Tree a - > Tree a. It takes an el-
ement and a tree and returns a new tree that has that element inside. This
might seem like it’s inefficient, but Haskell makes it possible to share most
of the subtrees between the old tree and the new tree.

Here are two functions for building the tree:

singleton :: a -> Tree a

singleton x = Node x EmptyTree EmptyTree

treeInsert :: (Ord a) => a -> Tree a -> Tree a

treeInsert x EmptyTree = singleton x

treeInsert x (Node a left right)

| x == a = Node x left right

| x < a = Node a (treeInsert x left) right

| x > a = Node a left (treeInsert x right)

singleton is a utility function for making a singleton tree (a tree with just
one node). It’s just a shortcut for creating a node that has something set as
its root, and two empty subtrees.

The treeInsert function is to insert an element into a tree. Here, we
first have the base case as a pattern. If we’ve reached an empty subtree, that
means we’re where we want to go, and we insert a singleton tree with our el-
ement. If we’re not inserting into an empty tree, then we need to do some
checking. First, if the element we’re inserting is equal to the root element,
we just return a tree that’s the same. If it’s smaller, we return a tree that has
the same root value and the same right subtree, but instead of its left sub-
tree, we put a tree that has our value inserted into it. We do the same if our
value is bigger than the root element, but the other way around.

Next up, we’re going to make a function that checks if some element is
in the tree:

treeElem :: (Ord a) => a -> Tree a -> Bool

treeElem x EmptyTree = False

treeElem x (Node a left right)

| x == a = True

| x < a = treeElem x left

| x > a = treeElem x right

First, we define the base case. If we’re looking for an element in an
empty tree, then it’s certainly not there. Notice how this is the same as the
base case when searching for elements in lists. If we’re not looking for an
element in an empty tree, then we check some things. If the element in the
root node is what we’re looking for, great! If it’s not, what then? Well, we
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can take advantage of knowing that all the left elements are smaller than the
root node. If the element we’re looking for is smaller than the root node, we
check to see if it’s in the left subtree. If it’s bigger, we check to see if it’s in
the right subtree.

Now let’s have some fun with our trees! Instead of manually creating
one (although we could), we’ll use a fold to build a tree from a list. Remem-
ber that pretty much everything that traverses a list one item at a time and
returns a value can be implemented with a fold! We’re going to start with
the empty tree and then approach a list from the right and insert element
after element into our accumulator tree.

ghci> let nums = [8,6,4,1,7,3,5]

ghci> let numsTree = foldr treeInsert EmptyTree nums

ghci> numsTree

Node 5

(Node 3

(Node 1 EmptyTree EmptyTree)

(Node 4 EmptyTree EmptyTree)

)

(Node 7

(Node 6 EmptyTree EmptyTree)

(Node 8 EmptyTree EmptyTree)

)

NOTE If you run this in GHCi, the result from numsTree will be printed in one long line.
Here, it’s broken up into many lines; otherwise, it would run off the page!

In this foldr, treeInsert is the folding binary function (it takes a tree and
a list element and produces a new tree), and EmptyTree is the starting accu-
mulator. nums, of course, is the list we’re folding over.

When we print our tree to the console, it’s not very readable, but we can
still make out its structure. We see that the root node is 5 and that it has two
subtrees: one with a root node of 3 and the other with a root node of 7.

We can also check if certain values are contained in the tree, like this:

ghci> 8 `treeElem` numsTree

True

ghci> 100 `treeElem` numsTree

False

ghci> 1 `treeElem` numsTree

True

ghci> 10 `treeElem` numsTree

False

As you can see, algebraic data structures are a really cool and powerful
concept in Haskell. We can use them to make anything from Boolean values
and weekday enumerations to binary search trees, and more!
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Type Classes 102
So far, you’ve learned about some of the standard Haskell type classes and
seen which types they contain. You’ve also learned how to automatically
make your own type instances of the standard type classes by asking Haskell
to derive the instances. This section explains how to make your own type
classes and how to make type instances of them by hand.

A quick type class recap: Type classes are sort
of like interfaces. A type class defines some behav-
ior (such as comparing for equality, comparing for
ordering, and enumeration). Types that can be-
have in that way are made instances of that type
class. The behavior of type classes is achieved by
defining functions or just type declarations that
we then implement. So when we say that a type is
an instance of a type class, we mean that we can
use the functions that the type class defines with
that type.

NOTE Remember that type classes have nothing to do with
classes in languages like Java or Python. This confuses
many people, so I want you to forget everything you know
about classes in imperative languages right now!

Inside the Eq Type Class
As an example, let’s look at the Eq type class. Re-
member that Eq is for values that can be equated. It
defines the functions == and /=. If we have the type
Car and comparing two cars with the equality func-
tion == makes sense, then it makes sense for Car to
be an instance of Eq.

This is how the Eq class is defined in the standard library:

class Eq a where

(==) :: a -> a -> Bool

(/=) :: a -> a -> Bool

x == y = not (x /= y)

x /= y = not (x == y)

Whoa! Some strange syntax and keywords here!
class Eq a where means a new type class called Eq is being defined. The a

is the type variable, so a will play the role of the type that will soon be made
an instance of Eq. (It doesn’t need to be called a, and it doesn’t even need to
be one letter—it just must be in all lowercase.)

Next, several functions are defined. Note that it’s not mandatory to
implement the function bodies themselves; just their type declarations are
required. Here, the function bodies for the functions that Eq defines are
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implemented—defined in terms of mutual recursion. It says that two values
whose types are instances of Eq are equal if they are not different, and they
are different if they are not equal. You’ll see how this helps us soon.

The final type of the functions that we define in a type class is also worth
noting. If we have, say, class Eq a where, and then define a type declaration
within that class like (==) :: a -> a -> Bool, when we examine the type of
that function later, it will have the type of (Eq a) => a -> a -> Bool.

A Traffic Light Data Type
So once we have a class, what can we do with it? We can make type instances
of that class and get some nice functionality. Check out this type, for instance:

data TrafficLight = Red | Yellow | Green

It defines the states of a traffic light. Notice how we didn’t derive any
class instances for it. That’s because we’re going to write some instances by
hand. Here’s how we make it an instance of Eq:

instance Eq TrafficLight where

Red == Red = True

Green == Green = True

Yellow == Yellow = True

_ == _ = False

We did it by using the instance keyword. So class is for defining new
type classes, and instance is for making our types instances of type classes.
When we were defining Eq, we wrote class Eq a where, and we said that a plays
the role of whichever type will be made an instance later. We can see that
clearly here, because when we’re making an instance, we write instance Eq

TrafficLight where. We replace the a with the actual type.
Because == was defined in terms of /= and vice versa in the class declara-

tion, we needed to overwrite only one of them in the instance declaration.
That’s called the minimal complete definition for the type class—the minimum
of functions that we must implement so that our type can behave as the class
advertises. To fulfill the minimal complete definition for Eq, we need to over-
write either == or /=. If Eq were defined simply like this:

class Eq a where

(==) :: a -> a -> Bool

(/=) :: a -> a -> Bool

we would need to implement both of these functions when making a type an
instance of Eq, because Haskell wouldn’t know how these two functions are
related. The minimal complete definition would then be both == and /=.

You can see that we implemented == simply by doing pattern matching.
Since there are many more cases where two lights aren’t equal, we specified
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the ones that are equal, and then just did a catchall pattern saying that if it’s
none of the previous combinations, then two lights aren’t equal.

Let’s make this an instance of Show by hand, too. To satisfy the minimal
complete definition for Show, we just need to implement its show function,
which takes a value and turns it into a string:

instance Show TrafficLight where

show Red = "Red light"

show Yellow = "Yellow light"

show Green = "Green light"

Once again, we used pattern matching to achieve our goals. Let’s see
how it works in action:

ghci> Red == Red

True

ghci> Red == Yellow

False

ghci> Red `elem` [Red, Yellow, Green]

True

ghci> [Red, Yellow, Green]

[Red light,Yellow light,Green light]

We could have just derived Eq, and it would have had the same effect (but
we didn’t for educational purposes). However, deriving Show would have just
directly translated the value constructors to strings. If we want our lights to
appear as Red light, we need to make the instance declaration by hand.

Subclassing
You can also make type classes that are subclasses of other type classes. The
class declaration for Num is a bit long, but here’s the first part:

class (Eq a) => Ord a where

...

As mentioned previously, there are a lot of places where we can cram
in class constraints. So this is just like writing class Ord a where, but we state
that our type must be an instance of Eq. We’re essentially saying that we need
to make a type an instance of Eq before we can make it an instance of Num.
Before some type can be considered orderable, it makes sense that we can
determine whether values of that type can be equated.

That’s all there is to subclassing—it’s just a class constraint on a class
declaration! When defining function bodies in the class declaration or in
instance declarations, we can assume that a is a part of Eq, so we can use ==

on values of that type.
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Parameterized Types As Instances of Type Classes
But how are the Maybe or list types made as instances of type classes? What
makes Maybe different from, say, TrafficLight is that Maybe in itself isn’t a con-
crete type—it’s a type constructor that takes one type parameter (like Char)
to produce a concrete type (like Maybe Char). Let’s take a look at the Eq type
class again:

class Eq a where

(==) :: a -> a -> Bool

(/=) :: a -> a -> Bool

x == y = not (x /= y)

x /= y = not (x == y)

From the type declarations, we see that a is used as a concrete type be-
cause all the types in functions must be concrete. Remember that you can’t
have a function of the type a -> Maybe, but you can have a function of the
type a -> Maybe a or Maybe Int -> Maybe String. That’s why we can’t do some-
thing like this:

instance Eq Maybe where

...

The a must be a concrete type, and Maybe is not; it’s a type constructor
that takes one parameter and then produces a concrete type.

It would also be tedious if we needed to make a separate instance for
every possible type that Maybe’s type parameter could take on. If we needed
to write instance Eq (Maybe Int) where, instance Eq (Maybe Char) where, and so
on for every type, we would get nowhere. That’s why we can just leave the
parameter as a type variable, like so:

instance Eq (Maybe m) where

Just x == Just y = x == y

Nothing == Nothing = True

_ == _ = False

This is like saying that we want to make all types of the form Maybe something

an instance of Eq. We actually could have written (Maybe something), but using
single letters conforms to the Haskell style.

The (Maybe m) here plays the role of the a from class Eq a where. While
Maybe isn’t a concrete type, Maybe m is. By specifying a type parameter as a type
variable (m, which is in lowercase), we said that we want all types that are in
the form of Maybe m, where m is any type, to be an instance of Eq.

There’s one problem with this though. Can you spot it? We use == on
the contents of the Maybe, but we have no assurance that what the Maybe
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contains can be used with Eq! That’s why we modify our instance declaration
like this:

instance (Eq m) => Eq (Maybe m) where

Just x == Just y = x == y

Nothing == Nothing = True

_ == _ = False

We needed to add a class constraint! With this instance declaration, we
say that we want all types of the form Maybe m to be part of the Eq type class,
but only those types where the m (what’s contained inside the Maybe) is also a
part of Eq. This is actually how Haskell would derive the instance.

Most of the time, class constraints in class declarations are used for mak-
ing a type class a subclass of another type class, and class constraints in in-
stance declarations are used to express requirements about the contents of
some type. For instance, here we required the contents of the Maybe to also
be part of the Eq type class.

When making instances, if you see that a type is used as a concrete type
in the type declarations (like the a in a -> a -> Bool), you need to supply
type parameters and add parentheses so that you end up with a concrete type.

Take into account that the type you’re trying to make an instance of will
replace the parameter in the class declaration. The a from class Eq a where

will be replaced with a real type when you make an instance, so try to men-
tally put your type into the function type declarations as well. The following
type declaration really doesn’t make much sense:

(==) :: Maybe -> Maybe -> Bool

But this does:

(==) :: (Eq m) => Maybe m -> Maybe m -> Bool

This is just something to think about, because == will always have a type
of (==) :: (Eq a) => a -> a -> Bool, no matter what instances we make.

Oh, and one more thing: If you want to see what the instances of a type
class are, just type :info YourTypeClass in GHCi. For instance, typing :info Num

will show which functions the type class defines, and it will give you a list of
the types in the type class. :info works for types and type constructors, too.
If you do :info Maybe, it will show you all the type classes that Maybe is an in-
stance of. Here’s an example:

ghci> :info Maybe

data Maybe a = Nothing | Just a -- Defined in Data.Maybe

instance (Eq a) => Eq (Maybe a) -- Defined in Data.Maybe

instance Monad Maybe -- Defined in Data.Maybe

instance Functor Maybe -- Defined in Data.Maybe
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instance (Ord a) => Ord (Maybe a) -- Defined in Data.Maybe

instance (Read a) => Read (Maybe a) -- Defined in GHC.Read

instance (Show a) => Show (Maybe a) -- Defined in GHC.Show

A Yes-No Type Class
In JavaScript and some other weakly typed languages, you can put almost
anything inside an if expression. For example, in JavaScript, you can do
something like this:

if (0) alert("YEAH!") else alert("NO!")

Or like this:

if ("") alert ("YEAH!") else alert("NO!")

Or like this:

if (false) alert("YEAH!") else alert("NO!")

All of these will throw an alert of NO!.
However, the following code will give an alert of YEAH!, since JavaScript

considers any nonempty string to be a true value:

if ("WHAT") alert ("YEAH!") else alert("NO!")

Even though strictly using Bool for Boolean semantics works better in
Haskell, let’s try to implement this JavaScript-like behavior, just for fun!
We’ll start out with a class declaration:

class YesNo a where

yesno :: a -> Bool

This is pretty simple. The YesNo type class defines one function. That
function takes one value of a type that can be considered to hold some con-
cept of trueness and tells us for sure if it’s true or not. Notice that from the
way we use a in the function that a must be a concrete type.

Next up, let’s define some instances. For numbers, we’ll assume that (as
in JavaScript) any number that isn’t 0 is true in a Boolean context and 0 is
false.

instance YesNo Int where

yesno 0 = False

yesno _ = True
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Empty lists (and by extension, strings) are a no-ish value, while nonempty
lists are a yes-ish value.

instance YesNo [a] where

yesno [] = False

yesno _ = True

Notice how we just put a type parameter a in there to make the list a
concrete type, even though we don’t make any assumptions about the type
that’s contained in the list.

Bool itself also holds trueness and falseness, and it’s pretty obvious which
is which:

instance YesNo Bool where

yesno = id

But what’s id? It’s just a standard library function that takes a parameter
and returns the same thing, which is what we would be writing here anyway.

Let’s make Maybe a an instance, too:

instance YesNo (Maybe a) where

yesno (Just _) = True

yesno Nothing = False

We didn’t need a class constraint, be-
cause we made no assumptions about the
contents of the Maybe. We just said that it’s
true-ish if it’s a Just value and false-ish if
it’s a Nothing. We still need to write out
(Maybe a) instead of just Maybe. If you think
about it, a Maybe -> Bool function can’t ex-
ist (because Maybe isn’t a concrete type),
whereas a Maybe a -> Bool is fine and dandy.

Still, this is really cool, because now any type of the form Maybe something is
part of YesNo, and it doesn’t matter what that something is.

Previously, we defined a Tree a type that represented a binary search
tree. We can say an empty tree is false-ish, and anything that’s not an empty
tree is true-ish:

instance YesNo (Tree a) where

yesno EmptyTree = False

yesno _ = True

Can a traffic light be a yes or no value? Sure. If it’s red, you stop. If it’s
green, you go. (If it’s yellow? Eh, I usually run the yellows because I live for
adrenaline.)
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instance YesNo TrafficLight where

yesno Red = False

yesno _ = True

Now that we have some instances, let’s go play!

ghci> yesno $ length []

False

ghci> yesno "haha"

True

ghci> yesno ""

False

ghci> yesno $ Just 0

True

ghci> yesno True

True

ghci> yesno EmptyTree

False

ghci> yesno []

False

ghci> yesno [0,0,0]

True

ghci> :t yesno

yesno :: (YesNo a) => a -> Bool

It works!
Now let’s make a function that mimics the if statement, but that works

with YesNo values.

yesnoIf :: (YesNo y) => y -> a -> a -> a

yesnoIf yesnoVal yesResult noResult =

if yesno yesnoVal

then yesResult

else noResult

This takes a YesNo value and two values of any type. If the yes-no–ish
value is more of a yes, it returns the first of the two values; otherwise, it
returns the second of them. Let’s try it:

ghci> yesnoIf [] "YEAH!" "NO!"

"NO!"

ghci> yesnoIf [2,3,4] "YEAH!" "NO!"

"YEAH!"

ghci> yesnoIf True "YEAH!" "NO!"

"YEAH!"

ghci> yesnoIf (Just 500) "YEAH!" "NO!"

"YEAH!"
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ghci> yesnoIf Nothing "YEAH!" "NO!"

"NO!"

The Functor Type Class
So far, we’ve encountered a lot of the type classes
in the standard library. We’ve played with Ord,
which is for stuff that can be ordered. We’ve
palled around with Eq, which is for things that
can be equated. We’ve seen Show, which presents
an interface for types whose values can be dis-
played as strings. Our good friend Read is there
whenever we need to convert a string to a value
of some type. And now, we’re going to take a
look at the Functor type class, which is for things
that can be mapped over.

You’re probably thinking about lists now,
since mapping over lists is such a dominant id-
iom in Haskell. And you’re right, the list type is
part of the Functor type class.

What better way to get to know the Functor

type class than to see how it’s implemented? Let’s
take a peek.

class Functor f where

fmap :: (a -> b) -> f a -> f b

We see that it defines one function, fmap, and doesn’t provide any de-
fault implementation for that function. The type of fmap is interesting. In the
definitions of type classes so far, the type variable that played the role of the
type in the type class was a concrete type, like the a in (==) :: (Eq a) => a ->

a -> Bool. But now, the f is not a concrete type (a type that a value can hold,
like Int, Bool, or Maybe String), but a type constructor that takes one type pa-
rameter. (A quick refresher example: Maybe Int is a concrete type, but Maybe
is a type constructor that takes one type as the parameter.)

We see that fmap takes a function from one type to another and a functor
value applied with one type and returns a functor value applied with another
type. If this sounds a bit confusing, don’t worry—all will be revealed soon
when we check out a few examples.

Hmm . . . the type declaration for fmap reminds me of something. Let’s
look at the type signature of the map function:

map :: (a -> b) -> [a] -> [b]

Ah, interesting! It takes a function from one type to another and a list
of one type and returns a list of another type. My friends, I think we have
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ourselves a functor! In fact, map is just an fmap that works only on lists. Here’s 
how the list is an instance of the Functor type class:

instance Functor [] where

fmap = map

That’s it! Notice how we didn’t write instance Functor [a] where. This is
because f must be a type constructor that takes one type, which we can see in
the following type declaration:

fmap :: (a -> b) -> f a -> f b

[a] is already a concrete type (of a list with any type inside it), while [] is
a type constructor that takes one type and can produce types such as [Int],
[String], or even [[String]].

Since for lists, fmap is just map, we get the same results when using these
functions on lists:

ghci> fmap (*2) [1..3]

[2,4,6]

ghci> map (*2) [1..3]

[2,4,6]

What happens when we map or fmap over an empty list? Well, of course,
we get an empty list. It turns an empty list of type [a] into an empty list of
type [b].

Maybe As a Functor
Types that can act like a box can be functors. You can think of a list as a box
that can be empty or have something inside it, including another box. That
box can also be empty or contain something and another box, and so on.
So, what else has the properties of being like a box? For one, the Maybe a

type. In a way, it’s like a box that can hold nothing (in which case it has the
value of Nothing), or it can contain one item (like "HAHA", in which case it has
a value of Just "HAHA").

Here’s how Maybe is a functor:

instance Functor Maybe where

fmap f (Just x) = Just (f x)

fmap f Nothing = Nothing

Again, notice how we wrote instance Functor Maybe where instead of
instance Functor (Maybe m) where, as we did when we were dealing with
YesNo. Functor wants a type constructor that takes one type, and not a
concrete type. If you mentally replace the fs with Maybes, fmap acts like
a (a -> b) -> Maybe a -> Maybe b for this particular type, which looks
okay. But if you replace f with (Maybe m), then it would seem to act like a
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(a -> b) -> Maybe m a -> Maybe m b, which doesn’t make sense, because Maybe

takes just one type parameter.
The fmap implementation is pretty simple. If it’s an empty value of Nothing,

then just return a Nothing. If we map over an empty box, we get an empty
box. If we map over an empty list, we get an empty list. If it’s not an empty
value, but rather a single value packed in a Just, then we apply the function
on the contents of the Just:

ghci> fmap (++ " HEY GUYS IM INSIDE THE JUST") (Just "Something serious.")

Just "Something serious. HEY GUYS IM INSIDE THE JUST"

ghci> fmap (++ " HEY GUYS IM INSIDE THE JUST") Nothing

Nothing

ghci> fmap (*2) (Just 200)

Just 400

ghci> fmap (*2) Nothing

Nothing

Trees Are Functors, Too
Another thing that can be mapped over and made an instance of Functor is
our Tree a type. It can be thought of as a box (it holds several or no values),
and the Tree type constructor takes exactly one type parameter. If you look
at fmap as if it were a function made only for Tree, its type signature would
look like this: (a -> b) -> Tree a -> Tree b.

We’re going to use recursion on this one. Mapping over an empty tree
will produce an empty tree. Mapping over a nonempty tree will produce a
tree consisting of our function applied to the root value, and its left and
right subtrees will be the previous subtrees, but with our function mapped
over them. Here’s the code:

instance Functor Tree where

fmap f EmptyTree = EmptyTree

fmap f (Node x left right) = Node (f x) (fmap f left) (fmap f right)

Now let’s test it:

ghci> fmap (*2) EmptyTree

EmptyTree

ghci> fmap (*4) (foldr treeInsert EmptyTree [5,7,3])

Node 12 EmptyTree (Node 28 (Node 20 EmptyTree EmptyTree) EmptyTree)

Be careful though! If you use the Tree a type to represent a binary search 
tree, there is no guarantee that it will remain a binary search tree after map-
ping a function over it. For something to be considered a binary search tree, 
all the elements to the left of some node must be smaller than the element
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in the node, and all the elements to the right must be greater. But if you 
map a function like negate over a binary search tree, the elements to the left 
of the node suddenly become greater than its element, and your binary 
search tree becomes just a normal binary tree.

Either a As a Functor
How about Either a b? Can this be made a functor? The Functor type class 
wants a type constructor that takes only one type parameter, but Either takes 
two. Hmmm . . . I know, we’ll partially apply Either by feeding it only one 
parameter, so that it has one free parameter.

Here’s how Either a is a functor in the standard libraries, more specifi-
cally in the Control.Monad.Instances module:

instance Functor (Either a) where

fmap f (Right x) = Right (f x)

fmap f (Left x) = Left x

Well well, what do we have here? You can see how Either a was made an
instance instead of just Either. That’s because Either a is a type constructor
that takes one parameter, whereas Either takes two. If fmap were specifically
for Either a, the type signature would be this:

(b -> c) -> Either a b -> Either a c

Because that’s the same as the following:

(b -> c) -> (Either a) b -> (Either a) c

The function is mapped in the case of a Right value constructor, but it
isn’t mapped in the case of a Left. Why is that? Well, looking back at how the
Either a b type is defined, we see this:

data Either a b = Left a | Right b

If we wanted to map one function over both of them, a and b would 
need to be the same type. Think about it: If we try to map a function that 
takes a string and returns a string, and b is a string but a is a number, it won’t 
really work out. Also, considering what fmap’s type would be if it operated 
only on Either a b values, we can see that the first parameter must remain 
the same, while the second one can change, and the first parameter is actual-
ized by the Left value constructor.

This also goes nicely with our box analogy if we think of the Left part as 
sort of an empty box with an error message written on the side telling us why 
it’s empty.
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NOTE The ' character has no special meaning in types, just as it has no special meaning
when naming values. It’s just used to denote things that are similar, but slightly
changed.

As an exercise, you can try to figure out how Map k is made an instance of
Functor by yourself!

As you’ve seen from the examples, with Functor, type classes can repre-
sent pretty cool higher-order concepts. You’ve also had some more practice
with partially applying types and making instances. In Chapter 11, we’ll take
a look at some laws that apply for functors.

Kinds and Some Type-Foo
Type constructors take other types as parameters to eventually produce 
concrete types. This behavior is similar to that of functions, which take 
values as parameters to produce values. Also like functions, type construc-
tors can be partially applied. For example, Either String is a type con-
structor that takes one type and produces a concrete type, like Either 
String Int.

In this section, we’ll take a look at for-mally defining how types are 
applied to type constructors. You don’t really need to read this section to 
continue on your mag-ical Haskell quest, but it may help you to see how 
Haskell’s type system works. And if you don’t quite understand everything 
right now, that’s okay, too.

Values like 3, "YEAH", or takeWhile (functions are also values—we can pass
them around and such) each has their own types. Types are little labels that
values carry so that we can reason about the values. But types have their own
little labels called kinds. A kind is more or less the type of a type. This may
sound a bit weird and confusing, but it’s actually a really cool concept.

What are kinds, and what are they good for? Well, let’s examine the
kind of a type by using the :k command in GHCi:

ghci> :k Int

Int :: *

What does that * mean? It indicates that the type is a concrete type. A
concrete type is a type that doesn’t take any type parameters. Values can
have only types that are concrete types. If I had to read * out loud (I haven’t
had to do that yet), I would say “star,” or just “type.”
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Okay, now let’s see what the kind of Maybe is:

ghci> :k Maybe

Maybe :: * -> *

This kind tells us that the Maybe type constructor takes one concrete
type (like Int) and returns a concrete type (like Maybe Int). Just as Int -> Int

means that a function takes an Int and returns an Int, * -> * means that the
type constructor takes one concrete type and returns a concrete type. Let’s
apply the type parameter to Maybe and see what the kind of that type is:

ghci> :k Maybe Int

Maybe Int :: *

Just as you might have expected, we applied the type parameter to Maybe

and got back a concrete type (that’s what * -> * means). A parallel (although
not equivalent—types and kinds are two different things) to this is if we call
:t isUpper and :t isUpper 'A'. The isUpper function has a type of Char -> Bool,
and isUpper 'A' has a type of Bool, because its value is basically True. Both
those types, however, have a kind of *.

We used :k on a type to get its kind, in the same way as we can use :t on
a value to get its type. Again, types are the labels of values, and kinds are the
labels of types, and there are parallels between the two.

Now let’s look at the kind of Either:

ghci> :k Either

Either :: * -> * -> *

This tells us that Either takes two concrete types as type parameters to
produce a concrete type. It also looks somewhat like the type declaration of
a function that takes two values and returns something. Type constructors
are curried (just like functions), so we can partially apply them, as you can
see here:

ghci> :k Either String

Either String :: * -> *
ghci> :k Either String Int

Either String Int :: *

When we wanted to make Either a part of the Functor type class, we
needed to partially apply it, because Functor wants types that take only one
parameter, while Either takes two. In other words, Functor wants types of kind
* -> *, so we needed to partially apply Either to get this instead of its original
kind, * -> * -> *.
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Looking at the definition of Functor again, we can see that the f type
variable is used as a type that takes one concrete type to produce a con-
crete type:

class Functor f where

fmap :: (a -> b) -> f a -> f b

We know it must produce a concrete type, because it’s used as the type
of a value in a function. And from that, we can deduce that types that want
to be friends with Functor must be of kind * -> *.
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8
INPUT AND OUTPUT

In this chapter, you’re going to learn how to receive
input from the keyboard and print stuff to the screen.

But first, we’ll cover the basics of input and output (I/O):

• What are I/O actions?

• How do I/O actions enable us to do I/O?

• When are I/O actions actually performed?

Dealing with I/O brings up the issue of constraints on how Haskell func-
tions can work, so we’ll look at how we get around that first.

Separating the Pure from the Impure
By now, you’re used to the fact that Haskell is a purely functional language.
Instead of giving the computer a series of steps to execute, you give it def-
initions of what certain things are. In addition, a function isn’t allowed to
have side effects. A function can give us back only some result based on the
parameters we supplied to it. If a function is called two times with the same
parameters, it must return the same result.



While this may seem a bit limiting at first,
it’s actually really cool. In an imperative lan-
guage, you have no guarantee that a simple
function that should just crunch some num-
bers won’t burn down your house or kidnap
your dog while crunching those numbers.
For instance, when we were making a binary
search tree in the previous chapter, we didn’t
insert an element into a tree by modifying
the tree itself; instead, our function actually
returned a new tree with the new element in-
serted into that.

The fact that functions cannot change
state—like updating global variables, for
example—is good, because it helps us reason
about our programs. However, there’s one
problem with this: If a function can’t change anything in the world, how is it
supposed to tell us what it calculated? To do that, it must change the state of
an output device (usually the state of the screen), which then emits photons
that travel to our brain, which changes the state of our mind, man.

But don’t despair, all is not lost. Haskell has a really clever system for
dealing with functions that have side effects. It neatly separates the part of
our program that is pure and the part of our program that is impure, which
does all the dirty work like talking to the keyboard and the screen. With
those two parts separated, we can still reason about our pure program and
take advantage of all the things that purity offers—like laziness, robustness,
and composability—while easily communicating with the outside world.
You’ll see this at work in this chapter.

Hello, World!
Until now, we’ve always loaded our functions into
GHCi to test them. We’ve also explored the stan-
dard library functions in that way. Now we’re
finally going to write our first real Haskell pro-
gram! Yay! And sure enough, we’re going to do
the good old Hello, world! schtick.

For starters, punch the following into your
favorite text editor:

main = putStrLn "hello, world"

We just defined main, and in it we call a function called putStrLn with the
parameter "hello, world". Save that file as helloworld.hs.

We’re going to do something we’ve never done before: compile our
program, so that we get an executable file that we can run! Open your
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terminal, navigate to the directory where helloworld.hs is located, and enter
the following:

$ ghc --make helloworld

This invokes the GHC compiler and tells it to compile our program. It
should report something like this:

[1 of 1] Compiling Main ( helloworld.hs, helloworld.o )

Linking helloworld ...

Now you can run your program by entering the following at the
terminal:

$ ./helloworld

NOTE If you’re using Windows, instead of doing ./helloworld, just type in helloworld.exe

to run your program.

Our program prints out the following:

hello, world

And there you go—our first compiled program that prints something to
the terminal. How extraordinarily boring!

Let’s examine what we wrote. First, let’s look at the type of the function
putStrLn:

ghci> :t putStrLn

putStrLn :: String -> IO ()

ghci> :t putStrLn "hello, world"

putStrLn "hello, world" :: IO ()

We can read the type of putStrLn like this: putStrLn takes a string and re-
turns an I/O action that has a result type of () (that is, the empty tuple, also
known as unit).

An I/O action is something that, when performed, will carry out an ac-
tion with a side effect (such as reading input or printing stuff to the screen
or a file) and will also present some result. We say that an I/O action yields
this result. Printing a string to the terminal doesn’t really have any kind of
meaningful return value, so a dummy value of () is used.

NOTE The empty tuple is the value (), and it also has a type of ().

So when will an I/O action be performed? Well, this is where main comes
in. An I/O action will be performed when we give it a name of main and then
run our program.
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Gluing I/O Actions Together
Having your whole program be just one I/O action seems kind of limiting.
That’s why we can use do syntax to glue together several I/O actions into
one. Take a look at the following example:

main = do

putStrLn "Hello, what's your name?"

name <- getLine

putStrLn ("Hey " ++ name ++ ", you rock!")

Ah, interesting—new syntax! And this reads pretty much like an impera-
tive program. If you compile and run it, it will behave just as you expect.

Notice that we said do and then we laid out a series of steps, as we would
in an imperative program. Each of these steps is an I/O action. By putting
them together with do syntax, we glued them into one I/O action. The ac-
tion that we got has a type of IO (), as that’s the type of the last I/O action
inside. Because of that, main always has a type signature of main :: IO something,
where something is some concrete type. We don’t usually specify a type decla-
ration for main.

How about that third line, which states name <- getLine? It looks like it
reads a line from the input and stores it into a variable called name. Does it
really? Well, let’s examine the type of getLine.

ghci> :t getLine

getLine :: IO String

We see that getLine is an I/O action that
yields a String. That makes sense, because it
will wait for the user to input something at
the terminal, and then that something will
be represented as a string.

So what’s up with name <- getLine then?
You can read that piece of code like this:
perform the I/O action getLine, and then
bind its result value to name. getLine has a
type of IO String, so name will have a type of
String.

You can think of an I/O action as a box
with little feet that will go out into the real world and do something there
(like write some graffiti on a wall) and maybe bring back some data. Once it
has fetched that data for you, the only way to open the box and get the data
inside it is to use the <- construct. And if we’re taking data out of an I/O
action, we can take it out only when we’re inside another I/O action. This
is how Haskell manages to neatly separate the pure and impure parts of our
code. getLine is impure, because its result value is not guaranteed to be the
same when performed twice.
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When we do name <- getLine, name is just a normal string, because it rep-
resents what’s inside the box. For example, we can have a really complicated
function that takes your name (a normal string) as a parameter and tells you
your fortune based on your name, like this:

main = do

putStrLn "Hello, what's your name?"

name <- getLine

putStrLn $ "Zis is your future: " ++ tellFortune name

The tellFortune function (or any of the functions it passes name to) does
not need to know anything about I/O—it’s just a normal String -> String

function!
To see how normal values differ from I/O actions, consider the follow-

ing line. Is it valid?

nameTag = "Hello, my name is " ++ getLine

If you said no, go eat a cookie. If you said yes, drink a bowl of molten
lava. (Just kidding—don’t!) This doesn’t work because ++ requires both its
parameters to be lists over the same type. The left parameter has a type of
String (or [Char], if you will), while getLine has a type of IO String. Remember
that you can’t concatenate a string and an I/O action. First, you need to get
the result out of the I/O action to get a value of type String, and the only
way to do that is to do something like name <- getLine inside some other I/O
action.

If we want to deal with impure data, we must do it in an impure environ-
ment. The taint of impurity spreads around much like the undead scourge,
and it’s in our best interest to keep the I/O parts of our code as small as
possible.

Every I/O action that is performed yields a result. That’s why our previ-
ous example could also have been written like this:

main = do

foo <- putStrLn "Hello, what's your name?"

name <- getLine

putStrLn ("Hey " ++ name ++ ", you rock!")

However, foo would just have a value of (), so doing that would be kind
of moot. Notice that we didn’t bind the last putStrLn to anything. That’s be-
cause in a do block, the last action cannot be bound to a name as the first
two were. You’ll see exactly why that is so when we venture off into the world
of monads, starting in Chapter 13. For now, the important point is that the
do block automatically extracts the value from the last action and yields that
as its own result.

Except for the last line, every line in a do block that doesn’t bind can
also be written with a bind. So putStrLn "BLAH" can be written as _ <- putStrLn
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"BLAH". But that’s useless, so we leave out the <- for I/O actions that don’t
yield an important result, like putStrLn.

What do you think will happen when we do something like the following?

myLine = getLine

Do you think it will read from the input and then bind the value of that
to name? Well, it won’t. All this does is give the getLine I/O action a differ-
ent name called myLine. Remember that to get the value out of an I/O ac-
tion, you must perform it inside another I/O action by binding it to a name
with <-.

I/O actions will be performed when they are given a name of main or
when they’re inside a bigger I/O action that we composed with a do block.
We can also use a do block to glue together a few I/O actions, and then we
can use that I/O action in another do block, and so on. They will be per-
formed if they eventually fall into main.

There’s also one more case when I/O actions will be performed: when
we type out an I/O action in GHCi and press ENTER.

ghci> putStrLn "HEEY"

HEEY

Even when we just punch in a number or call a function in GHCi and
press ENTER, GHCi will apply show to the resulting value, and then it will
print it to the terminal by using putStrLn.

Using let Inside I/O Actions
When using do syntax to glue together I/O actions, we can use let syntax
to bind pure values to names. Whereas <- is used to perform I/O actions
and bind their results to names, let is used when we just want to give names
to normal values inside I/O actions. It’s similar to the let syntax in list
comprehensions.

Let’s take a look at an I/O action that uses both <- and let to bind names.

import Data.Char

main = do

putStrLn "What's your first name?"

firstName <- getLine

putStrLn "What's your last name?"

lastName <- getLine

let bigFirstName = map toUpper firstName

bigLastName = map toUpper lastName

putStrLn $ "hey " ++ bigFirstName ++ " "

++ bigLastName

++ ", how are you?"
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See how the I/O actions in the do block are lined up? Also notice how
the let is lined up with the I/O actions, and the names of the let are lined
up with each other? That’s good practice, because indentation is important
in Haskell.

We wrote map toUpper firstName, which turns something like "John" into a
much cooler string like "JOHN". We bound that uppercased string to a name
and then used it in a string that we printed to the terminal.

You may be wondering when to use <- and when to use let bindings.
<- is for performing I/O actions and binding their results to names.
map toUpper firstName, however, isn’t an I/O action—it’s a pure expression
in Haskell. So you can use <- when you want to bind the results of I/O ac-
tions to names, and you can use let bindings to bind pure expressions to
names. Had we done something like let firstName = getLine, we would have
just called the getLine I/O action a different name, and we would still need
to run it through a <- to perform it and bind its result.

Putting It in Reverse
To get a better feel for doing I/O in Haskell, let’s make a simple program
that continuously reads a line and prints out the same line with the words re-
versed. The program’s execution will stop when we input a blank line. This
is the program:

main = do

line <- getLine

if null line

then return ()

else do

putStrLn $ reverseWords line

main

reverseWords :: String -> String

reverseWords = unwords . map reverse . words

To get a feel for what it does, save it as reverse.hs, and then compile and
run it:

$ ghc --make reverse.hs

[1 of 1] Compiling Main ( reverse.hs, reverse.o )

Linking reverse ...

$ ./reverse

clean up on aisle number nine

naelc pu no elsia rebmun enin

the goat of error shines a light upon your life

eht taog fo rorre senihs a thgil nopu ruoy efil

it was all a dream

ti saw lla a maerd
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Our reverseWords function is just a normal function. It takes a string
like "hey there man" and applies words to it to produce a list of words like
["hey","there","man"]. We map reverse over the list, getting ["yeh","ereht",

"nam"], and then we put that back into one string by using unwords. The final
result is "yeh ereht nam".

What about main? First, we get a line from the terminal by performing
getLine and call that line line. Next we have a conditional expression. Re-
member that in Haskell, every if must have a corresponding else, because
every expression must have some sort of value. Our if says that when a con-
dition is true (in our case, the line that we entered is blank), we perform one
I/O action; when it isn’t true, the I/O action under the else is performed.

Because we need to have exactly one I/O action after the else, we use a
do block to glue together two I/O actions into one. We could also write that
part as follows:

else (do

putStrLn $ reverseWords line

main)

This makes it clearer that the do block can be viewed as one I/O action,
but it’s uglier.

Inside the do block, we apply reverseWords to the line that we got from
getLine and then print that to the terminal. After that, we just perform main.
It’s performed recursively, and that’s okay, because main is itself an I/O ac-
tion. So in a sense, we go back to the start of the program.

If null line is True, the code after the then is executed: return (). You
might have used a return keyword in other languages to return from a sub-
routine or function. But return in Haskell is nothing like the return in most
other languages.

In Haskell (and in I/O actions specifically), return makes an I/O action
out of a pure value. Returning to the box analogy for I/O actions, return
takes a value and wraps it up in a box. The resulting I/O action doesn’t ac-
tually do anything; it just yields that value as its result. So in an I/O context,
return "haha" will have a type of IO String.

What’s the point of just transforming a pure value into an I/O action
that doesn’t do anything? Well, we needed some I/O action to carry out in
the case of an empty input line. That’s why we made a bogus I/O action that
doesn’t do anything by writing return ().

Unlike in other languages, using return doesn’t cause the I/O do block
to end in execution. For instance, this program will quite happily continue
all the way to the last line:

main = do

return ()

return "HAHAHA"

line <- getLine

return "BLAH BLAH BLAH"
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return 4

putStrLn line

Again, all these uses of return do is make I/O actions that yield a result,
which is then thrown away because it isn’t bound to a name.

We can use return in combination with <- to bind stuff to names:

main = do

a <- return "hell"

b <- return "yeah!"

putStrLn $ a ++ " " ++ b

So you see, return is sort of the opposite of <-. While return takes a value
and wraps it up in a box, <- takes a box (and performs it) and takes the value
out of it, binding it to a name. But doing this is kind of redundant, especially
since you can use let in do blocks to bind to names, like so:

main = do

let a = "hell"

b = "yeah"

putStrLn $ a ++ " " ++ b

When dealing with I/O do blocks, we mostly use return either because we
need to create an I/O action that doesn’t do anything or because we don’t
want the I/O action that’s made up from a do block to have the result value
of its last action. When we want it to have a different result value, we use
return to make an I/O action that always yields our desired result, and we
put it at the end.

Some Useful I/O Functions
Haskell comes with a bunch of useful functions and I/O actions. Let’s take a
look at some of them to see how they’re used.

putStr
putStr is much like putStrLn, in that it takes a string as a parameter and re-
turns an I/O action that will print that string to the terminal. However,
putStr doesn’t jump into a new line after printing out the string, whereas
putStrLn does. For example, look at this code:

main = do

putStr "Hey, "

putStr "I'm "

putStrLn "Andy!"
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If we compile and run this, we get the following output:

Hey, I'm Andy!

putChar
The putChar function takes a character and returns an I/O action that will
print it to the terminal:

main = do

putChar 't'

putChar 'e'

putChar 'h'

putStr can be defined recursively with the help of putChar. The base case
of putStr is the empty string, so if we’re printing an empty string, we just re-
turn an I/O action that does nothing by using return (). If it’s not empty,
then we print the first character of the string by doing putChar and then print
the rest of them recursively:

putStr :: String -> IO ()

putStr [] = return ()

putStr (x:xs) = do

putChar x

putStr xs

Notice how we can use recursion in I/O, just as we can use it in pure
code. We define the base case and then think what the result actually is. In
this case, it’s an action that first outputs the first character and then outputs
the rest of the string.

print
print takes a value of any type that’s an instance of Show (meaning that
we know how to represent it as a string), applies show to that value to
“stringify” it, and then outputs that string to the terminal. Basically, it’s
just putStrLn . show. It first runs show on a value, and then feeds that to
putStrLn, which returns an I/O action that will print out our value.

main = do

print True

print 2

print "haha"

print 3.2

print [3,4,3]
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Compiling this and running it, we get the following output:

True

2

"haha"

3.2

[3,4,3]

As you can see, it’s a very handy function. Remember how we talked
about how I/O actions are performed only when they fall into main or when
we try to evaluate them at the GHCi prompt? When we type out a value (like
3 or [1,2,3]) and press ENTER, GHCi actually uses print on that value to dis-
play it on the terminal!

ghci> 3

3

ghci> print 3

3

ghci> map (++"!") ["hey","ho","woo"]

["hey!","ho!","woo!"]

ghci> print $ map (++"!") ["hey","ho","woo"]

["hey!","ho!","woo!"]

When we want to print out strings, we usually use putStrLn because we
don’t want the quotes around them. However, for printing out values of
other types to the terminal, print is used the most often.

when
The when function is found in Control.Monad (to access it, use import

Control.Monad). It’s interesting because in a do block, it looks like a flow-
control statement, but it’s actually a normal function.

when takes a Bool and an I/O action, and if that Bool value is True, it re-
turns the same I/O action that we supplied to it. However, if it’s False, it
returns the return () action, which doesn’t do anything.

Here’s a small program that asks for some input and prints it back to the
terminal, but only if that input is SWORDFISH:

import Control.Monad

main = do

input <- getLine

when (input == "SWORDFISH") $ do

putStrLn input
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Without when, we would need to write the program like this:

main = do

input <- getLine

if (input == "SWORDFISH")

then putStrLn input

else return ()

As you can see, the when function is useful when we want to perform
some I/O actions when a condition is met, but do nothing otherwise.

sequence
The sequence function takes a list of I/O actions and returns an I/O action
that will perform those actions one after the other. The result that this I/O
action yields will be a list of the results of all the I/O actions that were per-
formed. For instance, we could do this:

main = do

a <- getLine

b <- getLine

c <- getLine

print [a,b,c]

Or we could do this:

main = do

rs <- sequence [getLine, getLine, getLine]

print rs

The results of both these versions are exactly the same. sequence
[getLine, getLine, getLine] makes an I/O action that will perform getLine

three times. If we bind that action to a name, the result is a list of all the re-
sults. So in this case, the result would be a list of three things that the user
entered at the prompt.

A common pattern with sequence is when we map functions like print or
putStrLn over lists. Executing map print [1,2,3,4] won’t create an I/O action,
but instead will create a list of I/O actions. Effectively, this is the same as
writing this:

[print 1, print 2, print 3, print 4]

If we want to transform that list of I/O actions into an I/O action, we
must sequence it:

ghci> sequence $ map print [1,2,3,4,5]

1

2
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3

4

5

[(),(),(),(),()]

But what’s with the [(),(),(),(),()] at the end of the output? Well,
when we evaluate an I/O action in GHCi, that action is performed, and
then its result is printed out, unless that result is (). That’s why evaluating
putStrLn "hehe" in GHCi just prints out hehe—putStrLn "hehe" yields (). But
when we enter getLine in GHCi, the result of that I/O action is printed out,
because getLine has a type of IO String.

mapM
Because mapping a function that returns an I/O action over a list and then
sequencing it is so common, the utility functions mapM and mapM_ were intro-
duced. mapM takes a function and a list, maps the function over the list, and
then sequences it. mapM_ does the same thing, but it throws away the result
later. We usually use mapM_ when we don’t care what result our sequenced
I/O actions have. Here’s an example of mapM:

ghci> mapM print [1,2,3]

1

2

3

[(),(),()]

But we don’t care about the list of three units at the end, so it’s better to
use this form:

ghci> mapM_ print [1,2,3]

1

2

3

forever
The forever function takes an I/O action and returns an I/O action that just
repeats the I/O action it got forever. It’s located in Control.Monad. The fol-
lowing little program will indefinitely ask the user for some input and spit it
back in all uppercase characters:

import Control.Monad

import Data.Char

main = forever $ do

putStr "Give me some input: "
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l <- getLine

putStrLn $ map toUpper l

forM
forM (located in Control.Monad) is like mapM, but its parameters are switched
around. The first parameter is the list, and the second is the function to map
over that list, which is then sequenced. Why is that useful? Well, with some
creative use of lambdas and do notation, we can do stuff like this:

import Control.Monad

main = do

colors <- forM [1,2,3,4] (\a -> do

putStrLn $ "Which color do you associate with the number "

++ show a ++ "?"

color <- getLine

return color)

putStrLn "The colors that you associate with 1, 2, 3 and 4 are: "

mapM putStrLn colors

Here’s what we get when we try this out:

Which color do you associate with the number 1?

white

Which color do you associate with the number 2?

blue

Which color do you associate with the number 3?

red

Which color do you associate with the number 4?

orange

The colors that you associate with 1, 2, 3 and 4 are:

white

blue

red

orange

The (\a -> do ... ) lambda is a function that takes a number and re-
turns an I/O action. Notice that we call return color in the inside do block.
We do that so that the I/O action that the do block defines yields the string
that represents our color of choice. We actually did not have to do that
though, since getLine already yields our chosen color, and it’s the last line
in the do block. Doing color <- getLine and then return color is just unpack-
ing the result from getLine and then repacking it—it’s the same as just call-
ing getLine.

The forM function (called with its two parameters) produces an I/O
action, whose result we bind to colors. colors is just a normal list that holds
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strings. At the end, we print out all those colors by calling mapM putStrLn 
colors.

You can think of forM as saying, “Make an I/O action for every element 
in this list. What each I/O action will do can depend on the element that 
was used to make the action. Finally, perform those actions and bind their 
results to something.” (Although we don’t need to bind it; we could also just 
throw it away.)

We could have actually achieved the same result without forM, but using 
forM makes the code more readable. Normally, we use forM when we want 
to map and sequence some actions that we define on the spot using do 
notation.

I/O Action Review
Let’s run through a quick review of the I/O basics. I/O actions are values
much like any other value in Haskell. We can pass them as parameters to
functions, and functions can return I/O actions as results.

What’s special about I/O actions is that if they fall into the main function
(or are the result in a GHCi line), they are performed. And that’s when they
get to write stuff on your screen or play “Yakety Sax” through your speakers.
Each I/O action can also yield a result to tell you what it got from the real
world.
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9
MORE INPUT AND MORE OUTPUT

Now that you understand the concepts behind Has-
kell’s I/O, we can start doing fun stuff with it. In this
chapter, we’ll interact with files, make random num-
bers, deal with command-line arguments, and more.
Stay tuned!

Files and Streams

Armed with the knowledge about how I/O actions work, we can move 
on to reading and writing files with Haskell. But first, let’s take a look at 
how we can use Haskell to easily process streams of data. A stream is a 
succession of pieces of data enter-ing or exiting a program over time. 
For instance, when you’re inputting characters into a program via the 
keyboard, those characters can be thought of as a stream.



Input Redirection
Many interactive programs get the user’s input via the keyboard. However,
it’s often more convenient to get the input by feeding the contents of a text
file to the program. To achieve this, we use input redirection.

Input redirection will come in handy with our Haskell programs, so let’s
take a look at how it works. To begin, create a text file that contains the fol-
lowing little haiku, and save it as haiku.txt:

I'm a lil' teapot

What's with that airplane food, huh?

It's so small, tasteless

Yeah, the haiku sucks—what of it? If anyone knows of any good haiku
tutorials, let me know.

Now we’ll write a little program that continuously gets a line from the
input and then prints it back in all uppercase:

import Control.Monad

import Data.Char

main = forever $ do

l <- getLine

putStrLn $ map toUpper l

Save this program as capslocker.hs and compile it.
Instead of inputting lines via the keyboard, we’ll have haiku.txt be the

input by redirecting it into our program. To do that, we add a < character
after our program name and then specify the file that we want to act as the
input. Check it out:

$ ghc --make capslocker

[1 of 1] Compiling Main ( capslocker.hs, capslocker.o )

Linking capslocker ...

$ ./capslocker < haiku.txt

I'M A LIL' TEAPOT

WHAT'S WITH THAT AIRPLANE FOOD, HUH?

IT'S SO SMALL, TASTELESS

capslocker <stdin>: hGetLine: end of file

What we’ve done is pretty much equivalent to running capslocker, typing
our haiku at the terminal, and then issuing an end-of-file character (usu-
ally done by pressing CTRL-D). It’s like running capslocker and saying, “Wait,
don’t read from the keyboard. Take the contents of this file instead!”
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Getting Strings from Input Streams
Let’s take a look at an I/O action that makes processing input streams easier
by allowing us to treat them as normal strings: getContents. getContents reads
everything from the standard input until it encounters an end-of-file charac-
ter. Its type is getContents :: IO String. What’s cool about getContents is that
it does lazy I/O. This means that when we do foo <- getContents, getContents
doesn’t read all of the input at once, store it in memory, and then bind it to
foo. No, getContents is lazy! It will say, “Yeah yeah, I’ll read the input from the
terminal later as we go along, when you really need it!”

In our capslocker.hs example, we used forever to read the input line by
line and then print it back in uppercase. If we opt to use getContents, it takes
care of the I/O details for us, such as when to read input and how much
of that input to read. Because our program is about taking some input and
transforming it into some output, we can make it shorter by using getContents:

import Data.Char

main = do

contents <- getContents

putStr $ map toUpper contents

We run the getContents I/O action and name the string it produces
contents. Then we map toUpper over that string and print that result to the
terminal. Keep in mind that because strings are basically lists, which are lazy,
and getContents is I/O lazy; it won’t try to read all of the content at once and
store that into memory before printing out the caps-locked version. Rather,
it will print out the caps-locked version as it reads, because it will read a line
from the input only when it must.

Let’s test it:

$ ./capslocker < haiku.txt

I'M A LIL' TEAPOT

WHAT'S WITH THAT AIRPLANE FOOD, HUH?

IT'S SO SMALL, TASTELESS

So, it works. What if we just run capslocker and try to type in the lines
ourselves? (To exit the program, just press CTRL-D.)

$ ./capslocker

hey ho

HEY HO

lets go

LETS GO
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Pretty nice! As you can see, it prints our caps-locked input line by line.
When the result of getContents is bound to contents, it’s not represented

in memory as a real string, but more like a promise that the string will be
produced eventually. When we map toUpper over contents, that’s also a pro-
mise to map that function over the eventual contents. Finally, when putStr

happens, it says to the previous promise, “Hey, I need a caps-locked line!”
It doesn’t have any lines yet, so it says to contents, “How about getting a line
from the terminal?” And that’s when getContents actually reads from the ter-
minal and gives a line to the code that asked it to produce something tangi-
ble. That code then maps toUpper over that line and gives it to putStr, which
prints the line. And then putStr says, “Hey, I need the next line—come on!”
This repeats until there’s no more input, which is signified by an end-of-file
character.

Now let’s make a program that takes some input and prints out only
those lines that are shorter than 10 characters:

main = do

contents <- getContents

putStr (shortLinesOnly contents)

shortLinesOnly :: String -> String

shortLinesOnly = unlines . filter (\line -> length line < 10) . lines

We’ve made the I/O part of our program as short as possible. Because
our program is supposed to print something based on some input, we can
implement it by reading the input contents, running a function on them,
and then printing out what that function gives back.

The shortLinesOnly function takes a string, like "short\nlooooooong\nbort".
In this example, that string has three lines: two of them are short, and the
middle one is long. It applies the lines function to that string, which con-
verts it to ["short", "looooooong", "bort"]. That list of strings is then filtered
so that only those lines that are shorter than 10 characters remain in the
list, producing ["short", "bort"]. Finally, unlines joins that list into a single
newline-delimited string, giving "short\nbort".

Let’s give it a go. Save the following text as shortlines.txt.

i'm short

so am i

i am a loooooooooong line!!!

yeah i'm long so what hahahaha!!!!!!

short line

loooooooooooooooooooooooooooong

short
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And now we’ll compile our program, which we saved as shortlinesonly.hs:

$ ghc --make shortlinesonly

[1 of 1] Compiling Main ( shortlinesonly.hs, shortlinesonly.o )

Linking shortlinesonly ...

To test it, we’re going to redirect the contents of shortlines.txt into our
program, as follows:

$ ./shortlinesonly < shortlines.txt

i'm short

so am i

short

You can see that only the short lines were printed to the terminal.

Transforming Input
The pattern of getting some string from the input, transforming it with a
function, and outputting the result is so common that there is a function
that makes that job even easier, called interact. interact takes a function of
type String -> String as a parameter and returns an I/O action that will take
some input, run that function on it, and then print out the function’s result.
Let’s modify our program to use interact:

main = interact shortLinesOnly

shortLinesOnly :: String -> String

shortLinesOnly = unlines . filter (\line -> length line < 10) . lines

We can use this program either by redirecting a file into it or by running
it and then giving it input from the keyboard, line by line. Its output is the
same in both cases, but when we’re doing input via the keyboard, the output
is interspersed with what we typed in, just as when we manually typed in our
input to our capslocker program.

Let’s make a program that continuously reads a line and then outputs
whether or not that line is a palindrome. We could just use getLine to read
a line, tell the user if it’s a palindrome, and then run main all over again.
But it’s simpler if we use interact. When using interact, think about what
you need to do to transform some input into the desired output. In our
case, we want to replace each line of the input with either "palindrome" or
"not a palindrome".
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respondPalindromes :: String -> String

respondPalindromes =

unlines .

map (\xs -> if isPal xs then "palindrome" else "not a palindrome") .

lines

isPal :: String -> Bool

isPal xs = xs == reverse xs

This program is pretty straightforward. First, it turns a string like this:

"elephant\nABCBA\nwhatever"

into an array like this:

["elephant", "ABCBA", "whatever"]

Then it maps the lambda over it, giving the results:

["not a palindrome", "palindrome", "not a palindrome"]

Next, unlines joins that list into a single, newline-delimited string. Now
we just make a main I/O action:

main = interact respondPalindromes

Let’s test it:

$ ./palindromes

hehe

not a palindrome

ABCBA

palindrome

cookie

not a palindrome

Even though we created a program that transforms one big string of
input into another, it acts as if we made a program that does it line by line.
That’s because Haskell is lazy, and it wants to print the first line of the result
string, but it can’t because it doesn’t have the first line of the input yet. So as
soon as we give it the first line of input, it prints the first line of the output.
We get out of the program by issuing an end-of-line character.
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We can also use this program by just redirecting a file into it. Create the
following file and save it as words.txt.

dogaroo

radar

rotor

madam

This is what we get by redirecting it into our program:

$ ./palindrome < words.txt

not a palindrome

palindrome

palindrome

palindrome

Again, we get the same output as if we had run our program and put in
the words ourselves at the standard input. We just don’t see the input that
our program gets because that input came from the file.

So now you see how lazy I/O works and how we can use it to our advan-
tage. You can just think in terms of what the output is supposed to be for
some given input and write a function to do that transformation. In lazy
I/O, nothing is eaten from the input until it absolutely must be, because
what we want to print right now depends on that input.

Reading and Writing Files
So far, we’ve worked with I/O by printing stuff to the terminal and reading
from it. But what about reading and writing files? Well, in a way, we’ve al-
ready been doing that.

One way to think about reading from the terminal is that it’s like reading
from a (somewhat special) file. The same goes for writing to the terminal—
it’s kind of like writing to a file. We can call these two files stdout and stdin,
meaning standard output and standard input, respectively. Writing to and
reading from files is very much like writing to the standard output and read-
ing from the standard input.

We’ll start off with a really simple program that opens a file called
girlfriend.txt, which contains a verse from Avril Lavigne’s hit song “Girlfriend,”
and just prints out to the terminal. Here’s girlfriend.txt:

Hey! Hey! You! You!

I don't like your girlfriend!

No way! No way!

I think you need a new one!
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And here’s our program:

import System.IO

main = do

handle <- openFile "girlfriend.txt" ReadMode

contents <- hGetContents handle

putStr contents

hClose handle

If we compile and run it, we get the expected result:

$ ./girlfriend

Hey! Hey! You! You!

I don't like your girlfriend!

No way! No way!

I think you need a new one!

Let’s go over this line by line. The first line is just four exclamations, to
get our attention. In the second line, Avril tells us that she doesn’t like our
current partner of the female persuasion. The third line serves to emphasize
that disapproval, and the fourth line suggests we should go about finding a
suitable replacement.

Let’s also go over the program line by line. Our program is several I/O
actions glued together with a do block. In the first line of the do block is a
new function called openFile. It has the following type signature:

openFile :: FilePath -> IOMode -> IO Handle

openFile takes a file path and an IOMode and returns an I/O action that
will open a file and yield the file’s associated handle as its result. FilePath is
just a type synonym for String, defined as follows:

type FilePath = String

IOMode is a type that’s defined like this:

data IOMode = ReadMode | WriteMode | AppendMode | ReadWriteMode

Just like our type that represents the seven possible values for the days
of the week, this type is an enumeration that represents what we want to do
with our opened file. Notice that this type is IOMode and not IO Mode. IO Mode

would be the type of I/O action that yields a value of some type Mode as its
result. IOMode is just a simple enumeration.
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Finally, openFile returns an I/O action
that will open the specified file in the speci-
fied mode. If we bind that action’s result to
something, we get a Handle, which represents
where our file is. We’ll use that handle so we
know which file to read from.

In the next line, we have a function
called hGetContents. It takes a Handle, so it
knows which file to get the contents from,
and returns an IO String—an I/O action
that holds contents of the file as its result.
This function is pretty much like getContents.
The only difference is that getContents will
automatically read from the standard in-
put (that is, from the terminal), whereas
hGetContents takes a file handle that tells
it which file to read from. In all other re-
spects, they work the same.

Just like getContents, hGetContents won’t attempt to read all the file at
once and store it in memory but will read the content only as needed. This
is really cool because we can treat contents as the whole content of the file,
but it’s not really loaded in memory. So if this were a really huge file, doing
hGetContents wouldn’t choke up our memory.

Note the difference between a handle and the actual contents of the
file. A handle just points to our current position in the file. The contents
are what’s actually in the file. If you imagine your whole filesystem as a really
big book, the handle is like a bookmark that shows where you’re currently
reading (or writing).

With putStr contents, we print the contents out to the standard output,
and then we do hClose, which takes a handle and returns an I/O action
that closes the file. You need to close the file yourself after opening it with
openFile! Your program may terminate if you try to open a file whose handle
hasn’t been closed.

Using the withFile Function
Another way of working with the contents of a file as we just did is to use the
withFile function, which has the following type signature:

withFile :: FilePath -> IOMode -> (Handle -> IO a) -> IO a

It takes a path to a file, an IOMode, and a function that takes a handle and
returns some I/O action. Then it returns an I/O action that will open that
file, do something with the file, and close it. Furthermore, if anything goes
wrong while we’re operating on our file, withFile makes sure that the file
handle gets closed. This might sound a bit complicated, but it’s really sim-
ple, especially if we use lambdas.
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Here’s our previous example rewritten to use withFile:

import System.IO

main = do

withFile "girlfriend.txt" ReadMode (\handle -> do

contents <- hGetContents handle

putStr contents)

(\handle -> ...) is the function that takes a handle and returns an I/O
action, and it’s usually done like this, with a lambda. It needs to take a func-
tion that returns an I/O action, rather than just taking an I/O action to do
and then closing the file, because the I/O action that we would pass to it
wouldn’t know on which file to operate. This way, withFile opens the file
and then passes the handle to the function we gave it. It gets an I/O action
back from that function and then makes an I/O action that’s just like the
original action, but it also makes sure that the file handle gets closed, even
if something goes awry.

It’s Bracket Time
Usually, if a piece of code calls error (such
as when we try to apply head to an empty list)
or if something goes very wrong when doing
input and output, our program terminates,
and we see some sort of error message. In
such circumstances, we say that an exception
gets raised. The withFile function makes sure
that despite an exception being raised, the
file handle is closed.

This sort of scenario comes up often.
We acquire some resource (like a file han-
dle), and we want to do something with it,
but we also want to make sure that the re-
source gets released (for example, the file
handle is closed). Just for such cases, the
Control.Exception module offers the bracket

function. It has the following type signature:

bracket :: IO a -> (a -> IO b) -> (a -> IO c) -> IO c

Its first parameter is an I/O action that acquires a resource, such as a
file handle. Its second parameter is a function that releases that resource.
This function gets called even if an exception has been raised. The third
parameter is a function that also takes that resource and does something
with it. The third parameter is where the main stuff happens, like reading
from a file or writing to it.
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Because bracket is all about acquiring a resource, doing something with
it, and making sure it gets released, implementing withFile is really easy:

withFile :: FilePath -> IOMode -> (Handle -> IO a) -> IO a

withFile name mode f = bracket (openFile name mode)

(\handle -> hClose handle)

(\handle -> f handle)

The first parameter that we pass to bracket opens the file, and its result is
a file handle. The second parameter takes that handle and closes it. bracket
makes sure that this happens even if an exception is raised. Finally, the third
parameter to bracket takes a handle and applies the function f to it, which
takes a file handle and does stuff with that handle, like reading from or writ-
ing to the corresponding file.

Grab the Handles!
Just as hGetContents works like getContents but for a specific file, functions like
hGetLine, hPutStr, hPutStrLn, hGetChar, and so on work just like their counter-
parts without the h but take only a handle as a parameter and operate on
that specific file instead of on standard input or standard output. For exam-
ple, putStrLn takes a string and returns an I/O action that will print out that
string to the terminal and a newline after it. hPutStrLn takes a handle and
a string and returns an I/O action that will write that string to the file as-
sociated with the handle and then put a newline after it. In the same vein,
hGetLine takes a handle and returns an I/O action that reads a line from
its file.

Loading files and then treating their contents as strings is so com-
mon that we have three nice little functions to make our work even easier:
readFile, writeFile, and appendFile.

The readFile function has a type signature of readFile :: FilePath ->

IO String. (Remember that FilePath is just a fancy name for String.) readFile

takes a path to a file and returns an I/O action that will read that file (lazily,
of course) and bind its contents to something as a string. It’s usually more
handy than calling openFile and then calling hGetContents with the result-
ing handle. Here’s how we could have written our previous example with
readFile:

import System.IO

main = do

contents <- readFile "girlfriend.txt"

putStr contents

Because we don’t get a handle with which to identify our file, we can’t
close it manually, so Haskell does that for us when we use readFile.

The writeFile function has a type of writeFile :: FilePath -> String ->

IO (). It takes a path to a file and a string to write to that file and returns
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an I/O action that will do the writing. If such a file already exists, it will be
stomped down to zero length before being written to. Here’s how to turn
girlfriend.txt into a caps-locked version and write it to girlfriendcaps.txt:

import System.IO

import Data.Char

main = do

contents <- readFile "girlfriend.txt"

writeFile "girlfriendcaps.txt" (map toUpper contents)

The appendFile function has the same type signature as writeFile and acts
almost the same way. The only difference is that appendFile doesn’t truncate
the file to zero length if it already exists. Instead, it appends stuff to the end
of that file.

To-Do Lists
Let’s put the appendFile function to use by making a program that adds a task
to a text file that lists stuff that we have to do. We’ll assume that the file is
named todo.txt and that it contains one task per line. Our program will take
a line from the standard input and add it to our to-do list:

import System.IO

main = do

todoItem <- getLine

appendFile "todo.txt" (todoItem ++ "\n")

Notice that we added the "\n" to the end of each line, because getLine

doesn’t give us a newline character at the end.
Save the file as appendtodo.hs, compile it, and then run it a few times and

give it some to-do items.

$ ./appendtodo

Iron the dishes

$ ./appendtodo

Dust the dog

$ ./appendtodo

Take salad out of the oven

$ cat todo.txt

Iron the dishes

Dust the dog

Take salad out of the oven
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NOTE cat is a program on Unix-type systems that can be used to print text files to the termi-
nal. On Windows systems, you can use your favorite text editor to see what’s inside
todo.txt at any given time.

Deleting Items
We already made a program to add a new item to our to-do list in todo.txt.
Now let’s make a program to remove an item. We’ll use a few new functions
from System.Directory and one new function from System.IO, which will all be
explained after the code listing.

import System.IO

import System.Directory

import Data.List

main = do

contents <- readFile "todo.txt"

let todoTasks = lines contents

numberedTasks = zipWith (\n line -> show n ++ " - " ++ line)

[0..] todoTasks

putStrLn "These are your TO-DO items:"

mapM_ putStrLn numberedTasks

putStrLn "Which one do you want to delete?"

numberString <- getLine

let number = read numberString

newTodoItems = unlines $ delete (todoTasks !! number) todoTasks

(tempName, tempHandle) <- openTempFile "." "temp"

hPutStr tempHandle newTodoItems

hClose tempHandle

removeFile "todo.txt"

renameFile tempName "todo.txt"

First, we read todo.txt and bind its contents to contents. Then we split the
contents into a list of strings, with one line for each string. So todoTasks is
now something like this:

["Iron the dishes", "Dust the dog", "Take salad out of the oven"]

We zip the numbers from 0 onward and that list with a function that
takes a number (like 3) and a string (like "hey") and returns a new string
(like "3 - hey"). Now numberedTasks looks like this:

["0 - Iron the dishes"

,"1 - Dust the dog"

,"2 - Take salad out of the oven"

]
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We then use mapM_ putStrLn numberedTasks to print each task on a separate 
line, ask the user which one to delete, and wait for the user to enter a num-
ber. Let’s say we want to delete number 1 (Dust the dog), so we punch in 1. 
numberString is now "1", and because we want a number rather than a string, 
we apply read to that to get 1 and use a let to bind that to number.

Remember the delete and !! functions from Data.List? !! returns an 
element from a list with some index. delete deletes the first occurrence
of an element in a list and returns a new list without that occurrence.
(todoTasks !! number) results in "Dust the dog". We delete the first occurrence 
of "Dust the dog" from todoTasks and then join that into a single line with 
unlines and name that newTodoItems.

Then we use a function that we haven’t met before, from System.IO: 
openTempFile. Its name is pretty self-explanatory. It takes a path to a tempo-
rary directory and a template name for a file and opens a temporary file. 
We used "." for the temporary directory, because . denotes the current di-
rectory on just about any operating system. We used "temp" as the template 
name for the temporary file, which means that the temporary file will be 
named temp plus some random characters. It returns an I/O action that 
makes the temporary file, and the result in that I/O action is a pair of val-
ues: the name of the temporary file and a handle. We could just open a nor-
mal file called todo2.txt or something like that, but it’s better practice to use 
openTempFile so you know you’re probably not overwriting anything.

Now that we have a temporary file opened, we write newTodoItems to it. 
The old file is unchanged, and the temporary file contains all the lines that 
the old one does, except the one we deleted.

After that, we close both the original and the temporary files, and remove 
the original one with removeFile, which takes a path to a file and deletes it. 
After deleting the old todo.txt, we use renameFile to rename the temporary file 
to todo.txt. removeFile and renameFile (which are both in System.Directory) take 
file paths, not handles, as their parameters.

Save this as deletetodo.hs, compile it, and try it:

$ ./deletetodo

These are your TO-DO items:

0 - Iron the dishes

1 - Dust the dog

2 - Take salad out of the oven

Which one do you want to delete?

1

Now let’s see which items remain:

$ cat todo.txt

Iron the dishes

Take salad out of the oven
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Ah, cool! Let’s delete one more item:

$ ./deletetodo

These are your TO-DO items:

0 - Iron the dishes

1 - Take salad out of the oven

Which one do you want to delete?

0

And examining the file, we see that only one item remains:

$ cat todo.txt

Take salad out of the oven

So, everything is working. However, there’s one thing that about this
program that’s kind of off. If something goes wrong after we open our
temporary file, the program terminates, but the temporary file doesn’t get
cleaned up. Let’s remedy that.

Cleaning Up
To make sure our temporary file is cleaned up in case of a problem, we’re
going to use the bracketOnError function from Control.Exception. It’s very simi-
lar to bracket, but whereas the bracket will acquire a resource and then make
sure that some cleanup always gets done after we’ve used it, bracketOnError
performs the cleanup only if an exception has been raised. Here’s the code:

import System.IO

import System.Directory

import Data.List

import Control.Exception

main = do

contents <- readFile "todo.txt"

let todoTasks = lines contents

numberedTasks = zipWith (\n line -> show n ++ " - " ++ line)

[0..] todoTasks

putStrLn "These are your TO-DO items:"

mapM_ putStrLn numberedTasks

putStrLn "Which one do you want to delete?"

numberString <- getLine

let number = read numberString

newTodoItems = unlines $ delete (todoTasks !! number) todoTasks

bracketOnError (openTempFile "." "temp")

(\(tempName, tempHandle) -> do

hClose tempHandle

removeFile tempName)
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(\(tempName, tempHandle) -> do

hPutStr tempHandle newTodoItems

hClose tempHandle

removeFile "todo.txt"

renameFile tempName "todo.txt")

Instead of just using openTempFile normally, we use it with bracketOnError.
Next, we write what we want to happen if an error occurs; that is, we want
to close the temporary handle and remove the temporary file. Finally, we
write what we want to do with the temporary file while things are going well,
and these lines are the same as they were before. We write the new items,
close the temporary handle, remove our current file, and rename the tem-
porary file.

Command-Line Arguments
Dealing with command-line argu-
ments is pretty much a necessity if
you want to make a script or applica-
tion that runs on a terminal. Luckily,
Haskell’s standard library has a nice
way of getting command-line argu-
ments for a program.

In the previous section, we made
one program for adding an item to
our to-do list and one program for
removing an item. A problem with
them is that we just hardcoded the
name of our to-do file. We decided that the file will be named todo.txt and
that users will never have a need for managing several to-do lists.

One solution is to always ask the users which file they want to use as their
to-do list. We used that approach when we wanted to know which item to
delete. It works, but it’s not the ideal solution because it requires the users
to run the program, wait for the program to ask them something, and then
give the program some input. That’s called an interactive program.

The difficult bit with interactive command-line programs is this: What
if you want to automate the execution of that program, as with a script?
It’s harder to make a script that interacts with a program than a script that
just calls one or more programs. That’s why we sometimes want users to
tell a program what they want when they run the program, instead of hav-
ing the program ask the user once it’s running. And what better way to have
the users tell the program what they want it to do when they run it than via
command-line arguments?

The System.Environment module has two cool I/O actions that are useful
for getting command-line arguments: getArgs and getProgName. getArgs has
a type of getArgs :: IO [String] and is an I/O action that will get the argu-
ments that the program was run with and yield a list of those arguments.
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getProgName has a type of getProgName :: IO String and is an I/O action that
yields the program name. Here’s a small program that demonstrates how
these two work:

import System.Environment

import Data.List

main = do

args <- getArgs

progName <- getProgName

putStrLn "The arguments are:"

mapM putStrLn args

putStrLn "The program name is:"

putStrLn progName

First, we bind the command-line arguments to args and program name
to progName. Next, we use putStrLn to print all the program’s arguments and
then the name of the program itself. Let’s compile this as arg-test and try
it out:

$ ./arg-test first second w00t "multi word arg"

The arguments are:

first

second

w00t

multi word arg

The program name is:

arg-test

More Fun with To-Do Lists
In the previous examples, we made one program for adding tasks and an
entirely separate program for deleting them. Now we’re going to join that
into a single program, and whether it adds or deletes items will depend on
the command-line arguments we pass to it. We’ll also make it able to operate
on different files, not just todo.txt.

We’ll call our program todo, and it will be able to do three different
things:

• View tasks

• Add tasks

• Delete tasks

To add a task to the todo.txt file, we enter it at the terminal:

$ ./todo add todo.txt "Find the magic sword of power"
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To view the tasks, we enter the view command:

$ ./todo view todo.txt

To remove a task, we use its index:

$ ./todo remove todo.txt 2

A Multitasking Task List
We’ll start by making a function that takes a command in the form of a
string, like "add" or "view", and returns a function that takes a list of argu-
ments and returns an I/O action that does what we want:

import System.Environment

import System.Directory

import System.IO

import Data.List

import Control.Exception

dispatch :: String -> [String] -> IO ()

dispatch "add" = add

dispatch "view" = view

dispatch "remove" = remove

We’ll define main like this:

main = do

(command:argList) <- getArgs

dispatch command argList

First, we get the arguments and bind them to (command:argList). This
means that the first argument will be bound to command, and the rest of the
arguments will be bound to argList. In the next line of our main block, we
apply the dispatch function to the command, which results in the add, view,
or remove function. We then apply that function to argList.

Suppose we call our program like this:

$ ./todo add todo.txt "Find the magic sword of power"

command is "add", and argList is ["todo.txt", "Find the magic sword of power"].
That way, the second pattern match of the dispatch function will succeed, and
it will return the add function. Finally, we apply that to argList, which results
in an I/O action that adds the item to our to-do list.

Now let’s implement the add, view, and remove functions, starting with add:

add :: [String] -> IO ()

add [fileName, todoItem] = appendFile fileName (todoItem ++ "\n")
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We might call our program like so:

./todo add todo.txt "Find the magic sword of power"

The "add" will be bound to command in the first pattern match in the main

block, whereas ["todo.txt", "Find the magic sword of power"] will be passed to
the function that we get from the dispatch function. So, because we’re not
dealing with bad input right now, we just pattern match against a list with
those two elements immediately and return an I/O action that appends that
line to the end of the file, along with a newline character.

Next, let’s implement the list-viewing functionality. If we want to view
the items in a file, we do ./todo view todo.txt. So in the first pattern match,
command will be "view", and argList will be ["todo.txt"]. Here’s the function
in full:

view :: [String] -> IO ()

view [fileName] = do

contents <- readFile fileName

let todoTasks = lines contents

numberedTasks = zipWith (\n line -> show n ++ " - " ++ line)

[0..] todoTasks

putStr $ unlines numberedTasks

When we made our deletetodo program, which could only delete items
from a to-do list, it had the ability to display the items in a to-do list, so this
code is very similar to that part of the previous program.

Finally, we’re going to implement remove. It’s very similar to the pro-
gram that only deleted the tasks, so if you don’t understand how deleting
an item here works, review “Deleting Items” on page 181. The main differ-
ence is that we’re not hardcoding the filename as todo.txt but instead getting
it as an argument. We’re also getting the target task number as an argument,
rather than prompting the user for it.

remove :: [String] -> IO ()

remove [fileName, numberString] = do

contents <- readFile fileName

let todoTasks = lines contents

numberedTasks = zipWith (\n line -> show n ++ " - " ++ line)

[0..] todoTasks

putStrLn "These are your TO-DO items:"

mapM_ putStrLn numberedTasks

let number = read numberString

newTodoItems = unlines $ delete (todoTasks !! number) todoTasks

bracketOnError (openTempFile "." "temp")

(\(tempName, tempHandle) -> do

hClose tempHandle

removeFile tempName)
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(\(tempName, tempHandle) -> do

hPutStr tempHandle newTodoItems 

hClose tempHandle

removeFile fileName

renameFile tempName fileName)

We opened the file based on fileName and opened a temporary file, de-
leted the line with the index that the user wants to delete, wrote that to the
temporary file, removed the original file, and renamed the temporary file
back to fileName.

Here’s the whole program in all its glory:

import System.Environment

import System.Directory

import System.IO

import Data.List

dispatch :: String -> [String] -> IO ()

dispatch "add" = add

dispatch "view" = view

dispatch "remove" = remove

main = do

(command:argList) <- getArgs

dispatch command argList

add :: [String] -> IO ()

add [fileName, todoItem] = appendFile fileName (todoItem ++ "\n")

view :: [String] -> IO ()

view [fileName] = do

contents <- readFile fileName

let todoTasks = lines contents

numberedTasks = zipWith (\n line -> show n ++ " - " ++ line)

[0..] todoTasks

putStr $ unlines numberedTasks

remove :: [String] -> IO ()

remove [fileName, numberString] = do

contents <- readFile fileName

let todoTasks = lines contents

numberedTasks = zipWith (\n line -> show n ++ " - " ++ line)

[0..] todoTasks

putStrLn "These are your TO-DO items:"

mapM_ putStrLn numberedTasks

let number = read numberString

newTodoItems = unlines $ delete (todoTasks !! number) todoTasks
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bracketOnError (openTempFile "." "temp")

(\(tempName, tempHandle) -> do

hClose tempHandle

removeFile tempName)

(\(tempName, tempHandle) -> do

hPutStr tempHandle newTodoItems

hClose tempHandle

removeFile "todo.txt"

renameFile tempName "todo.txt")

To summarize our solution, we made a dispatch function that maps from
commands to functions that take some command-line arguments in the form
of a list and return an I/O action. We see what the command is, and based on
that, we get the appropriate function from the dispatch function. We call
that function with the rest of the command-line arguments to get back an
I/O action that will do the appropriate thing, and then just perform that ac-
tion. Using higher-order functions allows us to just tell the dispatch function
to give us the appropriate function, and then tell that function to give us an
I/O action for some command-line arguments.

Let’s try our app!

$ ./todo view todo.txt

0 - Iron the dishes

1 - Dust the dog

2 - Take salad out of the oven

$ ./todo add todo.txt "Pick up children from dry cleaners"

$ ./todo view todo.txt

0 - Iron the dishes

1 - Dust the dog

2 - Take salad out of the oven

3 - Pick up children from dry cleaners

$ ./todo remove todo.txt 2

$ ./todo view todo.txt

0 - Iron the dishes

1 - Dust the dog

2 - Pick up children from dry cleaners :

Another cool thing about using the dispatch function is that it’s easy to
add functionality. Just add an extra pattern to dispatch and implement the
corresponding function, and you’re laughing! As an exercise, you can try im-
plementing a bump function that will take a file and a task number and return
an I/O action that bumps that task to the top of the to-do list.
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Dealing with Bad Input
We could extend this program to make it fail a bit more gracefully in the
case of bad input, instead of printing out an ugly error message from Has-
kell. We can start by adding a catchall pattern at the end the dispatch func-
tion and making it return a function that ignores the argument list and tells
us that such a command doesn’t exist:

dispatch :: String -> [String] -> IO ()

dispatch "add" = add

dispatch "view" = view

dispatch "remove" = remove

dispatch command = doesntExist command

doesntExist :: String -> [String] -> IO ()

doesntExist command _ =

putStrLn $ "The " ++ command ++ " command doesn't exist"

We might also add catchall patterns to the add, view, and remove func-
tions, so that the program tells users if they have supplied the wrong number
of arguments to a given command. Here’s an example:

add :: [String] -> IO ()

add [fileName, todoItem] = appendFile fileName (todoItem ++ "\n")

add _ = putStrLn "The add command takes exactly two arguments"

If add is applied to a list that doesn’t have exactly two elements, the first 
pattern match will fail, but the second one will succeed, helpfully informing 
users of their erroneous ways. We can add a catchall pattern like this to view 
and remove as well.

Note that we haven’t covered all of the cases where our input is bad. For 
instance, suppose we run our program like this:

./todo

In this case, it will crash, because we use the (command:argList) pattern
in our do block, but that doesn’t consider the possibility that there are no
arguments at all! We also don’t check to see if the file we’re operating on
exists before trying to open it. Adding these precautions isn’t hard, but it
is a bit tedious, so making this program completely idiot-proof is left as an
exercise to the reader.

Randomness
Many times while programming, you need to get some random data (well,
pseudo-random data, since we all know that the only true source of random-
ness is a monkey on a unicycle with cheese in one hand and its butt in the
other). For example, you may be making a game where a die needs to be
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thrown, or you need to generate some
data to test your program. In this sec-
tion, we’ll take a look at how to make
Haskell generate seemingly random
data and why we need external input
to generate values that are random
enough.

Most programming languages
have functions that give you back
some random number. Each time you
call that function, you retrieve a dif-
ferent random number. How about
Haskell? Well, remember that Haskell
is a purely functional language. That
means it has referential transparency. And that means a function, if given
the same parameters twice, must produce the same result twice. That’s really
cool, because it allows us to reason about programs, and it enables us to de-
fer evaluation until we really need it. However, this makes it a bit tricky for
getting random numbers.

Suppose we have a function like this:

randomNumber :: Int

randomNumber = 4

It’s not very useful as a random number function, because it will always
return 4. (Even though I can assure you that the 4 is completely random,
because I used a die to determine it.)

How do other languages make seemingly random numbers? Well,
they take some initial data, like the current time, and based on that, gen-
erate numbers that are seemingly random. In Haskell, we can generate ran-
dom numbers by making a function that takes as its parameter some initial
data, or randomness, and produces a random number. We use I/O to bring
randomness into our program from outside.

Enter the System.Random module. It has all the functions that satisfy our
need for randomness. Let’s just dive into one of the functions it exports:
random. Here is its type signature:

random :: (RandomGen g, Random a) => g -> (a, g)

NOTE If GHC complains that it can’t find the module System.Random, run cabal install

random in your command line to install it.

Whoa! We have some new type classes in this type declaration! The
RandomGen type class is for types that can act as sources of randomness. The

More Input and More Output 191



Random type class is for types whose values can be random. We can generate
random Boolean values by randomly producing either True or False. We can
also generate numbers that are random. Can a function take on a random
value? I don’t think so! If we try to translate the type declaration of random
to English, we get something like this: It takes a random generator (that’s
our source of randomness) and returns a random value and a new random
generator. Why does it also return a new generator as well as a random value?
Well, you’ll see in a moment.

To use our random function, we need to get our hands on one of those
random generators. The System.Random module exports a cool type, namely
StdGen, which is an instance of the RandomGen type class. We can make a StdGen

manually, or we can tell the system to give us one based on a multitude of
(sort of) random stuff.

To manually make a random generator, use the mkStdGen function. It
has a type of mkStdGen :: Int -> StdGen. It takes an integer, and based on that,
gives us a random generator. Okay then, let’s try using random and mkStdGen in
tandem to get a (hardly) random number.

ghci> random $ mkStdGen 100

(-1352021624,651872571 1655838864)

Great, a number that looks kind of random! The first component of the
tuple is our number, and the second component is a textual representation
of our new random generator. What happens if we call random with the same
random generator again?

ghci> random $ mkStdGen 100

(-1352021624,651872571 1655838864)

Of course, we get the same result for the same parameters. So let’s try
giving it a different random generator as a parameter:

ghci> random $ mkStdGen 949494

(539963926,466647808 1655838864)

Cool, it’s a different number! We can use the type annotation to get dif-
ferent types back from that function.

ghci> random (mkStdGen 949494) :: (Float, StdGen)

(0.7463806,466647808 1655838864)

ghci> random (mkStdGen 949494) :: (Bool, StdGen)

(False,1485872359 40692)
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ghci> random (mkStdGen 949494) :: (Integer, StdGen)

(6642787099209953655,75809027 2103410263)

Tossing a Coin
Let’s make a function that simulates tossing a coin three times. If random
didn’t return a new generator along with a random value, we would need
to make this function take three random generators as a parameter and re-
turn coin tosses for each of them. But if one generator can make a random
value of type Int (which can take on a load of different values), it should be
able to make three coin tosses (which can have only eight different end re-
sults). So this is where random returning a new generator along with a value
comes in handy.

We’ll represent a coin with a simple Bool: True is tails, and False is heads.

threeCoins :: StdGen -> (Bool, Bool, Bool)

threeCoins gen =

let (firstCoin, newGen) = random gen

(secondCoin, newGen') = random newGen

(thirdCoin, newGen'') = random newGen'

in (firstCoin, secondCoin, thirdCoin)

We call random with the generator we got as a parameter to get a coin
and a new generator. Then we call it again, only this time with our new
generator, to get the second coin. We do the same for the third coin.
Had we called it with the same generator every time, all the coins would
have had the same value, so we would get only (False, False, False) or
(True, True, True) as a result.

ghci> threeCoins (mkStdGen 21)

(True,True,True)

ghci> threeCoins (mkStdGen 22)

(True,False,True)

ghci> threeCoins (mkStdGen 943)

(True,False,True)

ghci> threeCoins (mkStdGen 944)

(True,True,True)

Notice that we didn’t need to call random gen :: (Bool, StdGen). Since
we already specified that we want Booleans in the type declaration of the
function, Haskell can infer that we want a Boolean value in this case.
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More Random Functions
What if we want to flip more coins? For that, there’s a function called randoms,
which takes a generator and returns an infinite sequence of values based on
that generator.

ghci> take 5 $ randoms (mkStdGen 11) :: [Int]

[-1807975507,545074951,-1015194702,-1622477312,-502893664]

ghci> take 5 $ randoms (mkStdGen 11) :: [Bool]

[True,True,True,True,False]

ghci> take 5 $ randoms (mkStdGen 11) :: [Float]

[7.904789e-2,0.62691015,0.26363158,0.12223756,0.38291094]

Why doesn’t randoms return a new generator as well as a list? We could
implement the randoms function very easily like this:

randoms' :: (RandomGen g, Random a) => g -> [a]

randoms' gen = let (value, newGen) = random gen in value:randoms' newGen

This is a recursive definition. We get a random value and a new genera-
tor from the current generator, and then make a list that has the value as its
head and random numbers based on the new generator as its tail. Because
we need to be able to potentially generate an infinite amount of numbers, we
can’t give the new random generator back.

We could make a function that generates a finite stream of numbers and
a new generator like this:

finiteRandoms :: (RandomGen g, Random a) => Int -> g -> ([a], g)

finiteRandoms 0 gen = ([], gen)

finiteRandoms n gen =

let (value, newGen) = random gen

(restOfList, finalGen) = finiteRandoms (n-1) newGen

in (value:restOfList, finalGen)

Again, this is a recursive definition. We say that if we want zero numbers,
we just return an empty list and the generator that was given to us. For any
other number of random values, we first get one random number and a new
generator. That will be the head. Then we say that the tail will be n - 1 num-
bers generated with the new generator. Then we return the head and the
rest of the list joined and the final generator that we got from getting the
n - 1 random numbers.

What if we want a random value in some sort of range? All the random
integers so far were outrageously big or small. What if we want to throw a
die? Well, we use randomR for that purpose. It has this type:

randomR :: (RandomGen g, Random a) :: (a, a) -> g -> (a, g)
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This means that it’s kind of like random, but it takes as its first parameter
a pair of values that set the lower and upper bounds, and the final value pro-
duced will be within those bounds.

ghci> randomR (1,6) (mkStdGen 359353)

(6,1494289578 40692)

ghci> randomR (1,6) (mkStdGen 35935335)

(3,1250031057 40692)

There’s also randomRs, which produces a stream of random values within
our defined ranges. Check this out:

ghci> take 10 $ randomRs ('a','z') (mkStdGen 3) :: [Char]

"ndkxbvmomg"

It looks like a super secret password, doesn’t it?

Randomness and I/O
You may be wondering what this section has to do with I/O. We haven’t
done anything concerning I/O so far. We’ve always made our random num-
ber generator manually by creating it with some arbitrary integer. The prob-
lem is that if we do that in our real programs, they will always return the same
random numbers, which is no good for us. That’s why System.Random offers
the getStdGen I/O action, which has a type of IO StdGen. It asks the system
for some initial data and uses it to jump-start the global generator. getStdGen
fetches that global random generator when you bind it to something.

Here’s a simple program that generates a random string:

import System.Random

main = do

gen <- getStdGen

putStrLn $ take 20 (randomRs ('a','z') gen)

Now let’s test it:

$ ./random_string

pybphhzzhuepknbykxhe

$ ./random_string

eiqgcxykivpudlsvvjpg

$ ./random_string

nzdceoconysdgcyqjruo

$ ./random_string

bakzhnnuzrkgvesqplrx
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But you need to be careful. Just performing getStdGen twice will ask the
system for the same global generator twice. Suppose we do this:

import System.Random

main = do

gen <- getStdGen

putStrLn $ take 20 (randomRs ('a','z') gen)

gen2 <- getStdGen

putStr $ take 20 (randomRs ('a','z') gen2)

We will get the same string printed out twice!
The best way to get two different strings is to use the newStdGen action,

which splits our current random generator into two generators. It updates
the global random generator with one of them and yields the other as its
result.

import System.Random

main = do

gen <- getStdGen

putStrLn $ take 20 (randomRs ('a','z') gen)

gen' <- newStdGen

putStr $ take 20 (randomRs ('a','z') gen')

Not only do we get a new random generator when we bind newStdGen to
something, but the global one gets updated as well. This means that if we do
getStdGen again and bind it to something, we’ll get a generator that’s not the
same as gen.

Here’s a little program that will make the user guess which number it’s
thinking of:

import System.Random

import Control.Monad(when)

main = do

gen <- getStdGen

askForNumber gen

askForNumber :: StdGen -> IO ()

askForNumber gen = do

let (randNumber, newGen) = randomR (1,10) gen :: (Int, StdGen)

putStrLn "Which number in the range from 1 to 10 am I thinking of? "

numberString <- getLine

when (not $ null numberString) $ do

let number = read numberString
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if randNumber == number

then putStrLn "You are correct!"

else putStrLn $ "Sorry, it was " ++ show randNumber

askForNumber newGen

We make a function askForNumber,
which takes a random number genera-
tor and returns an I/O action that will
prompt you for a number, and then tell
you if you guessed it right.

In askForNumber, we first generate a
random number and a new generator
based on the generator that we got as
a parameter and call them randNumber

and newGen. (For this example, let’s say
that the number generated was 7.) Then
we tell the user to guess which number
we’re thinking of. We perform getLine

NOTE

and bind its result to numberString. When the user enters 7, numberString be-
comes "7". Next, we use when to check if the string the user entered is an 
empty string. If it isn’t, the action consisting of the do block that is passed 
to when is performed. We use read on numberString to convert it to a number, 
so number is now 7.

If the user enters some input that read can’t parse (like "haha"), our program will crash 
with an ugly error message. If you don’t want your program to crash on erroneous 
input, use reads, which returns an empty list when it fails to read a string. When it 
succeeds, it returns a singleton list with a tuple that has your desired value as one com-
ponent and a string with what it didn’t consume as the other. Try it!

We check if the number that we entered is equal to the one generated 
randomly and give the user the appropriate message. Then we perform 
askForNumber recursively, but this time with the new generator that we got. 
This gives us an I/O action that’s just like the one we performed, except 
that it depends on a different generator.

main consists of just getting a random generator from the system and call-
ing askForNumber with it to get the initial action.

Here’s our program in action:

$ ./guess_the_number

Which number in the range from 1 to 10 am I thinking of?

4

Sorry, it was 3

Which number in the range from 1 to 10 am I thinking of?

10

You are correct!
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Which number in the range from 1 to 10 am I thinking of?

2

Sorry, it was 4

Which number in the range from 1 to 10 am I thinking of?

5

Sorry, it was 10

Which number in the range from 1 to 10 am I thinking of?

Here’s another way to make this same program:

import System.Random

import Control.Monad(when)

main = do

gen <- getStdGen

let (randNumber, _) = randomR (1,10) gen :: (Int, StdGen)

putStrLn "Which number in the range from 1 to 10 am I thinking of? "

numberString <- getLine

when (not $ null numberString) $ do

let number = read numberString

if randNumber == number

then putStrLn "You are correct!"

else putStrLn $ "Sorry, it was " ++ show randNumber

newStdGen

main

It’s very similar to the previous version, but instead of making a function
that takes a generator and then calls itself recursively with the new updated
generator, we do all the work in main. After telling the user whether he was
correct in his guess, we update the global generator and then call main again.
Both approaches are valid, but I like the first one more since it does less stuff
in main and also provides a function I can reuse easily.

Bytestrings
Lists are certainly useful. So far, we’ve used
them pretty much everywhere. There are
a multitude of functions that operate on
them, and Haskell’s laziness allows us to
exchange the for and while loops of other
languages for filtering and mapping over
lists. Since evaluation will happen only
when it really needs to, things like infinite
lists (and even infinite lists of infinite lists!)
are no problem for us. That’s why lists can
also be used to represent streams, either
when reading from the standard input or
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when reading from files. We can just open a file and read it as a string, even
though it will be accessed only when the need arises.

However, processing files as strings has one drawback: It tends to be
slow. Lists are really lazy. Remember that a list like [1,2,3,4] is syntactic
sugar for 1:2:3:4:[]. When the first element of the list is forcibly evaluated
(say by printing it), the rest of the list 2:3:4:[] is still just a promise of a list,
and so on. We call that promise a thunk.

A thunk is basically a deferred computation. Haskell achieves its lazi-
ness by using thunks and computing them only when it must, instead of
computing everything up front. So you can think of lists as promises that
the next element will be delivered once it really has to be, and along with
it, the promise of the element after it. It doesn’t take a big mental leap to
conclude that processing a simple list of numbers as a series of thunks might
not be the most efficient technique in the world.

That overhead doesn’t bother us most of the time, but it turns out to be
a liability when reading big files and manipulating them. That’s why Haskell
has bytestrings. Bytestrings are sort of like lists, only each element is one byte
(or 8 bits) in size. The way they handle laziness is also different.

Strict and Lazy Bytestrings
Bytestrings come in two flavors: strict and lazy. Strict bytestrings reside in
Data.ByteString, and they do away with the laziness completely. There are no
thunks involved. A strict bytestring represents a series of bytes in an array.
You can’t have things like infinite strict bytestrings. If you evaluate the first
byte of a strict bytestring, you must evaluate the whole thing.

The other variety of bytestrings resides in Data.ByteString.Lazy. They’re
lazy, but not quite as lazy as lists. Since there are as many thunks in a list as
there are elements, they are kind of slow for some purposes. Lazy bytestrings
take a different approach. They are stored in chunks (not to be confused
with thunks!), and each chunk has a size of 64KB. So if you evaluate a byte
in a lazy bytestring (by printing it, for example), the first 64KB will be evalu-
ated. After that, it’s just a promise for the rest of the chunks. Lazy bytestrings
are kind of like lists of strict bytestrings, with a size of 64KB. When you pro-
cess a file with lazy bytestrings, it will be read chunk by chunk. This is cool
because it won’t cause the memory usage to skyrocket, and the 64KB proba-
bly fits neatly into your CPU’s L2 cache.

If you look through the documentation for Data.ByteString.Lazy, you
will see that it has a lot of functions with the same names as the ones from
Data.List, but the type signatures have ByteString instead of [a] and Word8

instead of a. These functions are similar to the ones that work on lists. Be-
cause the names are the same, we’re going to do a qualified import in a
script and then load that script into GHCi to play with bytestrings:

import qualified Data.ByteString.Lazy as B

import qualified Data.ByteString as S
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B has lazy bytestring types and functions, whereas S has strict ones. We’ll
mostly be using the lazy versions.

The pack function has the type signature pack :: [Word8] -> ByteString.
This means that it takes a list of bytes of type Word8 and returns a ByteString.
You can think of it as taking a list, which is lazy, and making it less lazy, so
that it’s lazy only at 64KB intervals.

The Word8 type is like Int, but it represents an unsigned 8-bit number.
This means that it has a much smaller range of only 0 to 255. And just like
Int, it’s in the Num type class. For instance, we know that the value 5 is poly-
morphic in that it can act like any numeric type, including Word8.

Here’s how we pack lists of numbers into bytestrings:

ghci> B.pack [99,97,110]

"can" 

ghci> B.pack [98..120]

"bcdefghijklmnopqrstuvwx"

We packed only a handful of values into a bytestring, so they fit inside
one chunk. Empty is like [] for lists—they both represent an empty sequence.

As you can see, you don’t need to specify that your numbers are of type
Word8, because the type system can make numbers choose that type. If you try
to use a big number like 336 as a Word8, it will just wrap around to 80.

When we need to examine a bytestring byte by byte, we need to unpack
it. The unpack function is the inverse of pack. It takes a bytestring and turns it
into a list of bytes. Here’s an example:

ghci> let by = B.pack [98,111,114,116] 

ghci> by

"bort"

ghci> B.unpack by

[98,111,114,116]

You can also go back and forth between strict and lazy bytestrings. The
toChunks function takes a lazy bytestring and converts it to a list of strict ones.
The fromChunks function takes a list of strict bytestrings and converts it to a
lazy bytestring:

ghci> B.fromChunks [S.pack [40,41,42], S.pack [43,44,45], S.pack [46,47,48]] 
"()*+,-./0"

This is good if you have a lot of small strict bytestrings and you want to
process them efficiently without joining them into one big strict bytestring in
memory first.

The bytestring version of : is called cons. It takes a byte and a bytestring
and puts the byte at the beginning.

200 Chapter 9



ghci> B.cons 85 $ B.pack [80,81,82,84] 

"UPQRT"

The bytestring modules have a load of functions that are analogous to
those in Data.List, including, but not limited to, head, tail, init, null, length,
map, reverse, foldl, foldr, concat, takeWhile, filter, and so on. For a complete
listing of bytestring functions, check out the documentation for the byte-
string package at http://hackage.haskell.org/package/bytestring/.

The bytestring modules also have functions that have the same name
and behave the same as some functions found in System.IO, but Strings are
replaced with ByteStrings. For instance, the readFile function in System.IO has
this type:

readFile :: FilePath -> IO String

The readFile function from the bytestring modules has the following type:

readFile :: FilePath -> IO ByteString

NOTE If you’re using strict bytestrings and you attempt to read a file, all of that file will be
read into memory at once! With lazy bytestrings, the file will be read in neat chunks.

Copying Files with Bytestrings
Let’s make a program that takes two filenames as command-line arguments
and copies the first file into the second file. Note that System.Directory al-
ready has a function called copyFile, but we’re going to implement our own
file-copying function and program anyway. Here’s the code:

import System.Environment

import System.Directory

import System.IO

import Control.Exception

import qualified Data.ByteString.Lazy as B

main = do

(fileName1:fileName2:_) <- getArgs

copy fileName1 fileName2

copy source dest = do

contents <- B.readFile source

bracketOnError

(openTempFile "." "temp")

(\(tempName, tempHandle) -> do

hClose tempHandle

removeFile tempName)

(\(tempName, tempHandle) -> do
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B.hPutStr tempHandle contents

hClose tempHandle

renameFile tempName dest)

To begin, in main, we just get the command-line arguments and call
our copy function, which is where the magic happens. One way to do this
would be to just read from one file and write to another. But if something
goes wrong (such as we don’t have enough disk space to copy the file), we’ll
be left with a messed-up file. So we’ll write to a temporary file first. Then if
something goes wrong, we can just delete that file.

First, we use B.readFile to read the contents of our source file. Then we
use bracketOnError to set up our error handling. We acquire the resource
with openTempFile "." "temp", which yields a tuple that consists of a tempo-
rary filename and a handle. Next, we say what we want to happen if an error
occurs. If something goes wrong, we close the handle and remove the tem-
porary file. Finally, we do the copying itself. We use B.hPutStr to write the
contents to our temporary file. We close the temporary file and rename it
to what we want it to be in the end.

Notice that we just used B.readFile and B.hPutStr instead of their reg-
ular variants. We didn’t need to use special bytestring functions for open-
ing, closing, and renaming files. We just need to use the bytestring functions
when reading and writing.

Let’s test it:

$ ./bytestringcopy bart.txt bort.txt

A program that doesn’t use bytestrings could look just like this. The only
difference is that we used B.readFile and B.writeFile instead of readFile and
writeFile.

Many times, you can convert a program that uses normal strings to a
program that uses bytestrings just by doing the necessary imports and then
putting the qualified module names in front of some functions. Sometimes,
you need to convert functions that you wrote to work on strings so that they
work on bytestrings, but that’s not hard.

Whenever you need better performance in a program that reads a lot
of data into strings, give bytestrings a try. Chances are you’ll get some good
performance boosts with very little effort on your part. I usually write pro-
grams using normal strings and then convert them to use bytestrings if the
performance is not satisfactory.
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10
FUNCTIONALLY SOLVING PROBLEMS

In this chapter, we’ll look at a couple of interesting
problems, and we’ll think about how to solve them as
elegantly as possible using functional programming
techniques. This will give you the opportunity to flex
your newly acquired Haskell muscles and practice your
coding skills.

Reverse Polish Notation Calculator

Usually, when we work with algebraic expressions in school, we write them
in an infix manner. For instance, we write 10 - (4 + 3) * 2. Addition (+),
multiplication (*), and subtraction (-) are infix operators, just like the in-
fix functions in Haskell (+ `elem`, and so on). As humans, we can parse this
form easily in our minds. The downside is that we need to use parentheses
to denote precedence.

Another way to write algebraic expressions is to use reverse polish nota-
tion, or RPN. In RPN, the operator comes after the numbers, rather than
being sandwiched between them. So, instead of writing 4 + 3, we write 4 3 +.
But how do we write expressions that contain several operators? For exam-
ple, how would we write an expression that adds 4 and 3 and then multiplies



that by 10? It’s simple: 4 3 + 10 *. Because 4 3 + is equivalent to 7, that whole
expression is the same as 7 10 *.

Calculating RPN Expressions
To get a feel for how to calculate RPN expressions, think of a stack of num-
bers. We go over the expression from left to right. Every time a number is
encountered, put it on top of the stack (push it onto the stack). When we en-
counter an operator, we take the two numbers that are on top of the stack
(pop them), use the operator with those two, and then push the resulting
number back onto the stack. When we reach the end of the expression, we
should be left with a single number that represents the result (assuming the
expression was well formed).

Let’s see how we would calculate the RPN expression 10 4 3 + 2 * -:

1. We push 10 onto the stack, so the stack consists of 10.

2. The next item is 4, so we push it onto the stack as well. The stack is now
10, 4.

3. We do the same with 3, and the stack is now 10, 4, 3.

4. We encounter an operator: +. We pop the two top numbers from the
stack (so now the stack is just 10), add those numbers together, and push
that result to the stack. The stack is now 10, 7.

5. We push 2 to the stack, and the stack becomes 10, 7, 2.

6. We encounter another operator. We pop 7 and 2 off the stack, multiply
them, and push that result to the stack. Multiplying 7 and 2 produces 14,
so the stack is now 10, 14.

7. Finally, there’s a -. We pop 10 and 14 from the stack, subtract 14 from 10,
and push that back.

8. The number on the stack is now -4. Because there are no more numbers
or operators in our expression, that’s our result!

So, that’s how to calculate an RPN expression by hand. Now let’s think
about how to make a Haskell function to do the same thing.
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Writing an RPN Function
Our function will take a string that contains an RPN expression as its param-
eter (like "10 4 3 + 2 * -") and give us back that expression’s result.

What would the type of that function be? We want it to take a string as
a parameter and produce a number as its result. Let’s say that we want the
result to be a floating-point number of double precision, because we want to
include division as well. So its type will probably be something like this:

solveRPN :: String -> Double

NOTE It really helps to first think what the type declaration of a function should be before
dealing with the implementation. In Haskell, a function’s type declaration tells you a
whole lot about the function, due to the very strong type system.

When implementing a solution to a
problem in Haskell, it can be helpful to
consider how you did it by hand. For our
RPN expression calculation, we treated
every number or operator that was sep-
arated by a space as a single item. So it
might help us if we start by breaking a
string like "10 4 3 + 2 * -" into a list of
items, like this:

["10","4","3","+","2","*","-"].

Next up, what did we do with that list
of items in our head? We went over it from left to right and kept a stack as
we did that. Does that process remind you of anything? In “I Fold You So”
on page 73, you saw that pretty much any function where you traverse a list
element by element, and build up (accumulate) some result—whether it’s a
number, a list, a stack, or something else—can be implemented with a fold.

In this case, we’re going to use a left fold, because we go over the list
from left to right. The accumulator value will be our stack, so the result
from the fold will also be a stack (though as we’ve seen, it will contain only
one item).

One more thing to think about is how we will represent the stack. Let’s
use a list and keep the top of our stack at the head of the list. Adding to the
head (beginning) of a list is much faster than adding to the end of it. So if
we have a stack of, say, 10, 4, 3, we’ll represent that as the list [3,4,10].

Now we have enough information to roughly sketch our function. It’s
going to take a string like "10 4 3 + 2 * -" and break it down into a list of
items by using words. Next, we’ll do a left fold over that list and end up with
a stack that has a single item (in this example, [-4]). We take that single
item out of the list, and that’s our final result!
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Here’s a sketch of that function:

solveRPN :: String -> Double

solveRPN expression = head (foldl foldingFunction [] (words expression))

where foldingFunction stack item = ...

We take the expression and turn it into a list of items. Then we fold over
that list of items with the folding function. Notice the [], which represents
the starting accumulator. The accumulator is our stack, so [] represents an
empty stack, which is what we start with. After getting the final stack with a
single item, we apply head to that list to get the item out.

All that’s left now is to implement a folding function that will take a
stack, like [4,10], and an item, like "3", and return a new stack [3,4,10]. If the
stack is [4,10] and the item is "*", then the function will need to return [40].

Before we write the folding function, let’s turn our function into point-
free style, because it has a lot of parentheses that are kind of freaking me out:

solveRPN :: String -> Double

solveRPN = head . foldl foldingFunction [] . words

where foldingFunction stack item = ...

That’s much better.
The folding function will take a stack and an item and return a new

stack. We’ll use pattern matching to get the top items of a stack and to pat-
tern match against operators like "*" and "-". Here it is with the folding
function implemented:

solveRPN :: String -> Double

solveRPN = head . foldl foldingFunction [] . words

where foldingFunction (x:y:ys) "*" = (y * x):ys

foldingFunction (x:y:ys) "+" = (y + x):ys

foldingFunction (x:y:ys) "-" = (y - x):ys

foldingFunction xs numberString = read numberString:xs

We laid this out as four patterns. The patterns will be tried from top
to bottom. First, the folding function will see if the current item is "*". If
it is, then it will take a list like [3,4,9,3] and name its first two elements x

and y, respectively. So in this case, x would be 3, and y would be 4. ys would
be [9,3]. It will return a list that’s just like ys, but with x and y multiplied
as its head. With this, we pop the two topmost numbers off the stack, mul-
tiply them, and push the result back onto the stack. If the item is not "*",
the pattern matching will fall through, "+" will be checked, and so on.

If the item is none of the operators, we assume it’s a string that repre-
sents a number. If it’s a number, we just apply read to that string to get a
number from it and return the previous stack but with that number pushed
to the top.

For the list of items ["2","3","+"], our function will start folding from the
left. The initial stack will be []. It will call the folding function with [] as the
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stack (accumulator) and "2" as the item. Because that item is not an opera-
tor, it will be read and then added to the beginning of []. So the new stack
is now [2]. The folding function will be called with [2] as the stack and "3" as
the item, producing a new stack of [3,2]. Then it’s called for the third time
with [3,2] as the stack and "+" as the item. This causes these two numbers to
be popped off the stack, added together, and pushed back. The final stack is
[5], which is the number that we return.

Let’s play around with our function:

ghci> solveRPN "10 4 3 + 2 * -"

-4.0

ghci> solveRPN "2 3.5 +"

5.5

ghci> solveRPN "90 34 12 33 55 66 + * - +"

-3947.0

ghci> solveRPN "90 34 12 33 55 66 + * - + -"

4037.0

ghci> solveRPN "90 3.8 -"

86.2

Cool, it works!

Adding More Operators
One nice thing about this solution is that it can be easily modified to sup-
port various other operators. They don’t even need to be binary operators.
For instance, we can make an operator "log" that just pops one number off
the stack and pushes back its logarithm. We can also make operators that
operate on several numbers, like "sum", which pops off all the numbers and
pushes back their sum.

Let’s modify our function to accept a few more operators.

solveRPN :: String -> Double

solveRPN = head . foldl foldingFunction [] . words

where foldingFunction (x:y:ys) "*" = (y * x):ys

foldingFunction (x:y:ys) "+" = (y + x):ys

foldingFunction (x:y:ys) "-" = (y - x):ys

foldingFunction (x:y:ys) "/" = (y / x):ys

foldingFunction (x:y:ys) "^" = (y ** x):ys

foldingFunction (x:xs) "ln" = log x:xs

foldingFunction xs "sum" = [sum xs]

foldingFunction xs numberString = read numberString:xs

The / is division, of course, and ** is exponentiation. With the logarithm
operator, we just pattern match against a single element and the rest of the
stack, because we need only one element to perform its natural logarithm.
With the sum operator, we return a stack that has only one element, which is
the sum of the stack so far.
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ghci> solveRPN "2.7 ln"

0.9932517730102834

ghci> solveRPN "10 10 10 10 sum 4 /"

10.0

ghci> solveRPN "10 10 10 10 10 sum 4 /"

12.5

ghci> solveRPN "10 2 ^"

100.0

I think that making a function that can calculate arbitrary floating-point
RPN expressions and has the option to be easily extended in 10 lines is pretty
awesome.

NOTE This RPN calculation solution is not really fault tolerant. When given input that
doesn’t make sense, it might result in a runtime error. But don’t worry, you’ll learn
how to make this function more robust in Chapter 14.

Heathrow to London
Suppose that we’re on a business trip. Our plane has just landed in England,
and we rent a car. We have a meeting really soon, and we need to get from
Heathrow Airport to London as fast as we can (but safely!).

There are two main roads going from Heathrow to London, and a num-
ber of regional roads cross them. It takes a fixed amount of time to travel
from one crossroad to another. It’s up to us to find the optimal path to take
so that we get to our meeting in London on time. We start on the left side
and can either cross to the other main road or go forward.

As you can see in the picture, the quickest path from Heathrow to Lon-
don in this case is to start on main road B, cross over, go forward on A, cross
over again, and then go forward twice on B. If we take this path, it takes us
75 minutes. Had we chosen any other path, it would take longer.
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Our job is to make a program that takes input that represents a road sys-
tem and prints out the quickest path across it. Here’s what the input would
look like for this case:

50

10

30

5

90

20

40

2

25

10

8

0

To mentally parse the input file, read it in threes and mentally split the
road system into sections. Each section is composed of road A, road B, and a
crossing road. To have it neatly fit into threes, we say that there’s a last cross-
ing section that takes 0 minutes to drive over. That’s because we don’t care
where we arrive in London, as long as we’re in London, mate!

Just as we did when considering the RPN calculator problem, we’ll solve
this problem in three steps:

1. Forget Haskell for a minute and think about how to solve the problem
by hand. In the RPN calculator section, we first figured out that when
calculating an expression by hand, we keep a sort of stack in our minds
and then go over the expression one item at a time.

2. Think about how we’re going to represent our data in Haskell. For
our RPN calculator, we decided to use a list of strings to represent our
expression.

3. Figure out how to operate on that data in Haskell so that we produce a
solution. For the calculator, we used a left fold to walk over the list of
strings, while keeping a stack to produce a solution.

Calculating the Quickest Path
So how do we figure out the quickest path from Heathrow to London by
hand? Well, we can just look at the whole picture and try to guess what the
quickest path is and hope our guess is correct. That solution works for very
small inputs, but what if we have a road that has 10,000 sections? Yikes! We
also won’t be able to say for certain that our solution is the optimal one; we
can just say that we’re pretty sure. So, that’s not a good solution.
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Here’s a simplified picture of our road system:

Can we figure out the quickest path to the first crossroads (the first dot
on A, marked A1) on road A? That’s pretty trivial. We just see if it’s faster to
go directly forward on A or to go forward on B and then cross over. Obvi-
ously, it’s faster to go forward via B and then cross over, because that takes
40 minutes, whereas going directly via A takes 50 minutes. What about cross-
roads B1? We see that it’s a lot faster to just go directly via B (incurring a cost
of 10 minutes), because going via A and then crossing over would take us 80
minutes!

Now we know the quickest path to A1: Go via B and then cross over. We’ll
say that’s path B, C with a cost of 40 minutes. We also know the quickest path
to B1: Go directly via B. So that’s a path consisting just of B for 10 minutes.
Does this knowledge help us at all if we want to know the quickest path to
the next crossroads on both main roads? Gee golly, it sure does!

Let’s see what the quickest path to A2 would be. To get to A2, we’ll either
go directly to A2 from A1 or we’ll go forward from B1 and then cross over (re-
member that we can only move forward or cross to the other side). And be-
cause we know the cost to A1 and B1, we can easily figure out the best path to
A2. It takes us 40 minutes to get to A1 and then 5 minutes to get from A1 to
A2, so that’s path B, C, A, for a cost of 45. It takes us only 10 minutes to get
to B1, but then it would take an additional 110 minutes to go to B2 and then
cross over! So obviously, the quickest path to A2 is B, C, A. In the same way,
the quickest way to B2 is to go forward from A1 and then cross over.

NOTE Maybe you’re asking yourself, “But what about getting to A2 by first crossing over at
B1 and then going forward?” Well, we already covered crossing from B1 to A1 when we
were looking for the best way to A1, so we don’t need to take that into account in the
next step as well.

Now that we have the best path to A2 and B2, we can repeat this until we
reach the end. Once we have calculated the best paths for A4 and B4, the one
that takes less time is the optimal path.

So in essence, for the second section, we just repeat the step we did at
first, but we take into account the previous best paths on A and B. We could
say that we also took into account the best paths on A and on B in the first
step—they were both empty paths with a cost of 0 minutes.
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In summary, to get the best path from Heathrow to London, we do this:

1. We see what the best path to the next crossroads on main road A is. The
two options are going directly forward or starting at the opposite road,
going forward and then crossing over. We remember the cost and
the path.

2. We use the same method to find the best path to the next crossroads on
main road B and remember that.

3. We see if the path to the next crossroads on A takes less time if we go
from the previous A crossroads or if we go from the previous B crossroads
and then cross over. We remember the quicker path. We do the same
for the crossroads opposite of it.

4. We do this for every section until we reach the end.

5. Once we’ve reached the end, the quicker of the two paths that we have
is our optimal path.

So, in essence, we keep one quickest path on the A road and one quick-
est path on the B road. When we reach the end, the quicker of those two is
our path.

We now know how to figure out the quickest path by hand. If you had
enough time, paper, and pencils, you could figure out the quickest path
through a road system with any number of sections.

Representing the Road System in Haskell
How do we represent this road system with Haskell’s data types?

Thinking back to our solution by hand, we checked the durations of
three road parts at once: the road part on the A road, its opposite part on
the B road, and part C, which touches those two parts and connects them.
When we were looking for the quickest path to A1 and B1, we dealt with the
durations of only the first three parts, which were 50, 10, and 30. We’ll call
that one section. So the road system that we use for this example can be eas-
ily represented as four sections:

• 50, 10, 30

• 5, 90, 20

• 40, 2, 25

• 10, 8, 0

It’s always good to keep our data types as simple as possible (although
not any simpler!). Here’s the data type for our road system:

data Section = Section { getA :: Int, getB :: Int, getC :: Int }

deriving (Show)

type RoadSystem = [Section]
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This is as simple as it gets, and I have a feeling it will work perfectly for
implementing our solution.

Section is a simple algebraic data type that holds three integers for the
durations of its three road parts. We introduce a type synonym as well, say-
ing that RoadSystem is a list of sections.

NOTE We could also use a triple of (Int, Int, Int) to represent a road section. Using tuples
instead of making your own algebraic data types is good for some small, localized stuff,
but it’s usually better to make a new type for more complex representations. It gives
the type system more information about what’s what. We can use (Int, Int, Int) to
represent a road section or a vector in 3D space, and we can operate on those two, but
that allows us to mix them up. If we use Section and Vector data types, then we can’t
accidentally add a vector to a section of a road system.

Our road system from Heathrow to London can now be represented
like this:

heathrowToLondon :: RoadSystem

heathrowToLondon = [ Section 50 10 30

, Section 5 90 20

, Section 40 2 25

, Section 10 8 0

]

All we need to do now is implement the solution in Haskell.

Writing the Optimal Path Function
What should the type declaration for a function that calculates the quickest
path for any given road system be? It should take a road system as a parame-
ter and return a path. We’ll represent a path as a list as well.

Let’s introduce a Label type that’s just an enumeration of A, B, or C. We’ll
also make a type synonym called Path.

data Label = A | B | C deriving (Show)

type Path = [(Label, Int)]

Our function, which we’ll call optimalPath, should have the following type:

optimalPath :: RoadSystem -> Path

If called with the road system heathrowToLondon, it should return the fol-
lowing path:

[(B,10),(C,30),(A,5),(C,20),(B,2),(B,8)]

We’re going to need to walk over the list with the sections from left to
right and keep the optimal path on A and optimal path on B as we go along.
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We’ll accumulate the best path as we walk over the list, left to right. What
does that sound like? Ding, ding, ding! That’s right, a left fold!

When doing the solution by hand, there was a step that we repeated
over and over. It involved checking the optimal paths on A and B so far and
the current section to produce the new optimal paths on A and B. For in-
stance, at the beginning, the optimal paths were [] and [] for A and B, re-
spectively. We examined the section Section 50 10 30 and concluded that
the new optimal path to A1 was [(B,10),(C,30)] and the optimal path to B1

was [(B,10)]. If you look at this step as a function, it takes a pair of paths
and a section and produces a new pair of paths. So its type is this:

roadStep :: (Path, Path) -> Section -> (Path, Path)

Let’s implement this function, because it’s bound to be useful:

roadStep :: (Path, Path) -> Section -> (Path, Path)

roadStep (pathA, pathB) (Section a b c) =

let timeA = sum (map snd pathA)

timeB = sum (map snd pathB)

forwardTimeToA = timeA + a

crossTimeToA = timeB + b + c

forwardTimeToB = timeB + b

crossTimeToB = timeA + a + c

newPathToA = if forwardTimeToA <= crossTimeToA

then (A, a):pathA

else (C, c):(B, b):pathB

newPathToB = if forwardTimeToB <= crossTimeToB

then (B, b):pathB

else (C, c):(A, a):pathA

in (newPathToA, newPathToB)

What’s going on here? First, we cal-
culate the optimal time on road A based
on the best so far on A, and we do the
same for B. We do sum (map snd pathA), so
if pathA is something like [(A,100),(C,20)],
timeA becomes 120.

forwardTimeToA is the time that it
would take to get to the next crossroads
on A if we went there directly from the
previous crossroads on A. It equals the
best time to our previous A plus the dura-
tion of the A part of the current section.

crossTimeToA is the time that it would take if we went to the next A by go-
ing forward from the previous B and then crossing over. It’s the best time to
the previous B so far plus the B duration of the section plus the C duration of
the section.

We determine forwardTimeToB and crossTimeToB in the same manner.
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Now that we know the best way to A and B, we just need to make the new 
paths to A and B based on that. If it’s quicker to go to A by just going forward, 
we set newPathToA to be (A, a):pathA. Basically, we prepend the Label A and the 
section duration a to the optimal path on A so far. We say that the best path 
to the next A crossroads is the path to the previous A crossroads and then one 
section forward via A. Remember that A is just a label, whereas a has a type 
of Int.

Why do we prepend instead of doing pathA ++ [(A, a)]? Well, adding an 
element to the beginning of a list is much faster than adding it to the end. 
This means that the path will be the wrong way around once we fold over a 
list with this function, but it’s easy to reverse the list later.

If it’s quicker to get to the next A crossroads by going forward from road 
B and then crossing over, newPathToA is the old path to B that then goes for-
ward and crosses to A. We do the same thing for newPathToB, except that every-
thing is mirrored.

Finally, we return newPathToA and newPathToB in a pair.
Let’s run this function on the first section of heathrowToLondon. Because it’s 
the first section, the best paths on parameters A and B will be a pair of 
empty lists.

ghci> roadStep ([], []) (head heathrowToLondon)

([(C,30),(B,10)],[(B,10)])

Remember that the paths are reversed, so read them from right to left.
From this, we can read that the best path to the next A is to start on B and
then cross over to A. The best path to the next B is to just go directly forward
from the starting point at B.

NOTE When we do timeA = sum (map snd pathA), we’re calculating the time from the path on
every step. We wouldn’t need to do that if we implemented roadStep to take and return
the best times on A and B, along with the paths themselves.

Now that we have a function that takes a pair of paths and a section, and
produces a new optimal path, we can easily do a left fold over a list of sec-
tions. roadStep is called with ([], []) and the first section, and returns a pair
of optimal paths to that section. Then it’s called with that pair of paths and
the next section, and so on. When we’ve walked over all the sections, we’re
left with a pair of optimal paths, and the shorter of them is our answer. With
this in mind, we can implement optimalPath:

optimalPath :: RoadSystem -> Path

optimalPath roadSystem =

let (bestAPath, bestBPath) = foldl roadStep ([], []) roadSystem

in if sum (map snd bestAPath) <= sum (map snd bestBPath)

then reverse bestAPath

else reverse bestBPath
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We left fold over roadSystem (remember that it’s a list of sections) with
the starting accumulator being a pair of empty paths. The result of that fold
is a pair of paths, so we pattern match on the pair to get the paths themselves.
Then we check which one of these was quicker and return it. Before return-
ing it, we also reverse it, because the optimal paths so far were reversed due
to us choosing prepending over appending.

Let’s test this!

ghci> optimalPath heathrowToLondon

[(B,10),(C,30),(A,5),(C,20),(B,2),(B,8),(C,0)]

This is the result that we were supposed to get! It differs from our ex-
pected result a bit, because there’s a step (C,0) at the end, which means that
we cross over to the other road once we’re in London. But because that
crossing doesn’t take any time, this is still the correct result.

Getting a Road System from the Input
We have the function that finds an optimal path, so now we just need to read
a textual representation of a road system from the standard input, convert
it into a type of RoadSystem, run that through our optimalPath function, and
print the resulting path.

First, let’s make a function that takes a list and splits it into groups of the
same size. We’ll call it groupsOf:

groupsOf :: Int -> [a] -> [[a]]

groupsOf 0 _ = undefined

groupsOf _ [] = []

groupsOf n xs = take n xs : groupsOf n (drop n xs)

For a parameter of [1..10], groupsOf 3 should result in the following:

[[1,2,3],[4,5,6],[7,8,9],[10]]

As you can see, it’s a standard recursive function. Doing groupsOf 3 [1..10]

equals the following:

[1,2,3] : groupsOf 3 [4,5,6,7,8,9,10]

When the recursion is done, we get our list in groups of three. And
here’s our main function, which reads from the standard input, makes a
RoadSystem out of it, and prints out the shortest path:

import Data.List

main = do

contents <- getContents

let threes = groupsOf 3 (map read $ lines contents)
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roadSystem = map (\[a,b,c] -> Section a b c) threes

path = optimalPath roadSystem

pathString = concat $ map (show . fst) path

pathTime = sum $ map snd path

putStrLn $ "The best path to take is: " ++ pathString

putStrLn $ "Time taken: " ++ show pathTime

First, we get all the contents from the standard input. Then we apply
lines to our contents to convert something like "50\n10\n30\n ... to some-
thing cleaner, like ["50","10","30" .... We then map read over that to convert
it to a list of numbers. We apply groupsOf 3 to it so that we turn it to a list of
lists of length 3. We map the lambda (\[a,b,c] -> Section a b c) over that list
of lists.

As you can see, the lambda just takes a list of length 3 and turns it into a
section. So roadSystem is now our system of roads, and it even has the correct
type: RoadSystem (or [Section]). We apply optimalPath to that, get the path and
the total time in a nice textual representation, and print it out.

We save the following text in a file called paths.txt:

50

10

30

5

90

20

40

2

25

10

8

0

Then we feed it to our program like so:

$ runhaskell heathrow.hs < paths.txt

The best path to take is: BCACBBC

Time taken: 75

Works like a charm!
You can use your knowledge of the Data.Random module to generate a

much longer system of roads, which you can then feed to the code we just
wrote. If you get stack overflows, you can change foldl to foldl' and sum to
foldl' (+) 0. Alternatively, try compiling it like this before running it:

$ ghc --make -O heathrow.hs

Including the O flag turns on optimizations that help prevent functions
such as foldl and sum from causing stack overflows.
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11
APPLICATIVE FUNCTORS

Haskell’s combination of purity, higher-order func-
tions, parameterized algebraic data types, and type
classes makes implementing polymorphism much eas-
ier than in other languages. We don’t need to think
about types belonging to a big hierarchy. Instead, we
consider what the types can act like and then connect
them with the appropriate type classes. An Int can act
like a lot of things—an equatable thing, an ordered
thing, an enumerable thing, and so on.

Type classes are open, which means that we can define our own data
type, think about what it can act like, and connect it with the type classes
that define its behaviors. We can also introduce a new type class and then
make already existing types instances of it. Because of that, and because
Haskell’s type system allows us to know a lot about a function just by its type
declaration, we can define type classes that define very general and abstract
behavior.

We’ve talked about type classes that define operations for seeing if two
things are equal and comparing two things by some ordering. Those are very
abstract and elegant behaviors, although we don’t think of them as very spe-
cial, since we’ve been dealing with them for most of our lives. Chapter 7



introduced functors, which are types whose values can be mapped over.
That’s an example of a useful and yet still pretty abstract property that type
classes can describe. In this chapter, we’ll take a closer look at functors,
along with slightly stronger and more useful versions of functors called
applicative functors.

Functors Redux
As you learned in Chapter 7, functors are things that can be mapped over,
like lists, Maybes, and trees. In Haskell, they’re described by the type class
Functor, which has only one type class method: fmap. fmap has a type of
fmap :: (a -> b) -> f a -> f b, which says, “Give me a function that takes
an a and returns a b and a box with an a (or several of them) inside it, and
I’ll give you a box with a b (or several of them) inside it.” It applies the func-
tion to the element inside the box.

We can also look at functor values as values with an added context. For in-
stance, Maybe values have the extra context that they might have failed. With
lists, the context is that the value can actually be several values at once or
none. fmap applies a function to the value while preserving its context.

If we want to make a type constructor an instance of Functor, it must
have a kind of * -> *, which means that it takes exactly one concrete type
as a type parameter. For example, Maybe can be made an instance because
it takes one type parameter to produce a concrete type, like Maybe Int or
Maybe String. If a type constructor takes two parameters, like Either, we
need to partially apply the type constructor until it takes only one type pa-
rameter. So we can’t write instance Functor Either where, but we can write
instance Functor (Either a) where. Then if we imagine that fmap is only for
Either a, it would have this type declaration:

fmap :: (b -> c) -> Either a b -> Either a c

As you can see, the Either a part is fixed, because Either a takes only one
type parameter.

I/O Actions As Functors
You’ve learned how a lot of types (well, type constructors really) are
instances of Functor: [], and Maybe, Either a, as well as a Tree type that we
created in Chapter 7. You saw how you can map functions over them for
great good. Now, let’s take a look at the IO instance.

If some value has a type of, say, IO String, that means it’s an I/O ac-
tion that will go out into the real world and get some string for us, which it
will then yield as a result. We can use <- in do syntax to bind that result to a
name. In Chapter 8, we talked about how I/O actions are like boxes with
little feet that go out and fetch some value from the outside world for us.
We can inspect what they fetched, but after inspecting, we need to wrap the
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value back in IO. Considering this box with feet analogy, you can see how IO

acts like a functor.
Let’s see how IO is an instance of Functor. When we fmap a function over

an I/O action, we want to get back an I/O action that does the same thing
but has our function applied over its result value. Here’s the code:

instance Functor IO where

fmap f action = do

result <- action

return (f result)

The result of mapping something over an I/O action will be an I/O ac-
tion, so right off the bat, we use the do syntax to glue two actions and make
a new one. In the implementation for fmap, we make a new I/O action that
first performs the original I/O action and calls its result result. Then we do
return (f result). Recall that return is a function that makes an I/O action
that doesn’t do anything but only yields something as its result.

The action that a do block produces will always yield the result value of
its last action. That’s why we use return to make an I/O action that doesn’t
really do anything; it just yields f result as the result of the new I/O action.
Check out this piece of code:

main = do line <- getLine

let line' = reverse line

putStrLn $ "You said " ++ line' ++ " backwards!"

putStrLn $ "Yes, you said " ++ line' ++ " backwards!"

The user is prompted for a line, which we give back, but reversed. Here’s
how to rewrite this by using fmap:

main = do line <- fmap reverse getLine

putStrLn $ "You said " ++ line ++ " backwards!"

putStrLn $ "Yes, you really said " ++ line ++ " backwards!"

Just as we can fmap reverse over Just

"blah" to get Just "halb", we can fmap reverse

over getLine. getLine is an I/O action that
has a type of IO String, and mapping reverse

over it gives us an I/O action that will go
out into the real world and get a line and
then apply reverse to its result. In the same
way that we can apply a function to some-
thing that’s inside a Maybe box, we can apply
a function to what’s inside an IO box, but it
must go out into the real world to get some-

thing. Then when we bind it to a name using <-. The name will reflect the
result that already has reverse applied to it.
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The I/O action fmap (++"!") getLine behaves just like getLine, except that
its result always has "!" appended to it!

If fmap were limited to IO, its type would be fmap :: (a -> b) -> IO a ->

IO b. fmap takes a function and an I/O action and returns a new I/O action
that’s like the old one, except that the function is applied to its contained
result.

If you ever find yourself binding the result of an I/O action to a name,
only to apply a function to that and call that something else, consider using
fmap. If you want to apply multiple functions to some data inside a functor,
you can declare your own function at the top level, make a lambda function,
or, ideally, use function composition:

import Data.Char

import Data.List

main = do line <- fmap (intersperse '-' . reverse . map toUpper) getLine

putStrLn line

Here’s what happens if we run this with the input hello there:

$ ./fmapping_io

hello there

E-R-E-H-T- -O-L-L-E-H

The intersperse '-' . reverse . map toUpper function takes a string, maps
toUpper over it, applies reverse to that result, and then applies intersperse '-'

to that result. It’s a prettier way of writing the following:

(\xs -> intersperse '-' (reverse (map toUpper xs)))

Functions As Functors
Another instance of Functor that we’ve been dealing with all along is (->) r.
But wait! What the heck does (->) r mean? The function type r -> a can be
rewritten as (->) r a, much like we can write 2 + 3 as (+) 2 3. When we look
at it as (->) r a, we can see (->) in a slightly different light. It’s just a type
constructor that takes two type parameters, like Either.

But remember that a type constructor must take exactly one type param-
eter so it can be made an instance of Functor. That’s why we can’t make (->)

an instance of Functor; however, if we partially apply it to (->) r, it doesn’t
pose any problems. If the syntax allowed for type constructors to be partially
applied with sections (like we can partially apply + by doing (2+), which is the
same as (+) 2), we could write (->) r as (r ->).

How are functions functors? Let’s take a look at the implementation,
which lies in Control.Monad.Instances:

instance Functor ((->) r) where

fmap f g = (\x -> f (g x))
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First, let’s think about fmap’s type:

fmap :: (a -> b) -> f a -> f b

Next, let’s mentally replace each f, which is the role that our functor
instance plays, with (->) r. This will let us see how fmap should behave for
this particular instance. Here’s the result:

fmap :: (a -> b) -> ((->) r a) -> ((->) r b)

Now we can write the (->) r a and (->) r b types as infix r -> a and r -> b,
as we normally do with functions:

fmap :: (a -> b) -> (r -> a) -> (r -> b)

Okay, mapping a function over a function must produce a function, just
like mapping a function over a Maybe must produce a Maybe, and mapping a
function over a list must produce a list. What does the preceding type tell
us? We see that it takes a function from a to b and a function from r to a and
returns a function from r to b. Does this remind you of anything? Yes, func-
tion composition! We pipe the output of r -> a into the input of a -> b to
get a function r -> b, which is exactly what function composition is all about.
Here’s another way to write this instance:

instance Functor ((->) r) where

fmap = (.)

This makes it clear that using fmap over functions is just function com-
position. In a script, import Control.Monad.Instances, since that’s where the
instance is defined, and then load the script and try playing with mapping
over functions:

ghci> :t fmap (*3) (+100)

fmap (*3) (+100) :: (Num a) => a -> a

ghci> fmap (*3) (+100) 1

303

ghci> (*3) `fmap` (+100) $ 1

303

ghci> (*3) . (+100) $ 1

303

ghci> fmap (show . (*3)) (+100) 1

"303"

We can call fmap as an infix function so that the resemblance to . is clear.
In the second input line, we’re mapping (*3) over (+100), which results in a
function that will take an input, apply (+100) to that, and then apply (*3) to
that result. We then apply that function to 1.
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Just like all functors, functions can be thought of as values with contexts.
When we have a function like (+3), we can view the value as the eventual re-
sult of the function, and the context is that we need to apply the function to
something to get to the result. Using fmap (*3) on (+100) will create another
function that acts like (+100), but before producing a result, (*3) will be ap-
plied to that result.

The fact that fmap is function composition when used on functions isn’t
so terribly useful right now, but at least it’s very interesting. It also bends
our minds a bit and lets us see how things that act more like computations
than boxes (IO and (->) r) can be functors. The function being mapped
over a computation results in the same sort of computation, but the result
of that computation is modified with the function.

Before we go on to the rules that fmap
should follow, let’s think about the type of
fmap once more:

fmap :: (Functor f) => (a -> b) -> f a -> f b

The introduction of curried functions
in Chapter 5 began by stating that all Has-
kell functions actually take one parame-
ter. A function a -> b -> c takes just one
parameter of type a and returns a function
b -> c, which takes one parameter and re-
turns c. That’s why calling a function with

too few parameters (partially applying it) gives us back a function that takes
the number of parameters that we left out (if we’re thinking about func-
tions as taking several parameters again). So a -> b -> c can be written as
a -> (b -> c), to make the currying more apparent.

In the same vein, if we write fmap :: (a -> b) -> (f a -> f b), we can
think of fmap not as a function that takes one function and a functor value
and returns a functor value, but as a function that takes a function and re-
turns a new function that’s just like the old one, except that it takes a func-
tor value as a parameter and returns a functor value as the result. It takes
an a -> b function and returns a function f a -> f b. This is called lifting a
function. Let’s play around with that idea using GHCi’s :t command:

ghci> :t fmap (*2)

fmap (*2) :: (Num a, Functor f) => f a -> f a

ghci> :t fmap (replicate 3)

fmap (replicate 3) :: (Functor f) => f a -> f [a]

The expression fmap (*2) is a function that takes a functor f over num-
bers and returns a functor over numbers. That functor can be a list, a Maybe,
an Either String, or anything else. The expression fmap (replicate 3) will take
a functor over any type and return a functor over a list of elements of that
type. This is even more apparent if we partially apply, say, fmap (++"!") and
then bind it to a name in GHCi.
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You can think of fmap in two ways:

• As a function that takes a function and a functor value and then maps
that function over the functor value

• As a function that takes a function and lifts that function so it operates
on functor values

Both views are correct.
The type fmap (replicate 3) :: (Functor f) => f a -> f [a] means that the

function will work on any functor. What it will do depends on the functor.
If we use fmap (replicate 3) on a list, the list’s implementation for fmap will
be chosen, which is just map. If we use it on Maybe a, it will apply replicate 3

to the value inside the Just. If it’s Nothing, it stays Nothing. Here are some
examples:

ghci> fmap (replicate 3) [1,2,3,4]

[[1,1,1],[2,2,2],[3,3,3],[4,4,4]]

ghci> fmap (replicate 3) (Just 4)

Just [4,4,4]

ghci> fmap (replicate 3) (Right "blah")

Right ["blah","blah","blah"]

ghci> fmap (replicate 3) Nothing

Nothing

ghci> fmap (replicate 3) (Left "foo")

Left "foo"

Functor Laws
All functors are expected to exhibit certain kinds of properties and behav-
iors. They should reliably behave as things that can be mapped over. Call-
ing fmap on a functor should just map a function over the functor—nothing
more. This behavior is described in the functor laws. All instances of Functor
should abide by these two laws. They aren’t enforced by Haskell automat-
ically, so you need to test them yourself when you make a functor. All the
Functor instances in the standard library obey these laws.

Law 1
The first functor law states that if we map the id function over a functor
value, the functor value that we get back should be the same as the original
functor value. Written a bit more formally, it means that fmap id = id. So es-
sentially, this says that if we do fmap id over a functor value, it should be the
same as just applying id to the value. Remember that id is the identity func-
tion, which just returns its parameter unmodified. It can also be written as
\x -> x. If we view the functor value as something that can be mapped over,
the fmap id = id law seems kind of trivial or obvious.

Applicative Functors 223



Let’s see if this law holds for a few values of functors.

ghci> fmap id (Just 3)

Just 3

ghci> id (Just 3)

Just 3

ghci> fmap id [1..5]

[1,2,3,4,5]

ghci> id [1..5]

[1,2,3,4,5]

ghci> fmap id []

[]

ghci> fmap id Nothing

Nothing

Looking at the implementation of fmap for Maybe, for example, we can
figure out why the first functor law holds:

instance Functor Maybe where

fmap f (Just x) = Just (f x)

fmap f Nothing = Nothing

We imagine that id plays the role of the f parameter in the implementa-
tion. We see that if we fmap id over Just x, the result will be Just (id x), and
because id just returns its parameter, we can deduce that Just (id x) equals
Just x. So now we know that if we map id over a Maybe value with a Just value
constructor, we get that same value back.

Seeing that mapping id over a Nothing value returns the same value is
trivial. So from these two equations in the implementation for fmap, we find
that the law fmap id = id holds.

Law 2
The second law says that composing two
functions and then mapping the result-
ing function over a functor should be
the same as first mapping one function
over the functor and then mapping the
other one. Formally written, that means
fmap (f . g) = fmap f . fmap g. Or to
write it in another way, for any func-
tor value x, the following should hold:
fmap (f . g) x = fmap f (fmap g x).

If we can show that some type obeys
both functor laws, we can rely on it hav-
ing the same fundamental behaviors as
other functors when it comes to map-
ping. We can know that when we use
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fmap on it, there won’t be anything other than mapping going on behind the
scenes and that it will act like a thing that can be mapped over—that is, a
functor.

We figure out how the second law holds for some type by looking at the
implementation of fmap for that type and then using the method that we
used to check if Maybe obeys the first law. So, to check out how the second
functor law holds for Maybe, if we use fmap (f . g) over Nothing, we get Nothing,
because calling fmap with any function over Nothing returns Nothing. If we call
fmap f (fmap g Nothing), we get Nothing, for the same reason.

Seeing how the second law holds for Maybe if it’s a Nothing value is pretty
easy. But how about if it’s a Just value? Well, if we use fmap (f . g) (Just x),
we see from the implementation that it’s implemented as Just ((f . g) x),
which is Just (f (g x)). If we use fmap f (fmap g (Just x)), we see from the im-
plementation that fmap g (Just x) is Just (g x). Ergo, fmap f (fmap g (Just x))

equals fmap f (Just (g x)), and from the implementation, we see that this
equals Just (f (g x)).

If you’re a bit confused by this proof, don’t worry. Be sure that you un-
derstand how function composition works. Many times, you can intuitively
see how these laws hold because the types act like containers or functions.
You can also just try them on a bunch of different values of a type and be
able to say with some certainty that a type does indeed obey the laws.

Breaking the Law
Let’s take a look at a pathological example of a type constructor being an
instance of the Functor type class but not really being a functor, because it
doesn’t satisfy the laws. Let’s say that we have the following type:

data CMaybe a = CNothing | CJust Int a deriving (Show)

The C here stands for counter. It’s a data type that looks much like
Maybe a, but the Just part holds two fields instead of one. The first field in
the CJust value constructor will always have a type of Int, and it will be some
sort of counter. The second field is of type a, which comes from the type pa-
rameter, and its type will depend on the concrete type that we choose for
CMaybe a. Let’s play with our new type:

ghci> CNothing

CNothing

ghci> CJust 0 "haha"

CJust 0 "haha"

ghci> :t CNothing

CNothing :: CMaybe a

ghci> :t CJust 0 "haha"

CJust 0 "haha" :: CMaybe [Char]

ghci> CJust 100 [1,2,3]

CJust 100 [1,2,3]
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If we use the CNothing constructor, there are no fields. If we use the CJust

constructor, the first field is an integer and the second field can be any type.
Let’s make this an instance of Functor so that each time we use fmap, the func-
tion is applied to the second field, whereas the first field is increased by 1.

instance Functor CMaybe where

fmap f CNothing = CNothing

fmap f (CJust counter x) = CJust (counter+1) (f x)

This is kind of like the instance implementation for Maybe, except that
when we do fmap over a value that doesn’t represent an empty box (a CJust

value), we don’t just apply the function to the contents; we also increase the
counter by 1. Everything seems cool so far. We can even play with this a bit:

ghci> fmap (++"ha") (CJust 0 "ho")

CJust 1 "hoha"

ghci> fmap (++"he") (fmap (++"ha") (CJust 0 "ho"))

CJust 2 "hohahe"

ghci> fmap (++"blah") CNothing

CNothing

Does this obey the functor laws? In order to see that something doesn’t
obey a law, it’s enough to find just one counterexample:

ghci> fmap id (CJust 0 "haha")

CJust 1 "haha"

ghci> id (CJust 0 "haha")

CJust 0 "haha"

As the first functor law states, if we map id over a functor value, it should
be the same as just calling id with the same functor value. Our example dem-
onstrates that this is not true for our CMaybe functor. Even though it’s part of
the Functor type class, it doesn’t obey this functor law and is therefore not a
functor.

Since CMaybe fails at being a functor even though it pretends to be one,
using it as a functor might lead to some faulty code. When we use a func-
tor, it shouldn’t matter if we first compose a few functions and then map
them over the functor value or we just map each function over a functor
value in succession. But with CMaybe it matters, because it keeps track of how
many times it has been mapped over. Not cool! If we want CMaybe to obey the
functor laws, we need to make it so that the Int field stays the same when we
use fmap.

At first, the functor laws might seem a bit confusing and unnecessary.
But if we know that a type obeys both laws, we can make certain assump-
tions about how it will act. If a type obeys the functor laws, we know that call-
ing fmap on a value of that type will only map the function over it—nothing
more. This leads to code that is more abstract and extensible, because we
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can use laws to reason about behaviors that any functor should have and
make functions that operate reliably on any functor.

The next time you make a type an instance of Functor, take a minute to
make sure that it obeys the functor laws. You can go over the implementa-
tion line by line and see if the laws hold or try to find a counterexample.
Once you’ve dealt with enough functors, you will begin to recognize the
properties and behaviors that they have in common, and begin to intuitively
see if a type obeys the functor laws.

Using Applicative Functors
In this section, we’ll take a look at ap-
plicative functors, which are beefed-up
functors.

So far, we have focused on mapping
functions that take only one parameter
over functors. But what happens when
we map a function that takes two param-
eters over a functor? Let’s take a look at
a couple of concrete examples of this.

If we have Just 3 and we call
fmap (*) (Just 3), what do we get? From
the instance implementation of Maybe for
Functor, we know that if it’s a Just value, it will apply the function to the value
inside the Just. Therefore, doing fmap (*) (Just 3) results in Just ((*) 3), 
which can also be written as Just (* 3) if we use sections. Interesting! We get 
a function wrapped in a Just!

Here are some more functions inside functor values:

ghci> :t fmap (++) (Just "hey")

fmap (++) (Just "hey") :: Maybe ([Char] -> [Char])

ghci> :t fmap compare (Just 'a')

fmap compare (Just 'a') :: Maybe (Char -> Ordering)

ghci> :t fmap compare "A LIST OF CHARS"

fmap compare "A LIST OF CHARS" :: [Char -> Ordering]

ghci> :t fmap (\x y z -> x + y / z) [3,4,5,6]

fmap (\x y z -> x + y / z) [3,4,5,6] :: (Fractional a) => [a -> a -> a]

If we map compare, which has a type of (Ord a) => a -> a -> Ordering, over
a list of characters, we get a list of functions of type Char -> Ordering, because
the function compare gets partially applied with the characters in the list. It’s
not a list of (Ord a) => a -> Ordering function, because the first a applied was
a Char, and so the second a must decide to be of type Char.

We see how by mapping “multiparameter” functions over functor val-
ues, we get functor values that contain functions inside them. So now what
can we do with them? For one, we can map functions that take these functions
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as parameters over them, because whatever is inside a functor value will be
given to the function that we’re mapping over it as a parameter:

ghci> let a = fmap (*) [1,2,3,4]

ghci> :t a

a :: [Integer -> Integer]

ghci> fmap (\f -> f 9) a

[9,18,27,36]

But what if we have a functor value of Just (3 *) and a functor value
of Just 5, and we want to take out the function from Just (3 *) and map
it over Just 5? With normal functors, we’re out of luck, because they sup-
port only mapping normal functions over existing functors. Even when we
mapped \f -> f 9 over a functor that contained functions, we were just map-
ping a normal function over it. But we can’t map a function that’s inside a
functor value over another functor value with what fmap offers us. We could
pattern match against the Just constructor to get the function out of it and
then map it over Just 5, but we’re looking for a more general and abstract
approach that works across functors.

Say Hello to Applicative
Meet the Applicative type class, in the Control.Applicative module. It defines
two functions: pure and <*>. It doesn’t provide a default implementation for
either of them, so we need to define them both if we want something to be
an applicative functor. The class is defined like so:

class (Functor f) => Applicative f where

pure :: a -> f a

(<*>) :: f (a -> b) -> f a -> f b

This simple three-line class definition tells us a lot! The first line starts
the definition of the Applicative class, and it also introduces a class con-
straint. The constraint says that if we want to make a type constructor part
of the Applicative type class, it must be in Functor first. That’s why if we know
that a type constructor is part of the Applicative type class, it’s also in Functor,
so we can use fmap on it.

The first method it defines is called pure. Its type declaration is
pure :: a -> f a. f plays the role of our applicative functor instance here.
Because Haskell has a very good type system, and because all a function can
do is take some parameters and return some value, we can tell a lot from a
type declaration, and this is no exception.

pure should take a value of any type and return an applicative value with
that value inside it. “Inside it” refers to our box analogy again, even though
we’ve seen that it doesn’t always stand up to scrutiny. But the a -> f a type
declaration is still pretty descriptive. We take a value and we wrap it in an
applicative value that has that value as the result inside it. A better way of
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thinking about pure would be to say that it takes a value and puts it in some
sort of default (or pure) context—a minimal context that still yields that
value.

The <*> function is really interesting. It has this type declaration:

f (a -> b) -> f a -> f b

Does this remind you of anything? It’s like fmap :: (a -> b) -> f a ->

f b. You can think of the <*> function as sort of a beefed-up fmap. Whereas
fmap takes a function and a functor value and applies the function inside the
functor value, <*> takes a functor value that has a function in it and another
functor, and extracts that function from the first functor and then maps it
over the second one.

Maybe the Applicative Functor
Let’s take a look at the Applicative instance implementation for Maybe:

instance Applicative Maybe where

pure = Just

Nothing <*> _ = Nothing

(Just f) <*> something = fmap f something

Again, from the class definition, we see that the f that plays the role
of the applicative functor should take one concrete type as a parameter,
so we write instance Applicative Maybe where instead of instance Applicative

(Maybe a) where.
Next, we have pure. Remember that it’s supposed to take something

and wrap it in an applicative value. We wrote pure = Just, because value
constructors like Just are normal functions. We could have also written
pure x = Just x.

Finally, we have the definition for <*>. We can’t extract a function out
of a Nothing, because it has no function inside it. So we say that if we try to
extract a function from a Nothing, the result is a Nothing.

In the class definition for Applicative, there’s a Functor class constraint,
which means that we can assume that both of the <*> function’s parame-
ters are functor values. If the first parameter is not a Nothing, but a Just with
some function inside it, we say that we then want to map that function over
the second parameter. This also takes care of the case where the second pa-
rameter is Nothing, because doing fmap with any function over a Nothing will
return a Nothing. So for Maybe, <*> extracts the function from the left value if
it’s a Just and maps it over the right value. If any of the parameters is Nothing,
Nothing is the result.

Now let’s give this a whirl:

ghci> Just (+3) <*> Just 9

Just 12
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ghci> pure (+3) <*> Just 10

Just 13

ghci> pure (+3) <*> Just 9

Just 12

ghci> Just (++"hahah") <*> Nothing

Nothing

ghci> Nothing <*> Just "woot"

Nothing

You see how doing pure (+3) and Just (+3) is the same in this case. Use
pure if you’re dealing with Maybe values in an applicative context (using them
with <*>); otherwise, stick to Just.

The first four input lines demonstrate how the function is extracted and
then mapped, but in this case, they could have been achieved by just map-
ping unwrapped functions over functors. The last line is interesting, because
we try to extract a function from a Nothing and then map it over something,
which results in Nothing.

With normal functors, when you map a function over a functor, you
can’t get the result out in any general way, even if the result is a partially ap-
plied function. Applicative functors, on the other hand, allow you to operate
on several functors with a single function.

The Applicative Style
With the Applicative type class, we can chain the use of the <*> function, thus
enabling us to seamlessly operate on several applicative values instead of just
one. For instance, check this out:

ghci> pure (+) <*> Just 3 <*> Just 5

Just 8

ghci> pure (+) <*> Just 3 <*> Nothing

Nothing

ghci> pure (+) <*> Nothing <*> Just 5

Nothing

We wrapped the + function inside an applicative
value and then used <*> to call it with two parameters,
both applicative values.

Let’s take a look at how this happens, step by step.
<*> is left-associative, which means that this:

pure (+) <*> Just 3 <*> Just 5

is the same as this:

(pure (+) <*> Just 3) <*> Just 5
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First, the + function is put in an applicative value—in this case, a Maybe

value that contains the function. So we have pure (+), which is Just (+). Next,
Just (+) <*> Just 3 happens. The result of this is Just (3+). This is because
of partial application. Only applying the + function to 3 results in a function
that takes one parameter and adds 3 to it. Finally, Just (3+) <*> Just 5 is car-
ried out, which results in a Just 8.

Isn’t this awesome? Applicative functors and the applicative style of
pure f <*> x <*> y <*> ... allow us to take a function that expects parame-
ters that aren’t applicative values and use that function to operate on several
applicative values. The function can take as many parameters as we want,
because it’s always partially applied step by step between occurrences of <*>.

This becomes even more handy and apparent if we consider the fact
that pure f <*> x equals fmap f x. This is one of the applicative laws. We’ll
take a closer look at the applicative laws later in the chapter, but let’s think
about how it applies here. pure puts a value in a default context. If we just
put a function in a default context and then extract and apply it to a value
inside another applicative functor, that’s the same as just mapping that
function over that applicative functor. Instead of writing pure f <*> x <*>

y <*> ..., we can write fmap f x <*> y <*> .... This is why Control.Applicative

exports a function called <$>, which is just fmap as an infix operator. Here’s
how it’s defined:

(<$>) :: (Functor f) => (a -> b) -> f a -> f b

f <$> x = fmap f x

NOTE Remember that type variables are independent of parameter names or other value
names. The f in the function declaration here is a type variable with a class constraint
saying that any type constructor that replaces f should be in the Functor type class.
The f in the function body denotes a function that we map over x. The fact that we
used f to represent both of those doesn’t mean that they represent the same thing.

By using <$>, the applicative style really shines, because now if we
want to apply a function f between three applicative values, we can write
f <$> x <*> y <*> z. If the parameters were normal values rather than ap-
plicative functors, we would write f x y z.

Let’s take a closer look at how this works. Suppose we want to join the
values Just "johntra" and Just "volta" into one String inside a Maybe functor.
We can do this:

ghci> (++) <$> Just "johntra" <*> Just "volta"

Just "johntravolta"

Before we see how this happens, compare the preceding line with this:

ghci> (++) "johntra" "volta"

"johntravolta"

Applicative Functors 231



To use a normal function on applicative functors, just sprinkle some <$>

and <*> about, and the function will operate on applicatives and return an
applicative. How cool is that?

Back to our (++) <$> Just "johntra" <*> Just "volta": First (++), which
has a type of (++) :: [a] -> [a] -> [a], is mapped over Just "johntra". This
results in a value that’s the same as Just ("johntra"++) and has a type of Maybe
([Char] -> [Char]). Notice how the first parameter of (++) got eaten up and
how the as turned into Char values. And now Just ("johntra"++) <*> Just

"volta" happens, which takes the function out of the Just and maps it over
Just "volta", resulting in Just "johntravolta". Had either of the two values
been Nothing, the result would have also been Nothing.

So far, we’ve used only Maybe in our examples, and you might be think-
ing that applicative functors are all about Maybe. There are loads of other
instances of Applicative, so let’s meet them!

Lists
Lists (actually the list type constructor, []) are applicative functors. What a
surprise! Here’s how [] is an instance of Applicative:

instance Applicative [] where

pure x = [x]

fs <*> xs = [f x | f <- fs, x <- xs]

Remember that pure takes a value and puts it in a default context. In
other words, it puts it in a minimal context that still yields that value. The
minimal context for lists would be the empty list, but the empty list repre-
sents the lack of a value, so it can’t hold in itself the value on which we used
pure. That’s why pure takes a value and puts it in a singleton list. Similarly,
the minimal context for the Maybe applicative functor would be a Nothing, but
it represents the lack of a value instead of a value, so pure is implemented as
Just in the instance implementation for Maybe.

Here’s pure in action:

ghci> pure "Hey" :: [String]

["Hey"]

ghci> pure "Hey" :: Maybe String

Just "Hey"

What about <*>? If the <*> function’s type were limited to only lists, we
would get (<*>) :: [a -> b] -> [a] -> [b]. It’s implemented with a list com-
prehension. <*> must somehow extract the function out of its left parame-
ter and then map it over the right parameter. But the left list can have zero
functions, one function, or several functions inside it, and the right list can
also hold several values. That’s why we use a list comprehension to draw
from both lists. We apply every possible function from the left list to every
possible value from the right list. The resulting list has every possible combi-
nation of applying a function from the left list to a value in the right one.
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We can use <*> with lists like this:

ghci> [(*0),(+100),(^2)] <*> [1,2,3]

[0,0,0,101,102,103,1,4,9]

The left list has three functions, and the right list has three values, so the 
resulting list will have nine elements. Every function in the left list is applied 
to every value in the right one. If we have a list of functions that take two 
parameters, we can apply those functions between two lists.

In the following example, we apply two function between two lists:

ghci> [(+),(*)] <*> [1,2] <*> [3,4]

[4,5,5,6,3,4,6,8]

<*> is left-associative, so [(+),(*)] <*> [1,2] happens first, resulting in a
list that’s the same as [(1+),(2+),(1*),(2*)], because every function on the left
gets applied to every value on the right. Then [(1+),(2+),(1*),(2*)] <*> [3,4]

happens, which produces the final result.
Using the applicative style with lists is fun!

ghci> (++) <$> ["ha","heh","hmm"] <*> ["?","!","."]

["ha?","ha!","ha.","heh?","heh!","heh.","hmm?","hmm!","hmm."]

Again, we used a normal function that takes two strings between two lists
of strings just by inserting the appropriate applicative operators.

You can view lists as nondeterministic computations. A value like 100 or
"what" can be viewed as a deterministic computation that has only one result,
whereas a list like [1,2,3] can be viewed as a computation that can’t decide
on which result it wants to have, so it presents us with all of the possible re-
sults. So when you write something like (+) <$> [1,2,3] <*> [4,5,6], you can
think of it as adding together two nondeterministic computations with +,
only to produce another nondeterministic computation that’s even less sure
about its result.

Using the applicative style on lists is often a good replacement for list
comprehensions. In Chapter 1, we wanted to see all the possible products of
[2,5,10] and [8,10,11], so we did this:

ghci> [ x*y | x <- [2,5,10], y <- [8,10,11]]

[16,20,22,40,50,55,80,100,110]

We’re just drawing from two lists and applying a function between every
combination of elements. This can be done in the applicative style as well:

ghci> (*) <$> [2,5,10] <*> [8,10,11]

[16,20,22,40,50,55,80,100,110]
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This seems clearer to me, because it’s easier to see that we’re just call-
ing * between two nondeterministic computations. If we wanted all possible
products of those two lists that are more than 50, we would use the following:

ghci> filter (>50) $ (*) <$> [2,5,10] <*> [8,10,11]

[55,80,100,110]

It’s easy to see how pure f <*> xs equals fmap f xs with lists. pure f is just
[f], and [f] <*> xs will apply every function in the left list to every value in
the right one, but there’s just one function in the left list, so it’s like mapping.

IO Is An Applicative Functor, Too
Another instance of Applicative that we’ve already encountered is IO. This is
how the instance is implemented:

instance Applicative IO where

pure = return

a <*> b = do

f <- a

x <- b

return (f x)

Since pure is all about putting a value in a
minimal context that still holds the value as
the result, it makes sense that pure is just return.
return makes an I/O action that doesn’t do any-
thing. It just yields some value as its result, with-
out performing any I/O operations like printing
to the terminal or reading from a file.

If <*> were specialized for IO, it would have
a type of (<*>) :: IO (a -> b) -> IO a -> IO b. In
the case of IO, it takes the I/O action a, which
yields a function, performs the function, and
binds that function to f. Then it performs b

and binds its result to x. Finally, it applies the
function f to x and yields that as the result. We
used do syntax to implement it here. (Remember
that do syntax is about taking several I/O actions
and gluing them into one.)

With Maybe and [], we could think of <*> as
simply extracting a function from its left parame-
ter and then applying it over the right one. With
IO, extracting is still in the game, but now we also
have a notion of sequencing, because we’re taking
two I/O actions and gluing them into one. We
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need to extract the function from the first I/O action, but to extract a result
from an I/O action, it must be performed. Consider this:

myAction :: IO String

myAction = do

a <- getLine

b <- getLine

return $ a ++ b

This is an I/O action that will prompt the user for two lines and yield
as its result those two lines concatenated. We achieved it by gluing together
two getLine I/O actions and a return, because we wanted our new glued I/O
action to hold the result of a ++ b. Another way of writing this is to use the
applicative style:

myAction :: IO String

myAction = (++) <$> getLine <*> getLine

This is the same thing we did earlier when we were making an I/O ac-
tion that applied a function between the results of two other I/O actions.
Remember that getLine is an I/O action with the type getLine :: IO String.
When we use <*> between two applicative values, the result is an applicative
value, so this all makes sense.

If we return to the box analogy, we can imagine getLine as a box that will
go out into the real world and fetch us a string. Calling (++) <$> getLine <*>

getLine makes a new, bigger box that sends those two boxes out to fetch lines
from the terminal and then presents the concatenation of those two lines as
its result.

The type of the expression (++) <$> getLine <*> getLine is IO String. This
means that the expression is a completely normal I/O action like any other,
which also yields a result value, just like other I/O actions. That’s why we
can do stuff like this:

main = do

a <- (++) <$> getLine <*> getLine

putStrLn $ "The two lines concatenated turn out to be: " ++ a

Functions As Applicatives
Another instance of Applicative is (->) r, or functions. We don’t often use
functions as applicatives, but the concept is still really interesting, so let’s
take a look at how the function instance is implemented.

instance Applicative ((->) r) where

pure x = (\_ -> x)

f <*> g = \x -> f x (g x)
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When we wrap a value into an applicative value with pure, the result it
yields must be that value. A minimal default context still yields that value
as a result. That’s why in the function instance implementation, pure takes
a value and creates a function that ignores its parameter and always re-
turns that value. The type for pure specialized for the (->) r instance is
pure :: a -> (r -> a).

ghci> (pure 3) "blah"

3

Because of currying, function application is left-associative, so we can
omit the parentheses.

ghci> pure 3 "blah"

3

The instance implementation for <*> is a bit cryptic, so let’s just take a
look at how to use functions as applicative functors in the applicative style:

ghci> :t (+) <$> (+3) <*> (*100)

(+) <$> (+3) <*> (*100) :: (Num a) => a -> a

ghci> (+) <$> (+3) <*> (*100) $ 5

508

Calling <*> with two applicative values results in an applicative value,
so if we use it on two functions, we get back a function. So what goes on
here? When we do (+) <$> (+3) <*> (*100), we’re making a function
that will use + on the results of (+3) and (*100) and return that. With
(+) <$> (+3) <*> (*100) $ 5, (+3) and (*100) are first applied to 5, resulting
in 8 and 500. Then + is called with 8 and 500, resulting in 508.

The following code is similar:

ghci> (\x y z -> [x,y,z]) <$> (+3) <*> (*2) <*> (/2) $ 5

[8.0,10.0,2.5]

We create a function that will call the
function \x y z -> [x,y,z] with the even-
tual results from (+3), (*2) and (/2). The 5

is fed to each of the three functions, and
then \x y z -> [x, y, z] is called with those
results.

NOTE It’s not very important that you get how the (->) r instance for Applicative works,
so don’t despair if you don’t understand this all right now. Try playing with the ap-
plicative style and functions to get some insight into using functions as applicatives.
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Zip Lists
It turns out there are actually more ways for lists to be applicative functors.
We’ve already covered one way: calling <*> with a list of functions and a list
of values, which results in a list containing all the possible combinations of
applying functions from the left list to the values in the right list.

For example, if we write [(+3),(*2)] <*> [1,2], (+3) will be applied to
both 1 and 2, and (*2) will also be applied to both 1 and 2, resulting in a list
that has four elements: [4,5,2,4]. However, [(+3),(*2)] <*> [1,2] could also
work in such a way that the first function in the left list is applied to the first
value in the right one, the second function is applied to the second value,
and so on. That would result in a list with two values: [4,4]. You could look
at it as [1 + 3, 2 * 2].

An instance of Applicative that we haven’t encountered yet is ZipList,
and it lives in Control.Applicative.

Because one type can’t have two instances for the same type class, the
ZipList a type was introduced, which has one constructor (ZipList) with just
one field (a list). Here’s the instance:

instance Applicative ZipList where

pure x = ZipList (repeat x)

ZipList fs <*> ZipList xs = ZipList (zipWith (\f x -> f x) fs xs)

<*> applies the first function to the first value, the second function to
the second value, and so on. This is done with zipWith (\f x -> f x) fs xs.
Because of how zipWith works, the resulting list will be as long as the shorter
of the two lists.

pure is also interesting here. It takes a value and puts it in a list that just
has that value repeating indefinitely. pure "haha" results in ZipList (["haha",

"haha","haha".... This might be a bit confusing, since you’ve learned that
pure should put a value in a minimal context that still yields that value. And
you might be thinking that an infinite list of something is hardly minimal.
But it makes sense with zip lists, because it must produce the value on every
position. This also satisfies the law that pure f <*> xs should equal fmap f xs.
If pure 3 just returned ZipList [3], pure (*2) <*> ZipList [1,5,10] would result
in ZipList [2], because the resulting list of two zipped lists has the length of
the shorter of the two. If we zip a finite list with an infinite list, the length
of the resulting list will always be equal to the length of the finite list.

So how do zip lists work in an applicative style? Well, the ZipList a type
doesn’t have a Show instance, so we need to use the getZipList function to
extract a raw list from a zip list:

ghci> getZipList $ (+) <$> ZipList [1,2,3] <*> ZipList [100,100,100]

[101,102,103]

ghci> getZipList $ (+) <$> ZipList [1,2,3] <*> ZipList [100,100..]

[101,102,103]

ghci> getZipList $ max <$> ZipList [1,2,3,4,5,3] <*> ZipList [5,3,1,2]

[5,3,3,4]
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ghci> getZipList $ (,,) <$> ZipList "dog" <*> ZipList "cat" <*> ZipList "rat"

[('d','c','r'),('o','a','a'),('g','t','t')]

NOTE The (,,) function is the same as \x y z -> (x,y,z). Also, the (,) function is the
same as \x y -> (x,y).

Aside from zipWith, the standard library has functions such as zipWith3

and zipWith4, all the way up to zipWith7. zipWith takes a function that takes
two parameters and zips two lists with it. zipWith3 takes a function that takes
three parameters and zips three lists with it, and so on. By using zip lists with
an applicative style, we don’t need to have a separate zip function for each
number of lists that we want to zip together. We just use the applicative style
to zip together an arbitrary amount of lists with a function, and that’s pretty
handy.

Applicative Laws
Like normal functors, applicative functors come with a few laws. The most
important law is the one that pure f <*> x = fmap f x holds. As an exercise,
you can prove this law for some of the applicative functors that we’ve met in
this chapter. The following are the other applicative laws:

• pure id <*> v = v

• pure (.) <*> u <*> v <*> w = u <*> (v <*> w)

• pure f <*> pure x = pure (f x)

• u <*> pure y = pure ($ y) <*> u

We won’t go over them in detail because that would take up a lot of
pages and be kind of boring. If you’re interested, you can take a closer look
at them and see if they hold for some of the instances.

Useful Functions for Applicatives
Control.Applicative defines a function that’s called liftA2, which has the fol-
lowing type:

liftA2 :: (Applicative f) => (a -> b -> c) -> f a -> f b -> f c

It’s defined like this:

liftA2 :: (Applicative f) => (a -> b -> c) -> f a -> f b -> f c

liftA2 f a b = f <$> a <*> b

It just applies a function between two applicatives, hiding the applica-
tive style that we’ve discussed. However, it clearly showcases why applicative
functors are more powerful than ordinary functors.
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With ordinary functors, we can just map functions over one functor
value. With applicative functors, we can apply a function between sev-
eral functor values. It’s also interesting to look at this function’s type as
(a -> b -> c) -> (f a -> f b -> f c). When we look at it like this, we can
say that liftA2 takes a normal binary function and promotes it to a func-
tion that operates on two applicatives.

Here’s an interesting concept: We can take two applicative values and
combine them into one applicative value that has inside it the results of
those two applicative values in a list. For instance, we have Just 3 and Just 4.
Let’s assume that the second one contains a singleton list, because that’s re-
ally easy to achieve:

ghci> fmap (\x -> [x]) (Just 4)

Just [4]

Okay, so let’s say we have Just 3 and Just [4]. How do we get Just [3,4]?
That’s easy:

ghci> liftA2 (:) (Just 3) (Just [4])

Just [3,4]

ghci> (:) <$> Just 3 <*> Just [4]

Just [3,4]

Remember that : is a function that takes an element and a list and
returns a new list with that element at the beginning. Now that we have
Just [3,4], could we combine that with Just 2 to produce Just [2,3,4]? Yes,
we could. It seems that we can combine any amount of applicative values
into one applicative value that has a list of the results of those applicative
values inside it.

Let’s try implementing a function that takes a list of applicative values
and returns an applicative value that has a list as its result value. We’ll call it
sequenceA.

sequenceA :: (Applicative f) => [f a] -> f [a]

sequenceA [] = pure []

sequenceA (x:xs) = (:) <$> x <*> sequenceA xs

Ah, recursion! First, we look at the type. It will transform a list of ap-
plicative values into an applicative value with a list. From that, we can lay
some groundwork for a base case. If we want to turn an empty list into an
applicative value with a list of results, we just put an empty list in a default
context. Now comes the recursion. If we have a list with a head and a tail
(remember that x is an applicative value and xs is a list of them), we call
sequenceA on the tail, which results in an applicative value with a list inside.
Then we just prepend the value inside the applicative x into that applicative
with a list, and that’s it!
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Suppose we do this:

sequenceA [Just 1, Just 2]

By definition, that’s equal to the following:

(:) <$> Just 1 <*> sequenceA [Just 2]

Breaking this down further, we get this:

(:) <$> Just 1 <*> ((:) <$> Just 2 <*> sequenceA [])

We know that sequenceA [] ends up as being Just [], so this expression is
now as follows:

(:) <$> Just 1 <*> ((:) <$> Just 2 <*> Just [])

which is this:

(:) <$> Just 1 <*> Just [2]

This equals Just [1,2]!
Another way to implement sequenceA is with a fold. Remember that pretty

much any function where we go over a list element by element and accumu-
late a result along the way can be implemented with a fold:

sequenceA :: (Applicative f) => [f a] -> f [a]

sequenceA = foldr (liftA2 (:)) (pure [])

We approach the list from the right and start off with an accumulator
value of pure []. We put liftA2 (:) between the accumulator and the last el-
ement of the list, which results in an applicative that has a singleton in it.
Then we call liftA2 (:) with the now last element and the current accumula-
tor and so on, until we’re left with just the accumulator, which holds a list of
the results of all the applicatives.

Let’s give our function a whirl on some applicatives:

ghci> sequenceA [Just 3, Just 2, Just 1]

Just [3,2,1]

ghci> sequenceA [Just 3, Nothing, Just 1]

Nothing

ghci> sequenceA [(+3),(+2),(+1)] 3

[6,5,4]

ghci> sequenceA [[1,2,3],[4,5,6]]

[[1,4],[1,5],[1,6],[2,4],[2,5],[2,6],[3,4],[3,5],[3,6]]

ghci> sequenceA [[1,2,3],[4,5,6],[3,4,4],[]]

[]
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When used on Maybe values, sequenceA creates a Maybe value with all the
results inside it as a list. If one of the values is Nothing, then the result is also
a Nothing. This is cool when you have a list of Maybe values, and you’re inter-
ested in the values only if none of them is a Nothing.

When used with functions, sequenceA takes a list of functions and returns
a function that returns a list. In our example, we made a function that took a
number as a parameter and applied it to each function in the list and then
returned a list of results. sequenceA [(+3),(+2),(+1)] 3 will call (+3) with 3, (+2)
with 3, and (+1) with 3, and present all those results as a list.

Doing (+) <$> (+3) <*> (*2) will create a function that takes a parameter,
feeds it to both (+3) and (*2), and then calls + with those two results. In the
same vein, it makes sense that sequenceA [(+3),(*2)] makes a function that
takes a parameter and feeds it to all of the functions in the list. Instead of
calling + with the results of the functions, a combination of : and pure [] is
used to gather those results in a list, which is the result of that function.

Using sequenceA is useful when we have a list of functions and we want
to feed the same input to all of them and then view the list of results. For
instance, suppose that we have a number and we’re wondering whether it
satisfies all of the predicates in a list. Here’s one way to do that:

ghci> map (\f -> f 7) [(>4),(<10),odd]

[True,True,True]

ghci> and $ map (\f -> f 7) [(>4),(<10),odd]

True

Remember that and takes a list of Booleans and returns True if they’re all
True. Another way to achieve the same thing is with sequenceA:

ghci> sequenceA [(>4),(<10),odd] 7

[True,True,True]

ghci> and $ sequenceA [(>4),(<10),odd] 7

True

sequenceA [(>4),(<10),odd] creates a function that will take a number
and feed it to all of the predicates in [(>4),(<10),odd] and return a list of
Booleans. It turns a list with the type (Num a) => [a -> Bool] into a function
with the type (Num a) => a -> [Bool]. Pretty neat, huh?

Because lists are homogenous, all the functions in the list must be func-
tions of the same type. You can’t have a list like [ord, (+3)], because ord

takes a character and returns a number, whereas (+3) takes a number and
returns a number.

When used with [], sequenceA takes a list of lists and returns a list of lists.
It actually creates lists that have all possible combinations of their elements.
For illustration, here’s the preceding example done with sequenceA and then
done with a list comprehension:

ghci> sequenceA [[1,2,3],[4,5,6]]

[[1,4],[1,5],[1,6],[2,4],[2,5],[2,6],[3,4],[3,5],[3,6]]
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ghci> [[x,y] | x <- [1,2,3], y <- [4,5,6]]

[[1,4],[1,5],[1,6],[2,4],[2,5],[2,6],[3,4],[3,5],[3,6]]

ghci> sequenceA [[1,2],[3,4]]

[[1,3],[1,4],[2,3],[2,4]]

ghci> [[x,y] | x <- [1,2], y <- [3,4]]

[[1,3],[1,4],[2,3],[2,4]]

ghci> sequenceA [[1,2],[3,4],[5,6]]

[[1,3,5],[1,3,6],[1,4,5],[1,4,6],[2,3,5],[2,3,6],[2,4,5],[2,4,6]]

ghci> [[x,y,z] | x <- [1,2], y <- [3,4], z <- [5,6]]

[[1,3,5],[1,3,6],[1,4,5],[1,4,6],[2,3,5],[2,3,6],[2,4,5],[2,4,6]]

(+) <$> [1,2] <*> [4,5,6] results in a nondeterministic computation
x + y, where x takes on every value from [1,2] and y takes on every value
from [4,5,6]. We represent that as a list that holds all of the possible re-
sults. Similarly, when we call sequenceA [[1,2],[3,4],[5,6]], the result is a
nondeterministic computation [x,y,z], where x takes on every value from
[1,2], y takes on every value from [3,4] and so on. To represent the result
of that nondeterministic computation, we use a list, where each element in
the list is one possible list. That’s why the result is a list of lists.

When used with I/O actions, sequenceA is the same thing as sequence! It
takes a list of I/O actions and returns an I/O action that will perform each
of those actions and have as its result a list of the results of those I/O ac-
tions. That’s because to turn an [IO a] value into an IO [a] value, to make
an I/O action that yields a list of results when performed, all those I/O ac-
tions must be sequenced so that they’re then performed one after the other
when evaluation is forced. You can’t get the result of an I/O action without
performing it.

Let’s sequence three getLine I/O actions:

ghci> sequenceA [getLine, getLine, getLine]

heyh

ho

woo

["heyh","ho","woo"]

In conclusion, applicative functors aren’t just interesting, they’re also
useful. They allow us to combine different computations—such as I/O com-
putations, nondeterministic computations, computations that might have
failed, and so on—by using the applicative style. Just by using <$> and <*>,
we can employ normal functions to uniformly operate on any number of ap-
plicative functors and take advantage of the semantics of each one.
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12
MONOIDS

This chapter features another useful and fun type
class: Monoid. This type class is for types whose values
can be combined together with a binary operation.
We’ll cover exactly what monoids are and what their
laws state. Then we’ll take a look at some monoids in
Haskell and how they can be of use.

First, let’s take a look at the newtype keyword, because we’ll be using it a
lot when we delve into the wonderful world of monoids.

Wrapping an Existing Type into a New Type
So far, you’ve learned how to make your own alge-
braic data types by using the data keyword. You’ve
also seen how to give existing types synonyms with
the type keyword. In this section, we’ll look at how to
make new types out of existing data types by using the
newtype keyword. We’ll also talk about why we would
want to do that in the first place.

In Chapter 11, you saw a couple of ways for the
list type to be an applicative functor. One way is to
have <*> take every function out of the list that is its



left parameter and apply that to every value in the list that is on the right,
resulting in every possible combination of applying a function from the left
list to a value in the right list:

ghci> [(+1),(*100),(*5)] <*> [1,2,3]

[2,3,4,100,200,300,5,10,15]

The second way is to take the first function on the left side of <*> and
apply it to the first value on the right, then take the second function from
the list on the left side and apply it to the second value on the right, and so
on. Ultimately, it’s kind of like zipping the two lists together.

But lists are already an instance of Applicative, so how do we also make
lists an instance of Applicative in this second way? As you learned, the
ZipList a type was introduced for this reason. This type has one value con-
structor, ZipList, which has just one field. We put the list that we’re wrap-
ping in that field. Then ZipList is made an instance of Applicative, so that
when we want to use lists as applicatives in the zipping manner, we just wrap
them with the ZipList constructor. Once we’re finished, we unwrap them
with getZipList:

ghci> getZipList $ ZipList [(+1),(*100),(*5)] <*> ZipList [1,2,3]

[2,200,15]

So, what does this have to do with this newtype keyword? Well, think
about how we might write the data declaration for our ZipList a type. Here’s
one way:

data ZipList a = ZipList [a]

This is a type that has just one value constructor, and that value con-
structor has just one field that is a list of things. We might also want to use
record syntax so that we automatically get a function that extracts a list from
a ZipList:

data ZipList a = ZipList { getZipList :: [a] }

This looks fine and would actually work pretty well. We had two ways
of making an existing type an instance of a type class, so we used the data

keyword to just wrap that type into another type and made the other type an
instance in the second way.

The newtype keyword in Haskell is made exactly for cases when we want
to just take one type and wrap it in something to present it as another type.
In the actual libraries, ZipList a is defined like this:

newtype ZipList a = ZipList { getZipList :: [a] }

Instead of the data keyword, the newtype keyword is used. Now why is
that? Well for one, newtype is faster. If you use the data keyword to wrap a
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type, there’s some overhead to all that wrapping and unwrapping when your
program is running. But if you use newtype, Haskell knows that you’re just
using it to wrap an existing type into a new type (hence the name), because
you want it to be the same internally but have a different type. With that in
mind, Haskell can get rid of the wrapping and unwrapping once it resolves
which value is of which type.

So why not just use newtype instead of data all the time? When you make
a new type from an existing type by using the newtype keyword, you can have
only one value constructor, and that value constructor can have only one
field. But with data, you can make data types that have several value construc-
tors, and each constructor can have zero or more fields:

data Profession = Fighter | Archer | Accountant

data Race = Human | Elf | Orc | Goblin

data PlayerCharacter = PlayerCharacter Race Profession

We can also use the deriving keyword with newtype just as we would with
data. We can derive instances for Eq, Ord, Enum, Bounded, Show, and Read. If we de-
rive the instance for a type class, the type that we’re wrapping must already
be in that type class. It makes sense, because newtype just wraps an existing
type. So now if we do the following, we can print and equate values of our
new type:

newtype CharList = CharList { getCharList :: [Char] } deriving (Eq, Show)

Let’s give that a go:

ghci> CharList "this will be shown!"

CharList {getCharList = "this will be shown!"}

ghci> CharList "benny" == CharList "benny"

True

ghci> CharList "benny" == CharList "oisters"

False

In this particular newtype, the value constructor has the following type:

CharList :: [Char] -> CharList

It takes a [Char] value, such as "my sharona" and returns a CharList value.
From the preceding examples where we used the CharList value constructor,
we see that really is the case. Conversely, the getCharList function, which was
generated for us because we used record syntax in our newtype, has this type:

getCharList :: CharList -> [Char]
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It takes a CharList value and converts it to a [Char] value. You can think
of this as wrapping and unwrapping, but you can also think of it as convert-
ing values from one type to the other.

Using newtype to Make Type Class Instances
Many times, we want to make our types instances of certain type classes, but
the type parameters just don’t match up for what we want to do. It’s easy to
make Maybe an instance of Functor, because the Functor type class is defined
like this:

class Functor f where

fmap :: (a -> b) -> f a -> f b

So we just start out with this:

instance Functor Maybe where

Then we implement fmap.
All the type parameters add up because Maybe takes the place of f in the

definition of the Functor type class. Looking at fmap as if it worked on only
Maybe, it ends up behaving like this:

fmap :: (a -> b) -> Maybe a -> Maybe b

Isn’t that just peachy? Now what if we
wanted to make the tuple an instance of
Functor in such a way that when we fmap

a function over a tuple, it is applied to
the first component of the tuple? That
way, doing fmap (+3) (1, 1) would result
in (4, 1). It turns out that writing the in-
stance for that is kind of hard. With Maybe,
we just say instance Functor Maybe where

because only type constructors that take
exactly one parameter can be made an in-
stance of Functor. But it seems like there’s
no way to do something like that with
(a, b) so that the type parameter a ends up being the one that changes when
we use fmap. To get around this, we can newtype our tuple in such a way that
the second type parameter represents the type of the first component in the
tuple:

newtype Pair b a = Pair { getPair :: (a, b) }
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And now we can make it an instance of Functor so that the function is
mapped over the first component:

instance Functor (Pair c) where

fmap f (Pair (x, y)) = Pair (f x, y)

As you can see, we can pattern match on types defined with newtype. We
pattern match to get the underlying tuple, apply the function f to the first
component in the tuple, and then use the Pair value constructor to convert
the tuple back to our Pair b a. If we imagine what the type fmap would be if it
worked only on our new pairs, it would look like this:

fmap :: (a -> b) -> Pair c a -> Pair c b

Again, we said instance Functor (Pair c) where, and so Pair c took the
place of the f in the type class definition for Functor:

class Functor f where

fmap :: (a -> b) -> f a -> f b

Now if we convert a tuple into a Pair b a, we can use fmap over it, and the
function will be mapped over the first component:

ghci> getPair $ fmap (*100) (Pair (2, 3))

(200,3)

ghci> getPair $ fmap reverse (Pair ("london calling", 3))

("gnillac nodnol",3)

On newtype Laziness
The only thing that can be done with newtype is turning an existing type into
a new type, so internally, Haskell can represent the values of types defined
with newtype just like the original ones, while knowing that their types are
now distinct. This means that not only is newtype usually faster than data, its
pattern-matching mechanism is lazier. Let’s take a look at what this means.

As you know, Haskell is lazy by default, which means that only when we
try to actually print the results of our functions will any computation take
place. Furthemore, only those computations that are necessary for our func-
tion to tell us the result will be carried out. The undefined value in Haskell
represents an erroneous computation. If we try to evaluate it (that is, force
Haskell to actually compute it) by printing it to the terminal, Haskell will
throw a hissy fit (technically referred to as an exception):

ghci> undefined

*** Exception: Prelude.undefined
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However, if we make a list that has some undefined values in it but request
only the head of the list, which is not undefined, everything will go smoothly.
This is because Haskell doesn’t need to evaluate any other elements in a list
if we want to see only the first element. Here’s an example:

ghci> head [3,4,5,undefined,2,undefined]

3

Now consider the following type:

data CoolBool = CoolBool { getCoolBool :: Bool }

It’s your run-of-the-mill algebraic data type that was defined with the
data keyword. It has one value constructor, which has one field whose type
is Bool. Let’s make a function that pattern matches on a CoolBool and returns
the value "hello", regardless of whether the Bool inside the CoolBool was True

or False:

helloMe :: CoolBool -> String

helloMe (CoolBool _) = "hello"

Instead of applying this function to a normal CoolBool, let’s throw it a
curveball and apply it to undefined!

ghci> helloMe undefined

"*** Exception: Prelude.undefined

Yikes! An exception! Why did this exception happen? Types defined
with the data keyword can have multiple value constructors (even though
CoolBool has only one). So in order to see if the value given to our function
conforms to the (CoolBool _) pattern, Haskell must evaluate the value just
enough to see which value constructor was used when we made the value.
And when we try to evaluate an undefined value, even a little, an exception is
thrown.

Instead of using the data keyword for CoolBool, let’s try using newtype:

newtype CoolBool = CoolBool { getCoolBool :: Bool }

We don’t need to change our helloMe function, because the pattern-
matching syntax is the same whether you use newtype or data to define your
type. Let’s do the same thing here and apply helloMe to an undefined value:

ghci> helloMe undefined

"hello"

It worked! Hmmm, why is that? Well, as you’ve learned, when you use
newtype, Haskell can internally represent the values of the new type in the
same way as the original values. It doesn’t need to add another box around
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them; it just must be aware of the values being of differ-
ent types. And because Haskell knows that types made
with the newtype keyword can have only one construc-
tor, it doesn’t need to evaluate the value passed to the
function to make sure that the value conforms to the
(CoolBool _) pattern, because newtype types can have only
one possible value constructor and one field!

This difference in behavior may seem trivial, but
it’s actually pretty important. It shows that even though
types defined with data and newtype behave similarly from the programmer’s
point of view (because they both have value constructors and fields), they
are actually two different mechanisms. Whereas data can be used to make
your own types from scratch, newtype is just for making a completely new type
out of an existing type. Pattern matching on newtype values isn’t like taking
something out of a box (as it is with data), but more about making a direct
conversion from one type to another.

type vs. newtype vs. data
At this point, you may be a bit confused about the differences between type,
data, and newtype, so let’s review their uses.

The type keyword is for making type synonyms. We just give another
name to an already existing type so that the type is easier to refer to. Say we
did the following:

type IntList = [Int]

All this does is allow us to refer to the [Int] type as IntList. They can be
used interchangeably. We don’t get an IntList value constructor or anything
like that. Because [Int] and IntList are only two ways to refer to the same
type, it doesn’t matter which name we use in our type annotations:

ghci> ([1,2,3] :: IntList) ++ ([1,2,3] :: [Int])

[1,2,3,1,2,3]

We use type synonyms when we want to make our type signatures more
descriptive. We give types names that tell us something about their purpose
in the context of the functions where they’re being used. For instance, when
we used an association list of type [(String, String)] to represent a phone
book in Chapter 7, we gave it the type synonym of PhoneBook so that the type
signatures of our functions were easier to read.

The newtype keyword is for taking existing types and wrapping them in
new types, mostly so it’s easier to make them instances of certain type classes.
When we use newtype to wrap an existing type, the type that we get is separate
from the original type. Suppose we make the following newtype:

newtype CharList = CharList { getCharList :: [Char] }
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We can’t use ++ to put together a CharList and a list of type [Char]. We
can’t even use ++ to put together two CharList lists, because ++ works only
on lists, and the CharList type isn’t a list, even though it could be said that
CharList contains a list. We can, however, convert two CharLists to lists, ++
them, and then convert that back to a CharList.

When we use record syntax in our newtype declarations, we get func-
tions for converting between the new type and the original type—namely the
value constructor of our newtype and the function for extracting the value in
its field. The new type also isn’t automatically made an instance of the type
classes that the original type belongs to, so we need to derive or manually
write it.

In practice, you can think of newtype declarations as data declarations
that can have only one constructor and one field. If you catch yourself writ-
ing such a data declaration, consider using newtype.

The data keyword is for making your own data types. You can go hog
wild with them. They can have as many constructors and fields as you wish
and can be used to implement any algebraic data type—everything from
lists and Maybe-like types to trees.

In summary, use the keywords as follows:

• If you just want your type signatures to look cleaner and be more de-
scriptive, you probably want type synonyms.

• If you want to take an existing type and wrap it in a new type in order
to make it an instance of a type class, chances are you’re looking for a
newtype.

• If you want to make something completely new, odds are good that
you’re looking for the data keyword.

About Those Monoids
Type classes in Haskell are used to
present an interface for types that have
some behavior in common. We started
out with simple type classes like Eq, which
is for types whose values can be equated,
and Ord, which is for things that can be
put in an order. Then we moved on to
more interesting type classes, like Functor

and Applicative.
When we make a type, we think

about which behaviors it supports (what
it can act like) and then decide which
type classes to make it an instance of based on the behavior we want. If it
makes sense for values of our type to be equated, we make our type an in-
stance of the Eq type class. If we see that our type is some kind of functor, we
make it an instance of Functor, and so on.
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Now consider the following: * is a function that takes two numbers and
multiplies them. If we multiply some number with a 1, the result is always
equal to that number. It doesn’t matter if we do 1 * x or x * 1— the result is
always x. Similarly, ++ is a function that takes two things and returns a third.
But instead of multiplying numbers, it takes two lists and concatenates them.
And much like *, it also has a certain value that doesn’t change the other
one when used with ++. That value is the empty list: [].

ghci> 4 * 1

4

ghci> 1 * 9

9

ghci> [1,2,3] ++ []

[1,2,3]

ghci> [] ++ [0.5, 2.5]

[0.5,2.5]

It seems that * together with 1 and ++ along with [] share some common
properties:

• The function takes two parameters.

• The parameters and the returned value have the same type.

• There exists such a value that doesn’t change other values when used
with the binary function.

There’s another thing that these two operations have in common that
may not be as obvious as our previous observations: When we have three
or more values and we want to use the binary function to reduce them to a
single result, the order in which we apply the binary function to the values
doesn’t matter. For example, whether we use (3 * 4) * 5 or 3 * (4 * 5), the
result is 60. The same goes for ++:

ghci> (3 * 2) * (8 * 5)

240

ghci> 3 * (2 * (8 * 5))

240

ghci> "la" ++ ("di" ++ "da")

"ladida"

ghci> ("la" ++ "di") ++ "da"

"ladida"

We call this property associativity. * is associative, and so is ++. However, -,
for example, is not associative; the expressions (5 - 3) - 4 and 5 - (3 - 4) re-
sult in different numbers.

By being aware of these properties, we have chanced upon monoids!
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The Monoid Type Class
A monoid is made up of an associative binary function and a value that acts
as an identity with respect to that function. When something acts as an iden-
tity with respect to a function, it means that when called with that function
and some other value, the result is always equal to that other value. 1 is the
identity with respect to *, and [] is the identity with respect to ++. There are
a lot of other monoids to be found in the world of Haskell, which is why the
Monoid type class exists. It’s for types that can act like monoids. Let’s see how
the type class is defined:

class Monoid m where

mempty :: m

mappend :: m -> m -> m

mconcat :: [m] -> m

mconcat = foldr mappend mempty

The Monoid type class is defined in 
Data.Monoid. Let’s take some time to get 
properly acquainted with it.

First, we see that only concrete types 
can be made instances of Monoid, because 
the m in the type class definition doesn’t take 
any type parameters. This is different from 
Functor and Applicative, which require their 
instances to be type constructors that take 
one parameter.

The first function is mempty. It’s not re-
ally a function, since it doesn’t take param-
eters. It’s a polymorphic constant, kind of 
like minBound from Bounded. mempty represents 
the identity value for a particular monoid.

Next up, we have mappend, which, as you’ve probably guessed, is the bi-
nary function. It takes two values of the same type and returns another value
of that same type. The decision to call it mappend was kind of unfortunate, be-
cause it implies that we’re appending two things in some way. While ++ does
take two lists and append one to the other, * doesn’t really do any append-
ing; it just multiplies two numbers together. When you meet other instances
of Monoid, you’ll see that most of them don’t append values either. So avoid
thinking in terms of appending and just think in terms of mappend being a
binary function that takes two monoid values and returns a third.

The last function in this type class definition is mconcat. It takes a list of
monoid values and reduces them to a single value by using mappend between
the list’s elements. It has a default implementation, which just takes mempty as
a starting value and folds the list from the right with mappend. Because the de-
fault implementation is fine for most instances, we won’t concern ourselves
with mconcat too much. When making a type an instance of Monoid, it suffices
to just implement mempty and mappend. Although for some instances, there
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might be a more efficient way to implement mconcat, the default implementa-
tion is just fine for most cases.

The Monoid Laws
Before moving on to specific instances of Monoid, let’s take a brief look at the 
monoid laws.

You’ve learned that there must be a value that acts as the identity with 
respect to the binary function and that the binary function must be associa-
tive. It’s possible to make instances of Monoid that don’t follow these rules, 
but such instances are of no use to anyone because when using the Monoid 
type class, we rely on its instances acting like monoids. Otherwise, what’s the 
point? That’s why when making Monoid instances, we need to make sure they 
follow these laws:

• mempty `mappend` x = x

• x `mappend` mempty = x

• (x `mappend` y) `mappend` z = x `mappend` (y `mappend` z)

The first two laws state that mempty must act as the identity with respect
to mappend, and the third says that mappend must be associative (the order in
which we use mappend to reduce several monoid values into one doesn’t mat-
ter). Haskell doesn’t enforce these laws, so we need to be careful that our
instances do indeed obey them.

Meet Some Monoids
Now that you know what monoids are about, let’s look at some Haskell types
that are monoids, what their Monoid instances look like, and their uses.

Lists Are Monoids
Yes, lists are monoids! As you’ve seen, the ++ function and the empty list []
form a monoid. The instance is very simple:

instance Monoid [a] where

mempty = []

mappend = (++)

Lists are an instance of the Monoid type class, regardless of the type of
the elements they hold. Notice that we wrote instance Monoid [a] and not
instance Monoid [], because Monoid requires a concrete type for an instance.

Giving this a test run, we encounter no surprises:

ghci> [1,2,3] `mappend` [4,5,6]

[1,2,3,4,5,6]

ghci> ("one" `mappend` "two") `mappend` "tree"

"onetwotree"
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ghci> "one" `mappend` ("two" `mappend` "tree")

"onetwotree"

ghci> "one" `mappend` "two" `mappend` "tree"

"onetwotree"

ghci> "pang" `mappend` mempty

"pang"

ghci> mconcat [[1,2],[3,6],[9]]

[1,2,3,6,9]

ghci> mempty :: [a]

[]

Notice that in the last line, we wrote an ex-
plicit type annotation. If we just wrote mempty,
GHCi wouldn’t know which instance to use, so
we needed to say we want the list instance. We
were able to use the general type of [a] (as op-
posed to specifying [Int] or [String]) because the
empty list can act as if it contains any type.

Because mconcat has a default implemen-
tation, we get it for free when we make some-
thing an instance of Monoid. In the case of the list,
mconcat turns out to be just concat. It takes a list of

lists and flattens it, because that’s the equivalent of doing ++ between all the
adjacent lists in a list.

The monoid laws do indeed hold for the list instance. When we have
several lists and we mappend (or ++) them together, it doesn’t matter which
ones we do first, because they’re just joined at the ends anyway. Also, the
empty list acts as the identity, so all is well.

Notice that monoids don’t require that a `mappend` b be equal to
b `mappend` a. In the case of the list, they clearly aren’t:

ghci> "one" `mappend` "two"

"onetwo"

ghci> "two" `mappend` "one"

"twoone"

And that’s okay. The fact that for multiplication 3 * 5 and 5 * 3 are the
same is just a property of multiplication, but it doesn’t hold for all (and in-
deed, most) monoids.

Product and Sum
We already examined one way for numbers to be considered monoids: Just
let the binary function be * and the identity value be 1. Another way for
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numbers to be monoids is to have the binary function be + and the identity
value be 0:

ghci> 0 + 4

4

ghci> 5 + 0

5

ghci> (1 + 3) + 5

9

ghci> 1 + (3 + 5)

9

The monoid laws hold, because if you add 0 to any number, the result is
that number. And addition is also associative, so we have no problems there.

With two equally valid ways for numbers to be monoids, which way do we
choose? Well, we don’t have to pick. Remember that when there are several
ways for some type to be an instance of the same type class, we can wrap that
type in a newtype and then make the new type an instance of the type class in
a different way. We can have our cake and eat it too.

The Data.Monoid module exports two types for this: Product and Sum.
Product is defined like this:

newtype Product a = Product { getProduct :: a }

deriving (Eq, Ord, Read, Show, Bounded)

It’s simple—just a newtype wrapper with one type parameter along with
some derived instances. Its instance for Monoid goes something like this:

instance Num a => Monoid (Product a) where

mempty = Product 1

Product x `mappend` Product y = Product (x * y)

mempty is just 1 wrapped in a Product constructor. mappend pattern matches
on the Product constructor, multiplies the two numbers, and then wraps the
resulting number. As you can see, there’s a Num a class constraint. This means
that Product a is an instance of Monoid for all a values that are already an in-
stance of Num. To use Product a as a monoid, we need to do some newtype

wrapping and unwrapping:

ghci> getProduct $ Product 3 `mappend` Product 9

27

ghci> getProduct $ Product 3 `mappend` mempty

3

ghci> getProduct $ Product 3 `mappend` Product 4 `mappend` Product 2

24

ghci> getProduct . mconcat . map Product $ [3,4,2]

24
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Sum is defined along the same lines as Product, and the instance is similar
as well. We use it in the same way:

ghci> getSum $ Sum 2 `mappend` Sum 9

11

ghci> getSum $ mempty `mappend` Sum 3

3

ghci> getSum . mconcat . map Sum $ [1,2,3]

6

Any and All
Another type that can act like a monoid in two distinct but equally valid ways
is Bool. The first way is to have the function ||, which represents a logical
OR, act as the binary function along with False as the identity value. With
the logical OR, if any of the two parameters is True, it returns True; otherwise,
it returns False. So if we use False as the identity value, OR will return False

when used with False and True when used with True. The Any newtype construc-
tor is an instance of Monoid in this fashion. It’s defined like this:

newtype Any = Any { getAny :: Bool }

deriving (Eq, Ord, Read, Show, Bounded)

Its instance looks like this:

instance Monoid Any where

mempty = Any False

Any x `mappend` Any y = Any (x || y)

It’s called Any because x `mappend` y will be True if any one of those two is
True. Even if three or more Any wrapped Bool values are mappended together,
the result will hold True if any of them are True:

ghci> getAny $ Any True `mappend` Any False

True

ghci> getAny $ mempty `mappend` Any True

True

ghci> getAny . mconcat . map Any $ [False, False, False, True]

True

ghci> getAny $ mempty `mappend` mempty

False

The other way for Bool to be an instance of Monoid is to kind of do the
opposite: Have && be the binary function and then make True the identity
value. Logical AND will return True only if both of its parameters are True.

256 Chapter 12



This is the newtype declaration:

newtype All = All { getAll :: Bool }

deriving (Eq, Ord, Read, Show, Bounded)

And this is the instance:

instance Monoid All where

mempty = All True

All x `mappend` All y = All (x && y)

When we mappend values of the All type, the result will be True only if all
the values used in the mappend operations are True:

ghci> getAll $ mempty `mappend` All True

True

ghci> getAll $ mempty `mappend` All False

False

ghci> getAll . mconcat . map All $ [True, True, True]

True

ghci> getAll . mconcat . map All $ [True, True, False]

False

Just as with multiplication and addition, we usually explicitly state the
binary functions instead of wrapping them in newtypes and then using mappend

and mempty. mconcat seems useful for Any and All, but usually it’s easier to use
the or and and functions. or takes lists of Bool values and returns True if any
of them are True. and takes the same values and returns True if all of them
are True.

The Ordering Monoid
Remember the Ordering type? It’s used as the result when comparing things,
and it can have three values: LT, EQ, and GT, which stand for less than, equal,
and greater than, respectively.

ghci> 1 `compare` 2

LT

ghci> 2 `compare` 2

EQ

ghci> 3 `compare` 2

GT

With lists, numbers, and Boolean values, finding monoids was just a mat-
ter of looking at already existing commonly used functions and seeing if they
exhibited some sort of monoid behavior. With Ordering, we need to look a bit

Monoids 257



harder to recognize a monoid. It turns out that the ordering Monoid instance
is just as intuitive as the ones we’ve met so far, and it’s also quite useful:

instance Monoid Ordering where

mempty = EQ

LT `mappend` _ = LT

EQ `mappend` y = y

GT `mappend` _ = GT

The instance is set up like this:
When we mappend two Ordering values,
the one on the left is kept, unless the
value on the left is EQ. If the value on
the left is EQ, the right one is the result.
The identity is EQ. At first, this may seem
kind of arbitrary, but it actually resem-
bles the way we alphabetically compare
words. We look at the first two letters,
and if they differ, we can already decide
which word would go first in a dictio-
nary. However, if the first two letters are
equal, then we move on to comparing
the next pair of letters and repeat the
process.

For instance, when we alphabetically compare the words ox and on, we
see that the first letter of each word is equal and then move on to comparing
the second letter. Since x is alphabetically greater than n, we know how the
words compare. To gain some understanding of EQ being the identity, note
that if we were to cram the same letter in the same position in both words, it
wouldn’t change their alphabetical ordering; for example, oix is still alpha-
betically greater than oin.

It’s important to note that in the Monoid instance for Ordering, x `mappend`

y doesn’t equal y `mappend` x. Because the first parameter is kept unless it’s
EQ, LT `mappend` GT will result in LT, whereas GT `mappend` LT will result in GT:

ghci> LT `mappend` GT

LT

ghci> GT `mappend` LT

GT

ghci> mempty `mappend` LT

LT

ghci> mempty `mappend` GT

GT

Okay, so how is this monoid useful? Let’s say we are writing a function
that takes two strings, compares their lengths, and returns an Ordering. But
if the strings are of the same length, instead of returning EQ right away, we
want to compare them alphabetically.
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Here’s one way to write this:

lengthCompare :: String -> String -> Ordering

lengthCompare x y = let a = length x `compare` length y

b = x `compare` y

in if a == EQ then b else a

We name the result of comparing the lengths a and the result of the al-
phabetical comparison b, and then if the lengths are equal, we return their
alphabetical ordering.

But by employing our understanding of how Ordering is a monoid, we
can rewrite this function in a much simpler manner:

import Data.Monoid

lengthCompare :: String -> String -> Ordering

lengthCompare x y = (length x `compare` length y) `mappend`

(x `compare` y)

Let’s try this out:

ghci> lengthCompare "zen" "ants"

LT

ghci> lengthCompare "zen" "ant"

GT

Remember that when we use mappend, its left parameter is kept unless
it’s EQ; if it’s EQ, the right one is kept. That’s why we put the comparison that
we consider to be the first, more important, criterion as the first parameter.
Now suppose that we want to expand this function to also compare for the
number of vowels and set this to be the second most important criterion for
comparison. We modify it like this:

import Data.Monoid

lengthCompare :: String -> String -> Ordering

lengthCompare x y = (length x `compare` length y) `mappend`

(vowels x `compare` vowels y) `mappend`

(x `compare` y)

where vowels = length . filter (`elem` "aeiou")

We made a helper function, which takes a string and tells us how many
vowels it has by first filtering it for only letters that are in the string "aeiou"

and then applying length to that.

ghci> lengthCompare "zen" "anna"

LT
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ghci> lengthCompare "zen" "ana"

LT

ghci> lengthCompare "zen" "ann"

GT

In the first example, the lengths are found to be different, and so LT is
returned, because the length of "zen" is less than the length of "anna". In the
second example, the lengths are the same, but the second string has more
vowels, so LT is returned again. In the third example, they both have the
same length and the same number of vowels, so they’re compared alpha-
betically, and "zen" wins.

The Ordering monoid is very useful because it allows us to easily compare
things by many different criteria and put those criteria in an order them-
selves, ranging from the most important to the least important.

Maybe the Monoid
Let’s take a look at the various ways that Maybe a can be made an instance of
Monoid and how those instances are useful.

One way is to treat Maybe a as a monoid only if its type parameter a is a
monoid as well and then implement mappend in such a way that it uses the
mappend operation of the values that are wrapped with Just. We use Nothing as
the identity, and so if one of the two values that we’re mappending is Nothing,
we keep the other value. Here’s the instance declaration:

instance Monoid a => Monoid (Maybe a) where

mempty = Nothing

Nothing `mappend` m = m

m `mappend` Nothing = m

Just m1 `mappend` Just m2 = Just (m1 `mappend` m2)

Notice the class constraint. It says that Maybe a is an instance of Monoid
only if a is an instance of Monoid. If we mappend something with a Nothing, the
result is that something. If we mappend two Just values, the contents of the
Justs are mappended and then wrapped back in a Just. We can do this because
the class constraint ensures that the type of what’s inside the Just is an in-
stance of Monoid.

ghci> Nothing `mappend` Just "andy"

Just "andy"

ghci> Just LT `mappend` Nothing

Just LT

ghci> Just (Sum 3) `mappend` Just (Sum 4)

Just (Sum {getSum = 7})

This is useful when we’re dealing with monoids as results of computa-
tions that may have failed. Because of this instance, we don’t need to check
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if the computations have failed by seeing if they’re a Nothing or Just value; we
can just continue to treat them as normal monoids.

But what if the type of the contents of the Maybe is not an instance of
Monoid? Notice that in the previous instance declaration, the only case where
we must rely on the contents being monoids is when both parameters of
mappend are Just values. When we don’t know if the contents are monoids,
we can’t use mappend between them, so what are we to do? Well, one thing we
can do is discard the second value and keep the first one. For this purpose,
the First a type exists. Here’s its definition:

newtype First a = First { getFirst :: Maybe a }

deriving (Eq, Ord, Read, Show)

We take a Maybe a and wrap it with a newtype. The Monoid instance is as
follows:

instance Monoid (First a) where

mempty = First Nothing

First (Just x) `mappend` _ = First (Just x)

First Nothing `mappend` x = x

mempty is just a Nothing wrapped with the First newtype constructor. If
mappend’s first parameter is a Just value, we ignore the second one. If the first
one is a Nothing, then we present the second parameter as a result, regardless
of whether it’s a Just or a Nothing:

ghci> getFirst $ First (Just 'a') `mappend` First (Just 'b')

Just 'a'

ghci> getFirst $ First Nothing `mappend` First (Just 'b')

Just 'b'

ghci> getFirst $ First (Just 'a') `mappend` First Nothing

Just 'a'

First is useful when we have a bunch of Maybe values and we just want to
know if any of them is a Just. The mconcat function comes in handy:

ghci> getFirst . mconcat . map First $ [Nothing, Just 9, Just 10]

Just 9

If we want a monoid on Maybe a such that the second parameter is kept
if both parameters of mappend are Just values, Data.Monoid provides the Last a

type, which works like First a, but the last non-Nothing value is kept when
mappending and using mconcat:

ghci> getLast . mconcat . map Last $ [Nothing, Just 9, Just 10]

Just 10

ghci> getLast $ Last (Just "one") `mappend` Last (Just "two")

Just "two"
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Folding with Monoids
One of the more interesting ways to put monoids to work is to have them
help us define folds over various data structures. So far, we’ve done folds
over lists, but lists aren’t the only data structure that can be folded over. We
can define folds over almost any data structure. Trees especially lend them-
selves well to folding.

Because there are so many data structures that work nicely with folds,
the Foldable type class was introduced. Much like Functor is for things that
can be mapped over, Foldable is for things that can be folded up! It can be
found in Data.Foldable, and because it exports functions whose names clash
with the ones from the Prelude, it’s best imported qualified (and served with
basil):

import qualified Data.Foldable as F

To save ourselves precious keystrokes, we’ve imported it qualified as F.
So what are some of the functions that this type class defines? Well,

among them are foldr, foldl, foldr1, and foldl1. Huh? We already know
these functions. What’s so new about this? Let’s compare the types of
Foldable’s foldr and foldr from Prelude to see how they differ:

ghci> :t foldr

foldr :: (a -> b -> b) -> b -> [a] -> b

ghci> :t F.foldr

F.foldr :: (F.Foldable t) => (a -> b -> b) -> b -> t a -> b

Ah! So whereas foldr takes a list and folds it up, the foldr from
Data.Foldable accepts any type that can be folded up, not just lists! As
expected, both foldr functions do the same for lists:

ghci> foldr (*) 1 [1,2,3]

6

ghci> F.foldr (*) 1 [1,2,3]

6

Another data structure that supports folds is the Maybe we all know 
and love!

ghci> F.foldl (+) 2 (Just 9)

11

ghci> F.foldr (||) False (Just True)

True

But folding over a Maybe value isn’t terribly interesting. It just acts like a
list with one element if it’s a Just value and like an empty list if it’s Nothing.
Let’s examine a data structure that’s a little more complex.
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Remember the tree data structure from Chapter 7? We defined it
like this:

data Tree a = EmptyTree | Node a (Tree a) (Tree a) deriving (Show)

You learned that a tree is either an empty tree that doesn’t hold any val-
ues or it’s a node that holds one value and also two other trees. After defin-
ing it, we made it an instance of Functor, and with that we gained the ability
to fmap functions over it. Now we’re going to make it an instance of Foldable
so we get the ability to fold it up.

One way to make a type constructor an instance of Foldable is to just di-
rectly implement foldr for it. But another, often much easier way, is to im-
plement the foldMap function, which is also a part of the Foldable type class.
The foldMap function has the following type:

foldMap :: (Monoid m, Foldable t) => (a -> m) -> t a -> m

Its first parameter is a function that takes a value of the type that our
foldable structure contains (denoted here with a) and returns a monoid
value. Its second parameter is a foldable structure that contains values of
type a. It maps that function over the foldable structure, thus producing a
foldable structure that contains monoid values. Then, by doing mappend be-
tween those monoid values, it joins them all into a single monoid value. This
function may sound kind of odd at the moment, but you’ll see that it’s very
easy to implement. And implementing this function is all it takes for our
type to be made an instance of Foldable! So if we just implement foldMap for
some type, we get foldr and foldl on that type for free.

This is how we make Tree an instance of Foldable:

instance F.Foldable Tree where

foldMap f EmptyTree = mempty

foldMap f (Node x l r) = F.foldMap f l `mappend`

f x `mappend`

F.foldMap f r

If we are provided with a function
that takes an element of our tree and
returns a monoid value, how do we re-
duce our whole tree down to one single
monoid value? When we were using fmap

over our tree, we applied the function
that we were mapping to a node, and
then we recursively mapped the function
over the left subtree as well as the right
one. Here, we’re tasked with not only
mapping a function, but also with joining up the results into a single monoid
value by using mappend. First, we consider the case of the empty tree—a sad,
sad, lonely tree that has no values or subtrees. It doesn’t hold any value that
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we can give to our monoid-making function, so we just say that if our tree is
empty, the monoid value it becomes is mempty.

The case of a nonempty node is a bit more interesting. It contains two
subtrees as well as a value. In this case, we recursively foldMap the same func-
tion f over the left and right subtrees. Remember that our foldMap results in
a single monoid value. We also apply our function f to the value in the node.
Now we have three monoid values (two from our subtrees and one from ap-
plying f to the value in the node), and we just need to bang them together
into a single value. For this purpose, we use mappend, and naturally the left
subtree comes first, then the node value, followed by the right subtree.

Notice that we didn’t need to provide the function that takes a value and
returns a monoid value. We receive that function as a parameter to foldMap,
and all we need to decide is where to apply that function and how to join the
resulting monoids from it.

Now that we have a Foldable instance for our tree type, we get foldr and
foldl for free! Consider this tree:

testTree = Node 5

(Node 3

(Node 1 EmptyTree EmptyTree)

(Node 6 EmptyTree EmptyTree)

)

(Node 9

(Node 8 EmptyTree EmptyTree)

(Node 10 EmptyTree EmptyTree)

)

It has 5 at its root, and then its left node has 3 with 1 on the left and 6 on
the right. The root’s right node has a 9 and then 8 to its left and 10 on the far
right side. With a Foldable instance, we can do all of the folds that we can do
on lists:

ghci> F.foldl (+) 0 testTree

42

ghci> F.foldl (*) 1 testTree

64800

foldMap isn’t useful only for making new instances of Foldable. It also
comes in handy for reducing our structure to a single monoid value. For
instance, if we want to know if any number in our tree is equal to 3, we can
do this:

ghci> getAny $ F.foldMap (\x -> Any $ x == 3) testTree

True
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Here, \x -> Any $ x == 3 is a function that takes a number and returns
a monoid value: a Bool wrapped in Any. foldMap applies this function to every
element in our tree and then reduces the resulting monoids into a single
monoid with mappend. Suppose we do this:

ghci> getAny $ F.foldMap (\x -> Any $ x > 15) testTree

False

All of the nodes in our tree will hold the value Any False after having the
function in the lambda applied to them. But to end up True, mappend for Any

must have at least one True value as a parameter. That’s why the final result is
False, which makes sense because no value in our tree is greater than 15.

We can also easily turn our tree into a list by doing a foldMap with the
\x -> [x] function. By first projecting that function onto our tree, each ele-
ment becomes a singleton list. The mappend action that takes place between
all those singleton lists results in a single list that holds all of the elements
that are in our tree:

ghci> F.foldMap (\x -> [x]) testTree

[1,3,6,5,8,9,10]

What’s cool is that all of these tricks aren’t limited to trees. They work
on any instance of Foldable!
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13
A FISTFUL OF MONADS

When we first talked about functors in Chapter 7, you
saw that they are a useful concept for values that can
be mapped over. Then, in Chapter 11, we took that con-
cept one step further with applicative functors, which
allow us to view values of certain data types as values
with contexts and use normal functions on those val-
ues while preserving the meaning of those contexts.

In this chapter, you’ll learn about monads, which are just beefed-up ap-
plicative functors, much like applicative functors are beefed-up functors.

Upgrading Our Applicative Functors
When we started off with functors, you
saw that it’s possible to map functions
over various data types using the Functor

type class. The introduction to functors
had us asking the question, “When we
have a function of type a -> b and some
data type f a, how do we map that func-
tion over the data type to end up with f b?” You saw how to map something
over a Maybe a, a list [a], an IO a, and so on. You even saw how to map a func-



tion a -> b over other functions of type r -> a to get functions of type r -> b.
To answer the question of how to map a function over some data type, all we
needed to do was look at the type of fmap:

fmap :: (Functor f) => (a -> b) -> f a -> f b

And then we just needed to make it work for our data type by writing the
appropriate Functor instance.

Then you saw a possible improvement of functors and had a few more
questions. What if that function a -> b is already wrapped inside a func-
tor value? Say we have Just (*3)—how do we apply that to Just 5? What if
we don’t want to apply it to Just 5, but to a Nothing instead? Or if we have
[(*2),(+4)], how do we apply that to [1,2,3]? How could that even work?
For this, the Applicative type class was introduced:

(<*>) :: (Applicative f) => f (a -> b) -> f a -> f b

You also saw that you can take a normal value and wrap it inside a data
type. For instance, we can take a 1 and wrap it so that it becomes a Just 1.
Or we can make it into a [1]. It could even become an I/O action that does
nothing and just yields 1. The function that does this is called pure.

An applicative value can be seen as a value with an added context—a
fancy value, to put it in technical terms. For instance, the character 'a' is just
a normal character, whereas Just 'a' has some added context. Instead of
a Char, we have a Maybe Char, which tells us that its value might be a charac-
ter, but it could also be an absence of a character. The Applicative type class
allows us to use normal functions on these values with context, and that con-
text is preserved. Observe an example:

ghci> (*) <$> Just 2 <*> Just 8

Just 16

ghci> (++) <$> Just "klingon" <*> Nothing

Nothing

ghci> (-) <$> [3,4] <*> [1,2,3]

[2,1,0,3,2,1]

So now that we treat them as applicative values, Maybe a values represent
computations that might have failed, [a] values represent computations that
have several results (nondeterministic computations), IO a values represent
values that have side effects, and so on.

Monads are a natural extension of applicative functors, and they provide
a solution to the following problem: If we have a value with a context, m a,
how do we apply to it a function that takes a normal a and returns a value
with a context? In other words, how do we apply a function of type a -> m b

to a value of type m a? Essentially, we want this function:

(>>=) :: (Monad m) => m a -> (a -> m b) -> m b
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If we have a fancy value and a function that takes a normal value but re-
turns a fancy value, how do we feed that fancy value into the function? This
is the main concern when dealing with monads. We write m a instead of f a,
because the m stands for Monad, but monads are just applicative functors that
support >>=. The >>= function is called bind.

When we have a normal value a and a normal function a -> b, it’s re-
ally easy to feed the value to the function—we just apply the function to the
value normally, and that’s it. But when we’re dealing with values that come
with certain contexts, it takes a bit of thinking to see how these fancy values
are fed to functions and how to take into account their behavior. But you’ll
see that it’s as easy as one, two, three.

Getting Your Feet Wet with Maybe
Now that you have a vague idea of what
monads are about, let’s make that idea a
little more concrete. Much to no one’s
surprise, Maybe is a monad. Here, we’ll
explore it a bit more to see how it works
in this role.

NOTE Make sure you understand applicative func-
tors at this point. (We discussed them in
Chapter 11.) You should have a feel for how
the various Applicative instances work and
what kinds of computations they represent.
To understand monads, you’ll be taking your
existing applicative functor knowledge and
upgrading it.

A value of type Maybe a represents a value of type a, but with the context
of possible failure attached. A value of Just "dharma" means that the string
"dharma" is there. A value of Nothing represents its absence, or if you look at
the string as the result of a computation, it means that the computation has
failed.

When we looked at Maybe as a functor, we saw that if we want to fmap a
function over it, the function is mapped over what’s inside if that’s a Just

value. Otherwise, the Nothing is kept, because there’s nothing to map it over!

ghci> fmap (++"!") (Just "wisdom")

Just "wisdom!"

ghci> fmap (++"!") Nothing

Nothing

As an applicative functor, Maybe functions similarly. However, with ap-
plicative functors, the function itself is in a context, along with the value to
which it’s being applied. Maybe is an applicative functor in such a way that
when we use <*> to apply a function inside a Maybe to a value that’s inside a
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Maybe, they both must be Just values for the result to be a Just value; other-
wise, the result is Nothing. This makes sense. If you’re missing either the func-
tion or the thing you’re applying it to, you can’t make something up out of
thin air, so you need to propagate the failure.

ghci> Just (+3) <*> Just 3

Just 6

ghci> Nothing <*> Just "greed"

Nothing

ghci> Just ord <*> Nothing

Nothing

Using the applicative style to have normal functions act on Maybe values
works in a similar way. All the values must be Just values; otherwise, it’s all
for Nothing!

ghci> max <$> Just 3 <*> Just 6

Just 6

ghci> max <$> Just 3 <*> Nothing

Nothing

And now, let’s think about how we would use >>= with Maybe. >>= takes a
monadic value and a function that takes a normal value. It returns a monadic
value and manages to apply that function to the monadic value. How does it
do that if the function takes a normal value? Well, it must take into account
the context of that monadic value.

In this case, >>= would take a Maybe a value and a function of type a ->

Maybe b, and somehow apply the function to the Maybe a. To figure out how
it does that, we can use the understanding that we have from Maybe being
an applicative functor. Let’s say that we have a function \x -> Just (x+1). It
takes a number, adds 1 to it, and wraps it in a Just:

ghci> (\x -> Just (x+1)) 1

Just 2

ghci> (\x -> Just (x+1)) 100

Just 101

If we feed it 1, it evaluates to Just 2. If we give it the number 100, the
result is Just 101. It seems very straightforward. But how do we feed a Maybe

value to this function? If we think about how Maybe acts as an applicative
functor, answering this is pretty easy. We feed it a Just value, take what’s in-
side the Just, and apply the function to it. If we give it a Nothing, then we’re
left with a function but Nothing to apply it to. In that case, let’s just do what
we did before and say that the result is Nothing.
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Instead of calling it >>=, let’s call it applyMaybe for now. It takes a Maybe a

and a function that returns a Maybe b, and manages to apply that function to
the Maybe a. Here it is in code:

applyMaybe :: Maybe a -> (a -> Maybe b) -> Maybe b

applyMaybe Nothing f = Nothing

applyMaybe (Just x) f = f x

Now let’s play with it. We’ll use it as an infix function so that the Maybe

value is on the left side and the function is on the right:

ghci> Just 3 `applyMaybe` \x -> Just (x+1)

Just 4

ghci> Just "smile" `applyMaybe` \x -> Just (x ++ " :)")

Just "smile :)"

ghci> Nothing `applyMaybe` \x -> Just (x+1)

Nothing

ghci> Nothing `applyMaybe` \x -> Just (x ++ " :)")

Nothing

In this example, when we used applyMaybe with a Just value and a func-
tion, the function was simply applied to the value inside the Just. When we
tried to use it with a Nothing, the whole result was Nothing. What about if the
function returns a Nothing? Let’s see:

ghci> Nothing `applyMaybe` \x -> if x > 2 then Just x else Nothing 

Nothing

ghci> Just 1 `applyMaybe` \x -> if x > 2 then Just x else Nothing 

Nothing

The results are just what we expected. If the monadic value on the left
is a Nothing, the whole thing is Nothing. And if the function on the right re-
turns a Nothing, the result is Nothing again. This is similar to when we used
Maybe as an applicative and we got a Nothing result if there was a Nothing some-
where in the mix.

It looks like we’ve figured out how to take a fancy value, feed it to a func-
tion that takes a normal value, and return a fancy one. We did this by keep-
ing in mind that a Maybe value represents a computation that might have
failed.

You might be asking yourself, “How is this useful?” It may seem like ap-
plicative functors are stronger than monads, since applicative functors allow
us to take a normal function and make it operate on values with contexts. In
this chapter, you’ll see that monads, as an upgrade of applicative functors,
can also do that. In fact, they can do some other cool stuff that applicative
functors can’t do.

We’ll come back to Maybe in a minute, but first, let’s check out the type
class that belongs to monads.
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The Monad Type Class
Just like functors have the Functor type class, and applicative functors have
the Applicative type class, monads come with their own type class: Monad!
(Wow, who would have thought?)

class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

(>>) :: m a -> m b -> m b

x >> y = x >>= \_ -> y

fail :: String -> m a

fail msg = error msg

The first line says class Monad m where. But
wait, didn’t I say that monads are just beefed-
up applicative functors? Shouldn’t there be
a class constraint in there along the lines of
class (Applicative m) = > Monad m where, so
that a type must be an applicative functor
before it can be made a monad? Well, there
should, but when Haskell was made, it hadn’t
occurred to people that applicative functors
were a good fit for Haskell. But rest assured,
every monad is an applicative functor, even if
the Monad class declaration doesn’t say so.

The first function that the Monad type class
defines is return. It’s the same as pure from
the Applicative type class. So, even though it has a different name, you’re
already acquainted with it. return’s type is (Monad m) => a -> m a. It takes a
value and puts it in a minimal default context that still holds that value. In
other words, return takes something and wraps it in a monad. We already
used return when handling I/O in Chapter 8. We used it to take a value and
make a bogus I/O action that does nothing but yield that value. For Maybe, it
takes a value and wraps it in a Just.

NOTE Just a reminder: return is nothing like the return that’s in most other languages. It
doesn’t end function execution. It just takes a normal value and puts it in a context.

The next function is >>=, or bind. It’s like function application, but in-
stead of taking a normal value and feeding it to a normal function, it takes a
monadic value (that is, a value with a context) and feeds it to a function that
takes a normal value but returns a monadic value.
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Next up, we have >>. We won’t pay too
much attention to it for now because it comes
with a default implementation, and it’s rarely
implemented when making Monad instances.
We’ll take a closer look at it in “Banana on a
Wire” on page 278.

The final function of the Monad type class
is fail. We never use it explicitly in our code.
Instead, it’s used by Haskell to enable fail-
ure in a special syntactic construct for mon-

ads that you’ll meet later. We don’t need to concern ourselves with fail too
much for now.

Now that you know what the Monad type class looks like, let’s take a look
at how Maybe is an instance of Monad!

instance Monad Maybe where

return x = Just x

Nothing >>= f = Nothing

Just x >>= f = f x

fail _ = Nothing

return is the same as pure, so that one is a no-brainer. We do what we 
did in the Applicative type class and wrap it in a Just. The >>= function is the 
same as our applyMaybe. When feeding the Maybe a to our function, we keep 
in mind the context and return a Nothing if the value on the left is Nothing. 
Again, if there’s no value, then there’s no way to apply our function to it. If 
it’s a Just, we take what’s inside and apply f to it.

We can play around with Maybe as a monad:

ghci> return "WHAT" :: Maybe String

Just "WHAT"

ghci> Just 9 >>= \x -> return (x*10)

Just 90

ghci> Nothing >>= \x -> return (x*10)

Nothing

There’s nothing new or exciting on the first line, since we already used
pure with Maybe, and we know that return is just pure with a different name.

The next two lines showcase >>= a bit more. Notice how when we fed
Just 9 to the function \x -> return (x*10), the x took on the value 9 inside the
function. It seems as though we were able to extract the value from a Maybe

without pattern matching. And we still didn’t lose the context of our Maybe

value, because when it’s Nothing, the result of using >>= will be Nothing as well.
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Walk the Line
Now that you know how to feed a Maybe a

value to a function of type a -> Maybe b

while taking into account the context of
possible failure, let’s see how we can use
>>= repeatedly to handle computations of
several Maybe a values.

Pierre has decided to take a break
from his job at the fish farm and try
tightrope walking. He is not that bad
at it, but he does have one problem:
Birds keep landing on his balancing
pole! They come and take a short rest,
chat with their avian friends, and then
take off in search of breadcrumbs. This
wouldn’t bother him so much if the number of birds on the left side of the
pole were always equal to the number of birds on the right side. But some-
times, all the birds decide that they like one side better. They throw him off
balance, which results in an embarrassing tumble for Pierre (he is using a
safety net).

Let’s say that Pierre keeps his balance if the number of birds on the left
side of the pole and on the right side of the pole is within three. So if there’s
one bird on the right side and four birds on the left side, he is okay. But if a
fifth bird lands on the left side, he loses his balance and takes a dive.

We’re going to simulate birds landing on and flying away from the pole
and see if Pierre is still at it after a certain number of bird arrivals and depar-
tures. For instance, we want to see what happens to Pierre if first one bird
arrives on the left side, then four birds occupy the right side, and then the
bird that was on the left side decides to fly away.

Code, Code, Code
We can represent the pole with a simple pair of integers. The first component
will signify the number of birds on the left side and the second component
the number of birds on the right side:

type Birds = Int

type Pole = (Birds, Birds)

First, we made a type synonym for Int, called Birds, because we’re using
integers to represent how many birds there are. And then we made a type
synonym (Birds, Birds) and called it Pole (not to be confused with a person
of Polish descent).
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Now, how about adding functions that take a number of birds and land
them on one side of the pole or the other?

landLeft :: Birds -> Pole -> Pole

landLeft n (left, right) = (left + n, right)

landRight :: Birds -> Pole -> Pole

landRight n (left, right) = (left, right + n)

Let’s try them out:

ghci> landLeft 2 (0, 0)

(2,0)

ghci> landRight 1 (1, 2)

(1,3)

ghci> landRight (-1) (1, 2)

(1,1)

To make birds fly away, we just had a negative number of birds land on
one side. Because landing a bird on the Pole returns a Pole, we can chain
applications of landLeft and landRight:

ghci> landLeft 2 (landRight 1 (landLeft 1 (0, 0)))

(3,1)

When we apply the function landLeft 1 to (0, 0) we get (1, 0). Then we
land a bird on the right side, resulting in (1, 1). Finally, two birds land on
the left side, resulting in (3, 1). We apply a function to something by first
writing the function and then writing its parameter, but here it would be
better if the pole went first and then the landing function. Suppose we make
a function like this:

x -: f = f x

We can apply functions by first writing the parameter and then the
function:

ghci> 100 -: (*3)

300

ghci> True -: not

False

ghci> (0, 0) -: landLeft 2

(2,0)
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By using this form, we can repeatedly land birds on the pole in a more
readable manner:

ghci> (0, 0) -: landLeft 1 -: landRight 1 -: landLeft 2

(3,1)

Pretty cool! This version is equivalent to the one before where we re-
peatedly landed birds on the pole, but it looks neater. Here, it’s more obvi-
ous that we start off with (0, 0) and then land one bird on the left, then one
on the right, and finally, two on the left.

I’ll Fly Away
So far so good, but what happens if ten birds land on one side?

ghci> landLeft 10 (0, 3)

(10,3)

Ten birds on the left side and only three on the right? That’s sure to
send poor Pierre falling through the air! This is pretty obvious here, but
what if we had a sequence of landings like this:

ghci> (0, 0) -: landLeft 1 -: landRight 4 -: landLeft (-1) -: landRight (-2)

(0,2)

It might seem as if everything is okay, but if you follow the steps here,
you’ll see that at one time there are four birds on the right side and no birds
on the left! To fix this, we need to take another look at our landLeft and
landRight functions.

We want the landLeft and landRight functions to be able to fail. We want
them to return a new pole if the balance is okay but fail if the birds land in
a lopsided manner. And what better way to add a context of failure to value
than by using Maybe! Let’s rework these functions:

landLeft :: Birds -> Pole -> Maybe Pole

landLeft n (left, right)

| abs ((left + n) - right) < 4 = Just (left + n, right)

| otherwise = Nothing

landRight :: Birds -> Pole -> Maybe Pole

landRight n (left, right)

| abs (left - (right + n)) < 4 = Just (left, right + n)

| otherwise = Nothing

Instead of returning a Pole, these functions now return a Maybe Pole.
They still take the number of birds and the old pole as before, but then they
check if landing that many birds on the pole would throw Pierre off balance.
We use guards to check if the difference between the number of birds on
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the new pole is less than 4. If it is, we wrap the new pole in a Just and return
that. If it isn’t, we return a Nothing, indicating failure.

Let’s give these babies a go:

ghci> landLeft 2 (0, 0)

Just (2,0)

ghci> landLeft 10 (0, 3)

Nothing

When we land birds without throwing Pierre off balance, we get a new
pole wrapped in a Just. But when many more birds end up on one side of
the pole, we get a Nothing. This is cool, but we seem to have lost the ability to
repeatedly land birds on the pole. We can’t do landLeft 1 (landRight 1 (0, 0))

anymore, because when we apply landRight 1 to (0, 0), we don’t get a Pole,
but a Maybe Pole. landLeft 1 takes a Pole, rather than a Maybe Pole.

We need a way of taking a Maybe Pole and feeding it to a function that
takes a Pole and returns a Maybe Pole. Luckily, we have >>=, which does just
that for Maybe. Let’s give it a go:

ghci> landRight 1 (0, 0) >>= landLeft 2

Just (2,1)

Remember that landLeft 2 has a type of Pole -> Maybe Pole. We couldn’t
just feed it the Maybe Pole that is the result of landRight 1 (0, 0), so we use >>=

to take that value with a context and give it to landLeft 2. >>= does indeed
allow us to treat the Maybe value as a value with context. If we feed a Nothing

into landLeft 2, the result is Nothing, and the failure is propagated:

ghci> Nothing >>= landLeft 2

Nothing

With this, we can now chain landings that may fail, because >>= allows
us to feed a monadic value to a function that takes a normal one. Here’s a
sequence of bird landings:

ghci> return (0, 0) >>= landRight 2 >>= landLeft 2 >>= landRight 2

Just (2,4)

At the beginning, we used return to take a pole and wrap it in a Just.
We could have just applied landRight 2 to (0, 0)—it would have been the
same—but this way, we can be more consistent by using >>= for every func-
tion. Just (0, 0) is fed to landRight 2, resulting in Just (0, 2). This, in turn,
gets fed to landLeft 2, resulting in Just (2, 2), and so on.

Remember the following example from before we introduced failure
into Pierre’s routine?

ghci> (0, 0) -: landLeft 1 -: landRight 4 -: landLeft (-1) -: landRight (-2)

(0,2)
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It didn’t simulate his interaction with birds very well. In the middle, his
balance was off, but the result didn’t reflect that. Let’s fix that now by using
monadic application (>>=) instead of normal application:

ghci> return (0, 0) >>= landLeft 1 >>= landRight 4 >>= landLeft (-1) >>= landRight (-2)

Nothing

The final result represents failure, which is what we expected. Let’s see
how this result was obtained:

1. return puts (0, 0) into a default context, making it a Just (0, 0).

2. Just (0, 0) >>= landLeft 1 happens. Since the Just (0, 0) is a Just value,
landLeft 1 gets applied to (0, 0), resulting in a Just (1, 0), because the
birds are still relatively balanced.

3. Just (1, 0) >>= landRight 4 takes place, and the result is Just (1, 4), as
the balance of the birds is still intact, although just barely.

4. Just (1, 4) gets fed to landLeft (-1). This means that landLeft (-1) (1, 4)

takes place. Now because of how landLeft works, this results in a Nothing,
because the resulting pole is off balance.

5. Now that we have a Nothing, it gets fed to landRight (-2), but because it’s
a Nothing, the result is automatically Nothing, as we have nothing to apply
landRight (-2) to.

We couldn’t have achieved this by just using Maybe as an applicative. If
you try it, you’ll get stuck, because applicative functors don’t allow for the
applicative values to interact with each other very much. They can, at best,
be used as parameters to a function by using the applicative style.

The applicative operators will fetch their results and feed them to the
function in a manner appropriate for each applicative, and then put the fi-
nal applicative value together, but there isn’t that much interaction going on
between them. Here, however, each step relies on the previous one’s result.
On every landing, the possible result from the previous one is examined and
the pole is checked for balance. This determines whether the landing will
succeed or fail.

Banana on a Wire
Now let’s devise a function that ignores the
current number of birds on the balancing
pole and just makes Pierre slip and fall. We’ll
call it banana:

banana :: Pole -> Maybe Pole

banana _ = Nothing

We can chain this function together with our bird landings. It will always
cause our walker to fall, because it ignores whatever is passed to it and always
returns a failure.
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ghci> return (0, 0) >>= landLeft 1 >>= banana >>= landRight 1

Nothing

The value Just (1, 0) gets fed to banana, but it produces a Nothing, which
causes everything to result in a Nothing. How unfortunate!

Instead of making functions that ignore their input and just return a
predetermined monadic value, we can use the >> function. Here’s its default
implementation:

(>>) :: (Monad m) => m a -> m b -> m b

m >> n = m >>= \_ -> n

Normally, passing some value to a function that ignores its parameter
and always returns some predetermined value always results in that prede-
termined value. With monads, however, their context and meaning must be
considered as well. Here’s how >> acts with Maybe:

ghci> Nothing >> Just 3

Nothing

ghci> Just 3 >> Just 4

Just 4

ghci> Just 3 >> Nothing

Nothing

If we replace >> with >>= \_ ->, it’s easy to see what’s happening.
We can replace our banana function in the chain with a >> and then a

Nothing for guaranteed and obvious failure:

ghci> return (0, 0) >>= landLeft 1 >> Nothing >>= landRight 1

Nothing

What would this look like if we hadn’t made the clever choice of treating
Maybe values as values with a failure context and feeding them to functions?
Here’s how a series of bird landings would look:

routine :: Maybe Pole

routine = case landLeft 1 (0, 0) of

Nothing -> Nothing

Just pole1 -> case landRight 4 pole1 of

Nothing -> Nothing

Just pole2 -> case landLeft 2 pole2 of

Nothing -> Nothing

Just pole3 -> landLeft 1 pole3

We land a bird on the left, and then we examine the possibility of fail-
ure and the possibility of success. In the case of failure, we return a Nothing.
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In the case of success, we land birds on
the right and then do the same thing
all over again. Converting this mon-
strosity into a neat chain of monadic
applications with >>= is a classic exam-
ple of how the Maybe monad saves a lot
of time when you need to successively
do computations that are based on
computations that might have failed.

Notice how the Maybe implemen-
tation of >>= features exactly this logic
of seeing if a value is Nothing and act-
ing on that knowledge. If the value is
Nothing, it returns a Nothing immedi-
ately. If the value is not Nothing, it goes
forward with what’s inside the Just.

In this section, we looked at how some functions work better when
the values that they return support failure. By turning those values into Maybe

values and replacing normal function application with >>=, we got a mech-
anism for handling failure pretty much for free. This is because >>= is sup-
posed to preserve the context of the value to which it applies functions. In
this case, the context was that our values were values with failure. So, when
we applied functions to such values, the possibility of failure was always taken
into account.

do Notation
Monads in Haskell are so useful that they got their own special syntax, called
do notation. You already encountered do notation in Chapter 8, when we
used it for gluing together several I/O actions into one. Well, as it turns out,
do notation isn’t just for IO but can be used for any monad. Its principle is
still the same: gluing together monadic values in sequence.

Consider this familiar example of monadic application:

ghci> Just 3 >>= (\x -> Just (show x ++ "!"))

Just "3!"

Been there, done that. Feeding a monadic value to a function that re-
turns one—no big deal. Notice how when we do this, x becomes 3 inside the
lambda. Once we’re inside that lambda, it’s just a normal value rather than a
monadic value. Now, what if we had another >>= inside that function? Check
this out:

ghci> Just 3 >>= (\x -> Just "!" >>= (\y -> Just (show x ++ y)))

Just "3!"

Ah, a nested use of >>=! In the outermost lambda, we feed Just "!" to the
lambda \y -> Just (show x ++ y). Inside this lambda, the y becomes "!". x is
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still 3, because we got it from the outer lambda. All this sort of reminds me
of the following expression:

ghci> let x = 3; y = "!" in show x ++ y

"3!"

The main difference here is that the values in our >>= example are mon-
adic. They are values with a failure context. We can replace any of them with
a failure:

ghci> Nothing >>= (\x -> Just "!" >>= (\y -> Just (show x ++ y)))

Nothing

ghci> Just 3 >>= (\x -> Nothing >>= (\y -> Just (show x ++ y)))

Nothing

ghci> Just 3 >>= (\x -> Just "!" >>= (\y -> Nothing))

Nothing

In the first line, feeding a Nothing to a function naturally results in a
Nothing. In the second line, we feed Just 3 to a function, and the x becomes
3. But then we feed a Nothing to the inner lambda, and the result of that is
Nothing, which causes the outer lambda to produce Nothing as well. So this is
sort of like assigning values to variables in let expressions, except that the
values in question are monadic values.

To further illustrate this point, let’s write this in a script and have each
Maybe value take up its own line:

foo :: Maybe String

foo = Just 3 >>= (\x ->

Just "!" >>= (\y ->

Just (show x ++ y)))

To save us from writing all these annoying lambdas, Haskell gives us do

notation. It allows us to write the previous piece of code like this:

foo :: Maybe String

foo = do

x <- Just 3

y <- Just "!"

Just (show x ++ y)

It would seem as though we’ve gained the ability to
temporarily extract things from Maybe values without need-
ing to check if the Maybe values are Just values or Nothing

values at every step. How cool! If any of the values that
we try to extract from are Nothing, the whole do expression
will result in a Nothing. We’re yanking out their (possibly
existing) values and letting >>= worry about the context
that comes with those values.
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do expressions are just different syntax for chaining monadic values.

Do As I Do
In a do expression, every line that isn’t a let line is a monadic value. To in-
spect its result, we use <-. If we have a Maybe String and we bind it to a vari-
able with <-, that variable will be a String, just as when we used >>= to feed
monadic values to lambdas.

The last monadic value in a do expression—like Just (show x ++ y) here—
can’t be used with <- to bind its result, because that wouldn’t make sense if
we translated the do expression back to a chain of >>= applications. Rather,
its result is the result of the whole glued-up monadic value, taking into ac-
count the possible failure of any of the previous ones. For instance, examine
the following line:

ghci> Just 9 >>= (\x -> Just (x > 8))

Just True

Because the left parameter of >>= is a Just value, the lambda is applied to
9, and the result is a Just True. We can rewrite this in do notation, as follows:

marySue :: Maybe Bool

marySue = do

x <- Just 9

Just (x > 8)

Comparing these two versions, it’s easy to see why the result of the whole
monadic value is the result of the last monadic value in the do expression
with all the previous ones chained into it.

Pierre Returns
Our tightrope walker’s routine can also be expressed with do notation. landLeft
and landRight take a number of birds and a pole and produce a pole wrapped
in a Just. The exception is when the tightrope walker slips, in which case a
Nothing is produced. We used >>= to chain successive steps because each one
relied on the previous one, and each one had an added context of possible
failure. Here are two birds landing on the left side, then two birds landing
on the right, and then one bird landing on the left:

routine :: Maybe Pole

routine = do

start <- return (0, 0)

first <- landLeft 2 start

second <- landRight 2 first

landLeft 1 second
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Let’s see if he succeeds:

ghci> routine

Just (3,2)

He does!
When we were doing these routines by explicitly writing >>=, we usu-

ally said something like return (0, 0) >>= landLeft 2, because landLeft 2 is a
function that returns a Maybe value. However, with do expressions, each line
must feature a monadic value. So we explicitly pass the previous Pole to the
landLeft and landRight functions. If we examined the variables to which we
bound our Maybe values, start would be (0, 0), first would be (2, 0) and
so on.

Because do expressions are written line by line, they may look like imper-
ative code to some people. But they’re just sequential, as each value in each
line relies on the result of the previous ones, along with their contexts (in
this case, whether they succeeded or failed).

Again, let’s take a look at what this piece of code would look like if we
hadn’t used the monadic aspects of Maybe:

routine :: Maybe Pole

routine =

case Just (0, 0) of

Nothing -> Nothing

Just start -> case landLeft 2 start of

Nothing -> Nothing

Just first -> case landRight 2 first of

Nothing -> Nothing

Just second -> landLeft 1 second

See how in the case of success, the tuple inside Just (0, 0) becomes
start, the result of landLeft 2 start becomes first, and so on?

If we want to throw Pierre a banana peel in do notation, we can do the
following:

routine :: Maybe Pole

routine = do

start <- return (0, 0)

first <- landLeft 2 start

Nothing

second <- landRight 2 first

landLeft 1 second

When we write a line in do notation without binding the monadic value
with <-, it’s just like putting >> after the monadic value whose result we want
to ignore. We sequence the monadic value but we ignore its result, because
we don’t care what it is. Plus, it’s prettier than writing its equivalent form of
_ <- Nothing.
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When to use do notation and when to explicitly use >>= is up to you. I
think this example lends itself to explicitly writing >>=, because each step re-
lies specifically on the result of the previous one. With do notation, we need
to specifically write on which pole the birds are landing, but every time we
just use the pole that was the result of the previous landing. But still, it gave
us some insight into do notation.

Pattern Matching and Failure
In do notation, when we bind monadic values to names, we can utilize pat-
tern matching, just as in let expressions and function parameters. Here’s an
example of pattern matching in a do expression:

justH :: Maybe Char

justH = do

(x:xs) <- Just "hello"

return x

We use pattern matching to get the first character of the string "hello",
and then we present it as the result. So justH evaluates to Just 'h'.

What if this pattern matching were to fail? When matching on a pattern
in a function fails, the next pattern is matched. If the matching falls through
all the patterns for a given function, an error is thrown, and the program
crashes. On the other hand, failed pattern matching in let expressions re-
sults in an error being produced immediately, because the mechanism of
falling through patterns isn’t present in let expressions.

When pattern matching fails in a do expression, the fail function (part
of the Monad type class) enables it to result in a failure in the context of the
current monad, instead of making the program crash. Here’s its default
implementation:

fail :: (Monad m) => String -> m a

fail msg = error msg

So, by default, it does make the program crash. But monads that incor-
porate a context of possible failure (like Maybe) usually implement it on their
own. For Maybe, it’s implemented like so:

fail _ = Nothing

It ignores the error message and makes a Nothing. So when pattern match-
ing fails in a Maybe value that’s written in do notation, the whole value results
in a Nothing. This is preferable to having your program crash. Here’s a do ex-
pression with a pattern match that’s bound to fail:

wopwop :: Maybe Char

wopwop = do
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(x:xs) <- Just ""

return x

The pattern matching fails, so the effect is the same as if the whole line
with the pattern were replaced with a Nothing. Let’s try this out:

ghci> wopwop

Nothing

The failed pattern matching has caused a failure within the context of
our monad instead of causing a program-wide failure, which is pretty neat.

The List Monad
So far, you’ve seen how Maybe values can
be viewed as values with a failure context,
and how we can incorporate failure han-
dling into our code by using >>= to feed
them to functions. In this section, we’re
going to take a look at how to use the
monadic aspects of lists to bring nonde-
terminism into our code in a clear and
readable manner.

In Chapter 11, we talked about how
lists represent nondeterministic values
when they’re used as applicatives. A
value like 5 is deterministic—it has only
one result, and we know exactly what it
is. On the other hand, a value like [3,8,9] contains several results, so we can
view it as one value that is actually many values at the same time. Using lists
as applicative functors showcases this nondeterminism nicely.

ghci> (*) <$> [1,2,3] <*> [10,100,1000]

[10,100,1000,20,200,2000,30,300,3000]

All the possible combinations of multiplying elements from the left list
with elements from the right list are included in the resulting list. When
dealing with nondeterminism, there are many choices that we can make,
so we just try all of them. This means the result is a nondeterministic value
as well, but it has many more results.

This context of nondeterminism translates to monads very nicely. Here’s
what the Monad instance for lists looks like:

instance Monad [] where

return x = [x]

xs >>= f = concat (map f xs)

fail _ = []
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As you know, return does the same thing as pure, and you’re already fa-
miliar with return for lists. return takes a value and puts it in a minimal de-
fault context that still yields that value. In other words, return makes a list
that has only that one value as its result. This is useful when we want to just
wrap a normal value into a list so that it can interact with nondeterministic
values.

>>= is about taking a value with a context (a monadic value) and feeding
it to a function that takes a normal value and returns one that has context. If
that function just produced a normal value instead of one with a context, >>=
wouldn’t be so useful—after one use, the context would be lost.

Let’s try feeding a nondeterministic value to a function:

ghci> [3,4,5] >>= \x -> [x,-x]

[3,-3,4,-4,5,-5]

When we used >>= with Maybe, the monadic value was fed into the
function while taking care of possible failures. Here, it takes care of non-
determinism for us.

[3,4,5] is a nondeterministic value, and we feed it into a function that
returns a nondeterministic value as well. The result is also nondeterminis-
tic, and it features all the possible results of taking elements from the list
[3,4,5] and passing them to the function \x -> [x,-x]. This function takes a
number and produces two results: one negated and one that’s unchanged.
So when we use >>= to feed this list to the function, every number is negated
and also kept unchanged. The x from the lambda takes on every value from
the list that’s fed to it.

To see how this is achieved, we can just follow the implementation. First,
we start with the list [3,4,5]. Then we map the lambda over it and get the
following result:

[[3,-3],[4,-4],[5,-5]]

The lambda is applied to every element, and we get a list of lists. Finally,
we just flatten the list, and voilà, we’ve applied a nondeterministic function
to a nondeterministic value!

Nondeterminism also includes support for failure. The empty list [] is
pretty much the equivalent of Nothing, because it signifies the absence of a
result. That’s why failing is just defined as the empty list. The error message
gets thrown away. Let’s play around with lists that fail:

ghci> [] >>= \x -> ["bad","mad","rad"]

[]

ghci> [1,2,3] >>= \x -> []

[]
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In the first line, an empty list is fed into the lambda. Because the list has
no elements, there are none to be passed to the function, so the result is
an empty list. This is similar to feeding Nothing to a function. In the second
line, each element is passed to the function, but the element is ignored and
the function just returns an empty list. Because the function fails for every
element that goes in it, the result is a failure.

Just as with Maybe values, we can chain several lists with >>=, propagating
the nondeterminism:

ghci> [1,2] >>= \n -> ['a','b'] >>= \ch -> return (n, ch)

[(1,'a'),(1,'b'),(2,'a'),(2,'b')]

The numbers from the list
[1,2] are bound to n, and the
characters from the list ['a','b']
are bound to ch. Then we do
return (n, ch) (or [(n, ch)]),
which means taking a pair of
(n, ch) and putting it in a default
minimal context. In this case, it’s
making the smallest possible list
that still presents (n, ch) as the
result and features as little non-
determinism as possible. Its ef-
fect on the context is minimal.
We’re saying, “For every element
in [1,2], go over every element in

['a','b'] and produce a tuple of one element from each list.”
Generally speaking, because return takes a value and wraps it in a min-

imal context, it doesn’t have any extra effect (like failing in Maybe or result-
ing in more nondeterminism for lists), but it does present something as its
result.

When you have nondeterministic values interacting, you can view their
computation as a tree where every possible result in a list represents a sepa-
rate branch. Here’s the previous expression rewritten in do notation:

listOfTuples :: [(Int, Char)]

listOfTuples = do

n <- [1,2]

ch <- ['a','b']

return (n, ch)

This makes it a bit more obvious that n takes on every value from [1,2]

and ch takes on every value from ['a','b']. Just as with Maybe, we’re extract-
ing the elements from the monadic values and treating them like normal
values, and >>= takes care of the context for us. The context in this case is
nondeterminism.

A Fistful of Monads 287



do Notation and List Comprehensions
Using lists with do notation might remind you of something you’ve seen be-
fore. For instance, check out the following piece of code:

ghci> [ (n, ch) | n <- [1,2], ch <- ['a','b'] ]

[(1,'a'),(1,'b'),(2,'a'),(2,'b')]

Yes, list comprehensions! In our do notation example, n became every re-
sult from [1,2]. For every such result, ch was assigned a result from ['a','b'],
and then the final line put (n, ch) into a default context (a singleton list) to
present it as the result without introducing any additional nondeterminism.
In this list comprehension, the same thing happened, but we didn’t need to
write return at the end to present (n, ch) as the result, because the output
part of a list comprehension did that for us.

In fact, list comprehensions are just syntactic sugar for using lists as
monads. In the end, list comprehensions and lists in do notation translate
to using >>= to do computations that feature nondeterminism.

MonadPlus and the guard Function
List comprehensions allow us to filter our output. For instance, we can filter
a list of numbers to search only for numbers whose digits contain a 7:

ghci> [ x | x <- [1..50], '7' `elem` show x ]

[7,17,27,37,47]

We apply show to x to turn our number into a string, and then we check
if the character '7' is part of that string.

To see how filtering in list comprehensions translates to the list monad,
we need to check out the guard function and the MonadPlus type class.

The MonadPlus type class is for monads that can also act as monoids. Here
is its definition:

class Monad m => MonadPlus m where

mzero :: m a

mplus :: m a -> m a -> m a

mzero is synonymous with mempty from the Monoid type class, and mplus cor-
responds to mappend. Because lists are monoids as well as monads, they can be
made an instance of this type class:

instance MonadPlus [] where

mzero = []

mplus = (++)
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For lists, mzero represents a nondeterministic computation that has no
results at all—a failed computation. mplus joins two nondeterministic values
into one. The guard function is defined like this:

guard :: (MonadPlus m) => Bool -> m ()

guard True = return ()

guard False = mzero

guard takes a Boolean value. If that value is True, guard takes a () and
puts it in a minimal default context that still succeeds. If the Boolean value
is False, guard makes a failed monadic value. Here it is in action:

ghci> guard (5 > 2) :: Maybe ()

Just ()

ghci> guard (1 > 2) :: Maybe ()

Nothing

ghci> guard (5 > 2) :: [()]

[()]

ghci> guard (1 > 2) :: [()]

[]

This looks interesting, but how is it useful? In the list monad, we use it
to filter out nondeterministic computations:

ghci> [1..50] >>= (\x -> guard ('7' `elem` show x) >> return x)

[7,17,27,37,47]

The result here is the same as the result of our previous list comprehen-
sion. How does guard achieve this? Let’s first see how guard functions in con-
junction with >>:

ghci> guard (5 > 2) >> return "cool" :: [String]

["cool"]

ghci> guard (1 > 2) >> return "cool" :: [String]

[]

If guard succeeds, the result contained within it is an empty tuple. So
then we use >> to ignore that empty tuple and present something else as the
result. However, if guard fails, then so will the return later on, because feed-
ing an empty list to a function with >>= always results in an empty list. guard
basically says, “If this Boolean is False, then produce a failure right here.
Otherwise, make a successful value that has a dummy result of () inside it.”
All this does is to allow the computation to continue.
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Here’s the previous example rewritten in do notation:

sevensOnly :: [Int]

sevensOnly = do

x <- [1..50]

guard ('7' `elem` show x)

return x

Had we forgotten to present x as the final result by using return, the re-
sulting list would just be a list of empty tuples. Here’s this again in the form
of a list comprehension:

ghci> [ x | x <- [1..50], '7' `elem` show x ]

[7,17,27,37,47]

So filtering in list comprehensions is the same as using guard.

A Knight’s Quest
Here’s a problem that really lends itself to being solved with nondetermin-
ism. Say we have a chessboard and only one knight piece on it. We want to
find out if the knight can reach a certain position in three moves. We’ll just
use a pair of numbers to represent the knight’s position on the chessboard.
The first number will determine the column he is in, and the second num-
ber will determine the row.

Let’s make a type synonym for the knight’s current position on the
chessboard:

type KnightPos = (Int, Int)
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Now suppose that the knight starts at (6, 2). Can he get to (6, 1) in
exactly three moves? What’s the best move to make next from his current
position? I know—how about all of them! We have nondeterminism at our
disposal, so instead of picking one move, let’s pick all of them at once. Here
is a function that takes the knight’s position and returns all of his next moves:

moveKnight :: KnightPos -> [KnightPos]

moveKnight (c,r) = do

(c', r') <- [(c+2,r-1),(c+2,r+1),(c-2,r-1),(c-2,r+1)

,(c+1,r-2),(c+1,r+2),(c-1,r-2),(c-1,r+2)

]

guard (c' `elem` [1..8] && r' `elem` [1..8])

return (c', r')

The knight can always take one step horizontally or vertically and two
steps horizontally or vertically, but his movement must be both horizontal
and vertical. (c', r') takes on every value from the list of movements and
then guard makes sure that the new move, (c', r'), is still on the board. If it’s
not, it produces an empty list, which causes a failure and return (c', r') isn’t
carried out for that position.

This function can also be written without the use of lists as monads.
Here is how to write it using filter:

moveKnight :: KnightPos -> [KnightPos]

moveKnight (c, r) = filter onBoard

[(c+2,r-1),(c+2,r+1),(c-2,r-1),(c-2,r+1)

,(c+1,r-2),(c+1,r+2),(c-1,r-2),(c-1,r+2)

]

where onBoard (c, r) = c `elem` [1..8] && r `elem` [1..8]

Both of these versions do the same thing, so pick the one that looks
nicer to you. Let’s give it a whirl:

ghci> moveKnight (6, 2)

[(8,1),(8,3),(4,1),(4,3),(7,4),(5,4)]

ghci> moveKnight (8, 1)

[(6,2),(7,3)]

Works like a charm! We take one position, and we just carry out all the
possible moves at once, so to speak.

So now that we have a nondeterministic next position, we just use >>= to
feed it to moveKnight. Here’s a function that takes a position and returns all
the positions that you can reach from it in three moves:

in3 :: KnightPos -> [KnightPos]

in3 start = do

first <- moveKnight start
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second <- moveKnight first

moveKnight second

If you pass it (6, 2), the resulting list is quite big. This is because if there
are several ways to reach some position in three moves, the move crops up in
the list several times.

Here’s the preceding code without do notation:

in3 start = return start >>= moveKnight >>= moveKnight >>= moveKnight

Using >>= once gives us all possible moves from the start. When we use
>>= the second time, for every possible first move, every possible next move is
computed, and the same goes for the last move.

Putting a value in a default context by applying return to it and then
feeding it to a function with >>= is the same as just normally applying the
function to that value, but we did it here anyway for style.

Now, let’s make a function that takes two positions and tells us if you can
get from one to the other in exactly three steps:

canReachIn3 :: KnightPos -> KnightPos -> Bool

canReachIn3 start end = end `elem` in3 start

We generate all the possible positions in three steps, and then we see if
the position we’re looking for is among them. Here’s how to check if we can
get from (6, 2) to (6, 1) in three moves:

ghci> (6, 2) `canReachIn3` (6, 1)

True

Yes! How about from (6, 2) to (7, 3)?

ghci> (6, 2) `canReachIn3` (7, 3)

False

No! As an exercise, you can change this function so that when you can
reach one position from the other, it tells you which moves to take. In Chap-
ter 14, you’ll see how to modify this function so that we also pass it the num-
ber of moves to take, instead of that number being hardcoded as it is now.

Monad Laws
Just like functors and applicative func-
tors, monads come with a few laws that
all monad instances must abide by. Just
because something is made an instance
of the Monad type class doesn’t mean that
it’s actually a monad. For a type to truly
be a monad, the monad laws must hold
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for that type. These laws allow us to make reasonable assumptions about the
type and its behavior.

Haskell allows any type to be an instance of any type class as long as the
types check out. It can’t check if the monad laws hold for a type though, so
if we’re making a new instance of the Monad type class, we need to be reason-
ably sure that all is well with the monad laws for that type. We can rely on
the types that come with the standard library to satisfy the laws, but when we
go about making our own monads, we need to manually check whether the
laws hold. But don’t worry, they’re not complicated.

Left Identity
The first monad law states that if we take a value, put it in a default con-
text with return, and then feed it to a function by using >>=, that’s the same
as just taking the value and applying the function to it. To put it formally,
return x >>= f is the same damn thing as f x.

If you look at monadic values as values with a context, and return as tak-
ing a value and putting it in a default minimal context that still presents that
value as the function’s result, this law makes sense. If that context is really
minimal, feeding this monadic value to a function shouldn’t be much differ-
ent than just applying the function to the normal value—and indeed, it isn’t
different at all.

For the Maybe monad, return is defined as Just. The Maybe monad is all
about possible failure, and if we have a value that we want to put in such
a context, treating it as a successful computation makes sense, because we
know what the value is. Here are some examples of return usage with Maybe:

ghci> return 3 >>= (\x -> Just (x+100000))

Just 100003

ghci> (\x -> Just (x+100000)) 3

Just 100003

For the list monad, return puts something in a singleton list. The >>= im-
plementation for lists goes over all the values in the list and applies the func-
tion to them. However, since there’s only one value in a singleton list, it’s
the same as applying the function to that value:

ghci> return "WoM" >>= (\x -> [x,x,x])

["WoM","WoM","WoM"]

ghci> (\x -> [x,x,x]) "WoM"

["WoM","WoM","WoM"]

You’ve learned that for IO, using return makes an I/O action that has no
side effects but just presents a value as its result. So it makes sense that this
law holds for IO as well.
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Right Identity
The second law states that if we have a monadic value and we use >>= to feed
it to return, the result is our original monadic value. Formally, m >>= return is
no different than just m.

This law might be a bit less obvious than the first one. Let’s take a look
at why it should hold. When we feed monadic values to functions by using
>>=, those functions take normal values and return monadic ones. return is
also one such function, if you consider its type.

return puts a value in a minimal context that still presents that value as
its result. This means that, for instance, for Maybe, it doesn’t introduce any
failure; for lists, it doesn’t introduce any extra nondeterminism.

Here’s a test run for a few monads:

ghci> Just "move on up" >>= (\x -> return x)

Just "move on up"

ghci> [1,2,3,4] >>= (\x -> return x)

[1,2,3,4]

ghci> putStrLn "Wah!" >>= (\x -> return x)

Wah!

In this list example, the implementation for >>= is as follows:

xs >>= f = concat (map f xs)

So when we feed [1,2,3,4] to return, first return gets mapped over [1,2,3,

4], resulting in [[1],[2],[3],[4]]. Then this is concatenated, and we have our
original list.

Left identity and right identity are basically laws that describe how return

should behave. It’s an important function for making normal values into
monadic ones, and it wouldn’t be good if the monadic value that it pro-
duced had any more than the minimal context needed.

Associativity
The final monad law says that when we have a chain of monadic function ap-
plications with >>=, it shouldn’t matter how they’re nested. Formally written,
doing (m >>= f) >>= g is just like doing m >>= (\x -> f x >>= g).

Hmmm, now what’s going on here? We have one monadic value, m, and
two monadic functions, f and g. When we’re using (m >>= f) >>= g, we’re
feeding m to f, which results in a monadic value. Then we feed that monadic
value to g. In the expression m >>= (\x -> f x >>= g), we take a monadic value
and we give it to a function that feeds the result of f x to g. It’s not easy to
see how those two are equal, so let’s take a look at an example that makes
this equality a bit clearer.
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Remember when we had our tightrope walker, Pierre, walk a rope while
birds landed on his balancing pole? To simulate birds landing on his balanc-
ing pole, we made a chain of several functions that might produce failure:

ghci> return (0, 0) >>= landRight 2 >>= landLeft 2 >>= landRight 2

Just (2,4)

We started with Just (0, 0) and then bound that value to the next mo-
nadic function, landRight 2. The result of that was another monadic value,
which got bound to the next monadic function, and so on. If we were to ex-
plicitly parenthesize this, we would write the following:

ghci> ((return (0, 0) >>= landRight 2) >>= landLeft 2) >>= landRight 2

Just (2,4)

But we can also write the routine like this:

return (0, 0) >>= (\x ->

landRight 2 x >>= (\y ->

landLeft 2 y >>= (\z ->

landRight 2 z)))

return (0, 0) is the same as Just (0, 0), and when we feed it to the lambda,
the x becomes (0, 0). landRight takes a number of birds and a pole (a tuple
of numbers), and that’s what it gets passed. This results in a Just (0, 2), and
when we feed this to the next lambda, y is (0, 2). This goes on until the final
bird landing produces a Just (2, 4), which is indeed the result of the whole
expression.

So it doesn’t matter how you nest feeding values to monadic functions.
What matters is their meaning. Let’s consider another way to look at this
law. Suppose we compose two functions named f and g:

(.) :: (b -> c) -> (a -> b) -> (a -> c)

f . g = (\x -> f (g x))

If the type of g is a -> b and the type of f is b -> c, we arrange them into
a new function that has a type of a -> c, so that its parameter is passed be-
tween those functions. Now what if those two functions were monadic? What
if the values they returned were monadic values? If we had a function of
type a -> m b, we couldn’t just pass its result to a function of type b -> m c,
because that function accepts a normal b, not a monadic one. We could,
however, use >>= to make that happen.

(<=<) :: (Monad m) => (b -> m c) -> (a -> m b) -> (a -> m c)

f <=< g = (\x -> g x >>= f)
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So now we can compose two monadic functions:

ghci> let f x = [x,-x]

ghci> let g x = [x*3,x*2]

ghci> let h = f <=< g

ghci> h 3

[9,-9,6,-6]

Okay, that’s cool. But what does that have to do with the associativity
law? Well, when we look at the law as a law of compositions, it states that
f <=< (g <=< h) should be the same as (f <=< g) <=< h. This is just another
way of saying that for monads, the nesting of operations shouldn’t matter.

If we translate the first two laws to use <=<, then the left identity law states
that for every monadic function f, f <=< return is the same as writing just f.
The right identity law says that return <=< f is also no different from f. This is
similar to how if f is a normal function, (f . g) . h is the same as f . (g . h),
f . id is always the same as f, and id . f is also just f.

In this chapter, we took a look at the basics of monads and learned how
the Maybe monad and the list monad work. In the next chapter, we’ll explore
a whole bunch of other cool monads, and we’ll also make our own.
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14
FOR A FEW MONADS MORE

You’ve seen how monads can be used to take values
with contexts and apply them to functions, and how
using >>= or do notation allows you to focus on the
values themselves, while Haskell handles the context
for you.

You’ve met the Maybe monad and seen how it
adds a context of possible failure to values. You’ve
learned about the list monad and seen how it lets
us easily introduce nondeterminism into our pro-
grams. You’ve also learned how to work in the IO

monad, even before you knew what a monad was!
In this chapter, we’ll cover a few other mon-

ads. You’ll see how they can make your programs
clearer by letting you treat all sorts of values as
monadic ones. Further exploration of monads
will also solidify your intuition for recognizing and
working with monads.

The monads that we’ll be exploring are all part
of the mtl package. (A Haskell package is a collec-
tion of modules.) The mtl package comes with the
Haskell Platform, so you probably already have
it. To check if you do, type ghc-pkg list from the



command line. This will show which Haskell packages you have installed,
and one of them should be mtl, followed by a version number. If it’s not in-
stalled, run cabal install mtl in the command line.

Writer? I Hardly Knew Her!
We’ve loaded our gun with the Maybe monad, the list monad, and the IO mo-
nad. Now let’s put the Writer monad in the chamber and see what happens
when we fire it!

Whereas the Maybe monad is for values with an added context of failure,
and the list monad is for nondeterministic values, the Writer monad is for
values that have another value attached that acts as a sort of log value. Writer
allows us to do computations while making sure that all the log values are
combined into one log value, which then is attached to the result.

For instance, we might want to equip our values with strings that explain
what’s going on, probably for debugging purposes. Consider a function that
takes a number of bandits in a gang and tells us if that’s a big gang. It’s a
very simple function:

isBigGang :: Int -> Bool

isBigGang x = x > 9

Now, what if instead of just giving us a True or False value, we want the
function to also return a log string that says what it did? Well, we just make
that string and return it alongside our Bool:

isBigGang :: Int -> (Bool, String)

isBigGang x = (x > 9, "Compared gang size to 9.")

So now, instead of just returning a Bool, we return a tuple, where the
first component of the tuple is the actual value and the second component
is the string that accompanies that value. There’s some added context to our
value now. Let’s give this a go:

ghci> isBigGang 3

(False,"Compared gang size to 9.")

ghci> isBigGang 30

(True,"Compared gang size to 9.")

So far, so good. isBigGang takes a normal value and returns a value with a
context. As you’ve just seen, feeding it a normal value is not a problem. Now
what if we already have a value that has a log string attached to it, such as
(3, "Smallish gang."), and we want to feed it to isBigGang? It seems like once
again, we’re faced with this question: If we have a function that takes a nor-
mal value and returns a value with a context, how do we take a value with a
context and feed it to the function?
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When we were exploring the Maybe monad in the
previous chapter, we made a function applyMaybe. This
function takes a Maybe a value and a function of type
a -> Maybe b. We feed that Maybe a value into the func-
tion, even though the function takes a normal a instead
of a Maybe a. It does this by minding the context that
comes with Maybe a values, which is that they are values
with possible failure. But inside the a -> Maybe b func-
tion, we can treat that value as just a normal value, be-
cause applyMaybe (which later becomes >>=) takes care of
checking if it is a Nothing or a Just value.

In the same vein, let’s make a function that takes a value with an at-
tached log—that is, an (a, String) value—and a function of type a -> (b, String),
and feeds that value into the function. We’ll call it applyLog. But an (a, String)

value doesn’t carry with it a context of possible failure, but rather a context
of an additional log value. So, applyLog will make sure that the log of the
original value isn’t lost, but is joined together with the log of the value that
results from the function. Here’s the implementation of applyLog:

applyLog :: (a, String) -> (a -> (b, String)) -> (b, String)

applyLog (x, log) f = let (y, newLog) = f x in (y, log ++ newLog)

When we have a value with a context that we want to feed to a function,
we usually try to separate the actual value from the context, apply the func-
tion to the value, and then see whether the context is handled. In the Maybe

monad, we checked if the value was a Just x, and if it was, we took that x and
applied the function to it. In this case, it’s very easy to find the actual value,
because we’re dealing with a pair where one component is the value and
the other a log. So, first, we just take the value, which is x, and we apply the
function f to it. We get a pair of (y, newLog), where y is the new result and
newLog is the new log. But if we returned that as the result, the old log value
wouldn’t be included in the result, so we return a pair of (y, log ++ newLog).
We use ++ to append the new log to the old one.

Here’s applyLog in action:

ghci> (3, "Smallish gang.") `applyLog` isBigGang

(False,"Smallish gang.Compared gang size to 9.")

ghci> (30, "A freaking platoon.") `applyLog` isBigGang

(True,"A freaking platoon.Compared gang size to 9.")

The results are similar to before, except that now the number of people
in the gang has its accompanying log, which is included in the result log.
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Here are a few more examples of using applyLog:

ghci> ("Tobin", "Got outlaw name.") `applyLog` (\x -> (length x, "Applied length."))

(5,"Got outlaw name.Applied length.")

ghci> ("Bathcat", "Got outlaw name.") `applyLog` (\x -> (length x, "Applied length."))

(7,"Got outlaw name.Applied length.")

See how inside the lambda, x is just a normal string and not a tuple, and
how applyLog takes care of appending the logs?

Monoids to the Rescue
Right now, applyLog takes values of type (a, String), but is there a reason
that the log must be a String? It uses ++ to append the logs, so wouldn’t this
work on any kind of list, not just a list of characters? Sure, it would. We can
change its type to this:

applyLog :: (a, [c]) -> (a -> (b, [c])) -> (b, [c])

Now the log is a list. The type of values contained in the list must be the
same for the original list as well as for the list that the function returns. Oth-
erwise, we wouldn’t be able to use ++ to stick them together.

Would this work for bytestrings? There’s no reason it shouldn’t. How-
ever, the type we have now works only for lists. It seems as though we would
need to make a separate applyLog for bytestrings. But wait! Both lists and
bytestrings are monoids. As such, they are both instances of the Monoid type
class, which means that they implement the mappend function. And for both
lists and bytestrings, mappend is for appending. Watch it in action:

ghci> [1,2,3] `mappend` [4,5,6]

[1,2,3,4,5,6]

ghci> B.pack [99,104,105] `mappend` B.pack [104,117,97,104,117,97]

Chunk "chi" (Chunk "huahua" Empty)

Cool! Now our applyLog can work for any monoid. We need to change
the type to reflect this, as well as the implementation, because we need to
change ++ to mappend:

applyLog :: (Monoid m) => (a, m) -> (a -> (b, m)) -> (b, m)

applyLog (x, log) f = let (y, newLog) = f x in (y, log `mappend` newLog)

Because the accompanying value can now be any monoid value, we no
longer need to think of the tuple as a value and a log; now we can think of it
as a value with an accompanying monoid value. For instance, we can have a
tuple that has an item name and an item price as the monoid value. We just
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use the Sum newtype to make sure that the prices are added as we operate with
the items. Here’s a function that adds drink to some cowboy food order:

import Data.Monoid

type Food = String

type Price = Sum Int

addDrink :: Food -> (Food, Price)

addDrink "beans" = ("milk", Sum 25)

addDrink "jerky" = ("whiskey", Sum 99)

addDrink _ = ("beer", Sum 30)

We use strings to represent foods and an Int in a Sum newtype wrapper to
keep track of how many cents something costs. As a reminder, doing mappend

with Sum results in the wrapped values being added together:

ghci> Sum 3 `mappend` Sum 9

Sum {getSum = 12}

The addDrink function is pretty simple. If we’re eating beans, it returns
"milk" along with Sum 25, so 25 cents wrapped in Sum. If we’re eating jerky, we
drink whiskey. And if we’re eating anything else, we drink beer. Just nor-
mally applying this function to a food wouldn’t be terribly interesting right
now. But using applyLog to feed a food that comes with a price itself into this
function is worth a look:

ghci> ("beans", Sum 10) `applyLog` addDrink

("milk",Sum {getSum = 35})

ghci> ("jerky", Sum 25) `applyLog` addDrink

("whiskey",Sum {getSum = 124})

ghci> ("dogmeat", Sum 5) `applyLog` addDrink

("beer",Sum {getSum = 35})

Milk costs 25 cents, but if we have it with beans that cost 10 cents, we’ll 
end up paying 35 cents.

Now it’s clear how the attached value doesn’t always need to be a log. It 
can be any monoid value, and how two such values are combined depends 
on the monoid. When we were doing logs, they were appended, but now, 
the numbers are being added up.

Because the value that addDrink returns is a tuple of type (Food, Price), we 
can feed that result to addDrink again, so that it tells us what we should drink 
along with our meal and how much that will cost us. Let’s give it a shot:

ghci> ("dogmeat", Sum 5) `applyLog` addDrink `applyLog` addDrink

("beer",Sum {getSum = 65})
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Adding a drink to some dog meat results in a beer and an additional 30
cents, so ("beer", Sum 35). And if we use applyLog to feed that to addDrink, we
get another beer, and the result is ("beer", Sum 65).

The Writer Type
Now that you’ve seen how a value with an attached monoid acts like a
monadic value, let’s examine the Monad instance for types of such values. The
Control.Monad.Writer module exports the Writer w a type along with its Monad

instance and some useful functions for dealing with values of this type.
To attach a monoid to a value, we just need to put them together in a

tuple. The Writer w a type is just a newtype wrapper for this. Its definition is
very simple:

newtype Writer w a = Writer { runWriter :: (a, w) }

It’s wrapped in a newtype so that it can be made an instance of Monad and
so that its type is separate from a normal tuple. The a type parameter repre-
sents the type of the value, and the w type parameter represents the type of
the attached monoid value.

The Control.Monad.Writer module reserves the right to change the way
it internally implements the Writer w a type, so it doesn’t export the Writer

value constructor. However, it does export the writer function, which does
the same thing that the Writer constructor would do. Use it when you want
to take a tuple and make a Writer value from it.

Because the Writer value constructor is not exported, you also can’t pat-
tern match against it. Instead, you need to use the runWriter function, which
takes a tuple that’s wrapped in a Writer newtype and unwraps it, returning a
simple tuple.

Its Monad instance is defined like so:

instance (Monoid w) => Monad (Writer w) where

return x = Writer (x, mempty)

(Writer (x, v)) >>= f = let (Writer (y, v')) = f x in Writer (y, v `mappend` v')

First, let’s examine >>=. Its imple-
mentation is essentially the same as 
applyLog, only now that our tuple is 
wrapped in the Writer newtype, we need 
to unwrap it when pattern matching. We 
take the value x and apply the function f 
to it. This gives us a Writer w a value, and 
we use a let expression to pattern match 
on it. We present y as the new result and 
use mappend to combine the old monoid

value with the new one. We pack that up with the result value in a tuple and 
then wrap that with the Writer constructor so that our result is a Writer value, 
instead of just an unwrapped tuple.
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So, what about return? It must take a value and put it in a default min-
imal context that still presents that value as the result. What would such a
context be for Writer values? If we want the accompanying monoid value to
affect other monoid values as little as possible, it makes sense to use mempty.

mempty is used to present identity monoid values, such as "" and Sum 0 and
empty bytestrings. Whenever we use mappend between mempty and some other
monoid value, the result is that other monoid value. So, if we use return to
make a Writer value and then use >>= to feed that value to a function, the
resulting monoid value will be only what the function returns.

Let’s use return on the number 3 a bunch of times, pairing it with a dif-
ferent monoid each time:

ghci> runWriter (return 3 :: Writer String Int)

(3,"")

ghci> runWriter (return 3 :: Writer (Sum Int) Int)

(3,Sum {getSum = 0})

ghci> runWriter (return 3 :: Writer (Product Int) Int)

(3,Product {getProduct = 1})

Because Writer doesn’t have a Show instance, we used runWriter to convert 
our Writer values to normal tuples that can be shown. For String, the identity 
value is the empty string. With Sum, it’s 0, because if we add 0 to something, 
that something stays the same. For Product, the identity is 1.

The Writer instance doesn’t feature an implementation for fail, so if a 
pattern match fails in do notation, error is called.

Using do Notation with Writer
Now that we have a Monad instance, we’re free to use do notation for Writer 
values. It’s handy when we have several Writer values and want to do stuff 
with them. As with other monads, we can treat them as normal values, and 
the context gets taken care of for us. In this case, all the monoid values that 
come attached are mappended, and so are reflected in the final result.

Here’s a simple example of using do notation with Writer to multiply two 
numbers:

import Control.Monad.Writer

logNumber :: Int -> Writer [String] Int

logNumber x = writer (x, ["Got number: " ++ show x])

multWithLog :: Writer [String] Int

multWithLog = do

a <- logNumber 3

b <- logNumber 5

return (a*b)
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logNumber takes a number and makes a Writer value out of it. Notice how
we used the writer function to construct a Writer value, instead of directly
using the Writer value constructor. For the monoid, we use a list of strings,
and we equip the number with a singleton list that just says that we have
that number. multWithLog is a Writer value that multiplies 3 and 5 and makes
sure that their attached logs are included in the final log. We use return to
present a*b as the result. Because return just takes something and puts it in
a minimal context, we can be sure that it won’t add anything to the log.

Here’s what we see if we run this code:

ghci> runWriter multWithLog

(15,["Got number: 3","Got number: 5"])

Sometimes, we just want some monoid value to be included at some
particular point. For this, the tell function is useful. It’s part of the
MonadWriter type class. In the case of Writer, it takes a monoid value, like
["This is going on"], and creates a Writer value that presents the dummy
value () as its result, but has the desired monoid value attached. When we
have a monadic value that has () as its result, we don’t bind it to a variable.

Here’s multWithLog with some extra reporting included:

multWithLog :: Writer [String] Int

multWithLog = do

a <- logNumber 3

b <- logNumber 5

tell ["Gonna multiply these two"]

return (a*b)

It’s important that return (a*b) is the last line, because the result of the
last line in a do expression is the result of the whole do expression. Had we
put tell as the last line, the result of this do expression would be (). We would
lose the result of the multiplication. However, the log would be the same.
Here’s this in action:

ghci> runWriter multWithLog

(15,["Got number: 3","Got number: 5","Gonna multiply these two"])

Adding Logging to Programs
Euclid’s algorithm takes two numbers and computes their greatest common
divisor—that is, the biggest number that still divides both of them. Haskell
already features the gcd function, which does exactly this, but let’s imple-
ment our own function and then equip it with logging capabilities. Here’s
the normal algorithm:

gcd' :: Int -> Int -> Int

gcd' a b
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| b == 0 = a

| otherwise = gcd' b (a `mod` b)

The algorithm is very simple. First, it checks if the second number is
0. If it is, then the result is the first number. If it isn’t, then the result is the
greatest common divisor of the second number and the remainder of divid-
ing the first number with the second one.

For instance, if we want to know what the greatest common divisor of 8
and 3 is, we just follow this algorithm. Because 3 isn’t 0, we need to find the
greatest common divisor of 3 and 2 (if we divide 8 by 3, the remainder is 2).
Next, we find the greatest common divisor of 3 and 2. 2 still isn’t 0, so now
we have have 2 and 1. The second number isn’t 0, so we run the algorithm
again for 1 and 0, as dividing 2 by 1 gives us a remainder of 0. And finally,
because the second number is now 0, the final result is 1. Let’s see if our
code agrees:

ghci> gcd' 8 3

1

It does. Very good! Now, we want to equip our result with a context,
and the context will be a monoid value that acts as a log. As before, we’ll
use a list of strings as our monoid. So, this should be the type of our new
gcd' function:

gcd' :: Int -> Int -> Writer [String] Int

All that’s left now is to equip our function with log values. Here is
the code:

import Control.Monad.Writer

gcd' :: Int -> Int -> Writer [String] Int

gcd' a b

| b == 0 = do

tell ["Finished with " ++ show a]

return a

| otherwise = do

tell [show a ++ " mod " ++ show b ++ " = " ++ show (a `mod` b)]

gcd' b (a `mod` b)

This function takes two normal Int values and returns a Writer [String]

Int—that is, an Int that has a log context. In the case where b is 0, instead
of just giving a as the result, we use a do expression to put together a Writer

value as a result. First, we use tell to report that we’re finished, and then we
use return to present a as the result of the do expression. Instead of this do

expression, we could have also written this:

writer (a, ["Finished with " ++ show a])
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However, I think the do expression is easier to read.
Next, we have the case when b isn’t 0. In this case, we log that we’re us-

ing mod to figure out the remainder of dividing a and b. Then the second line
of the do expression just recursively calls gcd'. Remember that gcd' now ulti-
mately returns a Writer value, so it’s perfectly valid that gcd' b (a `mod` b) is a
line in a do expression.

Let’s try out our new gcd'. Its result is a Writer [String] Int value, and if
we unwrap that from its newtype, we get a tuple. The first part of the tuple is
the result. Let’s see if it’s okay:

ghci> fst $ runWriter (gcd' 8 3)

1

Good! Now what about the log? Because the log is a list of strings, let’s
use mapM_ putStrLn to print those strings on the screen:

ghci> mapM_ putStrLn $ snd $ runWriter (gcd' 8 3)

8 mod 3 = 2

3 mod 2 = 1

2 mod 1 = 0

Finished with 1

I think it’s awesome how we were able to change our ordinary algo-
rithm to one that reports what it does as it goes along. And we did this just
by changing normal values to monadic values. We let the implementation of
>>= for Writer take care of the logs for us.

You can add a logging mechanism to pretty much any function. You just
replace normal values with Writer values where you want and change normal
function application to >>= (or do expressions if it increases readability).

Inefficient List Construction
When using the Writer monad, you need to be careful
which monoid to use, because using lists can some-
times turn out to be very slow. Lists use ++ for mappend,
and using ++ to add something to the end of a list is
slow if that list is really long.

In our gcd' function, the logging is fast because
the list appending ends up looking like this:

a ++ (b ++ (c ++ (d ++ (e ++ f))))

A list is a data structure that’s constructed from
left to right. This is efficient, because we first fully con-
struct the left part of a list and only then add a longer
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list on the right. But if we’re not careful, using the Writer monad can pro-
duce list appending that looks like this:

((((a ++ b) ++ c) ++ d) ++ e) ++ f

This associates to the left instead of to the right. It’s inefficient because
every time it wants to add the right part to the left part, it must construct the
left part all the way from the beginning!

The following function works like gcd', but it logs stuff in reverse. First,
it produces the log for the rest of the procedure, and then it adds the cur-
rent step to the end of the log.

import Control.Monad.Writer

gcdReverse :: Int -> Int -> Writer [String] Int

gcdReverse a b

| b == 0 = do

tell ["Finished with " ++ show a]

return a

| otherwise = do

result <- gcdReverse b (a `mod` b)

tell [show a ++ " mod " ++ show b ++ " = " ++ show (a `mod` b)]

return result

It does the recursion first and binds its resulting value to result. Then it
adds the current step to the log, but the current step goes at the end of the
log that was produced by the recursion. At the end, it presents the result of
the recursion as the final result. Here it is in action:

ghci> mapM_ putStrLn $ snd $ runWriter (gcdReverse 8 3)

Finished with 1

2 mod 1 = 0

3 mod 2 = 1

8 mod 3 = 2

This function is inefficient because it ends up associating the use of ++ to
the left instead of to the right.

Because lists can sometimes be inefficient when repeatedly appended
in this manner, it’s best to use a data structure that always supports efficient
appending. One such data structure is the difference list.

Using Difference Lists
While similar to a normal list, a difference list is actually a function that takes
a list and prepends another list to it. For example, the difference list equiva-
lent of a list like [1,2,3] is the function \xs -> [1,2,3] ++ xs. A normal empty
list is [], whereas an empty difference list is the function \xs -> [] ++ xs.
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Difference lists support efficient appending. When we append two nor-
mal lists with ++, the code must walk all the way to the end of the list on the
left of ++, and then stick the other one there. But what if we take the differ-
ence list approach and represent our lists as functions?

Appending two difference lists can be done like so:

f `append` g = \xs -> f (g xs)

Remember that f and g are functions that take lists and prepend some-
thing to them. For instance, if f is the function ("dog"++) (just another way of
writing \xs -> "dog" ++ xs) and g is the function ("meat"++), then f `append` g

makes a new function that’s equivalent to the following:

\xs -> "dog" ++ ("meat" ++ xs)

We’ve appended two difference lists just by making a new function that
first applies one difference list to some list and then to the other.

Let’s make a newtype wrapper for difference lists so that we can easily give
them monoid instances:

newtype DiffList a = DiffList { getDiffList :: [a] -> [a] }

The type that we wrap is [a] -> [a], because a difference list is just a
function that takes a list and returns another list. Converting normal lists
to difference lists and vice versa is easy:

toDiffList :: [a] -> DiffList a

toDiffList xs = DiffList (xs++)

fromDiffList :: DiffList a -> [a]

fromDiffList (DiffList f) = f []

To make a normal list into a difference list, we just do what we did be-
fore and make it a function that prepends it to another list. Because a differ-
ence list is a function that prepends something to another list, if we just want
that something, we apply the function to an empty list!

Here’s the Monoid instance:

instance Monoid (DiffList a) where

mempty = DiffList (\xs -> [] ++ xs)

(DiffList f) `mappend` (DiffList g) = DiffList (\xs -> f (g xs))

Notice how for difference lists, mempty is just the id function, and mappend 
is actually just function composition. Let’s see if this works:

ghci> fromDiffList (toDiffList [1,2,3,4] `mappend` toDiffList [1,2,3])

[1,2,3,4,1,2,3]
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Tip-top! Now we can increase the efficiency of our gcdReverse function by
making it use difference lists instead of normal lists:

| b == 0 = do

tell (toDiffList ["Finished with " ++ show a])

return a

| otherwise = do

result <- gcdReverse b (a `mod` b)

tell (toDiffList [show a ++ " mod " ++ show b ++ " = " ++ show (a `mod` b)]) 

return result

We just needed to change the type of the monoid from [String] to
DiffList String and then when using tell, convert our normal lists into dif-
ference lists with toDiffList. Let’s see if the log gets assembled properly:

ghci> mapM_ putStrLn . fromDiffList . snd . runWriter $ gcdReverse 110 34

Finished with 2

8 mod 2 = 0

34 mod 8 = 2

110 mod 34 = 8

We do gcdReverse 110 34, then use runWriter to unwrap it from the newtype,
then apply snd to that to just get the log, then apply fromDiffList to convert it
to a normal list, and, finally, print its entries to the screen.

Comparing Performance
To get a feel for just how much difference lists may improve your perfor-
mance, consider the following function. It just counts down from some
number to zero but produces its log in reverse, like gcdReverse, so that the
numbers in the log will actually be counted up.

finalCountDown :: Int -> Writer (DiffList String) ()

finalCountDown 0 = do

tell (toDiffList ["0"])

finalCountDown x = do

finalCountDown (x-1)

tell (toDiffList [show x])

If we give it 0, it just logs that value. For any other number, it first counts
down its predecessor to 0, and then appends that number to the log. So, if
we apply finalCountDown to 100, the string "100" will come last in the log.
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If you load this function in GHCi and apply it to a big number, like
500000, you’ll see that it quickly starts counting from 0 onward:

ghci> mapM_ putStrLn . fromDiffList . snd . runWriter $ finalCountDown 500000

0

1

2

...

However, if you change it to use normal lists instead of difference lists,
like so:

finalCountDown :: Int -> Writer [String] ()

finalCountDown 0 = do

tell ["0"]

finalCountDown x = do

finalCountDown (x-1)

tell [show x]

and then tell GHCi to start counting:

ghci> mapM_ putStrLn . snd . runWriter $ finalCountDown 500000

you’ll see that the counting is really slow.
Of course, this is not the proper and scientific way to test the speed of

your programs. However, we were able to see that, in this case, using dif-
ference lists starts producing results immediately, whereas normal lists take
forever.

Oh, by the way, the song “Final Countdown” by Europe is now stuck in
your head. Enjoy!

Reader? Ugh, Not This Joke Again
In Chapter 11, you saw that the function
type (->) r is an instance of Functor. Map-
ping a function f over a function g will make
a function that takes the same thing as g, ap-
plies g to it, and then applies f to that result.
So basically, we’re making a new function
that’s like g, but before returning its result, f is applied to that result as well.
Here’s an example:

ghci> let f = (*5)

ghci> let g = (+3)

ghci> (fmap f g) 8

55
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You’ve also seen that functions are applicative functors. They allow us to
operate on the eventual results of functions as if we already had their results.
Here’s an example:

ghci> let f = (+) <$> (*2) <*> (+10)

ghci> f 3

19

The expression (+) <$> (*2) <*> (+10) makes a function that takes a
number, gives that number to (*2) and (+10), and then adds together the
results. For instance, if we apply this function to 3, it applies both (*2) and
(+10) to 3, giving 6 and 13. Then it calls (+) with 6 and 13, and the result is 19.

Functions As Monads
Not only is the function type (->) r a functor and an applicative functor,
but it’s also a monad. Just like other monadic values that you’ve met so far,
a function can also be considered a value with a context. The context for
functions is that that value is not present yet and that we need to apply that
function to something in order to get its result.

Because you’re already acquainted with how functions work as functors
and applicative functors, let’s dive right in and see what their Monad instance
looks like. It’s located in Control.Monad.Instances, and it goes a little some-
thing like this:

instance Monad ((->) r) where

return x = \_ -> x

h >>= f = \w -> f (h w) w

You’ve seen how pure is implemented for functions, and return is pretty
much the same thing as pure. It takes a value and puts it in a minimal con-
text that always has that value as its result. And the only way to make a func-
tion that always has a certain value as its result is to make it completely ig-
nore its parameter.

The implementation for >>= may seem a bit cryptic, but it’s really not all
that complicated. When we use >>= to feed a monadic value to a function,
the result is always a monadic value. So, in this case, when we feed a function
to another function, the result is a function as well. That’s why the result
starts off as a lambda.

All of the implementations of >>= so far somehow isolated the result
from the monadic value and then applied the function f to that result. The
same thing happens here. To get the result from a function, we need to ap-
ply it to something, which is why we use (h w) here, and then we apply f to
that. f returns a monadic value, which is a function in our case, so we apply
it to w as well.
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The Reader Monad
If you don’t get how >>= works at this point, don’t worry. After a few exam-
ples, you’ll see that this is a really simple monad. Here’s a do expression that
utilizes it:

import Control.Monad.Instances

addStuff :: Int -> Int

addStuff = do

a <- (*2)

b <- (+10)

return (a+b)

This is the same thing as the applicative expression that we wrote earlier,
but now it relies on functions being monads. A do expression always results
in a monadic value, and this one is no different. The result of this monadic
value is a function. It takes a number, then (*2) is applied to that number,
and the result becomes a. (+10) is applied to the same number that (*2) was
applied to, and the result becomes b. return, as in other monads, doesn’t
have any effect but to make a monadic value that presents some result. This
presents a+b as the result of this function. If we test it, we get the same result
as before:

ghci> addStuff 3

19

Both (*2) and (+10) are applied to the number 3 in this case. return (a+b)

does as well, but it ignores that value and always presents a+b as the result.
For this reason, the function monad is also called the reader monad. All the
functions read from a common source. To make this even clearer, we can
rewrite addStuff like so:

addStuff :: Int -> Int

addStuff x = let

a = (*2) x

b = (+10) x

in a+b

You see that the reader monad allows us to treat functions as values with
a context. We can act as if we already know what the functions will return.
It does this by gluing functions together into one function and then giving
that function’s parameter to all of the functions that compose it. So, if we
have a lot of functions that are all just missing one parameter, and they will
eventually be applied to the same thing, we can use the reader monad to
sort of extract their future results, and the >>= implementation will make
sure that it all works out.
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Tasteful Stateful Computations
Haskell is a pure language, and
because of that, our programs are
made of functions that can’t change
any global state or variables; they
can only do some computations
and return the results. This restric-
tion actually makes it easier to think
about our programs, as it frees us
from worrying what every variable’s
value is at some point in time.

However, some problems are
inherently stateful, in that they rely
on some state that changes over
time. While this isn’t a problem for
Haskell, these computations can be
a bit tedious to model. That’s why Haskell features the State monad, which
makes dealing with stateful problems a breeze, while still keeping everything
nice and pure.

When we were looking at random numbers back in Chapter 9, we dealt
with functions that took a random generator as a parameter and returned
a random number and a new random generator. If we wanted to generate
several random numbers, we always needed to use the random generator
that a previous function returned along with its result. For example, to cre-
ate a function that takes a StdGen and tosses a coin three times based on that
generator, we did this:

threeCoins :: StdGen -> (Bool, Bool, Bool)

threeCoins gen =

let (firstCoin, newGen) = random gen

(secondCoin, newGen') = random newGen

(thirdCoin, newGen'') = random newGen'

in (firstCoin, secondCoin, thirdCoin)

This function takes a generator gen, and then random gen returns a Bool

value along with a new generator. To throw the second coin, we use the new
generator, and so on.

In most other languages, we wouldn’t need to return a new generator
along with a random number. We could just modify the existing one! But
since Haskell is pure, we can’t do that, so we need to take some state, make
a result from it and a new state, and then use that new state to generate new
results.

You would think that to avoid manually dealing with stateful computa-
tions in this way, we would need to give up the purity of Haskell. Well, we
don’t have to, since there’s a special little monad called the State monad
that handles all this state business for us, without impacting any of the
purity that makes Haskell programming so cool.
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Stateful Computations
To help demonstrate stateful computations, let’s go ahead and give them
a type. We’ll say that a stateful computation is a function that takes some
state and returns a value along with some new state. That function has the
following type:

s -> (a, s)

s is the type of the state, and a is the result of the stateful computations.

NOTE Assignment in most other languages could be thought of as a stateful computation.
For instance, when we do x = 5 in an imperative language, it will usually assign the
value 5 to the variable x, and it will also have the value 5 as an expression. If you look
at that functionally, it’s like a function that takes a state (that is, all the variables that
have been assigned previously) and returns a result (in this case, 5) and a new state,
which would be all the previous variable mappings plus the newly assigned variable.

This stateful computation—a function that takes a state and returns a
result and a new state—can be thought of as a value with a context as well.
The actual value is the result, whereas the context is that we must provide
some initial state to actually get that result, and that apart from getting a
result, we also get a new state.

Stacks and Stones
Say we want to model a stack. A stack is a data structure that contains a bunch
of elements and supports exactly two operations:

• Pushing an element to the stack, which adds an element onto the top of
the stack

• Popping an element off the stack, which removes the topmost element
from the stack

We’ll use a list to represent our stack, with the head of the list acting as
the top of the stack. To help us with our task, we’ll make two functions:

• pop will take a stack, pop one item, and return that item as the result. It
will also return a new stack, without the popped item.

• push will take an item and a stack and then push that item onto the stack.
It will return () as its result, along with a new stack.

Here are the functions in use:

type Stack = [Int]

pop :: Stack -> (Int, Stack)

pop (x:xs) = (x, xs)
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push :: Int -> Stack -> ((), Stack)

push a xs = ((), a:xs)

We used () as the result when pushing to the stack because pushing
an item onto the stack doesn’t have any important result value—its main
job is to change the stack. If we apply only the first parameter of push, we
get a stateful computation. pop is already a stateful computation because of
its type.

Let’s write a small piece of code to simulate a stack using these func-
tions. We’ll take a stack, push 3 to it, and then pop two items, just for kicks.
Here it is:

stackManip :: Stack -> (Int, Stack)

stackManip stack = let

((), newStack1) = push 3 stack

(a , newStack2) = pop newStack1

in pop newStack2

We take a stack, and then we do push 3 stack, which results in a tuple. 
The first part of the tuple is a (), and the second is a new stack, which we call 
newStack1. Then we pop a number from newStack1, which results in a number 
a (which is the 3) that we pushed and a new stack, which we call newStack2. 
Then we pop a number off newStack2, and we get a number that’s b and a 
newStack3. We return a tuple with that number and that stack. Let’s try it out:

ghci> stackManip [5,8,2,1]

(5,[8,2,1])

The result is 5, and the new stack is [8,2,1]. Notice how stackManip is it-
self a stateful computation. We’ve taken a bunch of stateful computations
and sort of glued them together. Hmm, sounds familiar.

The preceding code for stackManip is kind of tedious, since we’re man-
ually giving the state to every stateful computation and storing it and then
giving it to the next one. Wouldn’t it be cooler if, instead of giving the stack
manually to each function, we could write something like the following?

stackManip = do

push 3

a <- pop

pop

Well, using the State monad will allow us to do exactly that. With it, we
will be able to take stateful computations like these and use them without
needing to manage the state manually.
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The State Monad
The Control.Monad.State module provides a newtype that wraps stateful compu-
tations. Here’s its definition:

newtype State s a = State { runState :: s -> (a, s) }

A State s a is a stateful computation that manipulates a state of type s

and has a result of type a.
Much like Control.Monad.Writer, Control.Monad.State doesn’t export its

value constructor. If you want to take a stateful computation and wrap it in
the State newtype, use the state function, which does the same thing that the
State constructor would do.

Now that you’ve seen what stateful computations are about and how
they can even be thought of as values with contexts, let’s check out their
Monad instance:

instance Monad (State s) where

return x = State $ \s -> (x, s)

(State h) >>= f = State $ \s -> let (a, newState) = h s

(State g) = f a

in g newState

Our aim with return is to take a value and make a stateful computation
that always has that value as its result. That’s why we just make a lambda
\s -> (x, s). We always present x as the result of the stateful computation,
and the state is kept unchanged, because return must put a value in a mini-
mal context. So return will make a stateful computation that presents a cer-
tain value as the result and keeps the state unchanged.

What about >>=? Well, the result of feeding a 
stateful computation to a function with >>= must 
be a stateful computation, right? So, we start off 
with the State newtype wrapper, and then we type 
out a lambda. This lambda will be our new state-
ful computation. But what goes on in it? Well, we 
need to somehow extract the result value from 
the first stateful computation. Because we’re in 
a stateful computation right now, we can give 
the stateful computation h our current state s, 
which results in a pair of the result and a new 
state: (a, newState).

So far, every time we implemented >>=, once we had extracted just the
result from the monadic value, we applied the function f to it to get the
new monadic value. In Writer, after doing that and getting the new mo-
nadic value, we still need to make sure that the context is taken care of by
mappending the old monoid value with the new one. Here, we do f a, and we
get a new stateful computation g. Now that we have a new stateful computa-
tion and a new state (which goes by the name of newState), we just apply that
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stateful computation g to the newState. The result is a tuple of the final result
and final state!

So, with >>=, we kind of glue two stateful computations together. The
second computation is hidden inside a function that takes the previous com-
putation’s result. Because pop and push are already stateful computations, it’s
easy to wrap them into a State wrapper:

import Control.Monad.State

pop :: State Stack Int

pop = state $ \(x:xs) -> (x, xs)

push :: Int -> State Stack ()

push a = state $ \xs -> ((), a:xs)

Notice how we used the state function to wrap a function into the State

newtype instead of using the State value constructor directly.
pop is already a stateful computation, and push takes an Int and returns a

stateful computation. Now we can rewrite our previous example of pushing 3

onto the stack and then popping two numbers off, like this:

import Control.Monad.State

stackManip :: State Stack Int

stackManip = do

push 3

a <- pop

pop

See how we’ve glued a push and two pops into one stateful computa-
tion? When we unwrap it from its newtype wrapper, we get a function to which
we can provide some initial state:

ghci> runState stackManip [5,8,2,1]

(5,[8,2,1])

We didn’t need to bind the second pop to a, because we didn’t use that a
at all. So, we could have written it like this:

stackManip :: State Stack Int

stackManip = do

push 3

pop

pop

Pretty cool. But what if we want to do something a little more com-
plicated? Let’s say we want to pop one number off the stack, and if that
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number is 5, we’ll just push it back on the stack and stop. But if the number
isn’t 5, we’ll push 3 and 8 back on instead. Here’s the code:

stackStuff :: State Stack ()

stackStuff = do

a <- pop

if a == 5

then push 5

else do

push 3

push 8

This is quite straightforward. Let’s run it with an initial stack:

ghci> runState stackStuff [9,0,2,1,0]

((),[8,3,0,2,1,0])

Remember that do expressions result in monadic values, and with the
State monad, a single do expression is also a stateful function. Because
stackManip and stackStuff are ordinary stateful computations, we can glue
them together to produce further stateful computations:

moreStack :: State Stack ()

moreStack = do

a <- stackManip

if a == 100

then stackStuff

else return ()

If the result of stackManip on the current stack is 100, we run stackStuff;
otherwise, we do nothing. return () just keeps the state as it is and does
nothing.

Getting and Setting State
The Control.Monad.State module provides a type class called MonadState, which
features two pretty useful functions: get and put. For State, the get function is
implemented like this:

get = state $ \s -> (s, s)

It just takes the current state and presents it as the result.
The put function takes some state and makes a stateful function that

replaces the current state with it:

put newState = state $ \s -> ((), newState)
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So, with these, we can see what the current stack is or we can replace it
with a whole other stack, like so:

stackyStack :: State Stack ()

stackyStack = do

stackNow <- get

if stackNow == [1,2,3]

then put [8,3,1]

else put [9,2,1]

We can also use get and put to implement pop and push. Here’s pop:

pop :: State Stack Int

pop = do

(x:xs) <- get

put xs

return x

We use get to get the whole stack, and then we use put to make every-
thing but the top element the new state. Then we use return to present x as
the result.

Here’s push implemented with get and put:

push :: Int -> State Stack ()

push x = do

xs <- get

put (x:xs)

We just use get to get the current stack and use put to make the set the
new state as our stack, with the element x on top.

It’s worth examining what the type of >>= would be if it worked only for
State values:

(>>=) :: State s a -> (a -> State s b) -> State s b

See how the type of the state s stays the same, but the type of the result
can change from a to b? This means that we can glue together several state-
ful computations whose results are of different types, but the type of the
state must stay the same. Now why is that? Well, for instance, for Maybe, >>=
has this type:

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
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It makes sense that the monad itself, Maybe, doesn’t change. It wouldn’t
make sense to use >>= between two different monads. Well, for the State

monad, the monad is actually State s, so if that s were different, we would
be using >>= between two different monads.

Randomness and the State Monad
At the beginning of this section, we talked about how generating random
numbers can sometimes be awkward. Every random function takes a gener-
ator and returns a random number along with a new generator, which must
then be used instead of the old one if we want to generate another random
number. The State monad makes dealing with this a lot easier.

The random function from System.Random has the following type:

random :: (RandomGen g, Random a) => g -> (a, g)

This means it takes a random generator and produces a random num-
ber along with a new generator. We can see that it’s a stateful computation,
so we can wrap it in the State newtype constructor by using the state function,
and then use it as a monadic value so that passing the state is handled for us:

import System.Random

import Control.Monad.State

randomSt :: (RandomGen g, Random a) => State g a

randomSt = state random

So, now if we want to throw three coins (True is tails, and False is heads),
we just do the following:

import System.Random

import Control.Monad.State

threeCoins :: State StdGen (Bool, Bool, Bool)

threeCoins = do

a <- randomSt

b <- randomSt

c <- randomSt

return (a, b, c)

threeCoins is now a stateful computation, and after taking an initial ran-
dom generator, it passes that generator to the first randomSt, which produces
a number and a new generator, which is passed to the next one, and so on.
We use return (a, b, c) to present (a, b, c) as the result without changing
the most recent generator.
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Let’s give this a go:

ghci> runState threeCoins (mkStdGen 33)

((True,False,True),680029187 2103410263)

Now doing things that require some state to be saved in between steps
just became much less of a hassle!

Error Error on the Wall
You know by now that Maybe is used to add a context of possible failure to
values. A value can be a Just something or a Nothing. However useful it may be,
when we have a Nothing, all we know is that there was some sort of failure—
there’s no way to cram more information in there telling us what kind of
failure it was.

The Either e a type also allows us to incorporate a context of possible
failure into our values. It also lets us attach values to the failure, so they can
describe what went wrong or provide other useful information regarding the
failure. An Either e a value can either be a Right value, signifying the right
answer and a success, or it can be a Left value, signifying failure. Here’s an
example:

ghci> :t Right 4

Right 4 :: (Num t) => Either a t

ghci> :t Left "out of cheese error"

Left "out of cheese error" :: Either [Char] b

This is pretty much just an enhanced Maybe, so it makes sense for it to be
a monad. It can also be viewed as a value with an added context of possible
failure, but now there’s a value attached when there’s an error as well.

Its Monad instance is similar to that of Maybe, and it can be found in
Data.Either:

instance Monad (Either e) where

return x = Right x

Left l >>= _ = Left l

Right r >>= k = k r

return, as always, takes a value and puts it in a default minimal context.
It wraps our value in the Right constructor because we’re using Right to rep-
resent a successful computation where a result is present. This is a lot like
return for Maybe.

The >>= examines two possible cases: a Left and a Right. In the case of a
Right, the function f is applied to the value inside it, similar to the case of a
Just where the function is just applied to its contents. In the case of an error,
the Left value is kept, along with its contents, which describe the failure.
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Here are a few examples of usage:

ghci> Left "boom" >>= \x -> return (x+1)

Left "boom"

ghci> Left "boom " >>= \x -> Left "no way!"

Left "boom "

ghci> Right 100 >>= \x -> Left "no way!"

Left "no way!"

ghci> Right 3 >>= \x -> return (x + 100)

Right 103

When we use >>= to feed a Left value to a function, the function is ig-
nored and an identical Left value is returned. When we feed a Right value to 
a function, the function is applied to what’s on the inside.

Either is also an instance of the MonadError type class, which lives in 
Control.Monad.Error. This type class is for monads whose values can fail and 
provide some sort of data with their failure. It defines two functions for deal-
ing with such values.

The first function is throwError, which takes some sort of error data and 
returns a value that fails with that data. In the case of Either, it just takes a 
value and wraps it in a Left constructor.

ghci> :m + Control.Monad.Except

ghci> throwError "warp core breach imminent!" :: Either String Int 

Left "warp core breach imminent!"

We had to use an explicit type declaration to tell ghci to give us an Either

value because throwError can return a value of any type, as long as that type is
an instance of MonadError.

The other function is catchError, which takes two parameters. The first
one is a monadic value that can fail. The second one is a function that is
evaluated if the given monadic value has failed. This function takes some
error data and returns a new monadic value.

If the first parameter of catchError is a successful value, catchError simply
returns that value. If it isn’t, catchError feeds that value’s error data to the
supplied function, which can then either salvage the failure and return a
successful value, or it can fail on its own. Here’s a demonstration:

ghci> Right 100 `catchError` (\e -> throwError $ "Aborting! error: " ++ e)

Right 100

ghci> Left "Oops!" `catchError` (\e -> throwError $ "Aborting! Error: " ++ e)

Left "Aborting! Error: Oops!"

ghci> Right 1 `catchError` (\e -> return 999)

Right 1

ghci> Left "Oops!" `catchError` (\e -> return 999)

Right 999
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NOTE In the previous chapter, we used the monadic aspects of Maybe to simulate birds land-
ing on the balancing pole of a tightrope walker. As an exercise, you can rewrite that
with the error monad so that when the tightrope walker slips and falls, you remember
how many birds were on each side of the pole when he fell.

Some Useful Monadic Functions
In this section, we’re going to explore a few functions that operate on mo-
nadic values or return monadic values as their results (or both!). Such func-
tions are usually referred to as monadic functions. While some of them will
be brand new, others will be monadic counterparts of functions that you al-
ready know, like filter and foldl. Here, we’ll look at liftM, join, filterM, and
foldM.

liftM and Friends
When we started our journey to the
top of Monad Mountain, we first
looked at functors, which are for
things that can be mapped over.
Then we covered improved func-
tors called applicative functors, which
allow us to apply normal functions
between several applicative values as
well as to take a normal value and
put it in some default context. Finally, we introduced monads as improved
applicative functors, which add the ability for these values with context to
somehow be fed into normal functions.

So, every monad is an applicative functor, and every applicative func-
tor is a functor. The Applicative type class has a class constraint such that
our type must be an instance of Functor before we can make it an instance
of Applicative. Monad should have the same constraint for Applicative, as every
monad is an applicative functor, but it doesn’t, because the Monad type class
was introduced to Haskell long before Applicative.

But even though every monad is a functor, we don’t need to rely on it
having a Functor instance because of the liftM function. liftM takes a func-
tion and a monadic value and maps the function over the monadic value. So
it’s pretty much the same thing as fmap! This is liftM’s type:

liftM :: (Monad m) => (a -> b) -> m a -> m b

And this is the type of fmap:

fmap :: (Functor f) => (a -> b) -> f a -> f b
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If the Functor and Monad instances for a type obey the functor and monad
laws, these two amount to the same thing (and all the monads that we’ve
met so far obey both). This is kind of like pure and return do the same thing,
but one has an Applicative class constraint, whereas the other has a Monad

constraint. Let’s try out liftM:

ghci> liftM (*3) (Just 8)

Just 24

ghci> fmap (*3) (Just 8)

Just 24

ghci> runWriter $ liftM not $ Writer (True, "chickpeas")

(False,"chickpeas")

ghci> runWriter $ fmap not $ Writer (True, "chickpeas")

(False,"chickpeas")

ghci> runState (liftM (+100) pop) [1,2,3,4]

(101,[2,3,4])

ghci> runState (fmap (+100) pop) [1,2,3,4]

(101,[2,3,4])

You already know quite well how fmap works with Maybe values. And liftM

does the same thing. For Writer values, the function is mapped over the first
component of the tuple, which is the result. Running fmap or liftM over a
stateful computation results in another stateful computation, but its eventual
result is modified by the supplied function. Had we not mapped (+100) over
pop before running it, it would have returned (1, [2,3,4]).

This is how liftM is implemented:

liftM :: (Monad m) => (a -> b) -> m a -> m b

liftM f m = m >>= (\x -> return (f x))

Or with do notation:

liftM :: (Monad m) => (a -> b) -> m a -> m b

liftM f m = do

x <- m

return (f x)

We feed the monadic value m into the function, and then we apply the
function f to its result before putting it back into a default context. Because
of the monad laws, this is guaranteed not to change the context; it changes
only the result that the monadic value presents.

You see that liftM is implemented without referencing the Functor type
class at all. This means that we can implement fmap (or liftM—whatever you
want to call it) just by using the goodies that monads offer us. Because of
this, we can conclude that monads are at least as strong as functors.
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The Applicative type class allows us to apply functions between values
with contexts as if they were normal values, like this:

ghci> (+) <$> Just 3 <*> Just 5

Just 8

ghci> (+) <$> Just 3 <*> Nothing

Nothing

Using this applicative style makes things pretty easy. <$> is just fmap, and
<*> is a function from the Applicative type class that has the following type:

(<*>) :: (Applicative f) => f (a -> b) -> f a -> f b

So it’s kind of like fmap, but the function itself is in a context. We need
to somehow extract it from the context and map it over the f a value, and
then reassemble the context. Because all functions are curried in Haskell by
default, we can use the combination of <$> and <*> to apply functions that
take several parameters between applicative values.

Anyway, it turns out that just like fmap, <*> can also be implemented by
using only what the Monad type class gives us. The ap function is basically <*>,
but with a Monad constraint instead of an Applicative one. Here’s its definition:

ap :: (Monad m) => m (a -> b) -> m a -> m b

ap mf m = do

f <- mf

x <- m

return (f x)

mf is a monadic value whose result is a function. Because the function
as well as the value is in a context, we get the function from the context and
call it f, then get the value and call that x, and, finally, apply the function to
the value and present that as a result. Here’s a quick demonstration:

ghci> Just (+3) <*> Just 4

Just 7

ghci> Just (+3) `ap` Just 4

Just 7

ghci> [(+1),(+2),(+3)] <*> [10,11]

[11,12,12,13,13,14]

ghci> [(+1),(+2),(+3)] `ap` [10,11]

[11,12,12,13,13,14]

Now we can see that monads are at least as strong as applicatives as
well, because we can use the functions from Monad to implement the ones
for Applicative. In fact, many times, when a type is found to be a monad,
people first write up a Monad instance, and then make an Applicative instance
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by just saying that pure is return and <*> is ap. Similarly, if you already have a
Monad instance for something, you can give it a Functor instance just by saying
that fmap is liftM.

liftA2 is a convenience function for applying a function between two
applicative values. It’s defined like so:

liftA2 :: (Applicative f) => (a -> b -> c) -> f a -> f b -> f c

liftA2 f x y = f <$> x <*> y

The liftM2 function does the same thing, but with a Monad constraint.
There are also liftM3, liftM4, and liftM5 functions.

You saw how monads are at least as strong as applicatives and functors
and how even though all monads are functors and applicative functors, they
don’t necessarily have Functor and Applicative instances. We examined the
monadic equivalents of the functions that functors and applicative func-
tors use.

The join Function
Here’s some food for thought: If the result of one monadic value is another
monadic value (one monadic value is nested inside the other), can you flat-
ten them to just a single, normal monadic value? For instance, if we have
Just (Just 9), can we make that into Just 9? It turns out that any nested
monadic value can be flattened and that this is actually a property unique
to monads. For this, we have the join function. Its type is this:

join :: (Monad m) => m (m a) -> m a

So, join takes a monadic value within a monadic value and gives us just
a monadic value—it flattens it, in other words. Here it is with some Maybe

values:

ghci> join (Just (Just 9))

Just 9

ghci> join (Just Nothing)

Nothing

ghci> join Nothing

Nothing

The first line has a successful computation as a result of a successful
computation, so they are both just joined into one big successful computa-
tion. The second line features a Nothing as a result of a Just value. Whenever
we were dealing with Maybe values before and we wanted to combine several
of them into one—be it with <*> or >>=—they all needed to be Just values for
the result to be a Just value. If there was any failure along the way, the result
was a failure, and the same thing happens here. In the third line, we try to
flatten what is from the onset a failure, so the result is a failure as well.
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Flattening lists is pretty intuitive:

ghci> join [[1,2,3],[4,5,6]]

[1,2,3,4,5,6]

As you can see, for lists, join is just concat. To flatten a Writer value whose
result is a Writer value itself, we need to mappend the monoid value:

ghci> runWriter $ join (Writer (Writer (1, "aaa"), "bbb"))

(1,"bbbaaa")

The outer monoid value "bbb" comes first, and then "aaa" is appended
to it. Intuitively speaking, when you want to examine the result of a Writer

value, you need to write its monoid value to the log first, and only then can
you look at what it has inside.

Flattening Either values is very similar to flattening Maybe values:

ghci> join (Right (Right 9)) :: Either String Int

Right 9

ghci> join (Right (Left "error")) :: Either String Int

Left "error"

ghci> join (Left "error") :: Either String Int

Left "error"

If we apply join to a stateful computation whose result is a stateful com-
putation, the result is a stateful computation that first runs the outer stateful
computation and then the resulting one. Watch it at work:

ghci> runState (join (state $ \s -> (push 10, 1:2:s))) [0,0,0]

((),[10,1,2,0,0,0])

The lambda here takes a state, puts 2 and 1 onto the stack, and presents
push 10 as its result. So, when this whole thing is flattened with join and then
run, it first puts 2 and 1 onto the stack, and then push 10 is carried out, push-
ing a 10 onto the top.

The implementation for join is as follows:

join :: (Monad m) => m (m a) -> m a

join mm = do

m <- mm

m

Because the result of mm is a monadic value, we get that result and then
just put it on a line of its own because it’s a monadic value. The trick here is
that when we call m <- mm, the context of the monad that we are in is taken
care of. That’s why, for instance, Maybe values result in Just values only if the
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outer and inner values are both Just values. Here’s what this would look like
if the mm value were set in advance to Just (Just 8):

joinedMaybes :: Maybe Int

joinedMaybes = do

m <- Just (Just 8)

m

Perhaps the most interesting thing
about join is that for every monad, feeding
a monadic value to a function with >>= is the
same thing as just mapping that function
over the value and then using join to flat-
ten the resulting nested monadic value! In
other words, m >>= f is always the same thing
as join (fmap f m). It makes sense when you
think about it.

With >>=, we’re always thinking about how
to feed a monadic value to a function that
takes a normal value but returns a monadic
value. If we just map that function over the
monadic value, we have a monadic value in-
side a monadic value. For instance, say we
have Just 9 and the function \x -> Just (x+1).
If we map this function over Just 9, we’re left
with Just (Just 10).

The fact that m >>= f always equals join (fmap f m) is very useful if we’re
making our own Monad instance for some type. This is because it’s often eas-
ier to figure out how we would flatten a nested monadic value than to figure
out how to implement >>=.

Another interesting thing is that join cannot be implemented by just
using the functions that functors and applicatives provide. This leads us to
conclude that not only are monads as strong as functors and applicatives,
but they are in fact stronger, because we can do more stuff with them than
we can with just functors and applicatives.

filterM
The filter function is pretty much the bread of Haskell programming (map
being the butter). It takes a predicate and a list to filter and then returns a
new list where only the elements that satisfy the predicate are kept. Its type
is this:

filter :: (a -> Bool) -> [a] -> [a]
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The predicate takes an element of the list and returns a Bool value.
Now, what if the Bool value that it returned was actually a monadic value?
What if it came with a context? For instance, what if every True or False

value that the predicate produced also had an accompanying monoid value,
like ["Accepted the number 5"] or ["3 is too small"]? If that were the case, we
would expect the resulting list to also come with a log of all the log values
that were produced along the way. So, if the Bool that the predicate returned
came with a context, we would expect the final resulting list to have some
context attached as well. Otherwise, the context that each Bool came with
would be lost.

The filterM function from Control.Monad does just what we want! Its type
is this:

filterM :: (Monad m) => (a -> m Bool) -> [a] -> m [a]

The predicate returns a monadic value whose result is a Bool, but be-
cause it’s a monadic value, its context can be anything from a possible fail-
ure to nondeterminism and more! To ensure that the context is reflected
in the final result, the result is also a monadic value.

Let’s take a list and keep only those values that are smaller than 4. To
start, we’ll just use the regular filter function:

ghci> filter (\x -> x < 4) [9,1,5,2,10,3]

[1,2,3]

That’s pretty easy. Now, let’s make a predicate that, aside from present-
ing a True or False result, also provides a log of what it did. Of course, we’ll
be using the Writer monad for this:

keepSmall :: Int -> Writer [String] Bool

keepSmall x

| x < 4 = do

tell ["Keeping " ++ show x]

return True

| otherwise = do

tell [show x ++ " is too large, throwing it away"]

return False

Instead of just returning a Bool, this function returns a Writer [String]

Bool. It’s a monadic predicate. Sounds fancy, doesn’t it? If the number is
smaller than 4, we report that we’re keeping it, and then return True.

Now, let’s give it to filterM along with a list. Because the predicate re-
turns a Writer value, the resulting list will also be a Writer value.

ghci> fst $ runWriter $ filterM keepSmall [9,1,5,2,10,3]

[1,2,3]
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Examining the result of the resulting Writer value, we see that everything
is in order. Now, let’s print the log and see what we have:

ghci> mapM_ putStrLn $ snd $ runWriter $ filterM keepSmall [9,1,5,2,10,3]

9 is too large, throwing it away

Keeping 1

5 is too large, throwing it away

Keeping 2

10 is too large, throwing it away

Keeping 3

So, just by providing a monadic predicate to filterM, we were able to fil-
ter a list while taking advantage of the monadic context that we used.

A very cool Haskell trick is using filterM to get the powerset of a list (if
we think of them as sets for now). The powerset of some set is a set of all sub-
sets of that set. So if we have a set like [1,2,3], its powerset includes the fol-
lowing sets:

[1,2,3]

[1,2]

[1,3]

[1]

[2,3]

[2]

[3]

[]

In other words, getting a powerset is like getting all the combinations
of keeping and throwing out elements from a set. For example, [2,3] is the
original set with the number 1 excluded, [1,2] is the original set with 3 ex-
cluded, and so on.

To make a function that returns a powerset of some list, we’re going to
rely on nondeterminism. We take the list [1,2,3] and then look at the first
element, which is 1, and we ask ourselves, “Should we keep it or drop it?”
Well, we would like to do both actually. So, we are going to filter a list, and
we’ll use a predicate that nondeterministically both keeps and drops every
element from the list. Here’s our powerset function:

powerset :: [a] -> [[a]]

powerset xs = filterM (\x -> [True, False]) xs

Wait, that’s it? Yup. We choose to drop and keep every element, regard-
less of what that element is. We have a nondeterministic predicate, so the
resulting list will also be a nondeterministic value and will thus be a list of
lists. Let’s give this a go:

ghci> powerset [1,2,3]

[[1,2,3],[1,2],[1,3],[1],[2,3],[2],[3],[]]
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This takes a bit of thinking to wrap your head around. Just consider lists
as nondeterministic values that don’t know what to be, so they decide to be
everything at once, and the concept is a bit easier to grasp.

foldM
The monadic counterpart to foldl is foldM. If you remember your folds from
Chapter 5, you know that foldl takes a binary function, a starting accumu-
lator, and a list to fold up and then folds it from the left into a single value
by using the binary function. foldM does the same thing, except it takes a bi-
nary function that produces a monadic value and folds the list up with that.
Unsurprisingly, the resulting value is also monadic. The type of foldl is this:

foldl :: (a -> b -> a) -> a -> [b] -> a

Whereas foldM has the following type:

foldM :: (Monad m) => (a -> b -> m a) -> a -> [b] -> m a

The value that the binary function returns is monadic, so the result of
the whole fold is monadic as well. Let’s sum a list of numbers with a fold:

ghci> foldl (\acc x -> acc + x) 0 [2,8,3,1]

14

The starting accumulator is 0, and then 2 is added to the accumulator,
resulting in a new accumulator that has a value of 2. 8 is added to this accu-
mulator, resulting in an accumulator of 10, and so on. When we reach the
end, the final accumulator is the result.

Now, what if we wanted to sum a list of numbers but with the added con-
dition that if any number in the list is greater than 9, the whole thing fails? It
would make sense to use a binary function that checks if the current number
is greater than 9. If it is, the function fails; if it isn’t, the function continues
on its merry way. Because of this added possibility of failure, let’s make our
binary function return a Maybe accumulator instead of a normal one. Here’s
the binary function:

binSmalls :: Int -> Int -> Maybe Int

binSmalls acc x

| x > 9 = Nothing

| otherwise = Just (acc + x)

Because our binary function is now a monadic function, we can’t use it
with the normal foldl; we must use foldM. Here goes:

ghci> foldM binSmalls 0 [2,8,3,1]

Just 14
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ghci> foldM binSmalls 0 [2,11,3,1]

Nothing

Excellent! Because one number in the list was greater than 9, the whole
thing resulted in a Nothing. Folding with a binary function that returns a
Writer value is cool as well, because then you log whatever you want as your
fold goes along its way.

Making a Safe RPN Calculator
When we were solving the problem of imple-
menting an RPN calculator in Chapter 10,
we noted that it worked fine as long as the in-
put that it got made sense. But if something
went wrong, it caused our whole program to
crash. Now that we know how to make already
existing code monadic, let’s take our RPN cal-
culator and add error handling to it by taking
advantage of the Maybe monad.

We implemented our RPN calculator
by taking a string like "1 3 + 2 *", break-
ing it up into words to get something like
["1","3","+","2","*"]. Then we folded over
that list by starting out with an empty stack
and using a binary folding function that adds
numbers to the stack or manipulates numbers
on the top of the stack to add them together and divide them and such.

This was the main body of our function:

import Data.List

solveRPN :: String -> Double

solveRPN = head . foldl foldingFunction [] . words

We made the expression into a list of strings, and folded over it with our
folding function. Then, when we were left with just one item in the stack, we
returned that item as the answer. This was the folding function:

foldingFunction :: [Double] -> String -> [Double]

foldingFunction (x:y:ys) "*" = (y * x):ys

foldingFunction (x:y:ys) "+" = (y + x):ys

foldingFunction (x:y:ys) "-" = (y - x):ys

foldingFunction xs numberString = read numberString:xs

The accumulator of the fold was a stack, which we represented with a
list of Double values. As the folding function went over the RPN expression,
if the current item was an operator, it took two items off the top of the stack,
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applied the operator between them, and then put the result back on the
stack. If the current item was a string that represented a number, it con-
verted that string into an actual number and returned a new stack that was
like the old one, except with that number pushed to the top.

Let’s first make our folding function capable of graceful failure. Its type
is going to change from what it is now to this:

foldingFunction :: [Double] -> String -> Maybe [Double]

So, it will either return Just a new stack or it will fail with Nothing.
The reads function is like read, except that it returns a list with a single

element in case of a successful read. If it fails to read something, it returns
an empty list. Apart from returning the value that it read, it also returns the
part of the string that it didn’t consume. We’re going to say that it always
must consume the full input to work, and make it into a readMaybe function
for convenience. Here it is:

readMaybe :: (Read a) => String -> Maybe a

readMaybe st = case reads st of [(x, "")] -> Just x

_ -> Nothing

Now let’s test it:

ghci> readMaybe "1" :: Maybe Int

Just 1

ghci> readMaybe "GOTO HELL" :: Maybe Int

Nothing

Okay, it seems to work. So, let’s make our folding function into a mo-
nadic function that can fail:

foldingFunction :: [Double] -> String -> Maybe [Double]

foldingFunction (x:y:ys) "*" = return ((y * x):ys)

foldingFunction (x:y:ys) "+" = return ((y + x):ys)

foldingFunction (x:y:ys) "-" = return ((y - x):ys)

foldingFunction xs numberString = liftM (:xs) (readMaybe numberString)

The first three cases are like the old ones, except the new stack is wrap-
ped in a Just (we used return here to do this, but we could just as well have
written Just). In the last case, we use readMaybe numberString, and then we
map (:xs) over it. So, if the stack xs is [1.0,2.0], and readMaybe numberString

results in a Just 3.0, the result is Just [3.0,1.0,2.0]. If readMaybe numberString

results in a Nothing, the result is Nothing.
Let’s try out the folding function by itself:

ghci> foldingFunction [3,2] "*"

Just [6.0]
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ghci> foldingFunction [3,2] "-"

Just [-1.0]

ghci> foldingFunction [] "*"

Nothing

ghci> foldingFunction [] "1"

Just [1.0]

ghci> foldingFunction [] "1 wawawawa"

Nothing

It looks like it’s working! And now it’s time for the new and improved
solveRPN. Here it is ladies and gents!

import Data.List

solveRPN :: String -> Maybe Double

solveRPN st = do

[result] <- foldM foldingFunction [] (words st)

return result

Just as in the previous version, we take the string and make it into a list
of words. Then we do a fold, starting with the empty stack, but instead of do-
ing a normal foldl, we do a foldM. The result of that foldM should be a Maybe

value that contains a list (that’s our final stack), and that list should have
only one value. We use a do expression to get that value, and we call it result.
In case the foldM returns a Nothing, the whole thing will be a Nothing, because
that’s how Maybe works. Also notice that we pattern match in the do expres-
sion, so if the list has more than one value or none at all, the pattern match
fails, and a Nothing is produced. In the last line, we just call return result

to present the result of the RPN calculation as the result of the final Maybe
value.

Let’s give it a shot:

ghci> solveRPN "1 2 * 4 +"

Just 6.0

ghci> solveRPN "1 2 * 4 + 5 *"

Just 30.0

ghci> solveRPN "1 2 * 4"

Nothing

ghci> solveRPN "1 8 wharglbllargh"

Nothing

The first failure happens because the final stack isn’t a list with one el-
ement in it, so the pattern matching in the do expression fails. The second
failure happens because readMaybe returns a Nothing.

334 Chapter 14



Composing Monadic Functions
When we were talking about the monad laws in Chapter 13, you learned that
the <=< function is just like composition, but instead of working for normal
functions like a -> b, it works for monadic functions like a -> m b. Here is
an example:

ghci> let f = (+1) . (*100)

ghci> f 4

401

ghci> let g = (\x -> return (x+1)) <=< (\x -> return (x*100))

ghci> Just 4 >>= g

Just 401

In this example, we first composed two normal functions, applied the
resulting function to 4, and then composed two monadic functions and fed
Just 4 to the resulting function with >>=.

If you have a bunch of functions in a list, you can compose them all into
one big function just by using id as the starting accumulator and the . func-
tion as the binary function. Here’s an example:

ghci> let f = foldr (.) id [(+1),(*100),(+1)]

ghci> f 1

201

The function f takes a number and then adds 1 to it, multiplies the re-
sult by 100, and then adds 1 to that.

We can compose monadic functions in the same way, but instead of nor-
mal composition, we use <=<, and instead of id, we use return. We don’t need
to use a foldM over a foldr or anything like that, because the <=< function
makes sure that composition happens in a monadic fashion.

When you were introduced to the list monad in Chapter 13, we used
it to figure out if a knight can go from one position on a chessboard to an-
other in exactly three moves. We created a function called moveKnight, which
takes the knight’s position on the board and returns all the possible moves
that he can make next. Then, to generate all the possible positions that he
can have after taking three moves, we made the following function:

in3 start = return start >>= moveKnight >>= moveKnight >>= moveKnight

And to check if he can go from start to end in three moves, we did the
following:

canReachIn3 :: KnightPos -> KnightPos -> Bool

canReachIn3 start end = end `elem` in3 start
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Using monadic function composition, we can make a function like in3,
except instead of generating all the positions that the knight can have after
making three moves, we can do it for an arbitrary number of moves. If you
look at in3, you’ll see that we used our moveKnight three times, and each time,
we used >>= to feed it all the possible previous positions. So now, let’s make it
more general. Here’s how:

import Data.List

inMany :: Int -> KnightPos -> [KnightPos]

inMany x start = return start >>= foldr (<=<) return (replicate x moveKnight)

First, we use replicate to make a list that contains x copies of the func-
tion moveKnight. Then we monadically compose all those functions into one,
which gives us a function that takes a starting position and nondeterministi-
cally moves the knight x times. Then we just make the starting position into
a singleton list with return and feed it to the function.

Now, we can change our canReachIn3 function to be more general as well:

canReachIn :: Int -> KnightPos -> KnightPos -> Bool

canReachIn x start end = end `elem` inMany x start

Making Monads

In this section, we’re going to look at an example of how a type gets
made, identified as a monad, and then given the appropriate Monad instance.
We don’t usually set out to make a monad with the sole purpose of making
a monad. Rather, we make a type whose purpose is to model an aspect of
some problem, and then later on, if we see that the type represents a value
with a context and can act like a monad, we give it a Monad instance.

As you’ve seen, lists are used to represent nondeterministic values. A list
like [3,5,9] can be viewed as a single nondeterministic value that just can’t
decide what it’s going to be. When we feed a list into a function with >>=,
it just makes all the possible choices of taking an element from the list and
applying the function to it and then presents those results in a list as well.
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If we look at the list [3,5,9] as the numbers 3, 5, and 9 occurring at once,
we might notice that there’s no information regarding the probability that
each of those numbers occurs. What if we wanted to model a nondeterminis-
tic value like [3,5,9], but we wanted to express that 3 has a 50 percent chance
of happening and 5 and 9 both have a 25 percent chance of happening?
Let’s try to make this work!

Let’s say that every item in the list comes with another value: a probabil-
ity of it happening. It might make sense to present that value like this:

[(3,0.5),(5,0.25),(9,0.25)]

In mathemathics, probabilities aren’t usually expressed in percentages,
but rather in real numbers between a 0 and 1. A 0 means that there’s no
chance in hell for something to happen, and a 1 means that it’s happen-
ing for sure. Floating-point numbers can get messy fast because they tend
to lose precision, but Haskell offers a data type for rational numbers. It’s
called Rational, and it lives in Data.Ratio. To make a Rational, we write it as if
it were a fraction. The numerator and the denominator are separated by a %.
Here are a few examples:

ghci> 1%4

1 % 4

ghci> 1%2 + 1%2

1 % 1

ghci> 1%3 + 5%4

19 % 12

The first line is just one-quarter. In the second line, we add two halves
to get a whole. In the third line, we add one-third with five-quarters and get
nineteen-twelfths. So, let’s throw out our floating points and use Rational for
our probabilities:

ghci> [(3,1%2),(5,1%4),(9,1%4)]

[(3,1 % 2),(5,1 % 4),(9,1 % 4)]

Okay, so 3 has a one-out-of-two chance of happening, while 5 and 9 will
happen one time out of four. Pretty neat.

We took lists and we added some extra context to them, so this repre-
sents values with contexts as well. Before we go any further, let’s wrap this
into a newtype, because something tells me we’ll be making some instances.

import Data.Ratio

newtype Prob a = Prob { getProb :: [(a, Rational)] } deriving Show

Is this a functor? Well, the list is a functor, so this should probably be a
functor, too, because we just added some stuff to the list. When we map a
function over a list, we apply it to each element. Here, we’ll apply it to each
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element as well, but we’ll leave the probabilities as they are. Let’s make an
instance:

instance Functor Prob where

fmap f (Prob xs) = Prob $ map (\(x, p) -> (f x, p)) xs

We unwrap it from the newtype with pattern matching, apply the function
f to the values while keeping the probabilities as they are, and then wrap it
back up. Let’s see if it works:

ghci> fmap negate (Prob [(3,1%2),(5,1%4),(9,1%4)])

Prob {getProb = [(-3,1 % 2),(-5,1 % 4),(-9,1 % 4)]}

Note that the probabilities should always add up to 1. If those are all the
things that can happen, it doesn’t make sense for the sum of their proba-
bilities to be anything other than 1. A coin that lands tails 75 percent of the
time and heads 50 percent of the time seems like it could work only in some
other strange universe.

Now the big question: Is this a monad? Given how the list is a monad,
this looks like it should be a monad as well. First, let’s think about return.
How does it work for lists? It takes a value and puts it in a singleton list. What
about here? Well, since it’s supposed to be a default minimal context, it
should also make a singleton list. What about the probability? Well, return x

is supposed to make a monadic value that always presents x as its result, so it
doesn’t make sense for the probability to be 0. If it always must present this
value as its result, the probability should be 1!

What about >>=? Seems kind of tricky, so let’s make use of the fact that
m >>= f always equals join (fmap f m) for monads and think about how we
would flatten a probability list of probability lists. As an example, let’s con-
sider this list where there’s a 25 percent chance that exactly one of 'a' or
'b' will happen. Both 'a' and 'b' are equally likely to occur. Also, there’s a
75 percent chance that exactly one of 'c' or 'd' will happen. 'c' and 'd' are
also equally likely to happen. Here’s a picture of a probability list that mod-
els this scenario:

What are the chances for each of these letters to occur? If we were to
draw this as just four boxes, each with a probability, what would those proba-
bilites be? To find out, all we need to do is multiply each probability with all
of the probabilities that it contains. 'a' would occur one time out of eight, as
would 'b', because if we multiply one-half by one-quarter, we get one-eighth.
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'c' would happen three times out of eight, because three-quarters multi-
plied by one-half is three-eighths. 'd' would also happen three times out of
eight. If we sum all the probabilities, they still add up to one.

Here’s this situation expressed as a probability list:

thisSituation :: Prob (Prob Char)

thisSituation = Prob

[(Prob [('a',1%2),('b',1%2)], 1%4)

,(Prob [('c',1%2),('d',1%2)], 3%4)

]

Notice that its type is Prob (Prob Char). So now that we’ve figured out
how to flatten a nested probability list, all we need to do is write the code for
this. Then we can write >>= simply as join (fmap f m), and we have ourselves
a monad! So here’s flatten, which we’ll use because the name join is already
taken:

flatten :: Prob (Prob a) -> Prob a

flatten (Prob xs) = Prob $ concat $ map multAll xs

where multAll (Prob innerxs, p) = map (\(x, r) -> (x, p*r)) innerxs

The function multAll takes a tuple of a probability list and a probability 
p that comes with it and then multiplies every inner probability with p, re-
turning a list of pairs of items and probabilities. We map multAll over each 
pair in our nested probability list, and then we just flatten the resulting 
nested list.

Now we have all that we need. We can write a Monad instance!

instance Monad Prob where

return x = Prob [(x,1%1)]

m >>= f = flatten (fmap f m)

fail _ = Prob []

Because we already did all the hard work, the in-
stance is very simple. We also defined the fail function,
which is the same as it is for lists, so if there’s a pattern-
match failure in a do expression, a failure occurs within
the context of a probability list.

It’s also important to check if the monad laws hold
for the monad that we just made:

1. The first law says that return x >>= f should be equal
to f x. A rigorous proof would be rather tedious, but
we can see that if we put a value in a default context
with return, then fmap a function over that, and then
flatten the resulting probability list, every probability
that results from the function would be multiplied
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by the 1%1 probability that we made with return, so it wouldn’t affect the
context.

2. The second law states that m >>= return is no different than m. For our
example, the reasoning for m >>= return being equal to just m is similar
to that for the first law.

3. The third law states that f <=< (g <=< h) should be the same as (f <=< g)

<=< h. This one is true as well, because it holds for the list monad that
forms the basis of the probability monad and because multiplication is
associative. 1%2 * (1%3 * 1%5) is equal to (1%2 * 1%3) * 1%5.

Now that we have a monad, what can we do with it? Well, it can help us
do calculations with probabilities. We can treat probabilistic events as values
with contexts, and the probability monad will make sure that those probabil-
ities are reflected in the probabilities of the final result.

Say we have two normal coins and one loaded coin that lands tails an
astounding nine times out of ten and heads only one time out of ten. If we
throw all the coins at once, what are the odds of all of them landing tails?
First, let’s make probability values for a normal coin flip and for a loaded
one:

data Coin = Heads | Tails deriving (Show, Eq)

coin :: Prob Coin

coin = Prob [(Heads,1%2),(Tails,1%2)]

loadedCoin :: Prob Coin

loadedCoin = Prob [(Heads,1%10),(Tails,9%10)]

And finally, the coin-throwing action:

import Data.List (all)

flipThree :: Prob Bool

flipThree = do

a <- coin

b <- coin

c <- loadedCoin

return (all (==Tails) [a,b,c])

Giving it a go, we see that the odds of all three landing tails are not that
good, despite cheating with our loaded coin:

ghci> getProb flipThree

[(False,1 % 40),(False,9 % 40),(False,1 % 40),(False,9 % 40),

(False,1 % 40),(False,9 % 40),(False,1 % 40),(True,9 % 40)]
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All three of them will land tails 9 times out of 40, which is less than 25
percent. We see that our monad doesn’t know how to join all of the False

outcomes where all coins don’t land tails into one outcome. That’s not a
big problem, since writing a function to put all the same outcomes into one
outcome is pretty easy (and left as an exercise to you, the reader).

In this section, we went from having a question (what if lists also carried
information about probability?) to making a type, recognizing a monad, and
finally making an instance and doing something with it. I think that’s quite
fetching! By now, you should have a pretty good grasp of monads and what
they’re about.
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15
ZIPPERS

While Haskell’s purity comes with a whole bunch of
benefits, it makes us tackle some problems differently
than we would in impure languages.

Because of referential transparency, one value is as
good as another in Haskell if it represents the same thing.
So, if we have a tree full of fives (high fives, maybe?), and
we want to change one of them into a six, we must have
some way of knowing exactly which five in our tree we want
to change. We need to know where it is in our tree. In im-
pure languages, we could just note where the five is located
in memory and change that. But in Haskell, one five is as
good as another, so we can’t discriminate based on their
location in memory.

We also can’t really change anything. When we say that
we “change a tree,” we actually mean that we take a tree
and return a new one that’s similar to the original, but
slightly different.

One thing we can do is remember a path from the
root of the tree to the element that we want to change. We
could say, “Take this tree, go left, go right and then left



again, and change the element that’s there.” While this works, it can be in-
efficient. If we want to later change an element that’s near the element that
we previously changed, we need to walk all the way from the root of the tree
to our element again!

In this chapter, you’ll see how to take some data structure and equip
it with something called a zipper to focus on a part of the data structure
in a way that makes changing its elements easy and walking around it effi-
cient. Nice!

Taking a Walk
As you learned in biology class, there are many different kinds of trees, so
let’s pick a seed that we will use to plant ours. Here it is:

data Tree a = Empty | Node a (Tree a) (Tree a) deriving (Show)

Our tree is either empty or it’s a node that has an element and two sub-
trees. Here’s a fine example of such a tree, which I give to you, the reader,
for free!

freeTree :: Tree Char

freeTree =

Node 'P'

(Node 'O'

(Node 'L'

(Node 'N' Empty Empty)

(Node 'T' Empty Empty)

)

(Node 'Y'

(Node 'S' Empty Empty)

(Node 'A' Empty Empty)

)

)

(Node 'L'

(Node 'W'

(Node 'C' Empty Empty)

(Node 'R' Empty Empty)

)

(Node 'A'

(Node 'A' Empty Empty)

(Node 'C' Empty Empty)

)

)
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And here’s this tree represented graphically:

Notice that W in the tree there? Say we want to change it into a P. How
would we go about doing that? Well, one way would be to pattern match on
our tree until we find the element, by first going right and then left. Here’s
the code for this:

changeToP :: Tree Char -> Tree Char

changeToP (Node x l (Node y (Node _ m n) r)) = Node x l (Node y (Node 'P' m n) r)

Yuck! Not only is this rather ugly, it’s also kind of confusing. What is
actually happening here? Well, we pattern match on our tree and name its
root element x (that becomes the 'P' in the root) and its left subtree l. In-
stead of giving a name to its right subtree, we further pattern match on it.
We continue this pattern matching until we reach the subtree whose root is
our 'W'. Once we’ve made the match, we rebuild the tree, but with the sub-
tree that contained the 'W' at its root now having a 'P'.

Is there a better way of doing this? How about if we make our function
take a tree along with a list of directions. The directions will be either L or R,
representing left or right, respectively, and we’ll change the element that we
arrive at by following the supplied directions. Check it out:

data Direction = L | R deriving (Show)

type Directions = [Direction]

changeToP :: Directions -> Tree Char -> Tree Char

changeToP (L:ds) (Node x l r) = Node x (changeToP ds l) r

changeToP (R:ds) (Node x l r) = Node x l (changeToP ds r)

changeToP [] (Node _ l r) = Node 'P' l r
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If the first element in the list of directions is L, we construct a new tree
that’s like the old tree, but its left subtree has an element changed to 'P'.
When we recursively call changeToP, we give it only the tail of the list of direc-
tions, because we already took a left. We do the same thing in the case of an
R. If the list of directions is empty, that means that we’re at our destination,
so we return a tree that’s like the one supplied, except that it has 'P' as its
root element.

To avoid printing out the whole tree, let’s make a function that takes a
list of directions and tells us the element at the destination:

elemAt :: Directions -> Tree a -> a

elemAt (L:ds) (Node _ l _) = elemAt ds l

elemAt (R:ds) (Node _ _ r) = elemAt ds r

elemAt [] (Node x _ _) = x

This function is actually quite similar to changeToP. The difference is that
instead of remembering stuff along the way and reconstructing the tree, it
ignores everything except its destination. Here, we change the 'W' to a 'P'

and see if the change in our new tree sticks:

ghci> let newTree = changeToP [R,L] freeTree

ghci> elemAt [R,L] newTree

'P'

This seems to work. In these functions, the list of directions acts as a sort
of focus, because it pinpoints one exact subtree of our tree. A direction list
of [R] focuses on the subtree that’s to the right of the root, for example. An
empty direction list focuses on the main tree itself.

While this technique may seem cool, it can be rather inefficient, espe-
cially if we want to repeatedly change elements. Say we have a really huge
tree and a long direction list that points to some element all the way at the
bottom of the tree. We use the direction list to take a walk along the tree
and change an element at the bottom. If we want to change another ele-
ment that’s close to the element that we just changed, we need to start from
the root of the tree and walk all the way to the bottom again. What a drag!

In the next section, we’ll find a better way of focusing on a subtree—one
that allows us to efficiently switch focus to subtrees that are nearby.

A Trail of Breadcrumbs
For focusing on a subtree, we want something
better than just a list of directions that we al-
ways follow from the root of our tree. Would
it help if we started at the root of the tree and
moved either left or right one step at a time,
leaving “breadcrumbs” along the way? Using
this approach, when we go left, we remember
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that we went left, and when we go right, we remember that we went right.
Let’s try it.

To represent our breadcrumbs, we’ll also use a list of direction values
(L and R values), but instead of calling it Directions, we’ll call it Breadcrumbs,
because our directions will now be reversed as we leave them while going
down our tree.

type Breadcrumbs = [Direction]

Here’s a function that takes a tree and some breadcrumbs and moves
to the left subtree while adding L to the head of the list that represents our
breadcrumbs:

goLeft :: (Tree a, Breadcrumbs) -> (Tree a, Breadcrumbs)

goLeft (Node _ l _, bs) = (l, L:bs)

We ignore the element at the root and the right subtree, and just return
the left subtree along with the old breadcrumbs with L as the head.

Here’s a function to go right:

goRight :: (Tree a, Breadcrumbs) -> (Tree a, Breadcrumbs)

goRight (Node _ _ r, bs) = (r, R:bs)

It works the same way as the one to go left.
Let’s use these functions to take our freeTree and go right and then left.

ghci> goLeft (goRight (freeTree, []))

(Node 'W' (Node 'C' Empty Empty) (Node 'R' Empty Empty),[L,R])

Now we have a tree that has 'W' in its
root, 'C' in the root of its left subtree, and
'R' in the root of its right subtree. The
breadcrumbs are [L,R], because we first
went right and then went left.

To make walking along our tree
clearer, we can use the -: function from
Chapter 13 that we defined like so:

x -: f = f x

This allows us to apply functions to values by first writing the value, then
a -:, and then the function. So, instead of goRight (freeTree, []), we can
write (freeTree, []) -: goRight. Using this form, we can rewrite the preced-
ing example so that it’s more apparent that we’re going right and then left:

ghci> (freeTree, []) -: goRight -: goLeft

(Node 'W' (Node 'C' Empty Empty) (Node 'R' Empty Empty),[L,R])
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Going Back Up
What if we want to go back up in our tree? From our breadcrumbs, we know
that the current tree is the left subtree of its parent and that its parent is the
right subtree of its own parent, and that’s all we know. The breadcrumbs
don’t tell us enough about the parent of the current subtree for us to be
able to go up in the tree. It would seem that apart from the direction that
we took, a single breadcrumb should also contain all the other data we need
to go back up. In this case, that’s the element in the parent tree along with
its right subtree.

In general, a single breadcrumb should contain all the data needed to
reconstruct the parent node. So, it should have the information from all
the paths that we didn’t take, and it should also know the direction that we
did take. However, it must not contain the subtree on which we’re currently
focusing. That’s because we already have that subtree in the first component
of the tuple. If we also had it in the breadcrumb, we would have duplicate
information.

We don’t want duplicate information because if we were to change some
elements in the subtree that we’re focusing on, the existing information in
the breadcrumbs would be inconsistent with the changes that we made. The
duplicate information becomes outdated as soon as we change something
in our focus. It can also hog a lot of memory if our tree contains a lot of
elements.

Let’s modify our breadcrumbs so that they also contain information
about everything that we previously ignored when moving left and right.
Instead of Direction, we’ll make a new data type:

data Crumb a = LeftCrumb a (Tree a) | RightCrumb a (Tree a) deriving (Show)

Now, instead of just L, we have a LeftCrumb, which also contains the ele-
ment in the node that we moved from and the right tree that we didn’t visit.
Instead of R, we have RightCrumb, which contains the element in the node that
we moved from and the left tree that we didn’t visit.

These breadcrumbs now contain all the data needed to re-create the
tree that we walked through. So, instead of just being normal breadcrumbs,
they’re more like floppy disks that we leave as we go along, because they con-
tain a lot more information than just the direction that we took.

In essence, every breadcrumb is now like a tree node with a hole in it.
When we move deeper into a tree, the breadcrumb carries all the infor-
mation that the node that we moved away from carried, except the subtree
on which we chose to focus. It also needs to note where the hole is. In the
case of a LeftCrumb, we know that we moved left, so the missing subtree is the
left one.

Let’s also change our Breadcrumbs type synonym to reflect this:

type Breadcrumbs a = [Crumb a]
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Next up, we need to modify the goLeft and goRight functions to store in-
formation about the paths that we didn’t take in our breadcrumbs, instead
of ignoring that information as they did before. Here’s goLeft:

goLeft :: (Tree a, Breadcrumbs a) -> (Tree a, Breadcrumbs a)

goLeft (Node x l r, bs) = (l, LeftCrumb x r:bs)

You can see that it’s very similar to our previous goLeft, but instead of 
just adding an L to the head of our list of breadcrumbs, we add a LeftCrumb to 
signify that we went left. We also equip our LeftCrumb with the element in the 
node that we moved from (that’s the x) and the right subtree that we chose 
not to visit.

Note that this function assumes that the current tree that’s under focus 
isn’t Empty. An empty tree doesn’t have any subtrees, so if we try to go left 
from an empty tree, an error will occur. This is because the pattern match 
on Node won’t succeed, and there’s no pattern that takes care of Empty.

goRight is similar:

goRight :: (Tree a, Breadcrumbs a) -> (Tree a, Breadcrumbs a)

goRight (Node x l r, bs) = (r, RightCrumb x l:bs)

We were previously able to go left and right. What we have now is the
ability to actually go back up by remembering stuff about the parent nodes
and the paths that we didn’t visit. Here’s the goUp function:

goUp :: (Tree a, Breadcrumbs a) -> (Tree a, Breadcrumbs a)

goUp (t, LeftCrumb x r:bs) = (Node x t r, bs)

goUp (t, RightCrumb x l:bs) = (Node x l t, bs)

We’re focusing on the
tree t, and we check the latest
Crumb. If it’s a LeftCrumb, we con-
struct a new tree using our tree
t as the left subtree and using the
information about the right subtree
and element that we didn’t visit to
fill out the rest of the Node. Because
we “moved back” and picked up the
last breadcrumb, then used it to re-
create the parent tree, the new list
doesn’t contain that breadcrumb.

Note that this function causes an error if we’re already at the top of a
tree and we want to move up. Later on, we’ll use the Maybe monad to repre-
sent possible failure when moving focus.
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With a pair of Tree a and Breadcrumbs a, we have all the information we
need to rebuild the whole tree, and we also have a focus on a subtree. This
scheme enables us to easily move up, left, and right.

A pair that contains a focused part of a data structure and its surround-
ings is called a zipper, because moving our focus up and down the data struc-
ture resembles the operation of a zipper on a pair of pants. So, it’s cool to
make a type synonym as such:

type Zipper a = (Tree a, Breadcrumbs a)

I would prefer naming the type synonym Focus, because that makes it
clearer that we’re focusing on a part of a data structure. But since the name
Zipper is more widely used to describe such a setup, we’ll stick with it.

Manipulating Trees Under Focus
Now that we can move up and down, let’s make a function that modifies the
element in the root of the subtree on which the zipper is focusing:

modify :: (a -> a) -> Zipper a -> Zipper a

modify f (Node x l r, bs) = (Node (f x) l r, bs)

modify f (Empty, bs) = (Empty, bs)

If we’re focusing on a node, we modify its root element with the func-
tion f. If we’re focusing on an empty tree, we leave it as is. Now we can start
off with a tree, move to anywhere we want, and modify an element, all while
keeping focus on that element so that we can easily move further up or down.
Here’s an example:

ghci> let newFocus = modify (\_ -> 'P') (goRight (goLeft (freeTree, [])))

We go left, then right, and then modify the root element by replacing it
with a 'P'. This reads even better if we use -::

ghci> let newFocus = (freeTree, []) -: goLeft -: goRight -: modify (\_ -> 'P')

We can then move up if we want and replace an element with a mysteri-
ous 'X':

ghci> let newFocus2 = modify (\_ -> 'X') (goUp newFocus)

Or we can write it with -::

ghci> let newFocus2 = newFocus -: goUp -: modify (\_ -> 'X')

350 Chapter 15



Moving up is easy because the breadcrumbs that we leave form the part
of the data structure that we’re not focusing on, but it’s inverted, sort of like
turning a sock inside out. That’s why when we want to move up, we don’t
need to start from the root and make our way down. We just take the top of
our inverted tree, thereby uninverting a part of it and adding it to our focus.

Each node has two subtrees, even if those subtrees are empty. So, if
we’re focusing on an empty subtree, one thing we can do is to replace it
with a nonempty subtree, thus attaching a tree to a leaf node. The code for
this is simple:

attach :: Tree a -> Zipper a -> Zipper a

attach t (_, bs) = (t, bs)

We take a tree and a zipper, and return a new zipper that has its focus
replaced with the supplied tree. Not only can we extend trees this way by
replacing empty subtrees with new trees, but we can also replace existing
subtrees. Let’s attach a tree to the far left of our freeTree:

ghci> let farLeft = (freeTree, []) -: goLeft -: goLeft -: goLeft -: goLeft

ghci> let newFocus = farLeft -: attach (Node 'Z' Empty Empty)

newFocus is now focused on the tree that we just attached, and the rest
of the tree lies inverted in the breadcrumbs. If we were to use goUp to walk all
the way to the top of the tree, it would be the same tree as freeTree, but with
an additional 'Z' on its far left.

Going Straight to the Top, Where the Air Is Fresh and Clean!
Making a function that walks all the way to the top of the tree, regardless of
what we’re focusing on, is really easy. Here it is:

topMost :: Zipper a -> Zipper a

topMost (t, []) = (t, [])

topMost z = topMost (goUp z)

If our trail of beefed-up breadcrumbs is empty, that means we’re already
at the root of our tree, so we just return the current focus. Otherwise, we go
up to get the focus of the parent node, and then recursively apply topMost

to that.
So, now we can walk around our tree, going left, right, and up, applying

modify and attach as we travel. Then, when we’re finished with our modifi-
cations, we use topMost to focus on the root of our tree and see the changes
that we’ve made in proper perspective.
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Focusing on Lists
Zippers can be used with pretty much any data structure, so it’s no surprise
that they work with sublists of lists. After all, lists are pretty much like trees,
except where a node in a tree has an element (or not) and several subtrees,
a node in a list has an element and only a single sublist. When we imple-
mented our own lists in Chapter 7, we defined our data type like so:

data List a = Empty | Cons a (List a) deriving (Show, Read, Eq, Ord)

Compare this with the definition of our
binary tree, and it’s easy to see how lists can
be viewed as trees where each node has only
one subtree.

A list like [1,2,3] can be written as
1:2:3:[]. It consists of the head of the list,
which is 1, and then the list’s tail, which is
2:3:[]. 2:3:[] also has a head, which is 2,
and a tail, which is 3:[]. With 3:[], the 3 is
the head, and the tail is the empty list [].

Let’s make a zipper for lists. To change
the focus on sublists of a list, we move ei-
ther forward or back (whereas with trees, we
move up, left, or right). The focused part will be a sublist, and along with 
that, we’ll leave breadcrumbs as we move forward.

Now, what would a single breadcrumb for a list consist of? When we 
were dealing with binary trees, the breadcrumb needed to hold the element 
in the root of the parent node along with all the subtrees that we didn’t 
choose. It also had to remember if we went left or right. So, it needed to 
have all the information that a node has, except for the subtree on which 
we chose to focus.

Lists are simpler than trees. We don’t need to remember if we went 
left or right, because there’s only one way to go deeper into a list. Because 
there’s only one sublist to each node, we don’t need to remember the paths 
that we didn’t take either. It seems that all we must remember is the previ-
ous element. If we have a list like [3,4,5] and we know that the previous el-
ement was 2, we can go back by just putting that element at the head of our 
list, getting [2,3,4,5].

Because a single breadcrumb here is just the element, we don’t really 
need to put it inside a data type, as we did when we made the Crumb data type 
for tree zippers.

type ListZipper a = ([a], [a])
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The first list represents the list that we’re focusing on, and the second
list is the list of breadcrumbs. Let’s make functions that go forward and
backward in lists:

goForward :: ListZipper a -> ListZipper a

goForward (x:xs, bs) = (xs, x:bs)

goBack :: ListZipper a -> ListZipper a

goBack (xs, b:bs) = (b:xs, bs)

When we’re going forward, we focus on the tail of the current list and
leave the head element as a breadcrumb. When we’re moving backward, we
take the latest breadcrumb and put it at the beginning of the list. Here are
these two functions in action:

ghci> let xs = [1,2,3,4]

ghci> goForward (xs, [])

([2,3,4],[1])

ghci> goForward ([2,3,4], [1])

([3,4],[2,1])

ghci> goForward ([3,4], [2,1])

([4],[3,2,1])

ghci> goBack ([4], [3,2,1])

([3,4],[2,1])

You can see that the breadcrumbs in the case of lists are nothing more
than a reversed part of your list. The element that we move away from always
goes into the head of the breadcrumbs. Then it’s easy to move back by just
taking that element from the head of the breadcrumbs and making it the
head of our focus. This also makes it easier to see why we call this a zipper—
it really looks like the slider of a zipper moving up and down.

If you were making a text editor, you could use a list of strings to rep-
resent the lines of text that are currently opened, and you could then use a
zipper so that you know on which line the cursor is currently focused. Using
a zipper would also make it easier to insert new lines anywhere in the text or
delete existing ones.

A Very Simple Filesystem
To demonstrate how zippers work, let’s use trees to represent a very simple
filesystem. Then we can make a zipper for that filesystem, which will allow
us to move between folders, just as we do when jumping around a real file-
system.
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The average hierarchical filesystem is mostly made up of files and fold-
ers. Files are units of data and have names. Folders are used to organize those
files and can contain files or other folders. For our simple example, let’s say
that an item in a filesystem is either one of these:

• A file, which comes with a name and some data

• A folder, which has a name and contains other items that are either files
or folders themselves

Here’s a data type for this and some type synonyms, so we know
what’s what:

type Name = String

type Data = String

data FSItem = File Name Data | Folder Name [FSItem] deriving (Show)

A file comes with two strings, which represent its name and the data it
holds. A folder comes with a string that is its name and a list of items. If that
list is empty, then we have an empty folder.

Here’s a folder with some files and subfolders (actually what my disk
contains right now):

myDisk :: FSItem

myDisk =

Folder "root"

[ File "goat_yelling_like_man.wmv" "baaaaaa"

, File "pope_time.avi" "god bless"

, Folder "pics"

[ File "ape_throwing_up.jpg" "bleargh"

, File "watermelon_smash.gif" "smash!!"

, File "skull_man(scary).bmp" "Yikes!"

]

, File "dijon_poupon.doc" "best mustard"

, Folder "programs"

[ File "fartwizard.exe" "10gotofart"

, File "owl_bandit.dmg" "mov eax, h00t"

, File "not_a_virus.exe" "really not a virus"

, Folder "source code"

[ File "best_hs_prog.hs" "main = print (fix error)"

, File "random.hs" "main = print 4"

]

]

]
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Making a Zipper for Our Filesystem
Now that we have a filesystem, all we need is
a zipper so we can zip and zoom around it,
and add, modify, and remove files and fold-
ers. As with binary trees and lists, our bread-
crumbs will contain information about all
the stuff that we chose not to visit. A single
breadcrumb should store everything except
the subtree on which we’re currently focus-
ing. It should also note where the hole is, so
that once we move back up, we can plug our
previous focus into the hole.

In this case, a breadcrumb should be
like a folder, only it should be missing the
folder that we currently chose. “Why not
like a file?” you ask? Well, because once we’re focusing on a file, we can’t
move deeper into the filesystem, so it doesn’t make sense to leave a bread-
crumb that says that we came from a file. A file is sort of like an empty tree.

If we’re focusing on the folder "root", and we then focus on the file
"dijon_poupon.doc", what should the breadcrumb that we leave look like?
Well, it should contain the name of its parent folder along with the items
that come before and after the file on which we’re focusing. So, all we need
is a Name and two lists of items. By keeping separate lists for the items that
come before the item that we’re focusing on and for the items that come af-
ter it, we know exactly where to place it once we move back up. That way, we
know the location of the hole.

Here’s our breadcrumb type for the filesystem:

data FSCrumb = FSCrumb Name [FSItem] [FSItem] deriving (Show)

And here’s a type synonym for our zipper:

type FSZipper = (FSItem, [FSCrumb])

Going back up in the hierarchy is very simple. We just take the latest
breadcrumb and assemble a new focus from the current focus and bread-
crumb, like so:

fsUp :: FSZipper -> FSZipper

fsUp (item, FSCrumb name ls rs:bs) = (Folder name (ls ++ [item] ++ rs), bs)

Because our breadcrumb knew the parent folder’s name, as well as
the items that came before our focused item in the folder (that’s ls) and the
items that came after (that’s rs), moving up was easy.
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How about going deeper into the filesystem? If we’re in the "root" and
we want to focus on "dijon_poupon.doc", the breadcrumb that we leave will in-
clude the name "root", along with the items that precede "dijon_poupon.doc"

and the ones that come after it. Here’s a function that, given a name, fo-
cuses on a file or folder that’s located in the current focused folder:

import Data.List (break)

fsTo :: Name -> FSZipper -> FSZipper

fsTo name (Folder folderName items, bs) =

let (ls, item:rs) = break (nameIs name) items

in (item, FSCrumb folderName ls rs:bs)

nameIs :: Name -> FSItem -> Bool

nameIs name (Folder folderName _) = name == folderName

nameIs name (File fileName _) = name == fileName

fsTo takes a Name and an FSZipper and returns a new FSZipper that focuses 
on the file with the given name. That file must be in the current focused 
folder. This function doesn’t search all over the place—it just looks in the 
current folder.

First, we use break to break the list of
items in a folder into those that precede the
file that we’re searching for and those that
come after it. break takes a predicate and a list
and returns a pair of lists. The first list in the
pair holds items for which the predicate re-
turns False. Then, once the predicate returns
True for an item, it places that item and the
rest of the list in the second item of the pair.
We made an auxiliary function called nameIs,
which takes a name and a filesystem item and
returns True if the names match.

Now ls is a list that contains the items that precede the item that we’re
searching for, item is that very item, and rs is the list of items that come after
it in its folder. Now that we have these, we just present the item that we got
from break as the focus and build a breadcrumb that has all the data it needs.

Note that if the name we’re looking for isn’t in the folder, the pattern
item:rs will try to match on an empty list, and we’ll get an error. And if our
current focus is a file, rather than a folder, we get an error as well, and the
program crashes.

So, we can move up and down our filesystem. Let’s start at the root and
walk to the file "skull_man(scary).bmp":

ghci> let newFocus = (myDisk, []) -: fsTo "pics" -: fsTo "skull_man(scary).bmp"
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newFocus is now a zipper that’s focused on the "skull_man(scary).bmp" file.
Let’s get the first component of the zipper (the focus itself) and see if that’s
really true:

ghci> fst newFocus

File "skull_man(scary).bmp" "Yikes!"

Let’s move up and focus on its neighboring file "watermelon_smash.gif":

ghci> let newFocus2 = newFocus -: fsUp -: fsTo "watermelon_smash.gif"

ghci> fst newFocus2

File "watermelon_smash.gif" "smash!!"

Manipulating a Filesystem
Now that we can navigate our filesystem, manipulating it is easy. Here’s a
function that renames the currently focused file or folder:

fsRename :: Name -> FSZipper -> FSZipper

fsRename newName (Folder name items, bs) = (Folder newName items, bs)

fsRename newName (File name dat, bs) = (File newName dat, bs)

Let’s rename our "pics" folder to "cspi":

ghci> let newFocus = (myDisk, []) -: fsTo "pics" -: fsRename "cspi" -: fsUp

We descended to the "pics" folder, renamed it, and then moved back up.
How about a function that makes a new item in the current folder?

Behold:

fsNewFile :: FSItem -> FSZipper -> FSZipper

fsNewFile item (Folder folderName items, bs) =

(Folder folderName (item:items), bs)

Easy as pie. Note that this would crash if we tried to add an item but
were focusing on a file instead of a folder.

Let’s add a file to our "pics" folder, and then move back up to the root:

ghci> let newFocus =

(myDisk, []) -: fsTo "pics" -: fsNewFile (File "heh.jpg" "lol") -: fsUp

What’s really cool about all this is that when we modify our filesystem,
our changes are not actually made in place, but instead, the function returns
a whole new filesystem. That way, we have access to our old filesystem (in
this case, myDisk), as well as the new one (the first component of newFocus).
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By using zippers, we get versioning for free. We can always refer to older
versions of data structures, even after we’ve changed them. This isn’t unique
to zippers, but it is a property of Haskell, because its data structures are im-
mutable. With zippers, however, we get the ability to easily and efficiently
walk around our data structures, so the persistence of Haskell’s data struc-
tures really begins to shine.

Watch Your Step
So far, while walking through our data structures—whether they were binary
trees, lists, or filesystems—we didn’t really care if we took a step too far and
fell off. For instance, our goLeft function takes a zipper of a binary tree and
moves the focus to its left subtree:

goLeft :: Zipper a -> Zipper a

goLeft (Node x l r, bs) = (l, LeftCrumb x r:bs)

But what if the tree we’re stepping off from is an empty tree? What if it’s
not a Node, but an Empty? In this case, we would get a runtime error, because
the pattern match would fail, and we have not made a pattern to handle an
empty tree, which doesn’t have any subtrees.

So far, we just assumed that we would never try to focus on the left sub-
tree of an empty tree, as its left subtree doesn’t exist. But going to the left
subtree of an empty tree doesn’t make much sense, and so far we’ve just con-
veniently ignored this.

Or what if we are already at the root of
some tree and don’t have any breadcrumbs
but still try to move up? The same thing
would happen. It seems that when using
zippers, any step could be our last (cue omi-
nous music). In other words, any move can
result in a success, but it can also result in a
failure. Does that remind you of something?
Of course: monads! More specifically, the
Maybe monad, which adds a context of possi-
ble failure to normal values.

Let’s use the Maybe monad to add a con-
text of possible failure to our movements.
We’re going to take the functions that work
on our binary tree zipper and make them
into monadic functions.

First, let’s take care of possible failure
in goLeft and goRight. So far, the failure of
functions that could fail was always reflected in their result, and this example
is no different.
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Here are goLeft and goRight with an added possibility of failure:

goLeft :: Zipper a -> Maybe (Zipper a)

goLeft (Node x l r, bs) = Just (l, LeftCrumb x r:bs)

goLeft (Empty, _) = Nothing

goRight :: Zipper a -> Maybe (Zipper a)

goRight (Node x l r, bs) = Just (r, RightCrumb x l:bs)

goRight (Empty, _) = Nothing

Now, if we try to take a step to the left of an empty tree, we get a Nothing!

ghci> goLeft (Empty, [])

Nothing

ghci> goLeft (Node 'A' Empty Empty, [])

Just (Empty,[LeftCrumb 'A' Empty])

Looks good! How about going up? The problem before happened if we
tried to go up but we didn’t have any more breadcrumbs, which meant that
we were already at the root of the tree. This is the goUp function that throws
an error if we don’t keep within the bounds of our tree:

goUp :: Zipper a -> Zipper a

goUp (t, LeftCrumb x r:bs) = (Node x t r, bs)

goUp (t, RightCrumb x l:bs) = (Node x l t, bs)

Let’s modify it to fail gracefully:

goUp :: Zipper a -> Maybe (Zipper a)

goUp (t, LeftCrumb x r:bs) = Just (Node x t r, bs)

goUp (t, RightCrumb x l:bs) = Just (Node x l t, bs)

goUp (_, []) = Nothing

If we have breadcrumbs, everything is okay, and we return a successful
new focus. If we don’t have breadcrumbs, we return a failure.

Before, these functions took zippers and returned zippers, which meant
that we could chain them like this to walk around:

gchi> let newFocus = (freeTree, []) -: goLeft -: goRight

But now, instead of returning Zipper a, they return Maybe (Zipper a), and
chaining functions like this won’t work. We had a similar problem when we
were dealing with our tightrope walker in Chapter 13. He also walked one
step at a time, and each of his steps could result in failure, because a bunch
of birds could land on one side of his balancing pole and make him fall.
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Now the joke is on us, because we’re the ones doing the walking, and
we’re traversing a labyrinth of our own devising. Luckily, we can learn
from the tightrope walker and just do what he did: replace normal func-
tion application with >>=. This takes a value with a context (in our case, the
Maybe (Zipper a), which has a context of possible failure) and feeds it into
a function, while making sure that the context is handled. So just like our
tightrope walker, we’re going to trade in all our -: operators for >>= opera-
tors. Then we will be able to chain our functions again! Watch how it works:

ghci> let coolTree = Node 1 Empty (Node 3 Empty Empty)

ghci> return (coolTree, []) >>= goRight

Just (Node 3 Empty Empty,[RightCrumb 1 Empty])

ghci> return (coolTree, []) >>= goRight >>= goRight

Just (Empty,[RightCrumb 3 Empty,RightCrumb 1 Empty])

ghci> return (coolTree, []) >>= goRight >>= goRight >>= goRight

Nothing

We used return to put a zipper in a Just, and then used >>= to feed that
to our goRight function. First, we made a tree that has on its left an empty
subtree and on its right a node that has two empty subtrees. When we try to
go right once, the result is a success, because the operation makes sense. Go-
ing right twice is okay, too. We end up with the focus on an empty subtree.
But going right three times doesn’t make sense—we can’t go to the right of
an empty subtree. This is why the result is a Nothing.

Now we’ve equipped our trees with a safety net that will catch us should
we fall off. (Wow, I nailed that metaphor.)

NOTE Our filesystem also has a lot of cases where an operation could fail, such as trying to
focus on a file or folder that doesn’t exist. As an exercise, you can equip our filesystem
with functions that fail gracefully by using the Maybe monad.

Thanks for Reading!
Or just flipping to the last page! I hope you found this book useful and fun.
I have strived to give you good insight into the Haskell language and its id-
ioms. While there’s always something new to learn in Haskell, you should
now be able to code cool stuff, as well as read and understand other people’s
code. So hurry up and get coding! See you on the other side!
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I N D E X

Symbols & Numbers

&& (double ampersand)
as Boolean operator conjunction, 2
using with folds and lists, 78–79

'(apostrophe)
using with functions, 7
using with types, 149–150

* (asterisk)
as multiplication function, 3
using with kinds, 150

** (exponentiation), using with RPN func-
tions, 207–208

\ (backslash), declaring lambdas with, 71
` (backticks) using with functions, 4–5
: (colon)

as cons operator
bytestring version of, 200
using with applicatives, 238–239
using with lists, 8–9

using with infix constructors, 134
:: (double colon)

using in record syntax, 116
using with type annotations, 30, 118
using with types, 24

:k command, identifying kinds with, 
150–151

$ (function application operator), 
80–81, 83

/ (division), using with RPN functions, 
207–208

/= (not-equal-to) operator, 3, 28
= (equal) sign

using with data keyword, 109
using with data types, 122
using with functions, 5

== (double equal sign), 3
using with Eq type class, 28
using with type instances, 139–140

!! (double exclamation point)
in Data.List module, 182
using with lists, 9

> (greater-than) operator, using with
lists, 9–10

>> function, replacing, 279
>>= (bind) function

in A Knight’s Quest, 292
nested use of, 280
using with functions as monads, 311
using with monads, 269–270, 272, 

274–280, 283–284, 286
using with Reader monad, 312
using with State monad, 316–317
using with Writer type, 302

-> (arrow)
in type signature, 60–61
using with functions, 25
using with lambdas, 71

-> r as functor and monad, 311
< (less-than) operator, using with lists, 9–10
<*> function

calling with applicative values, 236
left-associative, 233
specializing for IO, 234
using with applicative style, 232
using with liftM function, 325
using with zip lists, 237

<= operator, using with lists, 9–10
<$>, using with applicative style, 231–232
<-, using with I/O actions and 

functors, 219
- (minus) operator, using with sections, 62
() (parentheses)

minimizing use of, 81, 83
placement with functions, 7
using with operations, 2, 5
using with sections, 62

(,,) function, using with zip lists, 238
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. (period), using with functions, 89

.. (dots), using with value constructors, 
113–114

+ (plus) operator, 3, 5
++ (concatenation) operator

excluding from pattern matching, 40
using with lists, 8

; (semicolon), using with let expressions, 46
[] (square brackets), using with lists, 7, 24
[Char] and String types, 30, 127–128
_ (underscore)

in pattern matching, 38
using with lists, 18

| (vertical pipe)
using with data keyword, 109
using with data types, 122
using with guards, 41

|| as Boolean operator disjunction, 2, 256
0 flag, using in Heathrow to London 

example, 216
3D vector type, implementing, 121–122

A

accumulators
using with folds, 73
using with right folds, 75
using with scanl and scanr, 79–80

addDrink function, 301–302
algebraic data structures, 137
algebraic data types, 126–127, 133. See also 

data types
algebraic expressions, writing, 203–208
All type, using with monoids, 257
ampersands (&&)

as Boolean operator conjunction, 2
using with folds and lists, 78–79

and function
using with applicative functors, 241
using with lists, 78

any function, 92
Any newtype constructor, using with 

monoids, 256–257
apostrophe (')

using with functions, 7
using with types, 149–150

appendFile function
in to-do list example, 180
using in I/O, 180

applicative functors, 227–228, 237–238, 
323. See also functors

Applicative type class, 228–229, 323
functions as, 235–236

liftA2 function, 238–239
lists as, 232–234, 243–244, 285–287
Maybe types as, 269–270
sequenceA function, 239–242
upgrading, 267–269
zip lists, 237

applicative laws, 238
applicative operators, vs. monads, 278
applicative style, using on lists, 233–234
Applicative type class, 228–229, 323

Maybe implementation, 229–230
style of pure, 230–232

applyLog function
using with monoids, 300
using with Writer monad, 299–300

arithmetic expressions, 2
arrow (->)

in type signature, 60–61
using with functions, 25
using with lambdas, 71

askForNumber function, 197
as-pattern, 40
association lists, 98–100. See also lists
associativity

defined, 251
using with monads, 294–296

asterisk (*)
as multiplication function, 3
using with kinds, 150

B

baby.hs file
appending code to, 6
saving, 5

backslash (\), declaring lambdas with, 71
backticks (`) using with functions, 4–5
Banana on a Wire example, 278–280
base case, reaching, 51
binary functions

using on values, 251
using with folds, 73

binary search tree, implementing, 135–137
bind (>>=) function

in A Knight’s Quest, 292
nested use of, 280
using with functions as monads, 311
using with monads, 269–270, 272, 

274–280, 283–284, 286
using with Reader monad, 312
using with State monad, 316–317
using with Writer type, 302

binding to variables, 39
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birds
ignoring in Pierre example, 278–280
representing in Pierre example, 275–278

BMI (body mass index)
calculation of, 41–42
listing of, 45
repeating calculations of, 43

Boolean algebra, 2
Boolean expressions, using with guards, 41
Boolean values

generating randomly, 191
for tossing coin, 193

Bool type, 26, 143–144, 256–257
Bounded type class, 31–32, 126–127
bracket function, using in I/O, 178–179
bracketOnError function, 183–184
breadcrumbs

in filesystem, 355
representing in trees, 346–348
using with lists and zippers, 352–353

bytestrings, 198–202. See also lists
changing types of, 300
copying files with, 201–202
module functions, 201
as monoids, 300
strict and lazy, 199–201

C

Caesar cipher, 92–94
calculations, performing once, 42–45
capital letters, restriction of, 7
capslocker.hs program

exiting, 171
getContents I/O action, 171
saving and compiling, 170

Car data type, 119–120
case expressions, 48–49

vs. if else statements, 48
vs. let expressions, 48
syntax, 48

cat program, 180–181
characters

converting into numbers, 96
shifting, 93

[Char] and String types, 30, 127–128
CharList value constructor, 245–246, 250
Char type, 26
chessboard example, 290–292
circles, representing, 110–112
class constraints, 140, 142
class declarations, 140

code blocks, excluding, 48–49
coin-toss function, 193–195
Collatz sequence, 69–70
colon (:)

as cons operator
bytestring version of, 200
using with applicatives, 238–239
using with lists, 8–9

using with infix constructors, 134
command-line arguments, 184–185
compare function

using Ordering type with, 29
using with guards, 42
using with monoids, 259

computations
deferred, 199
performing, 52

concatenation (++) operator
excluding from pattern matching, 40
using with lists, 8

concrete types, 150–151. See also data types
conditions, adding to list comprehen-

sions, 16
conjunction (&&) Boolean operator, 2
cons (:) operator, using with lists, 8–9
Cons constructor, 133
context of failure, adding to values, 321.
Control.Exception bracketOnError, 

183–184
copyFile function, 201
copying files with bytestrings, 201–202
Cube.hs file in Geometry module, 107
Cuboid.hs file in Geometry module, 106
curried functions, 59–62, 222

max, 60
printing functions, 63
sections, 62–63

cycle function, using with lists, 14

D

Data.ByteString.Lazy module, 199
Data.Char module, 93, 96
data keyword, 109–110

vs. newtype, 244–245, 248–249
using, 250

Data.List module, 88–89. See also lists
!! function, 182
any function, 92
delete function, 182
group function, 90
tails function, 91–92
words function, 90
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Data.Map module, 114.
fromListWith function, 103
lookup function, 100
Map k v parameterized type, 120

Data.Monoid module
Product type, 255–256
Sum type, 255–256

data structures. See also zippers
reducing to values, 73
using zippers with, 352

data types. See also algebraic data types; 
concrete types; recursive data struc-
tures; type constructors; type param-
eters; types

3D vector, 121–122
applying to type constructors, 150–152
defining, 109–110, 122
for describing people, 114–117, 123–124
identifying, 150–151
making, 250
record syntax, 116–117
wrapping with newtype keywords, 

244–245
Day type, 127
deferred computation, 199
definitions, functions as, 7
deletetodo.hs program, saving and compil-

ing, 182
derived instances, 122–127. See also type 

classes
equating people, 123–124
Read type class, 124–125
Show type class, 124–125

deriving keyword, using with newtype, 245
dictionaries, 98
difference lists, using, 307–309
digitToInt function, 96
disjunction (||) Boolean operator, 2
div function, 4–5
division (/), using with RPN functions, 

207–208
do expressions. See also monads

actions of, 219
failure of pattern matching in, 284
let lines in, 282
monadic expressions in, 282
monadic values in, 282
results of, 318
writing, 283

do notation, 280–285, 290
and <-, 156
and list comprehensions, 288
pattern matching and failure, 284–285
using with Writer monad, 303–304

dots (..), using with value constructors, 
113–114

double colon (::)
using in record syntax, 116
using with type annotations, 30, 118
using with types, 24

double equal sign (==), 3
using with Eq type class, 28
using with type instances, 139–140

Double type, 26
drop function, using with lists, 12

E

Either, kind of, 151
Either a b type, 130–132, 149–150
Either e a type, 321–322
elem function

using recursively, 55–56
using with lists, 12

end-of-file character, issuing, 170
Enum type class, 31, 126–127
equal (=) sign

using with data keyword, 109
using with data types, 122
using with functions, 5

equality (== and /=) operators, 3
equality testing, 28
Eq type class, 28, 122–124, 138–139, 

141, 250
erroneous computation, representing, 247
error function

calling, 178
using in pattern matching, 39

Error instance, 322
error messages, 3
Euclid’s algorithm, 304–305
exceptions, raising, 178, 247–248
exponentiation (**), using with RPN func-

tions, 207–208
exporting

functions, 104
shapes in modules, 113–114

expressions
determining types of, 24
equivalent examples of, 71–72
lambdas as, 71
using operations in, 2

F

factorial function, 25, 36
failure, adding context of, 321
False Boolean value, 2–3
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Fibonacci sequence, specifying recur-
sively, 51–52

file contents vs. handles, 177
files

copying with bytestrings, 201–202
processing as strings, 199
reading and writing, 175–180

filesystem
manipulating, 357–358
moving up and down in, 356–357
representing via zippers, 353–358

filter function, 67–70
vs. takeWhile, 80
using fold with, 77

filtering over lists, 198–199
FilterM monadic function, 328–331
fixity declaration, 134
flip function, 65–66, 78
floating-point numbers, precision of, 337
Floating type class, 32
Float type, 25–26
fmap function

concept of, 223
as function composition, 222
as infix function, 221
vs. liftM, 324–325
using over functions, 221
using with newtype, 246

folding function
using with monoids, 262–265
using with RPN, 206–207

foldl function, 74, 76
vs. scanl, 79
stack overflow errors, 94–95

FoldM monadic function, 331–332
fold pattern, example of, 99
foldr function, 75–76, 78–79. See also right 

fold function
vs. scanr, 79
using binary search tree with, 137

folds
accumulators, 73
binary functions, 73
concept of, 77–78
examples, 76–77
left vs. right, 75

forever I/O function, 165–166
for loops, 198
forM I/O function, 166–167
fromListWith function, 103
fst function

type of, 27
using with pairs, 20

function application operator ($), 
80–81, 83

function composition, 82–84
fmap as, 222
module functions, 91
with multiple parameters, 83–84
performing, 89
point-free style, 84–85
right-associative, 82

function f, mapping over function g, 
310–311

function parameters, pattern matching 
on, 48–49

functional programming, pattern in, 22
functions

. (period) symbol used with, 89
accessing, 88
as applicatives, 235–236
applying for monads, 275–276
applying to lists, 66–67
applying with - (minus) operator, 347
behavior of, 153–154
calling, 3–6
combining, 6
concept of, 61
creating, 5–7, 310–311
defining, 35–36
as definitions, 7
exporting from modules, 104
filter, 67–70
as functors, 220–223, 311
importing from modules, 89
infix, 3–4
lifting, 222
loading, 6
in local scope, 46
map, 66–70
mapping with multiple parameters, 

70–71
as monads, 311
optimal path, 212–215
partially applied, 60, 64, 71
polymorphic, 27
prefix, 3–4
printing, 63
referencing from modules, 89
relating to people, 115
searching for, 88
for shapes, 112–113
with side effects, 153–154
syntax, 5
type declarations, 205
types of, 24–25
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functions (continued)
using, 6–7
using once, 71–73
value constructors as, 110, 112, 114
values returned by, 6–7
for vectors, 121–122
in where blocks, 45

functor laws
1 and 2, 223–225
breaking, 225–227

functors, 218, 323. See also applicative 
functors

converting maps into, 149–150
functions as, 220–223
I/O actions as, 218–220

Functor type class, 146–150, 227
definition of, 152
Either a type constructor, 149–150
Maybe type constructor, 147–148
Tree type constructor, 148–149

functor values, functions in, 227

G

gcd function, 304–306
gcdReverse function, efficiency of, 309
generics vs. type variables, 27
gen generator example, 313
Geometry module, 104–107
getContents I/O action, 171–173
get function, using with state, 318–319
getStdGen I/O action, 195–196
GHC compiler, invoking, 155
GHCi, let expressions in, 47
ghci, typing, 1
ghci> prompt, 1
girlfriend.txt file

caps-locked version of, 180
opening, 175

global generator, implementing, 195
greater-than (>) operator, using with lists, 

9–10
greatest common divisor, calculating, 

304–305
group function, using with words function, 

90–91
guard function, using with monads, 289
guards. See also functions

vs. if/else trees, 41
vs. if expressions, 40–41
otherwise, 41
vs. patterns, 40–41
using, 41–42

H

haiku.txt input, 170
handles vs. file contents, 177
Haskell

laziness of, 247
as pure language, 313

haystack and needle lists, 91–92
head function, using with lists, 10–11
Heathrow to London example

optimal path function, 212–215
quickest path, 209–211
road system, 211–212
road system from input, 215–216
stack overflow errors, 216

Hello, world! program
compiling, 154–155
defining main, 154
function types, 155
printed output, 155
running, 155

hierarchical modules, 104–106
higher-order functions. See also functions

curried functions, 59–64
flip, 65–66
map, 66–70
type declaration, 63
zipWith, 64–65

Hoogle search engine, 88

I

id function, 144, 223–224
if else statements vs. case expressions, 48
if/else trees vs. guards, 41
if expressions, 40–41, 143, 145
if statement, 6–7
I’ll Fly Away example, 276–278
importing modules, 88–89
infinite lists, using, 14
infix functions, 3–5, 12, 27. See also 

functions
applying, 62–63
defining automatically, 133–134

init function, using with lists, 10–11
input, transforming, 173–175
input redirection, 170
input streams, getting strings from, 

171–173
instance declarations, 142
instance keyword, 139
Integer type, 25
Integral type class, 33
interactive mode, starting, 1
Int type, 25
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I/O (input and output)
appendFile function, 180
bracket function, 178–179
files and streams, 169–175
and randomness, 195–198
readFile function, 179
withFile function, 177–178
writeFile function, 179–180

I/O actions
<- vs. let bindings, 159
binding names, 158–159
do blocks, 219
do notation, 156–161
as functors, 218–220
getArgs, 184–185
getContents, 171–173
getLine type, 156
getProgName, 184–185
gluing together, 156–161
let syntax, 158–159
making from pure value, 160
vs. normal values, 157
performing, 155, 157
results yielded by, 153, 157
return function, 160–161
reverseWords function, 159–161
review, 167
in System.Environment module, 184–185
tellFortune function, 157
using sequenceA function with, 242
using with monads, 293

I/O functions
forever, 165–166
forM, 166–167
mapM, 165
print, 162–163
putChar, 162
putStr, 161–162
sequence, 164–165
when, 163–164

IO instance of Applicative, 234–235
isPrefixOf function, using with strings, 92

J

join monadic function, 326–328

K

:k command, identifying kinds with, 
150–151

key/value mappings, achieving, 98–104
Knight’s Quest, A (example), 290–292

L

lambdas, 71–73. See also functions
declaring, 71
in function composition, 82
in Heathrow to London example, 216
using with folds, 74

landLeft and landRight functions, 276–277
last function, using with lists, 10–11
less-than (<) operator, using with lists, 9–10
left fold function, 74. See also foldl function

in Heathrow to London example, 
213–215

using with RPN function, 205
Left value, feeding to functions, 322
length function, using with lists, 11, 17–18
let expressions

vs. case expressions, 48
in GHCi, 47
in list comprehensions, 46–47
pattern matching with, 46
using, 45–46
vs. where bindings, 45–46

let keyword
using with lists, 16
using with names, 8

liftA2 function, using with applicative 
functors, 238–239

liftM monadic function, 323–326
list comprehensions, 15–18

and do notation, 288
pattern matching with, 38–40
using with tuples, 21–22

list monad, 285–287. See also monads
list operations

cycle function, 14
drop function, 12
elem function, 12
head function, 10–11
init function, 10–11
last function, 10–11
length function, 11
maximum function, 12
null function, 11
odd function, 16
repeat function, 14
replicate function, 15
reverse function, 11
sum function, 12
tail function, 10–11
take function, 12

list ranges, using Enum type in, 29. See also 
ranges
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lists. See also association lists; bytestrings; 
Data.List module; task list program; 
zip lists

accessing elements of, 9
adding to, 8
and function, 78
as applicative functors, 232–234, 

237–238, 243–244, 285–287
applying functions to, 66–67
binding elements from, 15
checking empty status of, 11
combining, 15–18
comparing, 9–10
concatenation, 8–9
construction of, 306–307
converting trees to, 265
drawing elements from, 15
efficiency of, 306–307
filtering, 15–18, 198–199
folding, 73–74
getting last elements of, 77
including predicates in, 16–17
infinite, 14
inside lists, 9
managing via module functions, 91–92
mapping over, 198–199
as monoids, 253–254, 300
as nondeterministic computations, 233
number ranges in, 13–15
pattern matching with, 38–40
promise of, 199
recursive functions on, 99
replacing odd numbers in, 16
sorting, 56–58
square brackets ([]) used with, 7
transforming, 15–18
vs. tuples, 18, 20, 24
using applicative style on, 233
using with filter function, 67
using with RPN functions, 205–206
using zippers with, 352–353

locker codes, looking up, 132
logging, adding to programs, 304–306
logical or (||), using with monoids, 256
log type, changing type of, 300
log values. See also values

applyLog function, 299–300
implementing, 305–306
using Writer monad for, 298

M

main
defining for Hello, world!, 154–155
defining for task list, 186

map function, 66–70, 73, 75
mapM I/O function, 165
mappend function

using with folds and monoids, 263
using with Maybe and Monoid, 260
using with Monoid type class, 252, 254
using with Ordering values, 258–259
using with Writer monad, 300
using with Writer type, 303

mapping over lists, 198–199
maps. See also Data.Map module

vs. association lists, 100
converting association lists to, 100
converting into functors, 149–150
type of keys in, 120

maxBound function, using with Bounded 
type, 31

max function, curried, 60
maximum function

in recursion example, 52–53
using with lists, 12

max prefix function, calling, 4
Maybe instance, using with Monad type class, 

273–280
Maybe monad

using with trees, 358
vs. Writer monad, 299

Maybe type, 118–119
Applicative implementation, 229–230
for folds and monoids, 262
as functor, 147–148
identifying, 151
implementation of >>=, 280
as instance of Monoid, 260–261
as monad, 269–271
wrapping with newtype, 261

mconcat function, using with Monoid type 
class, 252–254, 261

mempty function
using with Monoid type class, 252, 254–255
using with Writer type, 303
vs. mzero, 288–289

messages
decoding, 94
encoding, 93

minBound function, using with Bounded 
type, 31

min prefix function, calling, 4
minus (-) operator, using with sections, 62
module functions

Caesar cipher, 93–94
counting words, 90–91
finding numbers, 95–98
list management, 91–92
on strict left folds, 94–95
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modules. See also functions
accessing from GHCi, 88
advantages of, 87
exporting functions, 104
exporting shapes in, 113–114
geometry, 104–106
hierarchical, 106–107
importing, 88–89
loosely coupled, 87
qualified imports of, 89
reading source code for, 89
referencing functions from, 89

monadic functions
composing, 335–336
FilterM, 328–331
FoldM, 331–332
join, 326–328
liftM, 323–326

Monad instance, 311
monad laws, 292–293, 339–340
MonadPlus type class, 288
monads, 323. See also do expressions; list 

monad; monoids; Reader monad; 
State monad; Writer monad

applying functions, 275–276
associativity, 294–296
do notation, 280–285
functions as, 311
guard function, 289
left identity, 293
making, 336–341
Maybe types as, 269–271
as monoids, 288
in mtl package, 297
nested use of >>=, 280
nondeterministic values, 285–287
purpose of, 268–269
right identity, 294
using with trees, 358–359

MonadState type class, 318–319
Monad type class

>> function, 273, 279
>>= (bind) function, 272–273
fail function, 273, 278, 284
Maybe instance, 273
return function, 272

monoids. See also monads
All type, 257
Any newtype constructor, 256–257
attaching to values, 302
Bool type, 256–257
bytestrings as, 300
comparing strings, 258–259
composition of, 252
Data.Monoid module, 255

defined, 252
folding with, 262–265
laws, 253, 255
lists as, 253–254, 300
monads as, 288
newtype keyword, 243–244
numbers as, 254–255
Ordering type, 257–259
type class, 252
using with Writer monad, 306–307

Monoid type class
defining, 252
mappend function, 252, 254, 263
mconcat function, 252–254, 261
mempty function, 252, 254–255
newtype keyword, 243–244

monoid values, including, 304
mtl package, monads in, 297
multiplication (*) function, 3
mzero vs. mempty, 288–289

N

"\n" (newline) character, adding, 180
names

defining, 8
functions as, 7

needle and haystack lists, 91–92
negative number constants, 2
newline ("\n") character, adding, 180
newStdGen action, 196
newtype declarations, using record syntax 

in, 250
newtype keyword, 249–250

vs. data keyword, 244–245, 248–249
using, 247–249
using with monoids, 243–244
using with Product and Sum types, 255–256
using with type class instances, 246–247
using with Writer type, 302
wrapping Maybe with, 261

newtype wrapper, using with State 
monad, 317

NO! alert, 143, 145
nondeterministic values

representing, 336
using with monads, 285–287

not Boolean operator, 2
not-equal-to (/=) operator, 3, 28
Nothing value

in do notation, 281
in pattern matching, 284–285
producing in Banana on a Wire, 278–279

null function, using with lists, 11
number constants, negative, 2
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number ranges, listing, 13–15
numbers. See also random generators; RPN 

expressions
converting characters into, 96
filtering, 288
finding via modules, 95–98
getting chain of, 69–70
guessing, 196–197
inserting in phoneBook, 101–102
as monoids, 254–255

Num type class, 32, 140

O

odd function, using with lists, 16
operations

precedence of, 4
using in expressions, 2

or (||) Boolean operator, 2
Ordering type, using with monoids, 257–260
order of operations, specifying, 2
Ord type class, 28–29, 125–126, 250
otherwise guards, 41
output, filtering via list 

comprehensions, 288

P

package, defined, 297
pairs, storing data in, 20
parameterized types, 120–122
parameters, using = operator with, 5
parentheses, ()

minimizing use of, 81, 83
placement with functions, 7
using with operations, 2, 5
using with sections, 62

pattern matching, 35–37
as-pattern, 40
error function, 39
failure in do notation, 284–285
failure of, 37
on function parameters, 48–49
with let expressions, 46
with list comprehensions, 38–40
with lists, 38–40
tell function, 39
with tuples, 37–38
using with constructors, 111
using with monads, 338
using with newtype keywords, 247
using with type class instances, 140
with where keyword, 44–45
x:xs pattern, 38

patterns
vs. guards, 40–41
using with RPN functions, 206

people, describing via data types, 123–124
performance

comparing via Writer monad, 309–310
enhancing via bytestrings, 202

period (.), using with functions, 89
phoneBook

association list, 99, 101–104
using type synonyms with, 128–129

Pierre example
of do notation, 282–284
of monads, 274–280

plus (+) operator, 3, 5
Point data type, using with shapes, 112–113
point-free style

converting function to, 206
defining functions in, 84–85

pole, representing in Pierre example, 
274–277

polymorphic functions, 27
pop function, using with stacks, 

314–315, 317
powerset, getting, 330
predicates

adding to list comprehensions, 16–17
using with filter function, 67

prefix functions, calling, 3–4
Prelude> prompt, 1
printing

functions, 63
text files to terminal, 180–181

print I/O function, 162–163
probabilities, expressing, 337–339
problems, implementing solutions to, 205
Product type, using with monoids, 255–256
programs, 87

adding logging to, 304–306
exiting, 174

prompt, changing, 1
pure method

using with applicative functors, 
228–230, 232

using with zip lists, 237
push function, using with stacks, 314–315
putChar I/O function, 162
put function, using with state, 318–319
putStr I/O function, 161–162
putStrLn function, type of, 155

Q

quicksort algorithm, 56–58
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R

-> r, as functor and monad, 311
random data, getting, 190–198
random function, 320. See also functions

RandomGen type class, 191
Random type class, 191
StdGen type, 192
type signature, 191
using, 192

random generators, 313. See also numbers
making, 192
regenerating, 196

randomness and I/O, 195–198
randoms function, 194–195
random string, generating, 195–196
ranges. See also list ranges

using with floating-point numbers, 15
using with lists, 13–15

Rational data type, 337
readability, improving via where keyword, 43
Reader monad, 312. See also monads
readFile function, 179
reading files, 175–180
Read type class, 29–31
record syntax

using in newtype declarations, 250
using to create data types, 116–117

rectangles, representing, 110–112
recursion, 51

approaching, 58
base case, 51
in Heathrow to London example, 215
in mathematics, 51–52
using with applicative functors, 239
using with Functor type class, 148–149

recursive data structures, 132–137. See also 
data types

algebraic data types, 132–133
binary search tree, 135–137
infix functions, 133–135

recursive definition, 194
recursive functions, 36, 38. See also 

functions
defining, 51
elem, 55–56
maximum, 52–53
operating on lists, 99
repeat, 55
replicate, 53–54
reverse, 55
take, 54–55
writing, 52–53
zip, 55–56

repeat function
using recursively, 55
using with lists, 14

replicate function
using recursively, 53–54
using with lists, 15

return function
in Monad type class, 272
using with Writer type, 303

reverse function
using fold with, 76–77
using recursively, 55
using with lists, 11

reverse polish notation (RPN), 203–208
right fold function, 75–76. See also foldr 

function
right triangle, finding, 21–22
Right value, feeding to functions, 322
road system

getting from input, 215–216
representing, 211–212

RPN (reverse polish notation), 203–208
RPN calculator

failures, 334
folding function, 333–334
making safe, 332–334
reads function, 333

RPN expressions, calculating, 204. See also 
expressions; numbers

RPN functions. See also functions
sketching, 205–206
writing, 205–207

RPN operators, 207–208

S

scanl function, 79–80
scanr function, 79–80
sections, using with infix functions, 62–63
semicolon (;), using with let expressions, 46
sequenceA function, using with applicative 

functors, 239–242
sequence I/O function, 164–165
set comprehensions, 15
shapes

exporting in modules, 113–114
improving with Point data type, 112–113
representing, 110–112

shortlinesonly.hs program, compiling, 173
shortlines.txt file

redirecting contents of, 173
saving, 172

Show type class, 29
side effects, 153–154
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snd function, using with pairs, 20
sorting lists, 56–58
source code, reading for modules, 89
Sphere.hs file, in Geometry module, 106
square brackets ([]), using with lists, 7, 24
square roots, getting for natural 

numbers, 80
stack overflow errors, 94, 216
stacks

keeping for RPN functions, 205–206
modeling for stateful computations, 

314–315
popping elements from, 314
pushing elements to, 314

state, getting and setting, 318–319
stateful computations, 313–314

assigning types to, 314
stack modeling, 314–315

State monad. See also monads
and randomness, 320
using, 315–318

steps, using with ranges in lists, 13–14
String and [Char] type, 30, 127–128
strings, 8

comparing via monoids, 258–259
converting to uppercase, 128
encoding, 93
getting, 196
getting from input streams, 171–173
isPrefixOf function, 92
processing files as, 199
representing values as, 29

String type, using with type synonyms, 129, 
131–132

subclassing type classes, 140
subtrees, focusing on, 346–347
succ: function, calling, 4
sum function

using with fold, 74
using with lists, 12, 17–18

Sum type, using with monoids, 255–256
System.Environment module

getArgs I/O action, 184–185
getProgName I/O action, 184–185

System.IO, openTempFile function, 182
System.Random module

getStdGen I/O action, 195
mkStdGen function, 192
random function, 191–192

T

:t (type) command, 24, 26, 65
tail function, using with lists, 10–11

tails function, 91–92
take function

using recursively, 54–55
using with lists, 12

takeWhile function, 69, 80
task list program, 188–189. See also lists

add function, 186–187, 190
bad input, 190
calling, 186–187
dispatch function, 189–190
implementing functions, 186–187
list-viewing functionality, 187
remove function, 187–188
running, 189
view function, 187

tasks. See to-do list
tell function, using with log values, 

305–306
terminal

printing text files to, 180–181
reading from, 175
writing to, 175

text files, printing to terminal, 180–181
threeCoins stateful computation, 320
thunk, defined, 199
to-do list

adding tasks to, 185
appendFile function, 180
bracketOnError function, 183
cleaning up, 183–184
deleting items from, 181–183
functionality, 185
removing tasks from, 186
viewing tasks, 186

traffic light, defining states of, 139–140, 
144–145

trees. See also zippers
balancing, 135
converting to lists, 265
going to tops of, 351
manipulating under focus, 350–351
mapping, 148
moving up in, 348–350
nodes for monoids, 265
nonempty node for monoids, 264
providing safety nets for, 358–360
representing breadcrumbs, 346–348
subtrees of, 346–347
using monads with, 358–359
using with folds and monoids, 263
in zippers example, 344–346

Tree type constructor, as instance of Func-
tor, 148–149

triangle, right, 21–22
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triples
pattern matching, 38
using with road system, 212

True Boolean value, 2–3
tuples

changing vectors to, 19
fixed size of, 19–20
vs. lists, 18, 20, 24
pairs, 19–20
pattern matching with, 37–38
triples, 19, 21–22
as types, 26
using, 19–20
using commas with, 19
using parentheses with, 19
using with list comprehensions, 21–22
using with road system, 212
using with shapes, 110

two-dimensional vector, representing, 
19–20

type annotations, 29
type class constraints, 120–121
type classes, 27, 33, 122–123. See also 

derived instances
Bounded, 31–32, 126–127
displaying instances of, 142–143
Enum, 31, 126–127
Eq, 28, 123–124, 138–139, 141
Floating, 32
Functor, 146–150
instances of, 141–143
Integral, 33
minimum complete definition of, 139
Monad, 272–273
Num, 32
open quality of, 217
Ord, 28–29, 125–126
Read, 29–31, 124–125
reviewing, 138
Show, 29, 124–125
subclassing, 140
using, 250
YesNo, 143–146

type class instances, using newtype with, 
246–247

type constructors, 117. See also data types
applying types to, 150–152
as instances of Functor type class, 218, 

225–226
parameters, 150
type parameters for, 141
vs. value constructors, 122, 130

type declarations, 24–25, 205
in higher-order functions, 63
for zipWith function, 64

type inference, 23
type instances, making, 139–140
type keyword, 128, 249
type names, capitalization of, 24, 26
type parameters, 117–119. See also 

data types
passing types as, 118
using, 119–121

types. See also data types
Bool, 26
Char, 26
Double, 26
Float, 25–26
of functions, 24
Int, 25
Integer, 25
tuples as, 26

type signatures, 110
type synonyms, 127–132, 249–250

Either a b type, 130–132
for knight’s position, 290
parameterizing, 129–130
for zipper in filesystem, 355

type system, 23
type variables, 26–27, 231

U

undefined value, 247–248
underscore (_)

in pattern matching, 38
using with lists, 18

V

value constructors
for Either a b type, 130–131
exporting, 113–114
as functions, 110, 112, 114
parameters, 117
vs. type constructors, 122, 130
using .. (dots) with, 113–114
using with shapes, 110

values. See also log values
adding context of failure to, 321
applying functions to, 347
attaching monoids to, 302
concept of, 343
expressing as strings, 29
mapping keys to, 98–104
reducing data structures to, 73
returning in functions, 6–7
testing for equality, 3
using Ord type class with, 28–29
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values with contexts, using monads with, 
268–269

variables
binding to, 39
binding via let expressions, 45

vectors
changing to tuples, 19
implementing types for, 121–122

vertical pipe (|)
using with data keyword, 109
using with data types, 122
using with guards, 41

W

when I/O function, 163–164
where bindings vs. let expressions, 45–46
where blocks, functions in, 45
where keyword, 42–43

pattern matching with, 44–45
scope of, 44

while loops, 198
withFile function, using in I/O, 177–178
words, counting, 90–91
words.txt file, creating and saving, 175
writeFile function, 179–180
Writer monad, 298–300. See also monads

adding logging to programs, 304–306
applyLog function, 299
changing log type, 300
comparing performance, 309–310
difference lists, 307–309
inefficient list construction, 306–307
vs. State monad, 316
using do notation with, 303–304
using monoids with, 300–302, 306–307

Writer type, 302–303
writing files, 175–180

X

x:xs pattern, using, 38

Y

YEAH! alert, 143, 145
YesNo type class, 143–146

Z

zip function
using recursively, 55–56
using with pairs, 20

zip lists, 237, 244. See also lists
zippers. See also data structures; trees

defined, 350
filesystem example, 353–358
focus of, 350–351
for lists, 352–353
using with data structures, 352

zipWith function, 64–65, 73
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It’s all in the name: Learn You a Haskell 
for Great Good! is a hilarious, illustrated 
guide to this complex functional language. 
Packed with the author’s original artwork, 
pop culture references, and, most impor-
tantly, useful example code, this book 
teaches functional fundamentals in a way 
you never thought possible. 

You’ll start with the kid stuff: basic syntax, 
recursion, types, and type classes. Then 
once you’ve got the basics down, the real 
black-belt master class begins: you’ll learn to 
use applicative functors, monads, zippers, 
and all the other mythical Haskell constructs 
you’ve only read about in storybooks.

As you work your way through the author’s 
imaginative (and occasionally insane) 
examples, you’ll learn to:

• Laugh in the face of side effects as you
wield purely functional programming
techniques

• Use the magic of Haskell’s “laziness” to
play with infinite sets of data

• Organize your programs by creating
your own types, type classes, and
modules

• Use Haskell’s elegant input/output
system to share the genius of your
programs with the outside world

Short of eating the author’s brain, you will 
not find a better way to learn this powerful 
language than reading Learn You a Haskell 
for Great Good!

About the Author
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