-
DOING MATH

WITH PYTHO N

DOING MATH WITH PYTHON

DOING MATH
WITH PYTHON

Uae Programming to
Explore Algebra, Statiatica,
Calculua, and More!

by Amit Saha

¢

nho starch
press

San Francisco

DOING MATH WITH PYTHON. Copyright © 2015 by Amit Saha.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

Printed in USA
First printing
1918171615 123456789

ISBN-10: 1-59327-640-0
ISBN-13: 978-1-59327-640-9

Publisher: William Pollock

Production Editor: Riley Hoffman

Cover Illustration: Josh Ellingson

Interior Design: Octopod Studios

Developmental Editors: Seph Kramer and Tyler Ortman
Technical Reviewer: Jeremy Kun

Copyeditor: Julianne Jigour

Compositor: Riley Hoffman

Proofreader: Paula L. Fleming

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.

245 8th Street, San Francisco, CA 94103
phone: 415.863.9900; info@nostarch.com
www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Saha, Amit, author.

Doing math with Python : use programming to explore algebra, statistics, calculus, and more! / by
Amit Saha.

pages cm

Summary: "Uses the Python programming language as a tool to explore high school-level mathematics
like statistics, geometry, probability, and calculus by writing programs to find derivatives, solve
equations graphically, manipulate algebraic expressions, and examine projectile motion. Covers
programming concepts including using functions, handling user input, and reading and manipulating
data"-- Provided by publisher.

Includes index.

ISBN 978-1-59327-640-9 -- ISBN 1-59327-640-0

1. Mathematics--Study and teaching--Data processing. 2. Python (Computer program language) 3.
Computer programming. I. Title.

0A20.(65524 2015

510.285'5133--dc23

2015009186

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in it.

http://www.nostarch.com

To Protyusha, for never giving up on me

BRIEF CONTENTS

Acknowledgments L xiii
INfrodUCHON . . o . o XV
Chapter 1: Working with Numbers 1
Chapter 2: Visualizing Data with Graphs o 27
Chapter 3: Describing Data with Statistics. o 61
Chapter 4: Algebra and Symbolic Math with SymPy 93
Chapter 5: Playing with Sets and Probability. 121
Chapter 6: Drawing Geometric Shapes and Fractals 149
Chapter 7: Solving Calculus Problems 177
Aferword . . o 209
Appendix A: Software Installation 213
Appendix B: Overview of Python Topics 221

CONTENTS IN DETAIL

ACKNOWLEDGMENTS xiii
INTRODUCTION b
Who Should Read This Book xvi
What's in This Book® xvi
Scripts, Solutions, and Hints xvii
1
WORKING WITH NUMBERS 1
Basic Mathematical Operations 1
Labels: Attaching Names to Numbers. 4
Different Kinds of Numbers 4
Working with Fractions 5
Complex Numbers 6
Getting User Input oo 8
Handling Exceptions and Invalid Input. o 9
Fractions and Complex Numbers as lnput 11
Writing Programs That Do the Math for You 12
Calculating the Factors of annteger 12
Generating Multiplication Tables. 15
Converting Units of Measurement 17
Finding the Roots of a Quadratic Equation. 20
What You Llearned. 22
Programming Challengesttt i i i e 22
#1: Even-Odd Vending Machine. 22
#2: Enhanced Multiplication Table Generator. 23
#3: Enhanced Unit Converter i 23
#4: Fraction Caleulator 23
#5: Give Exit Powertothe User 24
2
VISUALIZING DATA WITH GRAPHS 27
Understanding the Cartesian Coordinate Plane 28
Working with Lists and Tuples o 29
lterating overa listorTuple 31
Creating Graphs with Matplotlib 32
Marking Points on Your Graph 33
Graphing the Average Annual Temperature in New York City 35
Comparing the Monthly Temperature Trends of New York City. 38
Customizing Graphs 41
Savingthe Plots 45
Plotting with Formulas. 46
Newton’s Law of Universal Gravitation 46
Projectile Motion.o 48
What You Llearnedo 54
Programming Challengescoiiiii it 55
#1: How Does the Temperature Vary During the Day?. 55

#3: Enhanced Projectile Trajectory Comparison Program. 56

#4: Visualizing Your Expenses 56
#5: Exploring the Relationship Between
the Fibonacci Sequence and the Golden Ratio 59
3
DESCRIBING DATA WITH STATISTICS 61
Findingthe Mean. 62
Findingthe Median 63
Finding the Mode and Creating a Frequency Table 65
Finding the Most Common Elements 66
Findingthe Mode 67
Creating a Frequency Table 69
Measuring the Dispersion i 71
Finding the Range of a Setof Numbers 71
Finding the Variance and Standard Deviation. 72
Caleulating the Correlation Between Two Data Sets 75
Calculating the Correlation Coefficient. 76
High School Grades and Performance on College Admission Tests 78
Scatter Plofs.o 81
Reading Data from Files 83
Reading Data froma TextFile. 84
Reading Data froma CSVFile 86
What You Llearnedo 89
Programming Challengesttt i ittt 89
#1: Better Correlation Coefficient-Finding Program. 89
#2: Statistics Caleulator 89
#3: Experiment with Other CSV Data 89
#4: Finding the Percentile. 89
#5: Creating a Grouped Frequency Table 90
4
ALGEBRA AND SYMBOLIC MATH WITH SYMPY 93
Defining Symbols and Symbolic Operations 94
Working with Expressions.ot 96
Factorizing and Expanding Expressions., 96
Prefty Printingo 97
Substituting in Values. 100
Converting Strings to Mathematical Expressions 103
Solving Equations. 105
Solving Quadratic Equations L 106
Solving for One Variable in Terms of Others 106
Solving a System of Linear Equations. 108
Ploting Using SymPy 108
Plotting Expressions Inputby the User 11
Plotting Multiple Functions 113
What You Llearnedo 115
Programming Challengescooiiiiiiiiiiiiii e 115
#1:Factor Finder 115
#2: Graphical Equation Solver 115
#3:Summing a Series. 116
#4: Solving Single-Variable Inequalities. 117

X Contents in Detail

5

PLAYING WITH SETS AND PROBABILITY 121
What's @ Set . .. 121
Set Construction i 122
Subsets, Supersets, and Power Sets. L L 124
Set Operations 126
Probability. 131
Probability of Event AorEventB. 133
Probability of Event Aand EventB 134
Generating Random Numbers 134
Nonuniform Random Numbers 137
What You learned 140
Programming Challengesccoitiiiiiii ittt it 140
#1: Using Venn Diagrams to Visualize Relationships Between Sets 140
#2: lawof large Numbers. 143
#3: How Many Tosses Before You Run Out of Money? 144
#4: ShufflingaDeckof Cards 144
#5: Estimating the AreaofaCircle 145
6
DRAWING GEOMETRIC SHAPES AND FRACTALS 149
Drawing Geometric Shapes with Matplotlib’s Patches. 150
DrawingaCircle 151
Creating Animated Figures. 153
Animating a Projectile’s Trajectory 156
Drawing Fractals 158
Transformations of Points inaPlane. 158
Drawing the Barnsley Fern 163
What You Learned.o 168
Programming Challengescoiiiiiiiiii ittt i i it iie 168
#1: Packing Circlesinfoa Square. 168
#2: Drawing the Sierpinski Triangle 170
#3: Exploring Hénon's Function 171
#4: Drawing the Mandelbrot Set. 172
7
SOLVING CALCULUS PROBLEMS 177
WhatIs a Function 178
Domain and Range of a Function 178
An Overview of Common Mathematical Functions. 178
Assumptions in SymPy 180
Finding the Limit of Functions. 181
Continuous Compound Interest 183
Instantaneous Rate of Change. 184
Finding the Derivative of Functions 185
A Derivative Caleulator 186
Calculating Partial Derivatives i 187
Higher-Order Derivatives and Finding the Maxima and Minima 188
Finding the Global Maximum Using Gradient Ascent 191
A Generic Program for Gradient Ascent. 195
A Word of Warning About the Initial Valve 196

The Role of the Step Size and Epsilon 197

Contents in Detail xi

Finding the Integrals of Functions 200

Probability Density Functions 201
What You Llearnedo 205
Programming Challenges oot 205
#1: Verify the Continuity of a Function ata Point. 205
#2: Implement the Gradient Descent 205
#3: AreaBetween Two Curveso i 206
#4: Finding the length of aCurve. L 207
AFTERWORD 209
Things to Explore Next 209
ProjectEuler. 210
Python Documentation 210
Books .. 210
Getting Helpo 211
Conclusion . ..o 211
A
SOFTWARE INSTALLATION 213
Microsoft Windowso 214
Updating SymPy 215
Installing matplotlibvenno 215
Starting the Python Shell. 215
LiNUX 216
Updating SymPy 217
Installing matplotlibvenn 217
Starting the Python Shell. 217
Mac OS X. . 217
Updating SymPy 220
Installing matplotlibvenn 220
Starting the Python Shell. 220
B
OVERVIEW OF PYTHON TOPICS 221
if _name__ =="'__main__'. 221
List Comprehensions. 223
Dictionary Data Structure o 224
Multiple Return Values 226
Exception Handling 228
Specifying Multiple Exception Types 228
Theelse Block. 230
Reading Filesin Python. 230
Reading All the LinesatOnce. 232
Specifying the Filename as Input. 232
Handling Errors When Reading Files. 232
Reusing Code i 235
INDEX 237

xii Contents in Detail

ACKNOWLEDGMENTS

I would like to thank everyone at No Starch Press for making this book
possible. From the first emails discussing the book idea with Bill Pollock
and Tyler Ortman, through the rest of the process, everyone there has
been an absolute pleasure to work with. Seph Kramer was amazing with his
technical insights and suggestions and Riley Hoffman was meticulous in
checking and re-checking that everything was correct. It is only fair to say
that without these two fine people, this book wouldn’t have been close to
what it is. Thanks to Jeremy Kun and Otis Chodosh for their insights and
making sure all the math made sense. I would also like to thank the copy-
editor, Julianne Jigour, for her thoroughness.

SymPy forms a core part of many chapters in this book and I would
like to thank everyone on the SymPy mailing list for answering my queries
patiently and reviewing my patches with promptness. I would also like to
thank the matplotlib community for answering and clearing up my doubts.

I would like to thank David Ash for lending me his Macbook, which
helped me when writing the software installation instructions.

I also must thank every writer and thinker who inspired me to write,
from humble web pages to my favorite books.

INTRODUCTION

This book’s goal is to bring together three
topics near to my heart—programming,
math, and science. What does that mean
exactly? Within these pages, we’ll programmati-
cally explore high school-level topics, like manipulating

units of measurement; examining projectile motion;

calculating mean, median, and mode; determining linear correlation;
solving algebraic equations; describing the motion of a simple pendulum;
simulating dice games; creating geometric shapes; and finding the limits,
derivatives, and integrals of functions. These are familiar topics for many,
but instead of using pen and paper, we’ll use our computer to explore them.
We’ll write programs that will take numbers and formulas as input, do
the tedious calculations needed, and then spit out the solution or draw a
graph. Some of these programs are powerful calculators for solving math
problems. They find the solutions to equations, calculate the correlation
between sets of data, and determine the maximum value of a function,

Xvi

among other tasks. In other programs, we’ll simulate real-life events, such
as projectile motion, a coin toss, or a die roll. Using programs to simulate
such events gives us an easy way to analyze and learn more about them.

You’ll also find topics that would be extremely difficult to explore with-
out programs. For example, drawing fractals by hand is tedious at best and
close to impossible at worst. With a program, all we need to do is run a for
loop with the relevant operation in the body of the loop.

I think youw’ll find that this new context for “doing math” makes learn-
ing both programming and math more exciting, fun, and rewarding.

Who Should Read This Book

If you yourself are learning programming, you’'ll appreciate how this book
demonstrates ways to solve problems with computers. Likewise, if you teach
such learners, I hope you find this book useful to demonstrate the applica-
tion of programming skills beyond the sometimes abstract world of com-
puter science.

This book assumes the reader knows the absolute basics of Python
programming using Python 3—specifically, what a function is, function
arguments, the concept of a Python class and class objects, and loops.
Appendix B covers some of the other Python topics that are used by the
programs, but this book doesn’t assume knowledge of these additional
topics. If you find yourself needing more background, I recommend
reading Python for Kids by Jason Briggs (No Starch Press, 2013).

What’s in This Book?

Introduction

This book consists of seven chapters and two appendices. Each chapter
ends with challenges for the reader. I recommend giving these a try, as
there’s much to learn from trying to write your own original programs.
Some of these challenges will ask you to explore new topics, which is a
great way to enhance your learning.

e Chapter 1, Working with Numbers, starts off with basic mathematical
operations and gradually moves on to topics requiring a higher level of
math know-how.

e Chapter 2, Visualizing Data with Graphs, discusses creating graphs
from data sets using the matplotlib library.

e Chapter 3, Describing Data with Statistics, continues the theme of
processing data sets, covering basic statistical concepts—mean, median,
mode, and the linear correlation of variables in a data set. You’ll also
learn to handle data from CSV files, a popular file format for distribut-
ing data sets.

e Chapter 4, Algebra and Symbolic Math with SymPy, introduces sym-
bolic math using the SymPy library. It begins with the basics of repre-
senting and manipulating algebraic expressions before introducing
more complicated matters, such as solving equations.

e Chapter 5, Playing with Sets and Probability, discusses the representa-
tion of mathematical sets and moves on to basic discrete probability.
You’ll also learn to simulate uniform and nonuniform random events.

¢ Chapter 6, Drawing Geometric Shapes and Fractals, discusses using
matplotlib to draw geometric shapes and fractals and create animated
figures.

e Chapter 7, Solving Calculus Problems, discusses some of the math-
ematical functions available in the Python standard library and SymPy
and then introduces you to solving calculus problems.

e Appendix A, Software Installation, covers installation of Python 3,
matplotlib, and SymPy on Microsoft Windows, Linux, and Mac OS X.

e Appendix B, Overview of Python Topics, discusses several Python
topics that may be helpful for beginners.

Scripts, Solutions, and Hints

This book’s companion site is http://www.nostarch.com/doingmathwithpython/.
Here, you can download all the programs in this book as well as hints
and solutions for the challenges. You’ll also find links to additional math,
science, and Python resources I find useful as well as any corrections or
updates to the book itself.

Software is always changing; a new release of Python, SymPy, or
matplotlib may cause a certain functionality demonstrated in this book to
behave differently. You’ll find any of these changes noted on the website.

I hope this book makes your journey into computer programming
more fun and immediately relevant. Let’s do some math!

Introduction xvii

http://www.nostarch.com/doingmathwithpython

WORKING WITH NUMBERS

Let’s take our first steps toward using
Python to explore the world of math and
science. We’ll keep it simple now so you can

get a handle on using Python itself. We’ll start
by performing basic mathematical operations, and
then we’ll write simple programs for manipulating
and understanding numbers. Let’s get started!

Basic Mathematical Operations

The Python interactive shell is going to be our friend in this book. Start the
Python 3 IDLE shell and say “hello” (see Figure 1-1) by typing print('Hello
IDLE') and then pressing ENTER. (For instructions on how to install Python
and start IDLE, see Appendix A.) IDLE obeys your command and prints
the words back to the screen. Congratulations—you just wrote a program!
When you see the >>> prompt again, IDLE is ready for more instructions.

2

Chapter 1

K Python Shell

(<
G
(x

File Edit shell Debug Options Windows Help

Python 2.3.0 (default, Sep 29 2012, 22:07:38)

[GCC 4.7.2 20120921 (Red Hat 4.7.2-2)] on linux

Type "copyright", "credits" or "license ()" for more information.
== print ("H=llo IDLE")

Hello IDLE

Figure 1-1: Python 3 IDLE shell

Python can act like a glorified calculator, doing simple computations.
Just type an expression and Python will evaluate it. After you press ENTER,
the result appears immediately.

Give it a try. You can add and subtract numbers using the addition (+)
and subtraction (-) operators. For example:

»> 1+ 2

3

>»> 1 + 3.5
4.5

>»> -1+ 2.5
1.5

>>> 100 - 45
55

>»> -1.1+5
3.9

To multiply, use the multiplication (*) operator:

>»> 3 *2

6

>>> 3.5 ¥ 1.5
5.25

To divide, use the division (/) operator:

>»>3 /2
1.5
>»> 4/ 2
2.0

As you can see, when you ask Python to perform a division operation,
it returns the fractional part of the number as well. If you want the result in
the form of an integer, with any decimal values removed, you should use the
floor division (//) operator:

>»> 3 // 2
1

The floor division operator divides the first number by the second
number and then rounds down the result to the next lowest integer. This
becomes interesting when one of the numbers is negative. For example:

>>> -3 /1 2
-2

The final result is the integer lower than the result of the division oper-
ation (-3/2 = -1.5, so the final result is -2).

On the other hand, if you want just the remainder, you should use the
modulo (%) operator:

>>> 9% 2
1

You can calculate the power of numbers using the exponential (**)
operator. The examples below illustrate this:

>>> 2 ¥*
4

>>> 2 ¥ 10
1024

>>> 1 *¥* 10
1

We can also use the exponential symbol to calculate powers less than 1.
1/2
For example, the square root of a number 7 can be expressed as n '~ and the
cube root as n'’”

>>> 8 *¥* (1/3)
2.0

As this example shows, you can use parentheses to combine mathe-
matical operations into more complicated expressions. Python will evalu-
ate the expression following the standard PEMDAS rule for the order of
calculations—parentheses, exponents, multiplication, division, addition,
and subtraction. Consider the following two expressions—one without
parentheses and one with:

>»> 5+ 5 %5
30
>>> (5 +5) *5
50

In the first example, Python calculates the multiplication first: 5 times 5
is 25; 25 plus 5 is 30. In the second example, the expression within the paren-
theses is evaluated first, just as we’d expect: b plus 5 is 10; 10 times 5 is 50.

These are the absolute basics of manipulating numbers in Python. Let’s
now learn how we can assign names to numbers.

Working with Numbers 3

4

Labels: Attaching Names to Numbers

As we start designing more complex Python programs, we’ll assign names
to numbers—at times for convenience, but mostly out of necessity. Here’s a
simple example:

>»>a=3
>»>> a+ 1
4
>»>a=5
>»>a+1
6

At @, we assign the name a to the number 3. When we ask Python to
evaluate the result of the expression a + 1, it sees that the number that
a refers to is 3, and then it adds 1 and displays the output (4). At 8, we
change the value of a to 5, and this is reflected in the second addition
operation. Using the name a is convenient because you can simply change
the number that a points to and Python uses this new value when a is
referred to anywhere after that.

This kind of name is called a label. You may have been introduced to
the term variable to describe the same idea elsewhere. However, consider-
ing that variable is also a mathematical term (used to refer to something like
x1in the equation x+ 2 = 3), in this book I use the term variable only in the
context of mathematical equations and expressions.

Different Kinds of Numbers

Chapter 1

You may have noticed that I’ve used two kinds of numbers to demonstrate
the mathematical operations—numbers without a decimal point, which you
already know as integers, and numbers with a decimal point, which program-
mers call floating point numbers. We humans have no trouble recognizing
and working with numbers whether they’re written as integers, floating
point decimals, fractions, or roman numerals. But in some of the programs
that we write in this book, it will only make sense to perform a task on a
particular type of number, so we’ll often have to write a bit of code to have
the programs check whether the numbers we input are of the right type.

Python considers integers and floating point numbers to be different
types. If you use the function type(), Python will tell you what kind of num-
ber you’ve just input. For example:

>>> type(3)
<class 'int'>

>>> type(3.5)
<class 'float'>

>>> type(3.0)
<class 'float's

o0@Q

Here, you can see that Python classifies the number 3 as an integer
(type 'int") but classifies 3.0 as a floating point number (type 'float'). We
all know that 3 and 3.0 are mathematically equivalent, but in many situa-
tions, Python will treat these two numbers differently because they are two
different types.

Some of the programs we write in this chapter will work properly only
with an integer as an input. As we just saw, Python won’t recognize a num-
ber like 1.0 or 4.0 as an integer, so if we want to accept numbers like that
as valid input in these programs, we’ll have to convert them from floating
point numbers to integers. Luckily, there’s a function built in to Python that
does just that:

>>> int(3.8)
3
>>> int(3.0)
3

The function int() takes the input floating point number, gets rid of
anything that comes after the decimal point, and returns the resulting inte-
ger. The float() function works similarly to perform the reverse conversion:

>>> float(3)
3.0

float() takes the integer that was input and adds a decimal point to
turn it into a floating point number.

Working with Fractions

Python can also handle fractions, but to do that, we’ll need to use Python’s
fractions module. You can think of a module as a program written by someone
else that you can use in your own programs. A module can include classes,
functions, and even label definitions. It can be part of Python’s standard
library or distributed from a third-party location. In the latter case, you
would have to install the module before you could use it.

The fractions module is part of the standard library, meaning that it’s
already installed. It defines a class Fraction, which is what we’ll use to enter
fractions into our programs. Before we can use it, we’ll need to import it,
which is a way of telling Python that we want to use the class from this mod-
ule. Let’s see a quick example—we’ll create a new label, f, which refers to
the fraction 3/4:

>>> from fractions import Fraction
>>> f = Fraction(3, 4)

»> f

Fraction(3, 4)

We first import the Fraction class from the fractions module @.
Next, we create an object of this class by passing the numerator and

Working with Numbers 5

6

Chapter 1

denominator as parameters @. This creates a Fraction object for the frac-
tion 3/4. When we print the object ®, Python displays the fraction in the
form Fraction(numerator, denominator).

The basic mathematical operations, including the comparison opera-
tions, are all valid for fractions. You can also combine a fraction, an integer,
and a floating point number in a single expression:

>>> Fraction(3, 4) + 1 + 1.5
3.25

When you have a floating point number in an expression, the result of
the expression is returned as a floating point number.

On the other hand, when you have only a fraction and an integer in the
expression, the result is a fraction, even if the result has a denominator of 1.

>>> Fraction(3, 4) + 1 + Fraction(1/4)
Fraction(2, 1)

Now you know the basics of working with fractions in Python. Let’s
move on to a different kind of number.

Complex Numbers

The numbers we’ve seen so far are the so-called real numbers. Python also
supports complex numbers with the imaginary part identified by the letter j
or J (as opposed to the letter ¢ used in mathematical notation). For example,
the complex number 2 + 3i would be written in Python as 2 + 3;:

>»>a =2+ 3j
>>> type(a)
<class 'complex'>

As you can see, when we use the type() function on a complex number,
Python tells us that this is an object of type complex.
You can also define complex numbers using the complex() function:

>>> a = complex(2, 3)
>>> a
(2 +3J)

Here we pass the real and imaginary parts of the complex number as
two arguments to the complex() function, and it returns a complex number.
You can add and subtract complex numbers in the same way as real

numbers:

>»>b =3+ 3j
>»>a+b
(5 + 63)
>»>a-b
(-1 + 0j)

Multiplication and division of complex numbers are also carried out
similarly:

>»>a*b
(-3 + 157)
>»>alb
(0.8333333333333334 + 0.16666666666666666j)

The modulus (%) and the floor division (//) operations are not valid for
complex numbers.

The real and imaginary parts of a complex number can be retrieved
using its real and imag attributes, as follows:

>>> z =2+ 3j
>>> z.real

2.0

>>> z.imag

3.0

The conjugate of a complex number has the same real part but an imagi-
nary part with an equal magnitude and an opposite sign. It can be obtained
using the conjugate() method:

>>> z.conjugate()
(2 - 3j)

Both the real and imaginary parts are floating point numbers. Using the
real and imaginary parts, you can then calculate the magnitude of a complex
number with the following formula, where x and y are the real and imaginary
parts of the number, respectively: ,/x* + yQ. In Python, this would look like
the following:

>>> (z.real ** 2 + z.imag ** 2) ** 0.5
3.605551275463989

A simpler way to find the magnitude of a complex number is with the
abs() function. The abs() function returns the absolute value when called
with a real number as its argument. For example, abs(5) and abs(-5) both
return 5. However, for complex numbers, it returns the magnitude:

>>> abs(z)
3.605551275463989

The standard library’s cmath module (cmath for complex math) provides
access to a number of other specialized functions to work with complex
numbers.

Working with Numbers 7

Getting User Input

Chapter 1

®Q

As we start to write programs, it will help to have a nice, simple way to
accept user input via the input() function. That way, we can write programs
that ask a user to input a number, perform specific operations on that num-
ber, and then display the results of the operations. Let’s see it in action:

>>> a = input()
1

At @, we call the input() function, which waits for you to type something,
as shown at @, and press ENTER. The input provided is stored in a:

>>> a
e

Notice the single quotes around 1 at ®. The input() function returns
the input as a string. In Python, a string is any set of characters between two
quotes. When you want to create a string, either single quotes or double
quotes can be used:

>>> sl
>>> s2

'a string'
"a string"

Here, both s1 and s2 refer to the same string.

Even if the only characters in a string are numbers, Python won’t treat
that string as a number unless we get rid of those quotation marks. So
before we can perform any mathematical operations with the input, we’ll
have to convert it into the correct number type. A string can be converted
to an integer or floating point number using the int() or float() function,
respectively:

>»>a="1'

>>> int(a) + 1
2

>>> float(a) + 1
2.0

These are the same int() and float() functions we saw earlier, but this
time instead of converting the input from one kind of number to another,
they take a string as input ('1') and return a number (2 or 2.0). It’s impor-
tant to note, however, that the int() function cannot convert a string con-
taining a floating point decimal into an integer. If you take a string that has
a floating point number (like '2.5" or even '2.0") and input that string into
the int() function, youll get an error message:

>>> int('2.0")
Traceback (most recent call last):

File "<pyshell#26>", line 1, in <module>
int('2.0")
ValueError: invalid literal for int() with base 10: '2.0'

This is an example of an exception—Python’s way of telling you that it
cannot continue executing your program because of an error. In this case,
the exception is of the type ValueError. (For a quick refresher on exceptions,
see Appendix B.)

Similarly, when you supply a fractional number such as 3/4 as an input,
Python cannot convert it into an equivalent floating point number or inte-
ger. Once again, a ValueError exception is raised:

>>> a = float(input())
3/4
Traceback (most recent call last):
File "<pyshell#25>", line 1, in <module>
a=float(input())
ValueError: could not convert string to float: '3/4'

You may find it useful to perform the conversion in a try...except block
so that you can handle this exception and alert the user that the program
has encountered an invalid input. We’ll look at try...except blocks next.

Handling Exceptions and Invalid Input

If you're not familiar with try...except, the basic idea is this: if you execute
one or more statements in a try...except block and there’s an error while
executing, your program will not crash and print a Traceback. Instead, the
execution is transferred to the except block, where you can perform an
appropriate operation, for instance, printing a helpful error message or
trying something else.

This is how you would perform the above conversion in a try...except
block and print a helpful error message on invalid input:

>>> try:

a = float(input('Enter a number: "))
except ValueError:

print('You entered an invalid number')

Note that we need to specify the type of exception we want to handle.
Here, we want to handle the ValueError exception, so we specify it as except
ValueError.

Now, when you give an invalid input, such as 3/4, it prints a helpful
error message, as shown at @:

Enter a number: 3/4
® You entered an invalid number

Working with Numbers 9

10

Chapter 1

You can also specify a prompt with the input() function to tell the user
what kind of input is expected. For example:

>>> a = input('Input an integer: ')

The user will now see the message hinting to enter an integer as input:

Input an integer: 1

In many programs in this book, we’ll ask the user to enter a number
as input, so we’ll have to make sure we take care of conversion before we
attempt to perform any operations on these numbers. You can combine the
input and conversion in a single statement, as follows:

>>> a = int(input())
1

»>a+1

2

This works great if the user inputs an integer. But as we saw earlier, if
the input is a floating point number (even one that’s equivalent to an inte-
ger, like 1.0), this will produce an error:

>>> a = int(input())
1.0
Traceback (most recent call last):
File "<pyshell#42>", line 1, in <module>
a=int(input())
ValueError: invalid literal for int() with base 10: '1.0'

In order to avoid this error, we could set up a ValueError catch like the
one we saw earlier for fractions. That way the program would catch float-
ing point numbers, which won’t work in a program meant for integers.
However, it would also flag numbers like 1.0 and 2.0, which Python sees as
floating point numbers but that are equivalent to integers and would work
just fine if they were entered as the right Python type.

To get around all this, we will use the is_integer() method to filter out
any numbers with a significant digit after the decimal point. (This method
is only defined for float type numbers in Python; it won’t work with num-
bers that are already entered in integer form.)

Here’s an example:

>>> 1.1.is_integer()
False

Here, we call the method is_integer() to check if 1.1 is an integer, and
the result is False because 1.1 really is a floating point number. On the other

hand, when the method is called with 1.0 as the floating point number, the
result is True:

>>> 1.0.is_integer()
True

We can use is_integer() to filter out noninteger input while keeping
inputs like 1.0, which is expressed as a floating point number but is equiva-
lent to an integer. We’ll see how the method would fit into a larger program
a bit later.

Fractions and Complex Numbers as Input

The Fraction class we learned about earlier is also capable of converting a
string such as '3/4' to a Fraction object. In fact, this is how we can accept a
fraction as an input:

>>> a = Fraction(input('Enter a fraction: "))
Enter a fraction: 3/4

>>> a

Fraction(3, 4)

Try entering a fraction such as 3/0 as input:

>>> a = Fraction(input('Enter a fraction: "))
Enter a fraction: 3/0
Traceback (most recent call last):
File "<pyshell#2>", line 1, in <module>
a = Fraction(input('Enter a fraction: "))
File "/usr/1ib64/python3.3/fractions.py”, line 167, in _ new__
raise ZeroDivisionError('Fraction(%s, 0)' % numerator)
ZeroDivisionError: Fraction(3, 0)

The ZeroDivisionError exception message tells you (as you already know)
that a fraction with a denominator of 0 is invalid. If you’re planning on hav-
ing users enter fractions as input in one of your programs, it’s a good idea
to always catch such exceptions. Here is how you can do something like that:

>>> try:

a = Fraction(input('Enter a fraction: "))
except ZeroDivisionError:

print('Invalid fraction')

Enter a fraction: 3/0
Invalid fraction

Now, whenever your program’s user enters a fraction with 0 in the
denominator, it'll print the message Invalid fraction.

Working with Numbers 11

12

Similarly, the complex() function can convert a string such as '2+3j" into
a complex number:

>>> z = complex(input('Enter a complex number: '))
Enter a complex number: 2+3j
> z

(2433)

If you enter the string as '2 + 3j' (with spaces), it will resultin a
ValueError error message:

>>> z = complex(input('Enter a complex number: '))
Enter a complex number: 2 + 3j
Traceback (most recent call last):
File "<pyshell#43>", line 1, in <module>
z = complex(input('Enter a complex number: "))
ValueError: complex() arg is a malformed string

It’s a good idea to catch the ValueError exception when converting a
string to a complex number, as we’ve done for other number types.

Writing Programs That Do the Math for You

Chapter 1

Now that we have learned some of the basic concepts, we can combine them
with Python’s conditional and looping statements to make some programs
that are a little more advanced and useful.

Calculating the Factors of an Integer

When a nonzero integer, a, divides another integer, b, leaving a remainder
0, a is said to be a factor of b. As an example, 2 is a factor of all even integers.
We can write a function such as the one below to find whether a nonzero
integer, a, is a factor of another integer, b:

>>> def is_factor(a, b):
if b % a-==
return True
else:
return False

We use the % operator introduced earlier in this chapter to calculate the
remainder. If you ever find yourself asking a question like “Is 4 a factor of
1024?27, you can use the is_factor() function:

>>> is_factor(4, 1024)
True

For any positive integer n, how do we find all its positive factors? For
each of the integers between 1 and n, we check the remainder after divid-
ing n by this integer. If it leaves a remainder of 0, it’s a factor. We’ll use the

range() function to write a program that will go through each of those num-
bers between 1 and n.

Before we write the full program, let’s take a look at how range() works.
A typical use of the range() function looks like this:

>>> for i in range(1, 4):
print(i)
1

Here, we set up a for loop and gave the range function two arguments.
The range() function starts from the integer stated as the first argument
(the start value) and continues up to the integer just before the one stated
by the second argument (the stop value). In this case, we told Python to
print out the numbers in that range, beginning with 1 and stopping at 4.
Note that this means Python doesn’t print 4, so the last number it prints is
the number before the stop value (3). It’s also important to note that the
range() function accepts only integers as its arguments.

You can also use the range() function without specifying the start value,
in which case it’s assumed to be 0. For example:

>>> for i in range(5):
print(i)

H W NN R O

The difference between two consecutive integers produced by the
range() function is known as the step value. By default, the step value is 1.
To specify a different step value, specify it as the third argument (the start
value is not optional when you specify a step value). For example, the follow-
ing program prints the odd numbers below 10:

>>> for i in range(1,10,2):
print(i)

O N VT W

Okay, now that we see how the range() function works, we’re ready to
look at a factor-calculating program. Because I'm writing a fairly long pro-
gram, instead of writing this program in the interactive IDLE prompt, I
write it in the IDLE editor. You can start the editor by selecting File » New
Window in IDLE. Notice that we start out by commenting our code with

Working with Numbers 13

14

Chapter 1

three straight single quotes ('). The text in between those quotes won’t
be executed by Python as part of the program; it’s just commentary for us
humans.

Find the factors of an integer

def factors(b):
for i in range(1, b+1):

if b % i==o0:
print(i)

if _name__ == "'_main__':

b
b

input('Your Number Please: ')
float(b)

if b > 0 and b.is_integer():
factors(int(b))
else:
print('Please enter a positive integer')

The factors() function defines a for loop that iterates once for every
integer between 1 and the input integer at @ using the range() function.
Here, we want to iterate up to the integer entered by the user, b, so the
stop value is stated as b+1. For each of these integers, i, the program checks
whether it divides the input number with no remainder and prints it if so.

When you run this program (by selecting Run » Run Module), it asks
you to input a number. If your number is a positive integer, its factors are
printed. For example:

Your Number Please: 25
1
5
25

If you enter a non-integer or a negative integer as an input, the pro-
gram prints an error message asking you to input a positive integer:

Your Number Please: 15.5
Please enter a positive integer

This is an example of how we can make programs more user friendly
by always checking for invalid input in the program itself. Because our
program works only for finding the factors of a positive integer, we check
whether the input number is greater than 0 and is an integer using the
is_integer() method @ to make sure the input is valid. If the inputisn’t a
positive integer, the program prints a user-friendly instruction instead of
just a big error message.

Generating Multiplication Tables

Consider three numbers, a, b, and n, where n is an integer, such that
axn=b.

We can say here that b is the nth multiple of a. For example, 4 is the 2nd
multiple of 2, and 1024 is the 512nd multiple of 2.

A multiplication table for a number lists all of that number’s multiples.
For example, the multiplication table of 2 looks like this (first three mul-
tiples shown here):

2x1=2
2x2=4
2x3=6

Our next program generates the multiplication number up to 10
for any number input by the user. In this program, we’ll use the format()
method with the print() function to help make the program’s output look
nicer and more readable. In case you haven’t seen it before, I'll now briefly
explain how it works.

The format() method lets you plug in labels and set it up so that they get
printed out in a nice, readable string with extra formatting around it. For
example, if I had the names of all the fruits I bought at the grocery store
with separate labels created for each and wanted to print them out to make
a coherent sentence, I could use the format() method as follows:

>>> item1
>>> item2
>>> item3

>>> print(

'apples’
'bananas’
'grapes’

'At the grocery store, I bought some {0} and {1} and {2}'.format(item1, item2, item3))
At the grocery store, I bought some apples and bananas and grapes

First, we created three labels (item1, item2, and item3), each referring to
a different string (apples, bananas, and grapes). Then, in the print() function,
we typed a string with three placeholders in curly brackets: {0}, {1}, and {2}.
We followed this with .format(), which holds the three labels we created.
This tells Python to fill those three placeholders with the values stored in
those labels in the order listed, so Python prints the text with {0} replaced
by the first label, {1} replaced by the second label, and so on.

It’s not necessary to have labels pointing to the values we want to print.
We can also just type values into .format(), as in the following example:

>>> print('Number 1: {0} Number 2: {1} '.format(1, 3.578))
Number 1: 1 Number 2: 3.578

Note that the number of placeholders and the number of labels or
values must be equal.

Working with Numbers 15

Now that we’ve seen how format() works, we're ready to take a look at
the program for our multiplication table printer:

Multiplication table printer

def multi table(a):

o for i in range(1, 11):
print('{0o} x {1} = {2}'.format(a, i, a*i))

if _name__ == "'_main__':
a = input('Enter a number: ')
multi table(float(a))

The function multi_table() implements the main functionality of the
program. It takes the number for which the multiplication table will be
printed as a parameter, a. Because we want to print the multiplication table
from 1 to 10, we have a for loop at @ that iterates over each of these num-
bers, printing the product of itself and the number, a.

When you execute the program, it asks you to input a number, and the
program prints its multiplication table:

Enter a number : 5

5.0 x 1 = 5.0

5.0 x 2 = 10.0
5.0 x 3 = 15.0
5.0 x 4 = 20.0
5.0 X 5 = 25.0
5.0 x 6 = 30.0
5.0 x 7 = 35.0
5.0 x 8 = 40.0
5.0 X 9 = 45.0
5.0 x 10 = 50.0

See how nice and orderly that table looks? That’s because we used the
.format() method to print the output according to a readable, uniform
template.

You can use the format() method to further control how numbers are
printed. For example, if you want numbers with only two decimal places,
you can specify that with the format() method. Here is an example:

>>> '{0}"'.format(1.25456)
'1.25456"

>>> '{0:.2f}" .format(1.25456)
'1.25'

The first format statement above simply prints the number exactly as we
entered it. In the second statement, we modify the place holder to {0:.2f},

16 Chapter 1

meaning that we want only two numbers after the decimal point, with the f
indicating a floating point number. As you can see, there are only two num-
bers after the decimal point in the next output. Note that the number is
rounded if there are more numbers after the decimal point than you speci-
fied. For example:

>>> '{0:.2f}'.format(1.25556)
'1.26'

Here, 1.25556 is rounded up to the nearest hundredth and printed as
1.26. If you use .2f and the number you are printing is an integer, zeros are
added at the end:

>>> '{0:.2f}"'.format(1)
'1.00'

Two zeros are added because we specified that we should print exactly
two numbers after the decimal point.

Converting Units of Measurement

The International System of Units defines seven base quantities. These are
then used to derive other quantities, referred to as derived quantities. Length
(including width, height, and depth), time, mass, and temperature are four
of the seven base quantities. Each of these quantities has a standard unit of
measurement: meter, second, kilogram, and kelvin, respectively.

But each of these standard measurement units also has multiple non-
standard measurement units. You are more familiar with the temperature
being reported as 30 degrees Celsius or 86 degrees Fahrenheit than as
303.15 kelvin. Does that mean 303.15 kelvin feels three times hotter than
86 degrees Fahrenheit? No way! We can’t compare 86 degrees Fahrenheit
to 303.15 kelvin only by their numerical values because they’re expressed
in different measurement units, even though they measure the same
physical quantity—temperature. You can compare two measurements
of a physical quantity only when they’re expressed in the same unit of
measurement.

Conversions between different units of measurement can be tricky,
and that’s why youre often asked to solve problems that involve conversion
between different units of measurement in high school. It’s a good way to
test your basic mathematical skills. But Python has plenty of math skills,
too, and, unlike some high school students, it doesn’t get tired of crunch-
ing numbers over and over again in a loop! Next, we’ll explore writing pro-
grams to perform those unit conversions for you.

We’ll start with length. In the United States and United Kingdom,
inches and miles are often used for measuring length, while most other
countries use centimeters and kilometers.

An inch is equal to 2.54 centimeters, and you can use the multiplication
operation to convert a measurement in inches to centimeters. You can then

Working with Numbers 17

18

Chapter 1

divide the measurement in centimeters by 100 to obtain the measurement
in meters. For example, here’s how you can convert 25.5 inches to meters:

>>> (25.5 * 2.54) / 100
0.6476999999999999

On the other hand, a mile is roughly equivalent to 1.609 kilometers. So
if you see that your destination is 650 miles away, you’re 650 x 1.609 kilome-
ters away:

>>> 650 * 1.609
1045.85

Now let’s take a look at temperature conversion—converting tempera-
ture from Fahrenheit to Celsius and vice versa. Temperature expressed
in Fahrenheit is converted into its equivalent value in Celsius using the
formula

5
C=(F-3 —.
(1 -32)

Fis the temperature in Fahrenheit, and Cis its equivalent in Celsius.
You know that 98.6 degrees Fahrenheit is said to be the normal human
body temperature. To find the corresponding temperature in degrees
Celsius, we evaluate the above formula in Python:

>>> F = 98.6
>>> (F -32) * (57 9)
37.0

First, we create a label, F, with the temperature in Fahrenheit, 98.6.
Next, we evaluate the formula for converting this temperature to its equiva-
lent in Celsius, which turns out be 37.0 degrees Celsius.

To convert temperature from Celsius to Fahrenheit, you would use the
formula

F:(ng)+32.
5

You can evaluate this formula in a similar manner:

>>> C =37
>>> C* (9 /5) + 32
98.60000000000001

We create a label, C, with the value 37 (the normal human body tem-
perature in Celsius). Then, we convert it into Fahrenheit using the formula,
and the result is 98.6 degrees.

It’s a chore to have to write these conversion formulas over and over
again. Let’s write a unit conversion program that will do the conversions

®Q

for us. This program will present a menu to allow users to select the conver-
sion they want to perform, ask for relevant input, and then print the calcu-
lated result. The program is shown below:

Unit converter: Miles and Kilometers

def print_menu():
print('1. Kilometers to Miles')
print('2. Miles to Kilometers')

def km_miles():
km = float(input('Enter distance in kilometers: "))
miles = km / 1.609

print('Distance in miles: {0}'.format(miles))

def miles_km():
miles = float(input('Enter distance in miles: "))
km = miles * 1.609

print('Distance in kilometers: {0}'.format(km))

if _name__ == ' main__":
print_menu()
choice = input('Which conversion would you like to do?: ")
if choice == '1':
km_miles()

if choice == '2':
miles_km()

This is a slightly longer program than the others, but not to worry.
It’s actually simple. Let’s start from @. The print_menu() function is called,
which prints a menu with two unit conversion choices. At @, the user is
asked to select one of the two conversions. If the choice is entered as 1
(kilometers to miles), the function km_miles() is called. If the choice is
entered as 2 (miles to kilometers), the function miles_km() is called. In both
of these functions, the user is first asked to enter a distance in the unit
chosen for conversion (kilometers for km_miles() and miles for miles_km()).
The program then performs the conversion using the corresponding for-
mula and displays the result.

Here is a sample run of the program:

1. Kilometers to Miles

2. Miles to Kilometers

Which conversion would you like to do?: 2
Enter distance in miles: 100

Distance in kilometers: 160.900000

Working with Numbers 19

20

Chapter 1

The user is asked to enter a choice at @. The choice is entered as 2
(miles to kilometers). The program then asks the user to enter the distance
in miles to be converted to kilometers and prints the conversion.

This program just converts between miles and kilometers, butin a
programming challenge later, you’ll extend this program so that it can
perform conversions of other units.

Finding the Roots of a Quadratic Equation

What do you do when you have an equation such as x+ 500 — 79 = 10 and
you need to find the value of the unknown variable, x? You rearrange the
terms such that you have only the constants (500, =79, and 10) on one side
of the equation and the variable (x) on the other side. This results in the
following equation: x= 10 — 500 + 79.

Finding the value of the expression on the right gives you the value of
x, your solution, which is also called the root of this equation. In Python, you
can do this as follows:

>>> X = 10 - 500 + 79
>>> X
-411

This is an example of a linear equation. Once you have rearranged the
terms on both sides, the expression is simple enough to evaluate. On the
other hand, for equations such as X+ 2x+1= 0, finding the roots of x usu-
ally involves evaluating a complex expression known as the quadratic formula.
Such equations are known as quadratic equations, generally expressed as
ax’ + bx+ c= 0, where a, b, and c are constants. The quadratic formula for
calculating the roots is given as follows:

_ b+ Jb? —4dac —b—~b* —4ac

and «x, =

2a 2a

Xy

A quadratic equation has two roots—two values of x for which the two
sides of the quadratic equation are equal (although sometimes these two
values may turn out to be the same). This is indicated here by the x, and x,
in the quadratic formula.

Comparing the equation X +2x+1=0to the generic quadratic
equation, we see that a= 1, b= 2, and ¢= 1. We can substitute these values
directly into the quadratic formula to calculate the value of x; and x,. In
Python, we first store the values of a, b, and ¢ as the labels a, b, and c with
the appropriate values:

»>a=1
>>> b =2
»>c=1

Then, considering that both the formulas have the term b’ - 4ac, we'll
define a new label with D, such that D =+/b> —4ac:

>>> D = (b**2 - 4*a*c)**0.5

As you can see, we evaluate the square root of b - dac by raising it to
the 0.5th power. Now, we can write the expressions for evaluating x; and x,:

>>> x_1 = (-b + D)/(2*a)
>>> x 1
-1.0

>>> X_2
>>> X_2

-1.0

(-b - D)/(2*a)

In this case, the values of both the roots are the same, and if you substi-
tute that value into the equation X +2x+ 1, the equation will evaluate to 0.

Our next program combines all these steps in a function roots(),
which takes the values of g, b, and ¢ as parameters, calculates the roots,
and prints them:

Quadratic equation root calculator

def roots(a, b, c):

D = (b*b - 4%a*c)*¥0.5
(-b + D)/(2*a)
X 2 = (-b - D)/(2*a)

x
[y
n

print('x1: {0}'.format(x_1))
print('x2: {0}'.format(x 2))

if _name__ == "' main_":
a = input('Enter a: ')
b = input('Enter b: ")
c = input('Enter c: ")
roots(float(a), float(b), float(c))

At first, we use the labels a, b, and ¢ to reference the values of the three
constants of a quadratic equation. Then, we call the roots() function with
these three values as arguments (after converting them to floating point
numbers). This function plugs a, b, and c into the quadratic formula, finds
the roots for that equation, and prints them.

When you execute the program, it will ask the user to input values of a, b,
and ¢ corresponding to a quadratic equation they want to find the roots for.

Enter a: 1
Enter b: 2
Enter c: 1

Working with Numbers 21

22

x1: -1.000000
X2: -1.000000

Try solving a few more quadratic equations with different values for the
constants, and the program will find the roots correctly.

You most likely know that quadratic equations can have complex num-
bers as roots, too. For example, the roots of the equation X +x+1=0are
both complex numbers. The above program can find those for you as well.
Let’s give it a shot by executing the program again (the constants are a =1,
b=1,and ¢=1):

Enter a: 1

Enter b: 1

Enter c: 1

x1: (-0.49999999999999994+0.86602540378443867)
x2: (-0.5-0.86602540378443867)

The roots printed above are complex numbers (indicated by j), and the
program has no problem calculating or displaying them.

What You Learned

Great work on finishing the first chapter! You learned to write programs that
recognize integers, floating point numbers, fractional numbers (expressed
as a fraction or a floating point number), and complex numbers. You wrote
programs that generate multiplication tables, perform unit conversions, and
find the roots of a quadratic equation. I'm sure you're already excited about
having taken the first steps toward writing programs that will do mathemati-
cal calculations for you. Before we move on, here are some programming
challenges that will give you a chance to further apply what you've learned.

Programming Challenges

Chapter 1

Here are a few challenges that will give you a chance to practice the concepts
from this chapter. Each problem can be solved in multiple ways, but you can
find sample solutions at http://www.nostarch.com/doingmathwithpython/.

#1: Even-0dd Vending Machine

Try writing an “even-odd vending machine,” which will take a number as
input and do two things:

1. Print whether the number is even or odd.
2. Display the number followed by the next 9 even or odd numbers.
If the input is 2, the program should print even and then print 2, 4, 6,

8, 10, 12, 14, 16, 18, 20. Similarly, if the input is 1, the program should
print odd and then print1, 3, 5, 7, 9, 11, 13, 15, 17, 19.

®Q

Your program should use the is_integer() method to display an error
message if the input is 2 number with significant digits beyond the decimal
point.

#2: Enhanced Multiplication Table Generator

Our multiplication table generator is cool, but it prints only the first 10 mul-
tiples. Enhance the generator so that the user can specify both the number
and up to which multiple. For example, I should be able to input that I want
to see a table listing the first 15 multiples of 9.

#3: Enhanced Unit Converter

The unit conversion program we wrote in this chapter is limited to conver-
sions between kilometers and miles. Try extending the program to convert
between units of mass (such as kilograms and pounds) and between units

of temperature (such as Celsius and Fahrenheit).

#4: Fraction Calculator

Write a calculator that can perform the basic mathematical operations on
two fractions. It should ask the user for two fractions and the operation the
user wants to carry out. As a head start, here’s how you can write the pro-
gram with only the addition operation:

Fraction operations

from fractions import Fraction

def add(a, b):
print('Result of Addition: {0}'.format(a+b))

if _name__ == '_main_":
a = Fraction(input('Enter first fraction: "))
b = Fraction(input('Enter second fraction: '))
op = input('Operation to perform - Add, Subtract, Divide, Multiply: ')
if op == 'Add":
add(a,b)

You've already seen most of the elements in this program. At @ and @,
we ask the user to input the two fractions. Then, we ask the user which
operation is to be performed on the two fractions. If the user enters 'Add'
as input, we call the function add(), which we’ve defined to find the sum of
the two fractions passed as arguments. The add() function performs the
operation and prints the result. For example:

Enter first fraction: 3/4

Enter second fraction: 1/4

Operation to perform - Add, Subtract, Divide, Multiply: Add
Result of Addition: 1

Working with Numbers 23

2

Chapter 1

Try adding support for other operations such as subtraction, division,
and multiplication. For example, here’s how your program should be able
to calculate the difference of two fractions:

Enter first fraction: 3/4
Enter second fraction: 1/4
Operation to perform - Add, Subtract, Divide, Multiply: Subtract
Result of Subtraction: 2/4

In the case of division, you should let the user know whether the first
fraction is divided by the second fraction or vice versa.

#5: Give Exit Power to the User

All the programs we have written so far work only for one iteration of input
and output. For example, consider the program to print the multiplication
table: the user executes the program and enters a number; then the pro-
gram prints the multiplication table and exits. If the user wanted to print
the multiplication table of another number, the program would have to be
rerun.

It would be more convenient if the user could choose whether to exit
or continue using the program. The key to writing such programs is to set
up an infinite loop, or a loop that doesn’t exit unless explicitly asked to do so.
Below, you can see an example of the layout for such a program:

Run until exit layout

def fun():
print('I am in an endless loop')
if _name__ == "'_main__"':
while True:
fun()
answer = input('Do you want to exit? (y) for yes ')
if answer == 'y':
break

We define an infinite loop using while True at @. A while loop continues
to execute unless the condition evaluates to False. Because we chose the
loop’s condition to be the constant value True, it will keep running forever
unless we interrupt it somehow. Inside the loop, we call the function fun(),
which prints the string I am in an endless loop. At @, the user is asked “Do
you want to exit?” If the user enters y as the input, the program exits out
of the loop using the break statement (break exits out of the innermost loop
without executing any other statement in that loop). If the user enters any
other input (or none at all, just pressing ENTER), the while loop continues

execution—that is, it prints the string again and continues doing so until
the user wishes to exit. Here is a sample run of the program:

I am in an endless loop
Do you want to exit? (y) for yes n
I am in an endless loop
Do you want to exit? (y) for yes n
I am in an endless loop
Do you want to exit? (y) for yes n
I am in an endless loop
Do you want to exit? (y) for yes y

Based on this example, let’s rewrite the multiplication table generator
so that it keeps going until the user wants to exit. The new version of the
program is shown below:

[

Multiplication table printer with
exit power to the user

[

def multi table(a):

for i in range(1, 11):
print('{o} x {1} = {2}'.format(a, i, a*i))

if _name__ == "'_main_":

while True:
a = input('Enter a number: ')
multi table(float(a))

answer = input('Do you want to exit? (y) for yes ')

if answer == 'y':
break

If you compare this program to the one we wrote earlier, you’ll see
that the only change is the addition of the while loop, which includes the
prompt asking the user to input a number and the call to the multi_table()
function.

When you run the program, the program will ask for a number and
print its multiplication table, as before. However, it will also subsequently
ask whether the user wants to exit the program. If the user doesn’t want to
exit, the program will be ready to print the table for another number. Here
is a sample run:

Enter a number: 2

2.000000 x 1.000000 = 2.000000
2.000000 x 2.000000 = 4.000000
2.000000 x 3.000000 6.000000
2.000000 x 4.000000 = 8.000000

Working with Numbers 25

2.000000 x 5.000000 = 10.000000
2.000000 x 6.000000 = 12.000000
2.000000 x 7.000000 = 14.000000
2.000000 x 8.000000 = 16.000000
2.000000 X 9.000000 = 18.000000

2.000000 x 10.000000 = 20.000000
Do you want to exit? (y) for yes n
Enter a number:

Try rewriting some of the other programs in this chapter so that they
continue executing until asked by the user to exit.

26 Chapter 1

VISUALIZING DATA WITH GRAPHS

In this chapter, you’ll learn a powerful

way to present numerical data: by drawing
graphs with Python. We’ll start by discuss-

ing the number line and the Cartesian plane.
Next, we’ll learn about the powerful plotting library
matplotlib and how we can use it to create graphs.
We’ll then explore how to make graphs that present
data clearly and intuitively. Finally, we’ll use graphs
to explore Newton’s law of universal gravitation and
projectile motion. Let’s get started!

28

Understanding the Cartesian Coordinate Plane

Chapter 2

Consider a number line, like the one shown in Figure 2-1. Integers from -3
to 3 are marked on the line, but between any of these two numbers (say, 1
and 2) lie all possible numbers in between: 1.1, 1.2, 1.3, and so on.

Figure 2-1: A number line

The number line makes certain properties visually intuitive. For
example, all numbers on the right side of 0 are positive, and those on the
left side are negative. When a number « lies on the right side of another
number b, ais always greater than b and b is always less than a.

The arrows at the ends of the number line indicate that the line extends
infinitely, and any point on this line corresponds to some real number, how-
ever large it may be. A single number is sufficient to describe a point on the
number line.

Now consider two number lines arranged as shown in Figure 2-2. The
number lines intersect at right angles to each other and cross at the 0 point
of each line. This forms a Cartesian coordinate plane, or an x-y plane, with
the horizontal number line called the x-axis and the vertical line called the
y-axis.

y
3
Origin N ’F Alxy)
1 5
1
X
-3 -2 -1 1 2 3

-1
-2
-3

Figure 2-2: The Cartesian coordinate plane

As with the number line, we can have infinitely many points on the
plane. We describe a point with a pair of numbers instead of one number.
For example, we describe the point A in the figure with two numbers, x
and y, usually written as (x, y) and referred to as the coordinates of the point.

As shown in Figure 2-2, x is the distance of the point from the origin along
the x-axis, and yis the distance along the y-axis. The point where the two
axes intersect is called the origin and has the coordinates (0, 0).

The Cartesian coordinate plane allows us to visualize the relationship
between two sets of numbers. Here, I use the term setloosely to mean a col-
lection of numbers. (We’ll learn about mathematical sets and how to work
with them in Python in Chapter 5.) No matter what the two sets of numbers
represent—temperature, baseball scores, or class test scores—all you need
are the numbers themselves. Then, you can plot them—either on graph
paper or on your computer with a program written in Python. For the rest
of this book, I'll use the term plot as a verb to describe the act of plotting
two sets of numbers and the term graph to describe the result—a line,
curve, or simply a set of points on the Cartesian plane.

Working with Lists and Tuples

As we make graphs with Python, we’ll work with lsts and tuples. In Python,
these are two different ways to store groups of values. Tuples and lists are
very similar for the most part, with one major difference: after you create
a list, it’s possible to add values to it and to change the order of the values.
The values in a tuple, on the other hand, are immediately fixed and can’t
be changed. We’ll use lists to store x- and y-coordinates for the points we
want to plot. Tuples will come up in “Customizing Graphs” on page 41
when we learn to customize the range of our graphs. First, let’s go over
some features of lists.

You can create a list by entering values, separated by commas, between
square brackets. The following statement creates a list and uses the label
simplelist to refer to it:

>>> simplelist = [1, 2, 3]

Now you can refer to the individual numbers—1, 2, and 3—using the
label and the position of the number in the list, which is called the index.
So simplelist[o] refers to the first number, simplelist[1] refers to the second
number, and simplelist[2] refers to the third number:

>>> simplelist[o]
1
>>> simplelist[1]
2
>>> simplelist[2]
3

Notice that the first item of the list is at index 0, the second item is at
index 1, and so on—that is, the positions in the list start counting from 0,
not 1.

Visualizing Data with Graphs 29

30

Chapter 2

Lists can store strings, too:

>>> stringlist = ['a string','b string','c string']
>>> stringlist[o]

'a string'

>>> stringlist[1]

'b string'

>>> stringlist[2]

'c string'

One advantage of creating a list is that you don’t have to create a separate
label for each value; you just create a label for the list and use the index posi-
tion to refer to each item. Also, you can add to the list whenever you need to
store new values, so a list is the best choice for storing data if you don’t know
beforehand how many numbers or strings you may need to store.

An empty listis just that—a list with no items or elements—and it can be
created like this:

>>> emptylist = []

Empty lists are mainly useful when you don’t know any of the items that
will be in your list beforehand but plan to fill in values during the execu-
tion of a program. In that case, you can create an empty list and then use
the append() method to add items later:

>>> emptylist

(]

>>> emptylist.append(1)
>>> emptylist

(1]

>>> emptylist.append(2)
>>> emptylist

[1, 2]

At @, emptylist starts off empty. Next, we append the number 1 to the
list at @ and then append 2 at ©. By line @, the list is now [1, 2]. Note that
when you use .append(), the value gets added to the end of the list. This is
just one way of adding values to a list. There are others, but we won’t need
them for this chapter.

Creating a tuple is similar to creating a list, but instead of square
brackets, you use parentheses:

>>> simpletuple = (1, 2, 3)

You can refer to an individual number in simpletuple using the corre-
sponding index in brackets, just as with lists:

>>> simpletuple[o]
1

>>> simpletuple[1]
2
>>> simpletuple[2]
3

You can also use negative indices with both lists and tuples. For example,
simplelist[-1] and simpletuple[-1] would refer to the last element of the list
or the tuple, simplelist[-2] and simpletuple[-2] would refer to the second-to-
last element, and so on.

Tuples, like lists, can have strings as values, and you can create an empty
tuple with no elements as emptytuple=(). However, there’s no append() method
to add a new value to an existing tuple, so you can’t add values to an empty
tuple. Once you create a tuple, the contents of the tuple can’t be changed.

Iterating over a List or Tuple

We can go over a list or tuple using a for loop as follows:

>»> 1 =[1, 2, 3]
>>> for item in 1:
print(item)

This will print the items in the list:

The items in a tuple can be retrieved in the same way.

Sometimes you might need to know the position or the index of an item
in a list or tuple. You can use the enumerate() function to iterate over all the
items of a list and return the index of an item as well as the item itself. We
use the labels index and item to refer to them:

>»>> 1 =1[1, 2, 3]
>>> for index, item in enumerate(l):
print(index, item)

This will produce the following output:

01
12
23

This also works for tuples.

Visualizing Data with Graphs 31

32

Creating Graphs with Matplotlib

Chapter 2

We’ll be using matplotlib to make graphs with Python. Matplotlib is a
Python package, which means that it’s a collection of modules with related
functionality. In this case, the modules are useful for plotting numbers
and making graphs. Matplotlib doesn’t come built in with Python’s stan-
dard library, so you’ll have to install it. The installation instructions are
covered in Appendix A. Once you have it installed, start a Python shell.
As explained in the installation instructions, you can either continue
using IDLE shell or use Python’s built-in shell.

Now we’re ready to create our first graph. We’ll start with a simple graph
with just three points: (1, 2), (2, 4), and (3, 6). To create this graph, we’ll first
make two lists of numbers—one storing the values of the x-coordinates of
these points and another storing the y-coordinates. The following two state-
ments do exactly that, creating the two lists x_numbers and y_numbers:

>>> X_numbers
>>> y_numbers

[1, 2, 3]
[2, 4, 6]

From here, we can create the plot:

>>> from pylab import plot, show
>>> plot(x_numbers, y numbers)
[<matplotlib.lines.Line2D object at 0x7f83ac60df10>]

In the first line, we import the plot() and show() functions from the pylab
module, which is part of the matplotlib package. Next, we call the plot() func-
tion in the second line. The first argument to the plot() function is the list of
numbers we want to plot on the x-axis, and the second argument is the cor-
responding list of numbers we want to plot on the y-axis. The plot() function
returns an object—or more precisely, a list containing an object. This object
contains the information about the graph that we asked Python to create. At
this stage, you can add more information, such as a title, to the graph, or you
can just display the graph as it is. For now we’ll just display the graph.

The plot() function only creates the graph. To actually display it, we
have to call the show() function:

>>> show()

You should see the graph in a matplotlib window as shown in
Figure 2-3. (The display window may look different depending on your
operating system, but the graph should be the same.)

6.0

55¢

50

451

40

35¢

3.0r

25¢

2'9.0 L5 20 25 3.0

ﬁggﬁj@ﬂ x=2.63474 y=2,15306

Figure 2-3: A graph showing a line passing through the points (1, 2}, (2, 4), and (3, 6)

Notice that instead of starting from the origin (0, 0), the x-axis starts
from the number 1 and the y-axis starts from the number 2. These are
the lowest numbers from each of the two lists. Also, you can see incre-
ments marked on each of the axes (such as 2.5, 3.0, 3.5, etc., on the y-axis).
In “Customizing Graphs” on page 41, we’ll learn how to control those
aspects of the graph, along with how to add axes labels and a graph title.

You’ll notice in the interactive shell that you can’t enter any further
statements until you close the matplotlib window. Close the graph window
so that you can continue programming.

Marking Points on Your Graph

If you want the graph to mark the points that you supplied for plotting, you
can use an additional keyword argument while calling the plot() function:

>>> plot(x_numbers, y_numbers, marker='o')

Visualizing Data with Graphs 33

34

Chapter 2

By entering marker="o", we tell Python to mark each point from our lists
with a small dot that looks like an 0. Once you enter show() again, you'll see
that each point is marked with a dot (see Figure 2-4).

(<
&)
X

6.0

E g

50

45¢

4.0¢

35¢

3.0r

25¢

2'?.0 L5 20 25 30

@ggﬁj@ﬂ ¥=2,56725 y=4.83673

Figure 2-4: A graph showing a line passing through the points (1, 2), (2, 4), and (3, 6)
with the points marked by a dot

The marker at (2, 4) is easily visible, while the others are hidden in
the very corners of the graph. You can choose from several marker options,
including 'o', '*', 'x', and '+'. Using marker= includes a line connecting
the points (this is the default). You can also make a graph that marks
only the points that you specified, without any line connecting them, by

omitting marker=:

>>> plot(x_numbers, y numbers, 'o')
[<matplotlib.lines.Line2D object at 0x7f2549bcobdo>]

Here, 'o' indicates that each point should be marked with a dot, but
there should be no line connecting the points. Call the function show() to
display the graph, which should look like the one shown in Figure 2-5.

6.0

ES g

50

451

401 L]

35¢

3.0r

25¢

2'9.0 L5 20 AR 30

20O+ Bl

Figure 2-5: A graph showing the points (1, 2}, (2, 4), and (3, 6)

As you can see, only the points are now shown on the graph, with no
line connecting them. As in the previous graph, the first and the last points
are barely visible, but we’ll soon see how to change that.

Graphing the Average Annual Temperature in New York City

Let’s take a look at a slightly larger set of data so we can explore more fea-
tures of matplotlib. The average annual temperatures for New York City—
measured at Central Park, specifically—during the years 2000 to 2012
are as follows: 53.9, 56.3, 56.4, 53.4, 54.5, 55.8, 56.8, 55.0, 55.3, 54.0, 56.7,
56.4, and 57.3 degrees Fahrenheit. Right now, that just looks like a random
jumble of numbers, but we can plot this set of temperatures on a graph to
make the rise and fall in the average temperature from year to year much
clearer:

>>> nyc_temp = [53.9, 56.3, 56.4, 53.4, 54.5, 55.8, 56.8, 55.0, 55.3, 54.0, 56.7, 56.4, 57.3]
>>> plot(nyc_temp, marker='o')
[<matplotlib.lines.Line2D object at 0x7f2549d52f90>]

Visualizing Data with Graphs 35

36

Chapter 2

We store the average temperatures in a list, nyc_temp. Then, we call the
function plot() passing only this list (and the marker string). When you
use plot() on a single list, those numbers are automatically plotted on the
y-axis. The corresponding values on the x-axis are filled in as the positions
of each value in the list. That is, the first temperature value, 53.9, gets a cor-
responding x-axis value of 0 because it’s in position 0 of the list (remember,
the list position starts counting from 0, not 1). As a result, the numbers
plotted on the x-axis are the integers from 0 to 12, which we can think of
as corresponding to the 13 years for which we have temperature data.

Enter show() to display the graph, which is shown in Figure 2-6. The
graph shows that the average temperature has risen and fallen from year
to year. If you glance at the numbers we plotted, they really aren’t very
far apart from each other. However, the graph makes the variations seem
rather dramatic. So, what’s going on? The reason is that matplotlib chooses
the range of the y-axis so that it’s just enough to enclose the data supplied
for plotting. So in this graph, the y-axis starts at 53.0 and its highest value is
57.5. This makes even small differences look magnified because the range
of the y-axis is so small. We’ll learn how to control the range of each axis in
“Customizing Graphs” on page 41.

20O+ - E il

Figure 2-6: A graph showing the average annual temperature of New York City during
the years 2000-2012

You can also see that numbers on the y-axis are floating point numbers
(because that’s what we asked to be plotted) and those on the x-axis are
integers. Matplotlib can handle either.

Plotting the temperature without showing the corresponding years is a
quick and easy way to visualize the variations between the years. If you were
planning to present this graph to someone, however, you’d want to make
it clearer by showing which year each temperature corresponds to. We can
easily do this by creating another list with the years in it and then calling
the plot() function:

>>> nyc_temp = [53.9, 56.3, 56.4, 53.4, 54.5, 55.8, 56.8, 55.0, 55.3, 54.0, 56.7, 56.4, 57.3]
>>> years = range(2000, 2013)

>>> plot(years, nyc_temp, marker='o")

[<matplotlib.lines.Line2D object at 0x7f2549a616d0>]

>>> show()

We use the range() function we learned about in Chapter 1 to specify
the years 2000 to 2012. Now you’ll see the years displayed on the x-axis (see
Figure 2-7).

A A .
Wl Ao

(x
G
(x

EE

57.0}

53.0
2000 2002 2004 2006 2008 2010 2012

ﬁggﬂﬂ@ﬂ ¥=2008.31 y=54.5612

Figure 2-7: A graph showing the average annual temperature of New York City,
displaying the years on the x-axis

Visualizing Data with Graphs 37

Comparing the Monthly Temperature Trends of New York City

While still looking at New York City, let’s see how the average monthly tem-
perature has varied over the years. This will give us a chance to understand
how to plot multiple lines on a single graph. We’ll choose three years: 2000,
2006, and 2012. For each of these years, we’ll plot the average temperature
for all 12 months.

First, we need to create three lists to store the temperature (in
Fahrenheit). Each list will consist of 12 numbers corresponding to the
average temperature from January to December each year:

>>> nyc_temp_2000
>>> nyc_temp_2006
>>> nyc_temp_2012

[31.3, 37.3, 47.2, 51.0, 63.5, 71.3, 72.3, 72.7, 66.0, 57.0, 45.3, 31.1]
[40.9, 35.7, 43.1, 55.7, 63.1, 71.0, 77.9, 75.8, 66.6, 56.2, 51.9, 43.6]
[37.3, 40.9, 50.9, 54.8, 65.1, 71.0, 78.8, 76.7, 68.8, 58.0, 43.9, 41.5]

38

Chapter 2

The first list corresponds to the year 2000, and the next two lists corre-
spond to the years 2006 and 2012, respectively. We could plot the three sets
of data on three different graphs, but that wouldn’t make it very easy to see
how each year compares to the others. Try doing it!

The clearest way to compare all of these temperatures is to plot all
three data sets on a single graph, like this:

>>> months = range(1, 13)

>>> plot(months, nyc_temp_2000, months, nyc_temp_2006, months, nyc_temp_2012)
[<matplotlib.lines.Line2D object at 0x7f2549c1fodo>, <matplotlib.lines.Line2D
object at 0x7f2549a61150>, <matplotlib.lines.Line2D object at 0x7f2549c1b550>]

First, we create a list (months) where we store the numbers 1, 2, 3, and
so on up to 12 using the range() function. Next, we call the plot() function
with three pairs of lists. Each pair consists of a list of months to be plotted
on the x-axis and a list of average monthly temperatures (for 2000, 2006,
and 2012, respectively) to be plotted on the y-axis. So far, we’ve used plot()
on only one pair of lists at a time, but you can actually enter multiple pairs
of lists into the plot() function. With each list separated by a comma, the
plot() function will automatically plot a different line for each pair.

The plot() function returns a list of three objects instead of one.
Matplotlib considers the three curves as distinct from each other, and it
knows to draw them on top of each other when you call show(). Let’s call
show() to display the graph, as shown in Figure 2-8.

(x

70|

/

0 2 4 6 8 10 12

20O+ Bl

Figure 2-8: A graph showing the average monthly temperature of New York City during
the years 2000, 2006, and 2012

30

Now we have three plots all on one graph. Python automatically chooses
a different color for each line to indicate that the lines have been plotted
from different data sets.

Instead of calling the plot function with all three pairs at once, we
could also call the plot function three separate times, once for each pair:

>>> plot(months, nyc_temp_2000)
[<matplotlib.lines.Line2D object at 0x7f1e51351810>]
>>> plot(months, nyc_temp_2006)
[<matplotlib.lines.Line2D object at 0x7fle5ae8e390>]
>>> plot(months, nyc_temp_2012)
[<matplotlib.lines.Line2D object at 0x7f1e5136ccdo>]
>>> show()

Matplotlib keeps track of what plots haven’t been displayed yet. So as
long as we wait to call show() until after we call plot() all three times, the
plots will all get displayed on the same graph.

Visualizing Data with Graphs 39

40

Chapter 2

We have a problem, however, because we don’t have any clue as to which
color corresponds to which year. To fix this, we can use the function legend(),
which lets us add a legend to the graph. A legend is a small display box that
identifies what different parts of the graph mean. Here, we’ll use a legend
to indicate which year each colored line stands for. To add the legend, first
call the plot() function as earlier:

>>> plot(months, nyc_temp_2000, months, nyc_temp 2006, months, nyc_temp 2012)
[<matplotlib.lines.Line2D object at 0x7f2549d6c410>, <matplotlib.lines.Line2D
object at 0x7f2549d6c9do>, <matplotlib.lines.Line2D object at 0x7f2549a86850>]

Then, import the legend() function from the pylab module and call it as
follows:

>>> from pylab import legend
>>> legend([2000, 2006, 2012])
<matplotlib.legend.Legend object at 0x7f2549d79410>

We call the legend() function with a list of the labels we want to use to
identify each plot on the graph. These labels are entered in this order to
match the order of the pairs of lists that were entered in the plot() func-
tion. That is, 2000 will be the label for the plot of the first pair we entered
in the plot() function; 2006, for the second pair; and 2012, for the third.
You can also specify a second argument to the function that will specify
the position of the legend. By default, it’s always positioned at the top
right of the graph. However, you can specify a particular position, such
as 'lower center', 'center left', and 'upper left'. Or you can set the posi-
tion to 'best’, and the legend will be positioned so as not to interfere
with the graph.

Finally, we call show() to display the graph:

>>> show()

Asyou can see in the graph (see Figure 2-9), there’s now a legend box
in the top-right corner. It tells us which line represents the average monthly
temperature for the year 2000, which line represents the year 2006, and
which line represents the year 2012.

Looking at the graph, you can conclude two interesting facts: the high-
est temperature for all three years was in and around July (corresponding to
7 on the x-axis), and it has been increasing from 2000 with a more dramatic
rise between 2000 and 2006. Having all three lines plotted together in one
graph makes it a lot easier to see these kinds of relationships. It’s certainly
clearer than just looking at a few long lists of numbers or even looking at
three lines plotted on three separate graphs.

70|

/

200+ Bl

Figure 2-9: A graph showing the average monthly temperature of New York City,
with a legend to show the year each color corresponds to

30
0

2 4 6 8 10 12

Customizing Graphs

We already learned about one way to customize a graph—by adding a leg-
end. Now, we’ll learn about other ways to customize a graph and to make it
clearer by adding labels to the x- and y-axes, adding a title to the graph, and
controlling the range and steps of the axes.

Adding a Title and Labels

We can add a title to our graph using the title() function and add labels
for the x- and y-axes using the xlabel() and ylabel() functions. Let’s re-create
the last plot and add all this additional information:

>>> from pylab import plot, show, title, xlabel, ylabel, legend

>>> plot(months, nyc_temp_2000, months, nyc_temp_2006, months, nyc_temp_2012)
[<matplotlib.lines.Line2D object at 0x7f2549a9e210>, <matplotlib.lines.Line2D
object at 0x7f2549a4be90>, <matplotlib.lines.Line2D object at 0x7f2549a82090>]
>>> title('Average monthly temperature in NYC')

<matplotlib.text.Text object at 0x7f25499f7150>

>>> xlabel('Month")

<matplotlib.text.Text object at 0x7f2549d79210>

>>> ylabel('Temperature')

<matplotlib.text.Text object at 0x7f2549b8b2d0>

Visualizing Data with Graphs 41

2

Chapter 2

>>> legend([2000, 2006, 2012])
<matplotlib.legend.Legend object at 0x7f2549a82910>

All three functions—title(), xlabel(), and ylabel()—are called with the
corresponding text that we want to appear on the graph entered as strings.
Calling the show() function will display the graph with all this newly added
information (see Figure 2-10).

ol X
- Averagel monthly tlemperaturle in NYC
70
g 60F
2
o
8
E
2 sof
a0 |
30 / . . , . .
0 2 4 6 8 10 12
Month
200+ -5\

Figure 2-10: Axes labels and a title have been added to the graph.

With the three new pieces of information added, the graph is easier to
understand.

Customizing the Axes

So far, we’ve allowed the numbers on both axes to be automatically deter-
mined by Python based on the data supplied to the plot() function. This
may be fine for most cases, but sometimes this automatic range isn’t the
clearest way to present the data, as we saw in the graph where we plotted
the average annual temperature of New York City (see Figure 2-7). There,
even small changes in the temperature seemed large because the automati-
cally chosen y-axis range was very narrow. We can adjust the range of the
axes using the axis() function. This function can be used both to retrieve
the current range and to set a new range for the axes.

Consider, once again, the average annual temperature of New York City
during the years 2000 to 2012 and create a plot as we did earlier.

>>> nyc_temp = [53.9, 56.3, 56.4, 53.4, 54.5, 55.8, 56.8, 55.0, 55.3, 54.0, 56.7, 56.4, 57.3]
>>> plot(nyc_temp, marker='o")
[<matplotlib.lines.Line2D object at 0x7f3ae5b767d0>]

Now, import the axis() function and call it:

>>> from pylab import axis
>>> axis()
(0.0, 12.0, 53.0, 57.5)

The function returned a tuple with four numbers corresponding to the
range for the x-axis (0.0, 12.0) and the y-axis (53.0, 57.5). These are the
same range values from the graph that we made earlier. Now, let’s change
the y-axis to start from 0 instead of 53.0:

>>> axis(ymin=0)
(0.0, 12.0, 0, 57.5)

Calling the axis() function with the new starting value for the y-axis
(specified by ymin=0) changes the range, and the returned tuple confirms
it. If you display the graph by calling the show() function, the y-axis starts
at 0, and the differences between the values of the consecutive years look
less drastic (see Figure 2-11).

30¢

20¢

10|

@ggﬁj@ﬂ x=10.4754 y=415115

Figure 2-11: A graph showing the average annual temperature of New York City
during the years 2000-2012. The y-axis has been customized to start from 0.

Visualizing Data with Graphs 43

44

Chapter 2

Similarly, you can use xmin, xmax, and ymax to set the minimum and
maximum values for the x-axis and the maximum value for the y-axis,
respectively. If you're changing all four values, you may find it easier to
call the axis() function with all four range values entered as a list, such as
axis([0, 10, 0, 20]). This would set the range of the x-axis to (0, 10) and
that of the y-axis to (0, 20).

Plotting Using pyplot

The pylab module is useful for creating plots in an interactive shell, such as
the IDLE shell, as we’ve been doing so far. However, when using matplotlib
outside of the IDLE shell—for example, as part of a larger program—the
pyplot module is more efficient. Don’t worry—all the methods that you
learned about when using pylab will work the same way with pyplot.

The following program recreates the first plot in this chapter using the
pyplot module:

Simple plot using pyplot

import matplotlib.pyplot

def create_graph():
x_numbers = [1, 2, 3]
y_numbers = [2, 4, 6]

matplotlib.pyplot.plot(x numbers, y numbers)
matplotlib.pyplot.show()

if _name__ == "'_main__':
create_graph()

First, we import the pyplot module using the statement import matplotlib
.pyplot @. This means that we’re importing the entire pyplot module from
the matplotlib package. To refer to any function or class definition defined in
this module, you’ll have to use the syntax matplotlib.pyplot.item, where item is
the function or class you want to use.

This is different from importing a single function or class at a time,
which is what we’ve been doing so far. For example, in the first chapter we
imported the Fraction class as from fractions import Fraction. Importing an
entire module is useful when you’re going to use a number of functions from
that module. Instead of importing them individually, you can just import the
whole module at once and refer to different functions when you need them.

In the create_graph() function at @, we create the two lists of numbers
that we want to plot on the graph and then pass the two lists to the plot()
function, the same way we did before with pylab. This time, however, we call
the function as matplotlib.pyplot.plot(), which means that we're calling the
plot() function defined in the pyplot module of the matplotlib package.
Then, we call the show() function to display the graph. The only difference

between the way you plot the numbers here compared to what we did ear-
lier is the mechanism of calling the functions.

To save us some typing, we can import the pyplot module by entering
import matplotlib.pyplot as plt. Then, we can refer to pyplot with the label
plt in our programs, instead of having to always type matplotlib.pyplot:

Simple plot using pyplot

import matplotlib.pyplot as plt

def create_graph():
X_numbers = [1, 2, 3]
y_numbers = [2, 4, 6]
plt.plot(x_numbers, y numbers)
plt.show()

if _name__ == ' main__":
create_graph()

Now, we can call the functions by prefixing them with the shortened plt
instead of matplotlib.pyplot.

Going ahead, for the rest of this chapter and this book, we’ll use pylab
in the interactive shell and pyplot otherwise.

Saving the Plots

If you need to save your graphs, you can do so using the savefig() function.
This function saves the graph as an image file, which you can use in reports
or presentations. You can choose among several image formats, including
PNG, PDF, and SVG.

Here’s an example:

>>> from pylab import plot, savefig
>>> x = [1, 2, 3]

>»>y = [2, 4, 6]

>>> plot(x, y)

>>> savefig('mygraph.png")

This program will save the graph to an image file, mygraph.png, in your
current directory. On Microsoft Windows, this is usually C:\Python33 (where
you installed Python). On Linux, the current directory is usually your home
directory (/home/<username>), where <username> is the user you're logged in
as. On a Mac, IDLE saves files to ~/Documents by default. If you wanted to save
it in a different directory, specify the complete pathname. For example, to
save the image under C:\on Windows as mygraph.png, you'd call the savefig()
function as follows:

>>> savefig('C:\mygraph.png")

Visualizing Data with Graphs 43

file:///C:/Users/user/Documents/NSP/BOOKS/PRODUCTION/Doing%20Math%20with%20Python/toLO/../../../../../../../Python33
file:///C:/Users/user/Documents/NSP/BOOKS/PRODUCTION/Doing%20Math%20with%20Python/toLO/../../../../../../../
file:///C:/Users/user/Documents/NSP/BOOKS/PRODUCTION/Doing%20Math%20with%20Python/toLO/../../../../../../../sinx_range.png

46

If you open the image in an image-viewing program, you’ll see the
same graph you’d see by calling the show() function. (You'll notice that the
image file contains only the graph—not the entire window that pops up
with the show() function). To specify a different image format, simply name
the file with the appropriate extension. For example, mygraph.svg will create
an SVG image file.

Another way to save a figure is to use the Save button in the window
that pops up when you call show().

Plotting with Formulas

Chapter 2

Until now, we’ve been plotting points on our graphs based on observed sci-
entific measurements. In those graphs, we already had all our values for x
and ylaid out. For example, recorded temperatures and dates were already
available to us at the time we wanted to create the New York City graph,
showing how the temperature varied over months or years. In this section,
we’re going to create graphs from mathematical formulas.

Newton’s Law of Universal Gravitation

According to Newton’s law of universal gravitation, a body of mass m,
attracts another body of mass m, with an amount of force Faccording
to the formula
Gmm,

P-4,
where ris the distance between the two bodies and G s the gravitational
constant. We want to see what happens to the force as the distance between
the two bodies increases.

Let’s take the masses of two bodies: the mass of the first body (m;) is
0.5 kg, and the mass of the second body (m,) is 1.5 kg. The value of the gravi-
tational constant is 6.674 x 10" N m” kgﬁg. Now we’re ready to calculate the
gravitational force between these two bodies at 19 different distances: 100 m,
150 m, 200 m, 250 m, 300 m, and so on up through 1000 m. The following
program performs these calculations and also draws the graph:

The relationship between gravitational force and
distance between two bodies

import matplotlib.pyplot as plt

Draw the graph

def draw_graph(x, y):
plt.plot(x, y, marker='o")
plt.xlabel('Distance in meters')

(3]

plt.ylabel('Gravitational force in newtons')
plt.title('Gravitational force and distance')
plt.show()

def generate F_r():
Generate values for r
r = range(100, 1001, 50)
Empty list to store the calculated values of F
F=1]

Constant, G

G = 6.674*%(10**-11)
Two masses

ml = 0.5

m2 = 1.5

Calculate force and add it to the list, F
for dist in r:
force = G*(m1*m2)/(dist**2)
F.append(force)

Call the draw_graph function
draw_graph(z, F)

if _name_ =='_main_ ':
generate F _1()

The generate_F_r() function does most of the work in the program
above. At @, we use the range() function to create a list labeled r with dif-
ferent values for distance, using a step value of 50. The final value is speci-
fied as 1001 because we want 1000 to be included as well. We then create
an empty list (F), where we’ll store the corresponding gravitational force a

t

each of these distances. Next, we create labels referring to the gravitational

constant (G) and the two masses (m1 and m2). Using a for loop @, we then
calculate the force at each of the values in the list of distances (r). We use
label (force) to refer to the force calculated and to append it to the list (F)
Finally, we call the function draw_graph() at ©® with the list of distances and
the list of the calculated forces. The x-axis of the graph displays the force,
and the y-axis displays the distance. The graph is shown in Figure 2-12.

As the distance (r) increases, the gravitational force decreases. With
this kind of relationship, we say that the gravitational force is inversely
proportional to the distance between the two bodies. Also, note that when
the value of one of the two variables changes, the other variable won’t
necessarily change by the same proportion. We refer to this as a nonlinear
relationship. As a result, we end up with a curved line on the graph instead
of a straight one.

Visualizing Data with Graphs

a

47

(x

gle—15 Gravitational force and distance

Gravitational force in newtons

0 " | " " n hd o
100 200 300 400 500 600 J00 800 900 1000
Distance in meters

@ggﬁjﬁﬂ ¥=010.67 y=4.45408e-15

Figure 2-12: Visualization of the relationship between the gravitational force and the
squared distance

Projectile Motion

Now, let’s graph something you’ll be familiar with from everyday life. If
you throw a ball across a field, it follows a trajectory like the one shown in
Figure 2-13.

Highest point

A v, Ground B

Figure 2-13: Motion of a ball that's thrown at point A—at an angle (6)
with a velocity (u)—and that hits the ground at point B

48 Chapter 2

In the figure, the ball is thrown from point A and lands at point B. This
type of motion is referred to as projectile motion. Our aim here is to use the
equations of projectile motion to graph the trajectory of a body, showing
the position of the ball starting from the point it’s thrown until it hits the
ground again.

When you throw the ball, it has an initial velocity and the direction of
that velocity creates a certain angle with the ground. Let’s call the initial
velocity v and the angle that it makes with the ground 6 (theta), as shown
in Figure 2-13. The ball has two velocity components: one along the x direc-
tion, calculated by u, = u cosf, and the other along the y direction, where
u, = u sind.

As the ball moves, its velocity changes, and we will represent that
changed velocity using v: the horizontal component is v, and the verti-
cal component is v. For simplicity, assume the horizontal component (v,)
doesn’t change during the motion of the body, whereas the vertical compo-
nent (v,) decreases because of the force of gravity according to the equa-
tion v, = u, — gt. In this equation, gis the gravitational acceleration and ¢
is the time at which the velocity is measured. Because u, = u sinf, we can
substitute to get

v, = usin® — gt.

Because the horizontal component of the velocity remains constant, the
horizontal distance traveled (S,) is given by S, = u(cosf)t. The vertical com-
ponent of the velocity changes, though, and the vertical distance traveled is
given by the formula

2

S, = u(sin@)t—%gt .

In other words, S, and S, give us the x- and y-coordinates of the ball at
any given point in time during its flight. We’ll use these equations when we
write a program to draw the trajectory. As we use these equations, time (%)
will be expressed in seconds, the velocity will be expressed in m/s, the
angle of projection () will be expressed in degrees, and the gravitational
acceleration (g) will be expressed in m/ 5%

Before we write our program, however, we’ll need to find out how long
the ball will be in flight before it hits the ground so that we know when our
program should stop plotting the trajectory of the ball. To do so, we’ll first
find how long the ball takes to reach its highest point. The ball reaches its
highest point when the vertical component of the velocity (v)) is 0, which is
when v, = usin 0 — gt = 0. So were looking for the value 7 using the formula

usin @

g

Visualizing Data with Graphs 49

50

Chapter 2

®Q

We’ll call this time t_peak. After it reaches its highest point, the ball will
hit the ground after being airborne for another t_peak seconds, so the total
time of flight (t_flight) of the ball is

QusinQ‘

g

4 =2t

flight peak =

Let’s take a ball that’s thrown with an initial velocity (u) of 5 m/s at an
angle (8) of 45 degrees. To calculate the total time of flight, we substitute
u=D5, =45, and g= 9.8 into the equation we saw above:

5sin 45
Lign, = 08

In this case, the time of flight for the ball turns out to be 0.72154 seconds
(rounded to five decimal places). The ball will be in air for this period of
time, so to draw the trajectory, we’ll calculate its x- and y-coordinates at
regular intervals during this time period. How often should we calculate
the coordinates? Ideally, as frequently as possible. In this chapter, we’ll
calculate the coordinates every 0.001 seconds.

Generating Equally Spaced Floating Point Numbers

We’ve used the range() function to generate equally spaced integers—
that is, if we wanted a list of integers between 1 and 10 with each integer
separated by 1, we would use range (1, 10). If we wanted a different step
value, we could specify that to the range function as the third argument.
Unfortunately, there’s no such built-in function for floating point num-
bers. So, for example, there’s no function that would allow us to create a
list of the numbers from 0 to 0.72 with two consecutive numbers separated
by 0.001. We can use a while loop as follows to create our own function
for this:

Generate equally spaced floating point
numbers between two given values

def frange(start, final, increment):

numbers = []

while start < final:
numbers . append(start)
start = start + increment

return numbers

three parameters: start and final refer to the starting and the final points

We’ve defined a function frange() (“floating point” range) that receives

of the range of numbers, and increment refers to the difference between

two consecutive numbers. We initialize a while loop at @, which continues
execution as long as the number referred to by start is less than the value

for final. We store the number pointed to by start in the list nunbers @ and

then add the value we entered as an increment during every iteration of the
loop. Finally, we return the list numbers.

We’ll use this function to generate equally spaced time instants in the
trajectory-drawing program described next.

Drawing the Trajectory

The following program draws the trajectory of a ball thrown with a certain

velocity and angle—both of which are supplied as input to the program:

Draw the trajectory of a body in projectile motion

from matplotlib import pyplot as plt
import math

def

def

def

draw_graph(x, y):
plt.plot(x, y)
plt.xlabel('x-coordinate")
plt.ylabel('y-coordinate")

plt.title('Projectile motion of a ball')

frange(start, final, interval):

numbers = []

while start < final:
numbers.append(start)
start = start + interval

return numbers
draw_trajectory(u, theta):

theta = math.radians(theta)
g =9.8

Time of flight
t_flight = 2*u*math.sin(theta)/g
Find time intervals

intervals = frange(o, t_flight, 0.001)

Visualizing Data with Graphs

51

52

Chapter 2

o

List of x and y coordinates

x =[]

y =[]

for t in intervals:
x.append(u*math.cos(theta)*t)
y.append(u*math.sin(theta)*t - 0.5*g*t*t)

draw_graph(x, y)

if _name_ == "' main_':
try:

u = float(input('Enter the initial velocity (m/s): '))

theta = float(input('Enter the angle of projection (degrees): "))
except ValueError:

print('You entered an invalid input')
else:

draw_trajectory(u, theta)

plt.show()

In this program, we use the functions radians(), cos(), and sin()
defined in the standard library’s math module, so we import that module
at the beginning. The draw_trajectory() function accepts two arguments,
uand theta, corresponding to the velocity and the angle at which the ball
is thrown. The math module’s sine and the cosine functions expect the
angle to be supplied in radians, so at @, we convert the angle (theta) from
degrees to radians using the math.radians() function. Next, we create a
label (g) to refer to the value of acceleration due to gravity, 9.8 m/s”.

At 8, we calculate the time of flight and then call the frange() function
with the values for start, final, and increment set to 0, t_flight, and 0.001,
respectively. We then calculate the x- and y-coordinates for the trajectory at
each of the time instants and store them in two separate lists, x and y ©. To
calculate these coordinates, we use the formulas for the distances S, and §,
that we discussed earlier.

Finally, we call the draw_graph() function with the x- and y-coordinates
to draw the trajectory. Note that the draw_graph() function doesn’t call the
show() function (we’ll see why in the next program). We use a try...except
block @ to report an error message in case the user enters an invalid input.
Valid input for this program is any integer or floating point number. When
you run the program, it asks for these values as input and then draws the
trajectory (see Figure 2-14):

Enter the initial velocity (m/s): 25
Enter the angle of projection (degrees): 60

(x

o Projectile motion of a ball

y-coordinate

[
(=]

0 10 20 30 40 50 60

20O+ Bl

Figure 2-14: The trajectory of a ball when thrown with a velocity of 25 m/s at an angle
of 60 degrees

Comparing the Trajectory at Different Initial Velocities

The previous program allows you to perform interesting experiments. For
example, what will the trajectory look like for three balls thrown at differ-
ent velocities but with the same initial angle? To graph three trajectories at
once, we can replace the main code block from our previous program with
the following:

if _name__ == ' main__":

List of three different initial velocities
u_list = [20, 40, 60]
theta = 45
for u in u_list:
draw_trajectory(u, theta)

Add a legend and show the graph
plt.legend(['20"', '40', '60'])
plt.show()

Visualizing Data with Graphs 53

54

Here, instead of asking the program’s user to enter the velocity and the
angle of projection, we create a list (u_list) with the velocities 20, 40, and
60 at @ and set the angle of projection as 45 degrees (using the label theta).
We then call the draw_trajectory() function with each of the three values
in u_list using the same value for theta, which calculates the list of x- and
y-coordinates and calls the draw_graph() function. When we call the show()
function, all three plots are displayed on the same graph. Because we now
have a graph with multiple plots, we add a legend to the graph at @ before
calling show() to display the velocity for each line. When you run the above
program, you'll see the graph shown in Figure 2-15.

e /_\ x
o Projectile motion at different initial velocities
— 20
40
— 60]
a
12
o
S
1S
00 50 100 150 200 250 300 350 400
*-coordinate
NEEEEE

Figure 2-15: The trajectory of a ball thrown at a 60-degree angle, with a velocity of
20, 40, and 60 m/s

What You Learned

Chapter 2

In this chapter, you learned the basics of creating graphs with matplotlib.
You saw how to plot a single set of values, how to create multiple plots on
the same graph, and how to label various parts of a graph to make it more
informative. You used graphs to analyze the temperature variation of a city,
study Newton’s law of universal gravitation, and study the projectile motion
of a body. In the next chapter, you’ll use Python to start exploring statistics,
and you’ll see how drawing a graph can help make the relationships among
sets of numbers easier to understand.

Programming Challenges

Here are a few challenges that build on what you've learned in this
chapter. You can find sample solutions at Attp://www.nostarch.com/
doingmathwithpython/.

#1: How Does the Temperature Vary During the Day?

If you enter a search term like “New York weather” in Google’s search
engine, you'll see, among other things, a graph showing the temperature
at different times of the present day. Your task here is to re-create such a
graph.

Using a city of your choice, find the temperature at different points of
the day. Use the data to create two lists in your program and to create a
graph with the time of day on the x-axis and the corresponding tempera-
ture on the y-axis. The graph should tell you how the temperature varies
with the time of day. Try a different city and see how the two cities compare
by plotting both lines on the same graph.

The time of day may be indicated by strings such as '10:11 AM' or
'09:21 PM'.

#2: Exploring a Quadratic Function Visvally

In Chapter 1, you learned how to find the roots of a quadratic equation,
such as x° + 2x+ 1 = 0. We can turn this equation into a function by writing
itas y=x" + 2x+ L. For any value of x, the quadratic function produces some
value for y. For example, when x =1, y = 4. Here’s a program that calculates
the value of y for six different values of x:

Quadratic function calculator

Assume values of x
® x values = [-1, 1, 2, 3, 4, 5]
® for x in x_values:
Calculate the value of the quadratic function
y = x¥*2 + 2%x + 1
print('x={0} y={1}'.format(x, y))

At @, we create a list with six different values for x. The for loop start-
ing at @ calculates the value of the function above for each of these values
and uses the label y to refer to the list of results. Next, we print the value of
x and the corresponding value of y. When you run the program, you should
see the following output:

x=-1 y=0
x=1 y=4
X=2 y=9

Visualizing Data with Graphs 33

56

Chapter 2

X=3 y=16
x=4 y=25
X=5 y=36

Notice that the first line of the output is a root of the quadratic equa-
tion because it’s a value for x that makes the function equal to 0.

Your programming challenge is to enhance this program to create
a graph of the function. Try using at least 10 values for x instead of the 6
above. Calculate the corresponding y values using the function and then
create a graph using these two sets of values.

Once you've created the graph, spend some time analyzing how the
value of y varies with respect to x. Is the variation linear or nonlinear?

#3: Enhanced Projectile Trajectory Comparison Program

Your challenge here is to enhance the trajectory comparison program in
a few ways. First, your program should print the time of flight, maximum
horizontal distance, and maximum vertical distance traveled for each of the
velocity and angle of projection combinations.

The other enhancement is to make the program work with any number
of initial velocity and angle of projection values, supplied by the user. For
example, here’s how the program should ask the user for the inputs:

How many trajectories? 3

Enter the initial velocity for trajectory 1 (m/s): 45

Enter the angle of projection for trajectory 1 (degrees): 45
Enter the initial velocity for trajectory 2 (m/s): 60

Enter the angle of projection for trajectory 2 (degrees): 45
Enter the initial velocity for trajectory(m/s) 3: 45

Enter the angle of projection for trajectory(degrees) 3: 90

Your program should also ensure that erroneous input is properly
handled using a try...except block, just as in the original program.

#4: Visualizing Your Expenses

I always find myself asking at the end of the month, “Where did all that
money go?” I'm sure this isn’t a problem I alone face.

For this challenge, you’ll write a program that creates a bar chart for
easy comparison of weekly expenditures. The program should first ask for
the number of categories for the expenditures and the weekly total expen-
diture in each category, and then it should create the bar chart showing
these expenditures.

Here’s a sample run of how the program should work:

Enter the number of categories: 4
Enter category: Food
Expenditure: 70

Enter category: Transportation
Expenditure: 35
Enter category: Entertainment
Expenditure: 30
Enter category: Phone/Internet
Expenditure: 30

Figure 2-16 shows the bar chart that will be created to compare the
expenditures. If you save the bar chart for every week, at the end of the
month, you’ll be able to see how the expenditures varied between the
weeks for different categories.

(9] W

Figure 2-16: A bar chart showing the expenditures per category during the week

We haven’t discussed creating a bar chart using matplotlib, so let’s try
an example.

A bar chart can be created using matplotlib’s barh() function, which
is also defined in the pyplot module. Figure 2-17 shows a bar