
Illustrated Guide to Python 3

A Complete Walkthrough of Beginning
Python with Unique Illustrations Showing

how Python Really Works

Illustrated Guide to Python 3

A Complete Walkthrough of Beginning
Python with Unique Illustrations Showing

how Python Really Works
Matt Harrison

Technical Editors: Roger A. Davidson, Andrew McLaughlin

hairysun.com

COPYRIGHT © 2017
Oct 2, 2017

While every precaution has been taken in the preparation of this book, the publisher and
author assumes no responsibility for errors or omissions, or for damages resulting from
the use of the information contained herein

Contents

Contents

1 Why Python? 3

2 Which Version of Python? 5
2.1 Python installation . 5
2.2 Which editor? . 6
2.3 Summary . 6
2.4 Exercises . 6

3 The Interpreter 9
3.1 REPL . 9
3.2 A REPL example . 12
3.3 Summary . 14
3.4 Exercises . 14

4 Running Programs 15
4.1 Running from IDLE . 15
4.2 Unixy embellishments . 17
4.3 Summary . 19
4.4 Exercises . 19

5 Writing and Reading Data 21
5.1 Simple output . 21
5.2 Getting user input . 21
5.3 Summary . 22
5.4 Exercises . 22

6 Variables 23
6.1 Mutation and state . 23
6.2 Python variables are like tags . 23
6.3 Cattle tags . 24
6.4 Rebinding variables . 26
6.5 Naming variables . 28
6.6 Additional naming considerations . 29
6.7 Summary . 31
6.8 Exercises . 31

7 More about Objects 33
7.1 Identity . 33
7.2 Type . 34

v

Contents
7.3 Mutability . 36
7.4 Using IDLE . 39
7.5 Summary . 39
7.6 Exercises . 40

8 Numbers 41
8.1 Addition . 42
8.2 Subtraction . 43
8.3 Multiplication . 43
8.4 Division . 44
8.5 Modulo . 44
8.6 Power . 45
8.7 Order of operations . 46
8.8 Other operations . 46
8.9 Summary . 46
8.10 Exercises . 47

9 Strings 49
9.1 Formatting Strings . 51
9.2 Format string syntax . 51
9.3 Some format examples . 53
9.4 F-Strings . 54
9.5 Summary . 54
9.6 Exercises . 54

10 dir, help, and pdb 57
10.1 Dunder methods . 58
10.2 help . 58
10.3 pdb . 59
10.4 Summary . 59
10.5 Exercises . 60

11 Strings and Methods 61
11.1 Common string methods . 64
11.2 endswith . 64
11.3 find . 65
11.4 format . 65
11.5 join . 66
11.6 lower . 66
11.7 startswith . 67
11.8 strip . 67
11.9 upper . 67
11.10Other methods . 67
11.11Summary . 68
11.12Exercises . 68

12 Comments, Booleans, and None 69
12.1 Comments . 69

vi

Contents
12.2 Booleans . 70
12.3 None . 73
12.4 Summary . 74
12.5 Exercises . 74

13 Conditionals and Whitespace 75
13.1 Combining conditionals . 76
13.2 if statements . 78
13.3 else statements . 78
13.4 More choices . 78
13.5 Whitespace . 79
13.6 Summary . 79
13.7 Exercises . 80

14 Containers: Lists, Tuples, and Sets 81
14.1 Lists . 81
14.2 Sequence indices . 82
14.3 List insertion . 82
14.4 List deletion . 83
14.5 Sorting lists . 83
14.6 Useful list hints . 86
14.7 Tuples . 88
14.8 Sets . 90
14.9 Summary . 92
14.10Exercises . 92

15 Iteration 93
15.1 Looping with an index . 93
15.2 Breaking out of a loop . 96
15.3 Skipping over items in a loop . 96
15.4 The in statement can be used for membership 97
15.5 Removing items from lists during iteration . 97
15.6 else clauses . 98
15.7 while loops . 98
15.8 Summary . 99
15.9 Exercises . 99

16 Dictionaries 101
16.1 Dictionary assignment . 101
16.2 Retrieving values from a dictionary . 103
16.3 The in operator . 103
16.4 Dictionary shortcuts . 104
16.5 setdefault . 104
16.6 Deleting keys . 106
16.7 Dictionary iteration . 106
16.8 Summary . 108
16.9 Exercises . 108

vii

Contents
17 Functions 111

17.1 Invoking functions . 113
17.2 Scope . 114
17.3 Multiple parameters . 115
17.4 Default parameters . 116
17.5 Naming conventions for functions . 117
17.6 Summary . 118
17.7 Exercises . 118

18 Indexing and Slicing 119
18.1 Indexing . 119
18.2 Slicing sub lists . 120
18.3 Striding slices . 122
18.4 Summary . 122
18.5 Exercises . 123

19 File Input and Output 125
19.1 Opening files . 125
19.2 Reading text files . 127
19.3 Reading binary files . 128
19.4 Iteration with files . 128
19.5 Writing files . 128
19.6 Closing files . 129
19.7 Designing around files . 130
19.8 Summary . 131
19.9 Exercises . 131

20 Unicode 133
20.1 Background . 133
20.2 Basic steps in Python . 135
20.3 Encoding . 136
20.4 Decoding . 138
20.5 Unicode and files . 139
20.6 Summary . 140
20.7 Exercises . 140

21 Classes 141
21.1 Planning for a class . 144
21.2 Defining a class . 144
21.3 Creating an instance of a class . 149
21.4 Calling a method on a class . 151
21.5 Examining an instance . 151
21.6 Private and protected . 152
21.7 A simple program modeling flow . 153
21.8 Summary . 154
21.9 Exercises . 154

22 Subclassing a Class 157

viii

Contents
22.1 Counting stalls . 160
22.2 super . 160
22.3 Summary . 162
22.4 Exercises . 162

23 Exceptions 163
23.1 Look before you leap . 164
23.2 Easier to ask for forgiveness . 164
23.3 Multiple exception cases . 166
23.4 finally clause . 167
23.5 else clause . 168
23.6 Raising exceptions . 169
23.7 Wrapping exceptions . 170
23.8 Defining your own exceptions . 171
23.9 Summary . 172
23.10Exercises . 173

24 Importing Libraries 175
24.1 Multiple ways to import . 175
24.2 Conflicting import names . 177
24.3 Star imports . 178
24.4 Nested libraries . 179
24.5 Import organization . 179
24.6 Summary . 180
24.7 Exercises . 180

25 Libraries: Packages and Modules 183
25.1 Modules . 183
25.2 Packages . 183
25.3 Importing packages . 184
25.4 PYTHONPATH . 184
25.5 sys.path . 185
25.6 Summary . 186
25.7 Exercises . 186

26 A Complete Example 187
26.1 cat.py . 187
26.2 What does this code do? . 189
26.3 Common layout . 190
26.4 Shebang . 191
26.5 Docstring . 192
26.6 Imports . 192
26.7 Metadata and globals . 193
26.8 Logging . 194
26.9 Other globals . 194
26.10Implementation . 194
26.11Testing . 194
26.12if __name__ == '__main__': . 195

ix

Contents
26.13__name__ . 195
26.14Summary . 196
26.15Exercises . 196

27 Onto Bigger and Better 199

A File Navigation 201
A.1 Mac and Unix . 201
A.2 Windows . 201

B Useful Links 203

About the Author 205
Technical Editors . 205

Also Available 210
Treading on Python: Vol 2: Intermediate Python . 210
Reviews . 211

One more thing 213

x

Foreword

Are you ready to jumpstart your Python programming career? This book will arm you
with years of knowledge and experience that are condensed into an easy to follow

format. Rather than taking months reading blogs and websites and searching mailing lists
and groups, this book will allow a programmer to quickly become knowledgeable and
comfortable with Python.

Programming is fun and Python makes it delightful. Basic Python is not only easy,
but approachable for all ages. I have taught elementary students, teenagers, “industry”
professionals and “golden years” folks the Python programming language. If you are
willing to read and type, you are about to begin an exciting path. Where it ultimately takes
you depends on how hard you are willing to work.

There are different levels of Python. Basic Python syntax is small and easy to learn. Once
you master basic Python, doors will open to you. You should be able to read a lot of Python
and understand it. From there, you can learn more advanced topics and specific toolkits,
start contributing to open source projects written in Python, or use that knowledge to learn
other programming languages.

A recommended approach for learning the language is to read a chapter and then sit
down at a computer and type out some of the examples found in the chapter. Python
makes it easy to get started, eliminating much of the hassle found in running programs
in other languages. The temptation will likely be to merely read the book. By jumping in
and actually typing the examples you will learn a lot more than by just reading.

1

Chapter 1
Why Python?

Python is booming! It is the top language being taught in universities. Python developers
are among the highest paid. With the boom in data science, Python is quickly becoming one
of themost desired skills for analytics. Operations are also adopting Python tomanage their
backend systems. They are discovering what web developers using Python have known for
a long time; namely, that Python will make you productive.

Python has crossed the tipping point. No longer are only small, agile startups relying on
it. Looking to take advantage of its power and efficiency, enterprises have also converged
on Python. Over the past year, I’ve taught Python to hundreds of seasoned developers with
years of experience at large companies, who are moving to Python.

Python enables increased productivity. I came to Python as a Perl programmer. At
work, I was assigned to a team with a co-worker who was well versed in Tcl. Neither of
us wanted to jump ship though both of us were interested in learning Python. In 3 days
our prototype was completed, much faster than we expected, and we both promptly forgot
our previous “goto” language. What appealed to me about Python was that it fit my brain.
I firmly believe if you have some experience in programming, you can learn the basics of
Python in a few days.

Python is easy to learn. For beginning programmers, Python is a great stepping stone.
Learning to write simple programs is pretty easy, yet Python also scales up to complex
“enterprise” systems. Python also scales with age—I have personally seen people from 7-
80+ learn basic programming skills using Python.

3

Chapter 2
Which Version of Python?

This book will focus on Python 3. Python 2 has served us well over the years. The Python
Software Foundation, which manages releases of the language, has stated that Python 2 is
coming to an end. As such, after 2020 they will no longer support the language.

Python 3, has been out for a bit now and is somewhat backward incompatible with the 2
series. For green field development, you should move forward with Python 3. If you have
legacy systems on Python 2, do not fret. In fact, most of the content in this book is perfectly
applicable to Python 2. If you want to focus on Python 2, check out the prior version of this
book.

2.1 Python installation
Python 3 is not installed on most platforms. Some Linux distributions ship with it, but
Windows and Mac users will need to install it.

For Windows folks, go to the download area of the Python website1 and find a link that
says “Python 3.6 Windows Installer”. This will link to a .msi file that will install Python on
your Windows machine. Download the file, open it by double-clicking it, and follow the
instructions to finish the installation.
Note
On the Windows installer there is an option labeled ”Add Python to PATH”. Please
make sure it is checked. That way, when you run python from the command prompt,
it will know where to find the Python executable. Otherwise, you can go to System
properties (click WIN+Pause, or run environ from the start menu), Advanced system
settings, and click on the Environment Variables button. There you can update the PATH
variable by adding the following:
C:\Program Files\Python 3.6;C:\Program Files\Python 3.6\Scripts

If you have UAC (User Account Control) enabled on Windows, then path is:
C:\Users\<username>\AppData\Local\Programs\Python\Python36

Likewise, Mac users should download the Mac installer from the Python website.
1https://www.python.org/download

5

https://www.python.org/download

2. Which Version of Python?
Note
Another option for installing Python is to use the Anaconda2 distribution. This runs on
Windows,Mac, andLinux, and also providesmanypre-built binaries for doing scientific
calculations. Traditionally, these libraries have been annoying to install as they wrap
libraries written in C and Fortran, that require some setup for compiling.

Mac users might also want to look into the Homebrew version3. If you are already
familiar with Homebrew, it is a simple brew install python3 away.

2.2 Which editor?
In addition to installing Python, you will need a text editor. An editor is a tool for writing
code. A skilled craftsman will invest the time to learn to use their tool appropriately and it
will pay dividends. Learning to use the features of an editor can make churning out code
easier. Many modern editors today have some semblance of support for Python.

If you are just beginning with Python and have not had much experience with real text
editors, most Python installations include IDLE, which has decent Python editing features.
The IDLE development environment also runs on Windows, Mac and Linux.

A feature to look for in editors is integration with the Python REPL4. Later you will see
an example with IDLE. Hopefully your editor of choice will have similar features.

Popular editors with decent Python support include Emacs, Vim, Atom, Visual Studio
Code, and Sublime Text. If you are interested in more fancy editors that have support for
refactoring tools and intelligent completion, PyCharm and Wing IDE are also popular.

2.3 Summary
Python 3 is the current version of Python. Unless you are working on legacy code, you
should favor using this version. You can find the latest version on the Python website.

Most modern editors contain some support for Python. There are various levels of
features that editors and IDEs provide. If you are getting started programming, give the
IDLE editor a try. It is a great place to start out.

2.4 Exercises
1. Install Python 3 on your computer. Make sure you can start Python.
2. If you are used to a particular editor, do some investigation into its support for Python.

For example, does it:

• Do syntax highlighting of Python code?
2https://www.anaconda.com/download/
3https://brew.sh/
4REPL stands for Read, Evaluate, Print, and Loop. You will soon see an example using it.

6

https://www.anaconda.com/download/
https://brew.sh/

2.4. Exercises
• Run Python code in a REPL for you?
• Provide a debugger for stepping through your Python code?

7

Chapter 3
The Interpreter

Python is commonly classified as an interpreted language. Another term used to describe
an interpreted language is scripting language. To run a computer program on the CPU, the
program must be in a format that the CPU understands, namely machine code. Interpreted
languages do not compile directly to machine code, instead, there is a layer above, an
interpreter that performs this function.

There are pros and cons to this approach. As you can imagine, on the fly translating can
be time consuming. Interpreted code like Python programs tend to run on the order of 10–
100 times slower than C programs. On the flip side, writing code in Python optimizes for
developer time. It is not uncommon for a Python program to be 2–10 times shorter than
its C equivalent. Also, a compilation step can be time consuming and actually a distraction
during development and debugging.

Many developers and companies are willing to accept this trade-off. Smaller programs
(read fewer lines of code) take less time to write and are easier to debug. Programmers
can be expensive—if you can throw hardware at a problem, it can be cheaper than hiring
more programmers. Debugging 10 lines of code is easier than debugging 100 lines of code.
Studies have shown that the number of bugs found in code is proportional to the numbers
of lines of code. Hence, if a language permits you to write fewer lines of code to achieve
a given task, you will likely have fewer bugs. Sometimes program execution speed is not
that important and Python is sufficiently fast for many applications. In addition, there are
efforts to improve the speed of Python interpreters such as PyPy5.

3.1 REPL
Python has an interactive interpreter or REPL (Read Evaluate Print Loop). This is a loop that
waits until there is input to read in, then evaluates it (interprets it), and prints out the result.
When you run the python3 executable by itself, you launch the interactive interpreter in
Python. Other environments, such as IDLE, also embed an interactive interpreter.

5https://www.pypy.org

9

https://www.pypy.org

3. The Interpreter

Figure 3.1: Difference between a compiled language and an interpreted language. A compiler runs
to create an executable. An interpreter is an executable that loads code and runs it on top of itself.

Note
This book generally starts Python 3 with the python3 executable. On Windows, the
executable is named python. If you are onWindows, replace python3with python. On
Unix systems you shouldn’t have to change anything.

When you start the interpreter, it will print out the version of Python, some information
about the build, and some hints to type. Finally, the interpreter will give you a prompt,
>>>.

Another option is to start IDLE, the editor included with Python, by typing python3 -m
idlelib.idle.

10

3.1. REPL

Figure 3.2: To launch the REPL, type python3 in the prompt and it will start a Python session

Figure 3.3: To launch the REPL in IDLE, click on the IDLE icon or type python3 -m idlelib.idle

Note
Some Linux distributions do not ship with all of the libraries from the Python standard
library. This is annoying, but justified by the idea that a server doesn’t need libraries to
create client side applications. As such, Ubuntu and Arch (among others) don’t provide
the gui libraries necessary for IDLE on the default installation.

If you see an error like:
$ python3 -m idlelib.idle
** IDLE can't import Tkinter.
Your Python may not be configured for Tk. **

it is an indication you are missing the tkinter library.
On Ubuntu, you need to run:

11

3. The Interpreter
$ sudo apt-get install tk-dev

On Arch, you need to run:
$ sudo pacman -S tk

3.2 A REPL example
Below is an example to show why the Read, Evaluate, Print Loop was given this name. If
you typed python3 from the command line6, or launched IDLE, you will see >>>.

Type 2 + 2 like shown below and hit enter:
$ python3
>>> 2 + 2
4
>>>

In the above example, python3 was typed, which opened the interpreter. The first >>>
could be thought of as the read portion. Python is waiting for input. 2 + 2 is typed in, read,
and evaluated. The result of that expression—4—is printed. The second >>> illustrates the
loop, because the interpreter is waiting for more input.

The REPL, by default, prints the result of an expression to standard out (unless the result
is None, whichwill be explained in a later chapter). This behavior is inconsistentwith normal
Python programs, where the print function must be explicitly invoked. But it saves a few
keystrokes when in the REPL.

Note
The >>> prompt is only used on the first line of each input. If the statement typed into
the REPL takes more than one line, the ... prompt follows:
>>> sum([1, 2, 3, 4, 5,
... 6, 7])

These prompts are defined in the sysmodule:
>>> import sys
>>> sys.ps1
'>>> '
>>> sys.ps2
'... '

A later chapterwill explainwhatmodules are. For now, know that there are variables
that define what the prompts look like.

The REPL ends up being quite handy. You can use the interactive interpreter to write
small functions, to test out code samples, or even to function as a calculator. Perhaps more
interesting is to go the other way. Run your Python code in the REPL. Your code will run,
but you will have access to the REPL to inspect the state of your code. (You will see how to
do this in IDLE soon).

6From the Windows run menu, type cmd (or Win-R) to get a prompt. On Macs, you can quickly launch
a terminal by typing command-space, the typing Terminal and return. If you have installed Python 3, you
should be able to launch it now on either platform by typing python3.

12

3.2. A REPL example

Figure 3.4: IDLE will try to highlight where the error occurred. The highlight following world is
supposed to indicate where the syntax error occurred. It is normally a salmon color.

The >>> is a prompt. That is where you type your program. Type print("hello
world") after the >>> and hit the enter key. Make sure there are not any spaces or tabs
before the word print. You should see this:
>>> print("hello world")
hello world

If you see this, congratulations, you are writing Python. Consider yourself inducted into
the world of programming. You have just run a program—“hello world”. Hello world is
the canonical program that most people write when encountering a new language. To exit
the REPL from the terminal, type quit(). Unix users may also type Ctl-D.

Note
Programming requires precision. If you were not careful in typing exactly
print("hello world") you might have seen something like this:
>>> print("hello world

File "<stdin>", line 1
print("hello world

^
SyntaxError: EOL while scanning string literal

Computers are logical, and if your logic does notmake sense, the computer canwarn
you, perform irrationally (or at least what appears so to you), or stop working. Do not
take it personally, but remember that languages have rules, and any code you write has
to follow those rules. In the previous example, the rules that states if you want to print
text on the screen you need to start and end the text with quotes was violated. Amissing
quote on the end of the line consequently confused Python.

13

3. The Interpreter
3.3 Summary
AsPython is an interpreted language, it provides aREPL. This allows you to explore features
of Python interactively. You don’t need to write code, compile it, and run it. You can launch
a REPL and start trying out code.

For users who have used compiled languages, this might seem somewhat novel. Give it
a try though, it can make development easy and quick. Also, don’t be afraid to try out code
from the REPL. I find that new Python users tend to be timid to use the REPL. Don’t fear
the REPL!

There are other REPLs for Python. One popular one is Jupyter, which presents a web-
based REPL7. Start using the REPL, then you can jump into other more advanced REPLs.

3.4 Exercises
1. Open the Python 3 REPL and run ”hello world”. Review the chapter to see what this

one line program looks like.
2. Open the REPL IDLE and run ”hello world”.

7https://jupyter.org/

14

https://jupyter.org/

Chapter 4
Running Programs

While using the interactive interpreter can be useful during development, you (and others)
will want to deploy your program and run it outside of the REPL. In Python, this is easy
as well. To run a Python program named hello.py, open a terminal, go to the directory
containing that program and type:
$ python3 hello.py

Note
When running a command from the command line, this bookwill precede the command
with a $. This will distinguish it from interpreter contents (>>> or ...) and file contents
(nothing preceding the content).

Note
The previous command, python3 hello.py, will probably fail unless you have a file
named hello.py.

In the previous chapter you used the REPL to run “hello world”, how does one run the same
program standalone? Create a file named hello.py using your favorite text editor.

In your hello.py file type:
print("hello world")

Save the file, go to its directory, and execute the file (here execute and run have the same
meaning, i.e. type python3 before the file name, and let the Python interpreter evaluate the
code for you.)
Note
Typing python3 standalone launches the interpreter. Typing python3 some_file.py
executes that file.

If you were successful at running hello.py, it would print out hello world.

4.1 Running from IDLE
You can also edit and run programs from IDLE. Start by launching IDLE, either by clicking
on the application icon on your computer or by typing:

15

4. Running Programs

Figure 4.1: IDLE has been launched and a new editorwindow (Untitled because it has not been saved)
has been opened

$ python3 -m idlelib.idle

When IDLE launches, you see the Shell window. This is a Python REPL. You can type
code and Python will immediately evaluate it. To create a program you need to create a file
with Python code in it. To do that, click on the “File” menu, and select “New File”. You
should see a newwindowpopup. Thiswindow is not a Shellwindow, it is an editorwindow.
You will notice that it is empty and there is no Python prompt in it. In this window, you
will type Python code.

Type your code into the window. Since you are doing the hello world example, type:
print("hello world")

You’ll notice that IDLE uses a different color for print and "hello world". This is
called syntax highlighting and is meant to aid in understanding your code. Now, you need to
run the code. The easiest way to do this is to hit the F5 key on your keyboard. Alternatively,
you can click on “Run”, and select “RunModule”. IDLE will ask you to save your file. Save
it as hello.py. IDLE will bring the shell window to focus, print a line stating that it has
restarted the shell, and print out hello world.

This might seem trivial, but the shell window now has the state of your code. In this
case, you only printed to the screen, so there is not much state. In future examples, you will
see how you can use the integration between the editor and shell to provide an environment
where you can quickly try out code, see the results, and inspect the output of a program.

If you need help navigating from the command prompt check out the appendix.

16

4.2. Unixy embellishments

Figure 4.2: Code typed into the editor window.

Figure 4.3: Result of running Hello World from IDLE

4.2 Unixy embellishments
OnUnix platforms (Linux andOSX among others), files such as hello.py are often referred
to as scripts. A script is a program, but the term is often used to distinguish native code
from interpreted code. In this case, scripts are interpreted code, whereas the output from
the compilation step of a language that compiles to machine code (such as C) is native code.

Note
It is not uncommon to hear about shell scripts, Perl scripts, Python scripts, etc. What is
the difference between a Python script and a Python program? Nothing, really it is only
semantics. A Python script usually refers to a Python program run from the command
line, whereas a Python program is any programwritten in Python (which run the gamut
of small 1-liners to fancy GUI applications, to “enterprise” class services).

Unix environments provide a handy way to make your script executable on it is own. By
putting a hash bang (#!) on the first line of the file, followed by the path to the interpreter,
and by changing the executable bit on the file, you can create a file that can run itself.

To have the script execute with the Python interpreter found in the environment, update
your hello.py file to:
#!/usr/bin/env python3
print("hello world")

17

4. Running Programs
Note
This new first line tells the shell that executes the file to run the rest of the file with the
#!/usr/bin/env python3 executable. (Shell scripts usually start with #!/bin/bash or
#!/bin/sh.) Save hello.py with the new initial line.

Tip
#!/usr/bin/env is a handy way to indicate that the first python3 executable found on
your PATH environment variable should be used. Because the python3 executable is
located in different places on different platforms, this solution turns out to be cross-
platform. Note that Windows ignores this line. Unless you are absolutely certain that
you want to run a specific Python version, you should probably use #!/usr/bin/env.

Using hardcoded hashbangs such as:

• #!/bin/python3

• #!/usr/bin/python3.3

might work fine on your machine, but could lead to problems when you try to share
your code and others do not have python3 where you specified it. If you require a
specific version of Python, it is common to specify that in the README file.

Now you need to make the file executable. Open a terminal, cd to the directory containing
hello.py and make the file executable by typing:
$ chmod +x hello.py

This sets the executable bit on the file. The Unix environment has different permissions
(set by flipping a corresponding bit) for reading, writing, and executing a file. If the
executable bit is set, the Unix environment will look at the first line and execute it
accordingly, when the file is run.

Tip
If you are interested in knowing what the chmod command does, use the man (manual)
command to find out by typing:
$ man chmod

Now you can execute the file by typing its name in the terminal and hitting enter. Type:
$./hello.py

And your program (or script) should run. Note the ./ included before the name of
the program. Normally when you type a command into the terminal, the environment
looks for an executable in the PATH (an environment variable that defines directories where
executables reside). Unless . (or the parent directory of hello.py) is in your PATH variable
you need to include ./ before the name (or the full path to the executable). Otherwise, you
will get a message like this:
$ hello.py
bash: hello.py command not found

18

4.3. Summary
Yes, all that work just to avoid typing python3 hello.py. Why? Themain reason is that

you want your program to be named hello (without the trailing .py). And perhaps you
want the program on your PATH so you can run it at any time. By making a file executable,
and adding a hashbang, you can create a file that looks like an ordinary executable. The file
will not require a .py extension, nor will it need to be explicitly executed with the python3
command.

4.3 Summary
Running Python programs is easy. There is no lengthy compilation step. You need to point
Python to the program you would like to run. Many editors also have the ability to run
Python code. It is worthwhile to investigate how to do it with your editor. With IDLE, it is
simple: you hit F5.

4.4 Exercises
1. Create a file hello.pywith the code from this chapter in it.
2. Run hello.py from a terminal.
3. Run hello.py from within IDLE.
4. If you have another editor that you prefer, run hello.py from it.
5. If you are on a Unix platform, create a file called hello. Add the hello world code to

it, and make the appropriate adjustments such that you can run the code by typing:
./hello

19

Chapter 5
Writing and Reading Data

Programs will typically have input and output. This chapter will show how to print values
to the screen and allow the end user to type in a value. In Python, both of these are really
straightforward.

5.1 Simple output
The easiest way to provide the user with output is to use the print function, which writes
to standard out. Standard out is where the computer writes its output. When you are in a
terminal, standard out is printed on the terminal
>>> print('Hello there')
Hello there

If you want to print out multiple items, you can provide them separated by commas.
Python will insert a space between them. You can put strings and numbers in a print
function:
>>> print('I am', 10, 'years old')
I am 10 years old

A later chapter will look at strings in detail. It will discuss how to format them to get
output to look a certain way.

5.2 Getting user input
The built-in input function will read text from a terminal. This function accepts text which
it prints out as a prompt to the screen and waits until the user types something on standard
in and hits enter. Standard in is where the computer reads its input. In a terminal, standard
input can be read from what you type in:
>>> name = input('Enter your name:')

If you typed the above into the interpreter (the spaces around the = are not required but
convention suggests that you type them to make your code more readable), it might look
like your computer is frozen. In reality, Python is waiting for you to type in some input and
hit enter. After you type something in and press enter, the variable namewill hold the value
you typed. Type the name Matt and press the enter key. If you print name it will print the
value you just typed:

21

5. Writing and Reading Data
>>> print(name)
Matt

Note
The value entered into the terminal when input is called is always a string. If you tried
to perform math operations on it, it might not give you the answer you want:
>>> value = input('Enter a number:')
3
>>> other = input('Enter another:')
4

If you try to add value and other right now, you concatenate them (or join them
together) because they are strings:
>>> type(value)
<class 'str'>
>>> value + other
'34'

If you want to add these strings as if they were numbers you need to change them
from a string into a number type. To convert a string to another type like an integer
(a whole number) or float (a decimal number), you will need to use the int and float
functions respectively.

If you want to numerically add value and other, you have to convert them to
numbers using int:
>>> int(value) + int(other)
7

A future chapter will talk more about strings and number types.

5.3 Summary
Python gives you two functions that make it really easy to print data out to the screen and
read input from the user. These functions are print and input. Remember that when you
call the input function, you will always get a string back.

5.4 Exercises
1. Create some Python code that will prompt you to enter your name. Print out Hello

and then the name.
2. Create a program that will ask a user how old they are. Print out some text telling

them how old they will be next year.

22

Chapter 6
Variables

Now that you know about running programs via the interpreter (or the REPL) and the
command line, it is time to start learning about programming. Variables are the basic
building blocks of computer programs.

Variables are important in Python, because in the Python world, everything is an object.
(This is not quite true, keywords are not objects). Variables allow you to attach names to
these objects so you can refer to them in future code.

6.1 Mutation and state
Two important programming concepts are state and mutation. State deals with a digital
representation of a model. For example, if you want to model a light bulb, you may want
to store its current status—is it on or off? Other possibly interesting states you could store
include the type of bulb (CFL or incandescent), wattage, size, dimmable, etc.

Mutation deals with changing the state to a new or different state. For the light bulb
example, it could be useful to have a power switch that toggles the state and changes it
from off to on.

How is this related to variables? Remember that in Python everything is an object.
Objects have state, and might be mutated. To keep track of these objects, you use variables.

Once you have objects that hold state and are mutable, then you have opened a world
of possibilities. You can model almost anything you want if you can determine what state
it needs, and what actions or mutations need to apply to it.

6.2 Python variables are like tags
Variables are the building blocks of keeping track of state. You might think of a variable as
a label or tag. Important information is tagged with a variable name. To continue the light
bulb example, suppose that you want to remember the state of your light bulb. Having that
data is only useful if you have access to it. If you want to access it and keep track of its state
you need to have a variable to tag that data. Here the state of the bulb is stored in a variable
named status:
>>> status = "off"

This requires a little more examination because there is a bit going on there. Starting
from the right, there is the word "off" surrounded by quotes. This is a string literal, or a

23

6. Variables
built-in datatype that Python has special syntax for. The quotes tell Python that this object
is a string. So Python will create a string object. A string stores textual data—in this case,
the letters off.

This object has a few properties of interest. First, it has an id. You can think of the id as
where Python stores this object in memory. It also has a type, in this case, a string. Finally,
it has a value, here the value is 'off', because it is a string.

The = sign is the assignment operator in many programming languages. Do not be afraid
of these technical terms, they are more benign than they appear. The assignment operator
connects or binds together a variable name and its object. It indicates that the name on the
left of it is a variable that will hold the object on the right. In this case, the variable name is
status.

When Python creates a variable, it tells the object to increase its reference count. When
objects have variables or other objects pointing to them, they have a positive reference count.
When variables go away (an example is when you exit a function, variables in that function
will go away), the reference count goes down. When this count goes down to zero, the
Python interpreter will assume that no one cares about the object anymore and garbage
collects it. This means it removes it from its memory, so your program doesn’t get out of
control and use all the memory of your computer.

Note
If you want to inspect the reference count of an object, you can call sys.getrefcount
on it:
>>> import sys
>>> names = []
>>> sys.getrefcount(names)
2

Do note that as this count may seem high, the documentation for this function states:
Return the reference count of object. The count returned
is generally one higher than you might expect, because it
includes the (temporary) reference as an argument to
getrefcount().

Even though Python gives you this ability, typically you don’t worry about the
reference count and let Python handle cleaning up objects for us.

This is a feature of Python, and typically Python does this for you automatically, without
any prompting from a user. In other languages, you need to manually tell the program to
allocate and deallocate memory.

To drive the point home, reading the code again from the left this time. status is a
variable that is assigned to the object that Python created for us. This object has a type,
string, and holds the value of "off".

6.3 Cattle tags
My grandfather had a cattle ranch, so I will pull out a non-nerdy analogy. If you have a
cattle ranch of any size, it makes sense to have a good foreman who will keep track of your
cattle (your investment).

24

6.3. Cattle tags

Figure 6.1: Two steps of an assignment to a literal. First, Python creates an object. The object has
a value, "off", a type, string, and an id (the location of the object in memory). After the object is
created, Python looks for any variable named status. If it exists, Python updates what object the
variable is pointing to, otherwise, Python creates the variable and points it to the object.

25

6. Variables
One way to keep track of cattle is to use cattle tags. These small tags attached to the ear

of a cow can be used to identify and track individual cows.
To pull this back to programming, rather than running a cattle ranch, you are managing

aspects of your program. A program can hold many distinct pieces of information that you
want to remember or keep track of. This information is the state. For example, if you needed
to track data pertinent to humans you might want to track age, address, and name.

Just like how ranchers tag their cattle to keep track of them, programmers create variables
to keep track of data. Look at the example again:
>>> status = "off"

This tells Python to create a string with the contents of off. Create a variable named
status, and attach it to that string. Later on, when you need to know what the status is,
you can ask your program to print it out like so:
>>> print(status)
off

It is entirely possible to create state and lose it to the ether if you neglect to put it in a
variable. It is somewhat useless to create objects that you would not use, but again it is
possible. Suppose you want to keep track of the bulb’s wattage. If you write:
>>> "120 watt"

It tells Python to create a string object with the content of 120 watt. This is problematic
because you forgot to assign it to a variable. Now, you have no way of using this object.
Python will only let you access data that is stored in variables, so it is impossible for you
to use this item now. Objects are accessed by using their variable names. If this was
information that you needed in your program, a better solution would be the following:
>>> wattage = "120 watt"

Later on, in your program you can access wattage, you can print it out, and you can
even assign another variable to it, or assign wattage to another new value (say if your
incandescent bulb broke and you replaced it with an LED bulb):
>>> incandescent = wattage
>>> wattage = "25 watt"
>>> print(incandescent, wattage)
120 watt 25 watt

Managing state is a core aspect of programming. Variables are one mechanism to
manage it.

6.4 Rebinding variables
Much like cow tags, variables tend to stay with an object for a while, but they are
transferable. Python lets you easily change the variable:
>>> num = 400
>>> num = '400' # now num is a string

In the above example numwas originally pointing to an integer but thenwas told to point
to a string.

26

6.4. Rebinding variables

Figure 6.2: This illustrates rebinding variables. Variables can be rebound to any type. Python makes
no effort to prevent this or complain. When an object no longer has any variable pointing to it, it is
cleaned up by Python, or garbage collected.

27

6. Variables
Note
The variable does not care about the type. In Python, the type is attached to the object.

There is no limit to how often you can change a variable. But you should be careful not
to change a variable if you still need access to the old data. Once you remove all variables
from an object, you are essentially telling Python to destroy (garbage collect is the proper
geeky term) the object when it has the chance, to free up any internal memory it occupies.

Tip
This is a case where Python allows you to do something, but you probably don’t want
to do it in real life. Just because you can rebind a variable to a different type, doesn’t
mean you should. Changing the type of a variable is confusing to you when you read
your code later. It is also confusing to others who are using your code. Don’t use the
same variable to point to different types.

This is a point of confusion for those who are new to Python. They sometimes reuse
the same variable throughout their code because theymistakenly believe that it will save
memory. As you have seen this is not the case. The variable itself is very lightweight.
The object is what usesmemory. Reusing a variable is not going to change howmemory
on the object is handled, but it will be confusing to thosewho have to read the code later.

6.5 Naming variables
Python is somewhat particular about naming variables. It has conventions thatmost Python
programmers follow. Some of these are enforced, some are not. One that is enforced by the
interpreter is a variable should not have the name of a keyword. The word break is a keyword
and hence cannot be used as a variable. You will get a SyntaxError if you try to use it as a
variable. Even though this code looks perfectly legal, Python will complain:
>>> break = 'foo'

File "<stdin>", line 1
break = 'foo'

^
SyntaxError: invalid syntax

If you find yourself with a SyntaxError that looks like normal Python code, check that
the variable name is not a keyword.

Note
Keywords are reserved for use in Python language constructs, so it confuses Python if
you try to make them variables.

The module keyword has a kwlist attribute, which is a list containing all the current
keywords for Python:
>>> import keyword
>>> print(keyword.kwlist)
['False', 'None', 'True', 'and', 'as', 'assert',
'break', 'class', 'continue', 'def', 'del', 'elif',
'else', 'except', 'finally', 'for', 'from', 'global',
'if', 'import', 'in', 'is', 'lambda', 'nonlocal',

28

6.6. Additional naming considerations
'not', 'or', 'pass', 'raise', 'return', 'try',
'while', 'with', 'yield']

Another method for examining keywords in the REPL is to run help(). This puts
you in a help utility in the REPL, from which you can type commands (that aren’t
Python). Then type keywords and hit enter. You can type any of the keywords and
it will give you some documentation and related help topics. To exit the help utility hit
enter by itself.

6.6 Additional naming considerations
In addition to the aforementioned rule about not naming variables after keywords, there are
a few best practices encouraged by the Python community. The rules are simple—variables
should:

• be lowercase
• use an underscore to separate words
• not start with numbers
• not override a built-in function

Here are examples of variable names, both good and bad:
>>> good = 4
>>> bAd = 5 # bad - capital letters
>>> a_longer_variable = 6

this style is frowned upon
>>> badLongerVariable = 7

bad - starts with a number
>>> 3rd_bad_variable = 8

File "<stdin>", line 1
3rd_bad_variable = 8

^
SyntaxError: invalid syntax

bad - keyword
>>> for = 4

File "<stdin>", line 1
for = 4

^
SyntaxError: invalid syntax

bad - built-in function
>>> compile = 5

Tip
Rules and conventions for naming in Python come from a document named “PEP 8 –
Style Guide for Python Code”8. PEP stands for Python Enhancement Proposal, which

29

http://www.python.org/dev/peps/pep-0008

6. Variables
is a community process for documenting a feature, enhancement, or best practice for
Python. PEP documents are found on the Python website.

hhttps://www.python.org/dev/peps/pep-0008/

Note
Although Python will not allow keywords as variable names, it will allow you to use
a built-in name as a variable. Built-ins are functions, classes, or variables that Python
automatically preloads for you, so you get easy access to them. Unlike keywords,
Python will let you use a built-in as a variable name without so much as a peep.
However, you should refrain from doing this, it is a bad practice.

Using a built-in name as a variable name shadows the built-in. The newvariable name
prevents you from getting access to the original built-in. Doing so essentially takes the
built-in variable and co-opts it for your use. As a result, access to the original built-in
may only be obtained through the __builtins__ module. But it is much better not to
shadow it in the first place.

Here is a list of Python’s built-ins that you should avoid using as variables:
>>> dir(__builtins__)

['ArithmeticError', 'AssertionError',
'AttributeError', 'BaseException',
'BlockingIOError', 'BrokenPipeError',
'BufferError', 'BytesWarning', 'ChildProcessError',
'ConnectionAbortedError', 'ConnectionError',
'ConnectionRefusedError', 'ConnectionResetError',
'DeprecationWarning', 'EOFError', 'Ellipsis',
'EnvironmentError', 'Exception', 'False',
'FileExistsError', 'FileNotFoundError',
'FloatingPointError', 'FutureWarning',
'GeneratorExit', 'IOError', 'ImportError',
'ImportWarning', 'IndentationError', 'IndexError',
'InterruptedError', 'IsADirectoryError',
'KeyError', 'KeyboardInterrupt', 'LookupError',
'MemoryError', 'NameError', 'None',
'NotADirectoryError', 'NotImplemented',
'NotImplementedError', 'OSError', 'OverflowError',
'PendingDeprecationWarning', 'PermissionError',
'ProcessLookupError', 'RecursionError',
'ReferenceError', 'ResourceWarning',
'RuntimeError', 'RuntimeWarning',
'StopAsyncIteration', 'StopIteration',
'SyntaxError', 'SyntaxWarning', 'SystemError',
'SystemExit', 'TabError', 'TimeoutError', 'True',
'TypeError', 'UnboundLocalError',
'UnicodeDecodeError', 'UnicodeEncodeError',
'UnicodeError', 'UnicodeTranslateError',
'UnicodeWarning', 'UserWarning', 'ValueError',
'Warning', 'ZeroDivisionError', '_',
'__build_class__', '__debug__', '__doc__',
'__import__', '__loader__', '__name__',

30

https://www.python.org/dev/peps/pep-0008/

6.7. Summary
'__package__', '__spec__', 'abs', 'all', 'any',
'ascii', 'bin', 'bool', 'bytearray', 'bytes',
'callable', 'chr', 'classmethod', 'compile',
'complex', 'copyright', 'credits', 'delattr',
'dict', 'dir', 'divmod', 'enumerate', 'eval',
'exec', 'exit', 'filter', 'float', 'format',
'frozenset', 'getattr', 'globals', 'hasattr',
'hash', 'help', 'hex', 'id', 'input', 'int',
'isinstance', 'issubclass', 'iter', 'len',
'license', 'list', 'locals', 'map', 'max',
'memoryview', 'min', 'next', 'object', 'oct',
'open', 'ord', 'pow', 'print', 'property', 'quit',
'range', 'repr', 'reversed', 'round', 'set',
'setattr', 'slice', 'sorted', 'staticmethod',
'str', 'sum', 'super', 'tuple', 'type', 'vars',
'zip']

Tip
Here are a few built-ins that would be tempting variable names otherwise: dict, id,
list, min, max, open, range, str, sum, and type.

6.7 Summary
In Python, everything is an object. Objects hold state, which is also called the value. To keep
track of objects you use variables. Python variables are like cattle tags, they are attached to
the object and have a name. But the object has the important data, the value and type of
data.

This chapter also discussed rebinding of variables. Python allows you to do this, but you
should be careful not to change the type of the variable, as that can be confusing to readers
of the said code. Finally, the chapter discussed naming conventions for Python variables.

6.8 Exercises
1. Create a variable, pi, that points to an approximation for the value of π. Create a

variable, r, for the radius of a circle that has a value of 10. Calculate the area of the
circle (π times the radius squared).
You can domultiplication with * and you can square numbers using **. For example,
3**2 is 9.

2. Create a variable, b, that points to the base of a rectangle with a value of 10. Create
a variable, h, that points to the height of a rectangle with a value of 2. Calculate the
perimeter. Change the base to 6 and calculate the perimeter again.

31

Chapter 7
More about Objects

This chapterwill dive into objects a little bit more. Youwill cover three important properties
of objects:

• identity
• type
• value

7.1 Identity
Identity at its lowest level refers to an object’s location in the computer’s memory. Python
has a built-in function called id that tells you the identity of an object:
>>> name = "Matt"
>>> id(name)
140310794682416

When you type this, the identity of the string "Matt" will appear as 140310794682416
(which refers to a location in the RAM of your computer). This will generally vary from
computer to computer and for each time you start the shell, but the id of an object is
consistent across the lifetime of a program.

It is possible for a single cow to have two tags on its ears and it is also possible for two
variables to refer to the same object. If you want another variable—first—to also refer to
the same object referred to by name, you could do the following:
>>> first = name

This tells Python to give the first variable the same id as name. Running id on either
of the two variables will return the same id:
>>> id(first)
140310794682416
>>> id(name)
140310794682416

What is identity used for? Actually not much. When you program in Python, you
typically are not concerned with low-level details such as where the object is living in the
RAM of the computer. But identity is used to illustrate when objects are created and if they
are mutable. It is also used indirectly for doing identity checks with is.

33

7. More about Objects

Figure 7.1: This illustrates what happens when you bind a variable to an existing variable. They both
point to the same object. Note that this does not copy the variable! Also note that the object has a
value, "Matt", a type, and an id.

The is operator checks for identity equality and validates whether or not two variables
point to the same object:
>>> first is name
True

If you print either first or name at the REPL, it will print the same value because they
are both pointing to the exact same object:
>>> print(first)
Matt
>>> print(name)
Matt

If I had a cattle tag, I could take it off of one cow and attach it to another. Just like a cattle
tag, you can take a variable and point it to a new object. I can make name point to a new
object. You will see that the identity of name has changed. But first is still the same:
>>> name = 'Fred'
>>> id(name)
140310794682434
>>> id(first)
140310794682416

7.2 Type
Another property of an object is its type. Common types are strings, integers, floats, and
booleans. There are many other kinds of types, and you can create your own as well. The
type of an object refers to the class of an object. A class defines the state of data an object
holds, and the methods or actions that it can perform. Python allows you to easily view the
type of an object with the built-in function, type:

34

7.2. Type
>>> type(name)
<class 'str'>

The type function tells you that the variable name points to a string (str).
The table below shows the types for various objects in Python.

Object Type
String str
Integer int

Floating point float
List list

Dictionary dict
Tuple tuple

function function
User-defined class (subclass object) type
Instance of class (subclass of class) class

Built-in function builtin_function _or_method
type type

Due to duck-typing, the type function is not used too frequently. Rather than check if an
object is of a certain type that provides an operation, normally you try and do that operation.

Sometimes though you have data and need to convert it to another type. This is common
when reading data from standard in. Typically it would come in as a string, and you might
want to change it into a number. Python provides built-in classes, str, int, float, list,
dict, and tuple that convert (or coerce) to the appropriate type if needed:
>>> str(0)
'0'

>>> tuple([1,2])
(1, 2)

>>> list('abc')
['a', 'b', 'c']

Note
Duck typing comes from a saying used in the 18th century to refer to amechanical duck.
Much like the Turing Test, the saying went:

If it looks like a duck, walks like a duck and quacks like a duck, then it’s a
duck

But I prefer the scene inMonty Python and the Holy Grail, where a lady is determined
to be a witch because she weighs as much as a duck. (If this is confusing go watch the
movie, I find it enjoyable). The idea is that because she had characteristics (her weight)
that were the same as a duck’s, she could be considered a witch.

Python takes a similar approach. If you want to loop over an object, you put it in a
for loop. You don’t check first to see if it is a list or a subclass of a list, you just loop over
it. If you want to use a plus operation, you don’t check to see if the object is a number,

35

7. More about Objects
or string (or another type that supports addition). If the operation fails, that’s ok, it is an
indication that you are not providing the correct type.

If you are familiar with object-oriented programming, duck typing eases the
requirement for subclassing. Rather than inheriting multiple classes to take advantage
of behaviors they provide, you need to implement the protocols (usually by defining
a method or two). For example, to create a class that adds, you need to implement a
.__add__method. Any class can define that method and respond to the plus operation.

7.3 Mutability
Another interesting property of an object is its mutability. Many objects are mutable while
others are immutable. Mutable objects can change their value in place, in other words, you
can alter their state, but their identity stays the same. Objects that are immutable do not
allow you to change their value. Instead, you can change their variable reference to a new
object, but this will change the identity of the variable as well.

In Python, dictionaries and lists are mutable types. Strings, tuples, integers, and floats
are immutable types. Here is an example demonstrating that the identity of a variable
holding an integer will change if you change the value. First, you will assign an integer
to the variable age and inspect the id:
>>> age = 1000
>>> id(age)
140310794682416

Notice that if you change the value of the integer, it will have a different id:
>>> age = age + 1
>>> id(age)
140310793921824

Here is an example of changing a list. You will start with an empty list, and examine
the id. Note that even after you add an item to the list, the identity of the list is unchanged,
hence it is mutable. First, you will create a list and look at the id:
>>> names = []
>>> id(name)
140310794682432

Now, add a string into the list. There are a few things to note. The return value of the
.appendmethod didn’t show anything (ie, it is not returning a new list). But if you inspect
the names variable, you will see that the new name is in there. Also, the id of the list is still
the same. You have mutated the list:
>>> names.append("Fred")
>>> names
['Fred']
>>> id(name)
140310794682432

Mutable objects should not be used for keys in dictionaries and can present problems
when used as default parameters for functions.

36

7.3. Mutability

Figure 7.2: This illustrates that when you try to change an integer, you will necessarily create a new
integer. Integers are immutable, and you can’t change their value.

37

7. More about Objects

Figure 7.3: This illustrates that when you append an object into a list, you change the value of the
list. The list is mutated. You can add and remove items from it, but the id of the list stays the same.

38

7.4. Using IDLE
7.4 Using IDLE
At this point, it would be good to try this out in IDLE (or your favorite editor that has REPL
integration). Because IDLE comes with a REPL, you could type in the previous code and
inspect it from there. But you can also write code, run it, and then inspect it from the REPL.
To try it, open a new file, and type the following code into it:
name = "Matt"
first = name
age = 1000
print(id(age))
age = age + 1
print(id(age))
names = []
print(id(names))
names.append("Fred")
print(id(names))

Save this as a file, call it iden.py. Then run the file. In IDLE, you need to hit F5 to do this.
In the REPL, you should see four numbers printed out. The first two should be different,
illustrating that an integer is immutable. The last two numbers are the same. They are the
same because even though the list, names, wasmutated, the id is still the same. This by itself
is nothing particularly novel.

The interesting part now is that if you type dir() in the REPL, it will show you the
variables. You will see that the global variables from iden.py are now available.

From the REPL in IDLE you have access to all the global variables. You can inspect name
or names. You can even call functions or methods like names.append("George").

The ability to inspect what just ran gives you the chance to quickly inspect the code, and
try things out. It is not uncommon for experienced Python developers to write code in the
REPL, paste it into a file, re-run the file, write more code in the REPL, and continue writing
code in this manner.

7.5 Summary
In Python, everything is an object. Objects have three properties:

• A Type - Indicates what the class is for the object.
• A Value - The data that the object holds. When you test if an object is equal to another
object (with ==), you are checking against the value.

• An Id - A unique id for the object. In the Python version found at www.python.org,
this is essentially the location in memory of the object, which will be a unique value.
When you check whether two objects have the same identity (with is), you are
checking whether the id is the same.

You also examined how mutable objects, such as lists, can change their value, while
immutable objects, like numbers or strings, cannot be changed.

39

7. More about Objects

Figure 7.4: This illustrates running code and then inspecting it from the REPL in IDLE. If you do not
use IDLE, figure out how to do this from your editor.

7.6 Exercises
1. Create a variable that points to a floating point number. Examine the id, type, and

value of that number. Update the variable by adding 20 to it. Re-examine the id, type,
and value. Did the id change? Did the value change?

2. Create a variable pointing to an empty list. Examine the id, type, and value of the list.
Append the number 300 to the list. Re-examine the id, type, and value. Did the id
change? Did the value change?

40

Chapter 8
Numbers

This chapter will discuss manipulating numbers with Python. Integers (whole numbers like
-1, 5, or 2000) and Floating Points (the computer’s approximation of real numbers like .333,
0.5 or -1000.234) are available in Python and provide easy numerical manipulation. Out of
the box, Python provides support for addition, subtraction, multiplication, division, power,
modulo, and more!

Unlike other languages, in Python, everything is an object, including numbers. Integers
are of class int:
>>> type(1)
<class 'int'>

Floating point numbers are of class float:
>>> type(2.0)
<class 'float'>

Everything has a level of precision. It’s up to the user to determine if it is sufficient for
their calculations. Python’s floats are represented internally using a binary representation
(as per the IEEE 754 standard for floating point numbers). Floats have a certain amount
of precision and rounding errors are possible. In fact, one should expect rounding errors.
(If you need more precision, the decimal module provides a more precise albeit slower
implementation).

As a quick example of precision, examine what happens when you perform this
apparently simple subtraction operation:
>>> print(1.01 - .99)
0.020000000000000018

41

8. Numbers
Tip
If you are interested in understanding more about floats and how computers represent
them, Wikipedia9 has more information on the subject.

8.1 Addition
The Python REPL can be used as a simple calculator. If you want to add two integers, type
in the expression:
>>> 2 + 6
8

Note
The math example above did not bind the result to a variable. For a simple calculation
printing out the result to the terminal may be sufficient. If you need the result after the
fact, the Python interpreter stores the last result in a variable named _:
>>> 2 + 6
8
>>> result = _
>>> result
8

Note that adding two integers together results in an integer.
Likewise, you can also add two floats together:

>>> .4+.01
0.41000000000000003

This example illustrates once again that care is needed when using floating point
numbers, as you can lose precision (the real result would be 0.41).

What happens when you add an integer and a float?
>>> 6 + .2
6.2

Python decided that because you are adding an integer and a float, you need floating
point arithmetic. In this case, Python converts or coerces, 6 to a float behind the scenes,
before adding it to .2. Python has given you the answer back as a float.

Note
If you have an operation involving two numerics, coercion generally does the right
thing. For operations involving an integer and a float, the integer is coerced to a float.

9https://en.wikipedia.org/wiki/Floating_point

42

https://en.wikipedia.org/wiki/Floating_point

8.2. Subtraction
Note
Coercion between strings and numerics does not occur with most mathematical
operations. Two exceptions are the string formatting operator, and the multiplication
operator.

When you use % with a string on the left side (the left operand) and any object
(including numbers) on the right side (the right operand), Python performs the formatting
operator:
>>> print('num: %s' % 2)
num: 2

If the left operand is a string and you use the multiplication operator, *, Python
performs repetition:
>>> 'Python!' * 2
'Python!Python!'

>>> '4' * 2
'44'

Note
Explicit conversion can be donewith the int and float built-in classes. (Although these
look like functions they are really classes):
>>> int(2.3)
2

>>> float(3)
3.0

8.2 Subtraction
Subtraction is similar to addition. Subtraction of two integers or two floats returns an
integer or a float respectively. For mixed numeric types, the operands are coerced before
performing subtraction:
>>> 2 - 6
-4

>>> .25 - 0.2
0.04999999999999999

>>> 6 - .2
5.8

8.3 Multiplication
In many programming languages, the * (asterisk) is used for multiplication. You can
probably guess what is going to happen when you multiply two integers:

43

8. Numbers
>>> 6 * 2
12

If you have been following carefully, you will also know what happens when you
multiply two floats:
>>> .25 * 12.0
3.0

And if you mix the types of the product you end up with a float as a result:
>>> 4 * .3
1.2

Note that the float result in these examples appears correct, though you should be
careful, due to floating point precision issues, not to assume that you would always be so
lucky.

8.4 Division
In Python (like many languages), the / (slash) symbol is used for division:
>>> 12 / 4
3.0

Python 3 also addressed what many considered to be a wart in prior versions of Python.
The result of dividing two integers is a float:
>>> 3 / 4
0.75

Previously, Python performed integer division. If you want that behavior, you can use
the // operator. What integer does Python use? The floor of the real result—take the answer
and round down:
>>> 3 // 4
0

8.5 Modulo
The modulo operator (%) calculates the modulus. This is the same as the remainder of a
division operation when the operators are positive. This is useful for determining whether
a number is odd or even (or whether you have iterated over 1000 items):
remainder of 4 divided by 3
>>> 4 % 3
1

>>> 3 % 2 # odd if 1 is result
1

>>> 4 % 2 # even if 0 is result
0

44

8.6. Power
Tip
Be careful with the modulo operator and negative numbers. Modulo can behave
differently, depending on which operand is negative. It makes sense that if you are
counting down, the modulo should cycle at some interval:
>>> 3 % 3
0
>>> 2 % 3
2
>>> 1 % 3
1
>>> 0 % 3
0

What should -1 % 3 be? Since you are counting down it should cycle over to 2 again:
>>> -1 % 3
2

But when you switch the sign of the denominator, the behavior becomes weird:
>>> -1 % -3
-1

Python guarantees that the sign of the modulo result is the same as the denominator
(or zero). To further confuse you:
>>> 1 % -3
-2

The takeaway here is that you probably do not want to do modulo with negative
numbers on the denominator unless you are sure that is what you need.

8.6 Power
Python also gives you the power operator by using ** (double asterisks). If you wanted to
square 4 (4 is the base, 2 is the exponent), the following code will do it:
>>> 4 ** 2
16

Exponential growth tends to let numbers get large pretty quickly. Consider raising 10
to the 100th power:
>>> 10 ** 100
10000000000000000000000000000000000000
00000000000000000000000000000000000000
0000000000000000000000000

Programs need to use a certain amount of memory to store integers. Because integers
are usually smaller numbers, Python optimizes for them, to not waste memory. Under the
covers, it can coerce system integers to long integers to store larger numbers. Python 3 does
this automatically for you.

An analogy might be a scale. If you are always weighing small amounts, you might
want a small scale. If you deal in sand, you will probably want to put the sand in a bag to
make it easier to handle. You will have a bunch of small bags that you will use. But if you
occasionally need to weigh larger items that do not fit on the small scale, you need to pull

45

8. Numbers
out a bigger scale, and a bigger bag. It would be a waste to use the bigger bag and scale for
many of the smaller items.

Similarly, Python tries to optimize storage space for integers towards smaller sizes.
When Python does not have enough memory (a small bag) to fit larger integers in, it coerces
the integer into a long integer. This is actually desirable because, in some environments, you
run into an overflow error here, where the program dies (or Pac-Man refuses to go over level
255—since it stored the level counter in an 8-bit number).

Note
Python includes the operator module which provides functions for common
mathematical operations. When using more advanced features of Python such as
lambda functions or list comprehensions, this module comes in handy:
>>> import operator
>>> operator.add(2, 4) # same as 2 + 4
6

8.7 Order of operations
When you are performing math, you do not apply all the operations from left to right. You
do the multiplication and division before the addition and subtraction. Computers work
the same way. If you want to perform addition (or subtraction) first, use parentheses to
indicate the order of operations:
>>> 4 + 2 * 3
10
>>> (4 + 2) * 3
18

As illustrated in the example, anything in parentheses is evaluated first.

8.8 Other operations
The help section from the REPL is pretty useful. There is a topic called NUMBERMETHODS that
explains how all of the number operations work.

8.9 Summary
Python has built-in support for the basic mathematical operations. Addition, subtraction,
multiplication, and division are all included. In addition, the power and modulus
operations are available. If you need to control which order the operations occur, wrap
parentheses around the operation that you want to happen first.

If you need a simple calculator, rather than opening a calculator application, give Python
a try. It should be more than capable for most tasks.

46

8.10. Exercises
8.10 Exercises

1. You slept for 6.2, 7, 8, 5, 6.5, 7.1, and 8.5 hours this week. Calculate the average number
of hours slept.

2. Is 297 divisible by 3?
3. What is 2 raised to the tenth power?
4. Wikipedia defines leap years as:

Every year that is exactly divisible by four is a leap year, except for years that
are exactly divisible by 100, but these centurial years are leap years if they
are exactly divisible by 400. For example, the years 1700, 1800, and 1900 are
not leap years, but the years 1600 and 2000 are.

https://en.wikipedia.org/wiki/Leap_year

Write Python code to determine if 1800, 1900, 1903, 2000, and 2002 are leap years.

47

https://en.wikipedia.org/wiki/Leap_year

Chapter 9
Strings

Strings are immutable objects that hold character data. A string could hold a single character,
a word, a line of words, a paragraph, multiple paragraphs, or even zero characters.

Python denotes strings by wrapping them with ' (single quotes), " (double quotes), """
(triple doubles) or ''' (triple singles). Here are some examples:
>>> character = 'a'
>>> name = 'Matt'
>>> with_quote = "I ain't gonna"
>>> longer = """This string has
... multiple lines
... in it"""
>>> latin = '''Lorum ipsum
... dolor'''
>>> escaped = 'I ain\'t gonna'
>>> zero_chars = ''
>>> unicode_snake = "I love \N{SNAKE}"

Notice that the strings always start and end with the same style of quote. As illustrated
in the with_quote example you can put single quotes inside of a double-quoted string—
and vice versa. Furthermore, if you need to include the same type of quote within your
string, you can escape the quote by preceding it with a \ (backslash). When you print out an
escaped character the backslash is ignored.

Note
Attentive readers may wonder how to include a backslash in a string. To include a
backslash in a normal string, you must escape the backslash with ... you guessed it,
another backslash:
>>> backslash = '\\'
>>> print(backslash)
\

Note
Here are the common ways to escape characters in Python:

49

9. Strings
Escape Sequence Output

\\ Backslash
\' Single quote
\" Double quote
\b ASCII Backspace
\n Newline
\t Tab

\u12af Unicode 16 bit
\U12af89bc Unicode 32 bit
\N{SNAKE} Unicode character

\o84 Octal character
\xFF Hex character

Tip
If you do not want to use an escape sequence, you can use a raw string by preceding the
string with an r. Raw strings are normally used two places. They are used in regular
expressions, where the backslash is also used as an escape character. You can use regular
expressions to match characters (such as phone numbers, names, etc) from text. The re
module in the Python standard library provides support for regular expressions. Raw
strings are also used in Windows paths where the backslash is a delimiter.

Raw strings interpret the character content literally (ie. there is no escaping). The
following illustrates the difference between raw and normal strings:
>>> slash_t = r'\tText \\'
>>> print(slash_t)
\tText \\

>>> normal = '\tText \\'
>>> print(normal)

Text \

Python also has a triple quoting mechanism for defining strings. Triple quotes are useful
for creating strings containing paragraphs or multiple lines. Triple-quoted strings are also
commonly used in docstrings. Docstrings will be discussed in the chapter on functions.
Below is an example of a multi-line triple-quoted string:
>>> paragraph = """Lorem ipsum dolor
... sit amet, consectetur adipisicing
... elit, sed do eiusmod tempor incididunt
... ut labore et dolore magna aliqua. Ut
... enimad minim veniam, quis nostrud
... exercitation ullamco laboris nisi ut
... aliquip ex ea commodo consequat. Duis
... aute irure dolor in reprehenderit in
... voluptate velit esse cillum dolore eu
... fugiat nulla pariatur. Excepteur sint
... occaecat cupidatat non proident, sunt
... in culpa qui officia deserunt mollit
... anim id est laborum."""

A nice benefit of using triple-quoted strings is that you can embed single and double
quotes inside it without escaping them:

50

9.1. Formatting Strings
>>> """This string has double " and single
... quotes ' inside of it"""
'This string has double " and single\nquotes \' inside of it'

Unless they butt up to the end of the string, then you will need to escape the final quote:
>>> """He said, "Hello""""

File "<stdin>", line 1
"""He said, "Hello""""

^
SyntaxError: EOL while scanning string literal

>>> """He said, "Hello\""""
'He said, "Hello"'

9.1 Formatting Strings
Storing strings in variables is nice, but being able to compose strings of other strings and
manipulate them is also necessary. One way to achieve this is to use string formatting.

In Python 3, the preferred way to format strings is to use the .formatmethod of strings.
Below, you tell Python to replace {} (a placeholder) with the contents of name or the string
Matt:
>>> name = 'Matt'
>>> print('Hello {}'.format(name))
Hello Matt

Another useful property of formatting is that you can also format non-string objects,
such as numbers:
>>> print('I:{} R:{} S:{}'.format(1, 2.5, 'foo'))
I:1 R:2.5 S:foo

9.2 Format string syntax
Format strings have a special syntax for replacement fields. If an object is passed into
the format string, attributes can be looked up using .attribute_name syntax. There
is also support for pulling index-able items out by using [index] as well. The Python
documentation refers to these as field names. The field names can be empty, a name of a
keyword argument, a number of a positional argument, or index of a list or dictionary (in
square brackets):
>>> 'Name: {}'.format('Paul')
'Name: Paul'

>>> 'Name: {name}'.format(name='John')
'Name: John'

>>> 'Name: {[name]}'.format({'name':'George'})
'Name: George'

The curly braces ({ and }) can also contain an integer inside of them. The integer refers to
the zero based position of the argument passed into .format. Below is an example of using

51

9. Strings
the numbers of positional arguments in the placeholders. The first argument to .format,
'Paul', is at position 0, the second, 'George', is position 1, and 'John' is at 2:
>>> 'Last: {2} First: {0}'.format('Paul', 'George',
... 'John')
'Last: John First: Paul'

There is a whole language for formatting strings. If you insert a colon following the field
name, you can provide further formatting information. The format is below. Anything in
square brackets is optional:
:[[fill]align][sign][#][0][width][grouping_option][.precision][type]

The following tables lists the fields and their meaning.

Field Meaning
fill Character used to fill in align (default is space)

align Alight output < (left align), > (right align), ^ (center
align), or = (put padding after sign)

sign For numbers + (show sign on both positive and
negative numbers, - (default, only on negative), or
space (leading space for positive, sign on negative)

Prefix integers. 0b (binary), 0o (octal), or 0x (hex)
0 Enable zero padding

width Minimum field width
grouping_option Number separator , (use comma for thousands

separator), _ (Use underscore for thousands
separator)

.precision For floats (digits after period (floats), for
non-numerics (max length)

type Number type or s (string format default) see Integer
and Float charts

The tables below lists the various options you have for formatting integer and floating
point numbers.

Integer Types Meaning
b binary
c character - convert to Unicode character
d decimal (default)
n decimal with locale-specific separators
o octal
x hex (lower-case)
X hex (upper-case)

Float Types Meaning
e/E Exponent. Lower/upper-case e

f Fixed point
g/G General. Fixed with exponent for large, and small numbers (g default)

n g with locale-specific separators
% Percentage (multiplies by 100)

52

9.3. Some format examples
9.3 Some format examples
Here are a few examples of using .format. To format a string in the center of 12 characters
surrounded by *, use the code below. * is the fill character, ^ is the align field, and 12 is the
width field:
>>> "Name: {:*^12}".format("Ringo")
'Name: ***Ringo****'

Next, you format a percentage using awidth of 10, one decimal place, and the sign before
the width padding. = is the align field, + ensures that there is always a sign (negative or
positive), 10.1 are the width and precision fields, and % is the float type, which converts the
number to a percentage:
>>> "Percent: {:=+10.1%}".format(-44/100)
'Percent: - 44.0%'

Below are a binary and a hex conversion. The integer type field is set to b and x
respectively:
>>> "Binary: {:b}".format(12)
'Binary: 1100'

>>> "Hex: {:x}".format(12)
'Hex: c'

Note
The .format method on a string provides an alternative for the % operator which is
similar to C’s printf. The % operator is still available and some users prefer it as it
requires less typing for simple statements and because it is similar to C. %s, %d, and
%x are replaced by their string, integer, and hex values respectively. Here are some
examples:
>>> "Num: %d Hex: %x" % (12, 13)
'Num: 12 Hex: d'

>>> "%s %s" % ('hello', 'world')
'hello world'

Tip
A great resource for formatting is in the built-in help documentation, available in the
REPL. Type:
>>> help()

Which puts you in the help mode, and gives you a help> prompt. Then type:
help> FORMATTING

You can scroll through here and find many examples. A bare return from the help>
prompt will return you to the normal prompt.

Another resource is found at https://pyformat.info/. This website contains many
formatting examples with both .format and the older % operator.

There is also an entry in help for strings, located under STRINGS.

53

https://pyformat.info/

9. Strings
9.4 F-Strings
Python 3.6 introduced a new type of string, called f-string. If you precede a string with an
f, it will allow you to include code inside of the placeholders. Here is a basic example:
>>> name = 'matt'
>>> f'My name is {name}'
'My name is matt'

Python will look in the placeholder and evaluate the code there. Note that the
placeholder can contain function calls, method calls, or any other arbitrary code:
>>> f'My name is {name.capitalize()}'
'My name is Matt'

You can also provide format strings following a colon:
>>> f'Square root of two: {2**.5:5.3f}'
'Square root of two: 1.414'

9.5 Summary
In this chapter, strings were introduced. Strings can be defined with various delimiters.
Unlike other languages, which may distinguish between a string defined with " and one
defined with ', Python makes no distinction. Triple-quoted strings, however, may span
multiple lines.

We also looked at the .formatmethod and gave examples of formatting strings. Finally,
the chapter introduced a new feature in Python 3.6, f-strings.

9.6 Exercises
1. Create a variable, name, pointing to your name. Create another variable, age, holding

an integer value for your age. Print out a string formatted with both values. If your
name was Fred and age was 23 it would print:
Fred is 23

2. Create a variable, paragraph, that has the following content:
”Python is a great language!”, said Fred. ”I don’t ever remember having this
much fun before.”

3. Go to https://unicode.org and find the symbol omega in the Greek character code
chart. Create a string that holds the omega character, using both the Unicode code
point (\u form) and Unicode name (\N form). The code point is the hex number in
the chart, the name is the bolded capital name following the code point. For example,
the theta character has the code point of 03f4 and a name of GREEK CAPITAL THETA
SYMBOL.

4. Make a variable, item, that points to a string, "car". Make a variable, cost, that points
to 13499.99. Print out a line that has item in a left-justified area of 10 characters, and
cost in a right-justified area of 10 characters with 2 decimal places and commas in the
thousands place. It should look like this (without the quotes):

54

https://unicode.org

9.6. Exercises
'car 13,499.99'

55

Chapter 10
dir, help, and pdb

You have only touched the surface of strings, but you need to take a break to discuss two
important functions and one library that come with Python. The first function is dir, which
illustrates how powerful and useful the REPL is. The dir function returns the attributes of
an object. If you had a Python interpreter open and wanted to know what the attributes of
a string are, you can do the following:
>>> dir('Matt')

['__add__', '__class__', '__contains__',
'__delattr__', '__dir__', '__doc__', '__eq__',
'__format__', '__ge__', '__getattribute__',
'__getitem__', '__getnewargs__', '__gt__',
'__hash__', '__init__', '__iter__', '__le__',
'__len__', '__lt__', '__mod__', '__mul__', '__ne__',
'__new__', '__reduce__', '__reduce_ex__', '__repr__',
'__rmod__', '__rmul__', '__setattr__', '__sizeof__',
'__str__', '__subclasshook__', 'capitalize',
'casefold', 'center', 'count', 'encode', 'endswith',
'expandtabs', 'find', 'format', 'format_map',
'index', 'isalnum', 'isalpha', 'isdecimal',
'isdigit', 'isidentifier', 'islower', 'isnumeric',
'isprintable', 'isspace', 'istitle', 'isupper',
'join', 'ljust', 'lower', 'lstrip', 'maketrans',
'partition', 'replace', 'rfind', 'rindex', 'rjust',
'rpartition', 'rsplit', 'rstrip', 'split',
'splitlines', 'startswith', 'strip', 'swapcase',
'title', 'translate', 'upper', 'zfill']

dir lists all the attributes of the object passed into it. Since you passed in the string
'Matt' to dir, the function displays the attributes of a string. This handy feature of Python
illustrates its “batteries included” philosophy. Python gives you an easy mechanism to
discover the attributes of any object. Other languages might require special websites,
documentation or IDEs to access similar functionality. But in Python, because you have
the REPL, you can get at this information quickly and easily.

The attribute list is in alphabetical order, and you can normally ignore the first couple
of attributes starting with __. Later on, you will see attributes such as capitalize (which
is amethod that capitalizes a string), format (which as was illustrated previously, allows for
formatting of strings), or lower (which is a method used to ensure the string is lowercase).
These attributes happen to be methods, which are functions that are attached to objects. To

57

10. dir, help, and pdb
call, or invoke a function, you place a period after the object, then the method name, then
parentheses.

The three methods are invoked below:
>>> print('matt'.capitalize())
Matt

>>> print('Hi {}'.format('there'))
Hi there

>>> print('YIKES'.lower())
yikes

10.1 Dunder methods
You might be wondering what all the attributes starting with __ are. People call them
special methods, magic methods, or dunder methods since they start (and end) with double
underscores (Double UNDERscores). “Dunder add” is one way to say __add__, “the add
magic method” is another. Special methods determine what happens under the covers
when operations are performed on an object. For example, when you use the + or % operator
on a string, the .__add__ or .__mod__method is invoked respectively.

Beginner Pythonistas canusually ignore dundermethods. Whenyou start implementing
your own classes and want them to react to operations such as + or %, you can define them.

Tip
In the help() documentation is an entry, SPECIALMETHODS, that describes these
methods.

Another place where these are described is on the Python website. Go to
Documentation, Language Reference, Data Model. It is tucked away in there.

10.2 help
help is another built-in function that is useful in combination with the REPL. The
book previously mentioned invoking help(), without any arguments, to bring up help
documentation.

The help function also provides documentation for a method, module, class, or function
if you pass them in as an argument. For example, if you are curiouswhat the attribute upper
on a string does, the following gives you the documentation:
>>> help('some string'.upper)
Help on built-in function upper:

upper(...) method of builtins.str instance
S.upper() -> str

Return a copy of S converted to uppercase.

The help function, combined with the REPL, allows you to read up on documentation
without having to go to a browser, or even have internet access. If you were stranded on

58

10.3. pdb
a desert island, you should be able to learn Python, provided you had a computer with
Python installed and a power source.

10.3 pdb
Python also includes a debugger to step through code. It is found in a module named pdb.
This library is modeled after the gdb library for C. To drop into the debugger at any point
in a Python program, insert the code:
import pdb; pdb.set_trace()

These are two statements here, but I typically type them in a single line separated by
a semicolon—that way I can easily remove them with a single keystroke from my editor
when I am done debugging. This is also about the only place I use a semicolon in Python
code (two statements in a single line).

When this line is executed, it will present a (pdb) prompt, which is similar to the REPL.
Code can be evaluated at this prompt and you can inspect objects and variables as well.
Also, breakpoints can be set for further inspection.

Below is a table listing useful pdb commands:

Command Purpose
h, help List the commands available
n, next Execute the next line

c, cont, continue Continue execution until a breakpoint is hit
w, where, bt Print a stack trace showing where execution is

u, up Pop up a level in the stack
d, down Push down a level in the stack
l, list List source code around current line

Note
In Programming Pearls, Jon Bentley states:

When I have to debug a little algorithm deep inside a big program, I
sometimes use debugging tools... though, print statements are usually faster
to implement and more effective than sophisticated debuggers.

I’ve heard Guido van Rossum, the creator of Python, voice the same opinion: he
prefers print debugging. Print debugging is easy, simply insert print functions to
provide clarity as to what is going on. This is often sufficient to figure out a problem.
Make sure to remove these debug statements or change them to logging statements
before releasing the code. If more exploration is required, you can always use the pdb
module.

10.4 Summary
Python provides many tools to make your life easier. If you learn to use the REPL, you can
take advantage of them. The dir function will help you see what the attributes of an object
are. Then, you can use the help function to inspect those attributes for documentation.

59

10. dir, help, and pdb
This chapter also introduced the pdb module. This module allows you to step through

code, which can be useful for debugging.

10.5 Exercises
1. Open a REPL, and create a variable, name, with your name in it. List the attributes of

the string. Print out the help documentation for the .find and .titlemethods.
2. Open a REPL, and create a variable, age, with your age in it. List the attributes of the

integer. Print out the help documentation for the .numeratormethod.

60

Chapter 11
Strings and Methods

In the previous chapter you learned about the built-in dir function and saw some methods
you can call on string objects. Because strings are immutable, these methods do not mutate
the string, but rather return a new string or a new result. Strings allow you create a new
version that is capitalized, return a formatted string, or create a lowercase string, as well as
many other actions. You do this by calling methods.

Methods are functions that are called on an instance of a type. What does this mean?
The string type allows you to call a method (another term for call is invoke) by placing a .
(period) and the method name directly after the variable name holding the data (or the data
itself), followed by parentheses with arguments inside of them.

Note
In this book, I place a period in front of methods. This is meant to remind you that
you need to have an object before the method. I will mention the .capitalizemethod,
rather than saying capitalize. The invocation looks like this on the text object:
text.capitalize()

This is in contrast to a function, like help, which you invoke by itself (there is no
object or period before it):
help()

Here is an example of calling the .capitalizemethod on a variable pointing to a string
and a string literal. Note that this does not change the object on which it is called. Because
a string is immutable, the result of the method is a new object with the capitalized value:
>>> name = 'matt'

invoked on variable
>>> correct = name.capitalize()
>>> print(correct)
Matt

Note that name does not change:
>>> print(name)
matt

Note, the .capitalizemethod does not have to be called on a variable. You can invoke
the method directly on a string literal:

61

11. Strings and Methods

Figure 11.1: Illustration of calling a method on a string. The method does not change the string
because it is immutable. Rather, the method returns a new string.

62

>>> print('fred'.capitalize())
Fred

In Python, methods and functions are first-class objects. As was previously mentioned,
everything is an object. If the parentheses are left off, Python will not throw an error, it will
only show a reference to a method, which is an object:
>>> print('fred'.capitalize)
<built-in method capitalize of str object at
0x7ff648617508>

Having first-class objects enables more advanced features like closures and decorators
(these are discussed in my intermediate Python book).

Note
Do integers and floats havemethods? Yes, again, everything in Python is and object and
objects have methods. This is easy to verify by invoking dir on an integer (or a variable
holding an integer):
>>> dir(4)
['__abs__', '__add__', '__and__',
'__class__',
...
'__subclasshook__', '__truediv__',
'__trunc__', '__xor__', 'conjugate',
'denominator', 'imag', 'numerator',
'real']

Invoking a method on a number is somewhat tricky due to the use of the . to denote
calling a method. Because . is common in floats, it would confuse Python if . were also
used to call methods on numbers.

For example, the .conjugate method returns the complex conjugate of an integer.
But if you try to invoke it on an integer, you will get an error:
>>> 5.conjugate()
Traceback (most recent call last):

...
5.conjugate()

^
SyntaxError: invalid syntax

One solution to this is to wrap the number with parentheses:
>>> (5).conjugate()
5

Another option would be to assign a variable to 5 and invoke the method on the
variable:
>>> five = 5
>>> five.conjugate()
5

However, in practice, it is fairly rare to call methods on numbers.

63

11. Strings and Methods
11.1 Common string methods
Here are a few string methods that are commonly used or found in the wild. Feel free to
explore others using dir and help (or the online documentation).

11.2 endswith
If you have a variable holding a filename, you might want to check the extension. This is
easy with .endswith:
>>> xl = 'Oct2000.xls'
>>> xl.endswith('.xls')
True
>>> xl.endswith('.xlsx')
False

Note
Notice that you had to pass in a parameter (or argument), 'xls', into the method.
Methods have a signature, which is a funky way of saying that they need to be called
with the correct number (and type) of parameters. For the .endswithmethod, it makes
sense that if you want to know if a string ends with another string you have to tell
Python which ending you want to check for. This is done by passing the end string to
the method.

Tip
Again, it is usually easy to find out this sort of information via help. The documentation
should tell you what parameters are required as well as any optional parameters. Here
is the help for endswith:
>>> help(xl.endswith)
Help on built-in function endswith:

endswith(...)
S.endswith(suffix[, start[, end]]) -> bool

Return True if S ends with the specified
suffix, False otherwise. With optional
start, test S beginning at that position.
With optional end, stop comparing S at
that position. suffix can also be a
tuple of strings to try.

Notice the line:
S.endswith(suffix[, start[, end]]) -> bool

The S represents the string (or instance) you are invoking the method on, in this case,
the xl variable. .endswith is the method name. Between the parentheses, (and), are
the parameters. suffix is a required parameter, the .endswithmethod will complain if
you do not provide it:

64

11.3. find
>>> xl.endswith()
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: endswith() takes at least 1 argument
(0 given)

The parameters between the square brackets [and] are optional parameters. In this
case, start and end allow you to only check a portion of the string. If you wanted to
check if the characters starting at 0 and ending at 3 ends with Oct you could do the
following:
>>> xl.endswith('Oct', 0, 3)
True

Strings also have a .startswithmethod, so the correct way to check if a string starts
with 'Oct' is:
>>> xl.startswith('Oct')
True

11.3 find
The .find method allows you to find substrings inside other strings. It returns the index
(offset starting at 0) of the matched substring. If no substring is found it returns -1:
>>> word = 'grateful'

0 is g, 1 is r, 2 is a
>>> word.find('ate')
2
>>> word.find('great')
-1

11.4 format
format allows for easy creation of new strings by combining existing variables. The chapter
on strings discussed this method:
>>> print('name: {}, age: {}'.\
... format('Matt', 10))
name: Matt, age: 10

Note
In the above example, the print function is spread across two lines. By placing a \
following a . you indicate to Python that you want to continue on the next line. If you
have opened a left parenthesis, (, you can also place the arguments on multiple lines
without a \:
>>> print("word".
... find('ord'))
1
>>> print("word".find(
... 'ord'))

65

11. Strings and Methods
1

To help make the code more readable, indent the continued lines. Note that
indenting with four spaces serves to indicate to anyone reading the code that the second
line is a continuation of a previous statement:
>>> print("word".\
... find('ord'))
1
>>> print("word".find(
... 'ord'))
1

Why spread code that could reside in a single line across multiple lines? Where this
comes into play in most code is dealing with code standards that expect lines to be less
than 80 characters in length. If a method takes multiple arguments, it may be hard to
follow the 80 character limit. (Note that Python itself does not care about line length, but
readers of your codemight). It is not uncommon to see a separate line for each argument
to a method:
>>> print('{} {} {} {} {}'.format(
... 'hello',
... 'to',
... 'you',
... 'and',
... 'you'
...))
hello to you and you

11.5 join
Oftentimes you have a list (lists are discussed later in the book) of items and need to insert
something between them. The .join method creates a new string from a sequence by
inserting a string between every member of the list:
>>> ', '.join(['1','2','3'])
'1, 2, 3'

Tip
For most Python interpreters, using .join is faster than repeated concatenation using
the + operator. The above idiom is common.

11.6 lower
The .lowermethod returns a copy of the string converted to lowercase. The is often useful
for validating if the input matches a string. For example, some programs capitalize file
extensions, while others do not. If you wanted to know if a file name had TXT or txt as an
extension, you could do the following:
>>> fname = 'readme.txt'
>>> fname.endswith('txt') or fname.endswith('TXT')
True

66

11.7. startswith
A more Pythonic version would read:

>>> fname.lower().endswith('txt')
True

11.7 startswith
The .startswithmethod is analogous to .endswith except that it checks that a string starts
with another string:
>>> 'Book'.startswith('B')
True
>>> 'Book'.startswith('b')
False

11.8 strip
The .strip method returns a new string that removes preceding and trailing whitespace
(spaces, tabs, newlines). This may come in handy if you have to normalize data or parse
input from a user (or the web):
>>> ' hello there '.strip()
'hello there'

Note that three spaces at the front of the string were removed as were the two at the end.
But the two spaces between the words were left intact. If you are interested in removing
only the leading whitespace or rightmost whitespace, the methods lstrip and rstrip
respectively will perform those duties.

11.9 upper
The .upper method is analogous to .lower. It returns a copy of the string with all of the
letters capitalized:
>>> 'yell'.upper()
'YELL'

11.10 Other methods
There are other string methods, but they are used less often. Feel free to explore them by
reading the documentation and trying them out. The appendix provides a list of them.

67

11. Strings and Methods
Note
The STRINGMETHODS entry in the help section from the REPL contains documentation
for all of the string methods as well as some examples.

11.11 Summary
This chapter talked about methods. Methods are always called by putting an object and a
period before the method name. You also looked at some of the more common methods of
strings. One thing to remember is that a string is immutable. If you want to change a string’
s value, you need to create a new string.

11.12 Exercises
1. Create a string, school, with the name of your elementary school. Examine the

methods that are available on that string. Use the help function to view their
documentation.

2. Create a string, country, with the value 'usa'. Create a new string, cor-
rect_country, that has the value in uppercase, by using a string method.

3. Create a string, filename, that has the value 'hello.py'. Check and see if the
filename ends with '.java'. Find the index location of 'py'. See if it starts with
'world'.

4. Open a REPL. Enter the help documentation and scan through the STRINGMETHODS
entry.

68

Chapter 12
Comments, Booleans, and None

This chapter will introduce comments, booleans, and None. Comments have the potential to
make your code more readable. The boolean and None types are very common throughout
Python code.

12.1 Comments
Comments are not a type per se because they are ignored by Python. Comments serve as
reminders to the programmer. There are various takes on comments, their purpose, and
their utility. There is a continuum from those who are against any and all comments, to
those who comment almost every line of code, as well as those who are in between. If you
are contributing to a project, try to be consistent with their commenting scheme. A basic
rule of thumb is that a comment should explain the why rather than the how (code alone
should be sufficient for the how).

To create a comment in Python, start a line with a #. Anything that follows the hash is
ignored:
>>> # This line is ignored by Python

You can also comment at the end of a line:
>>> num = 3.14 # PI

Tip
A rogue use of comments is to temporarily disable code during editing. If your
editor supports this, it is sometimes easier to comment out code rather than remove
it completely. But the best practice is to remove commented-out code before sharing the
code with others.

Other languages support multi-line comments, but Python does not. The only way to
comment multiple lines is to start every line with #.

Tip
You may be tempted to comment out multiple lines of code by making those lines a
triple-quoted string. This is ugly and confusing. Try not to do this.

69

12. Comments, Booleans, and None

12.2 Booleans
Booleans represent the values for true and false. You have already seen them in previous
code examples, such as the result of .startswith:
>>> 'bar'.startswith('b')
True

You can also assign those values to variables:
>>> a = True
>>> b = False

Note
The actual name of the boolean class in Python is bool, not boolean:
>>> type(True)
<class 'bool'>

It can be useful to convert other types to booleans. In Python, the bool class can do
that. Converting from one type to another is called casting. However, this is usually
unnecessary due to the implicit casting Python performs when conditionals are evaluated.
The conditional statement will do this casting for you.

In Python parlance, it is common to hear of objects behaving as “truthy” or “falsey”—
that means that non-boolean types can implicitly behave as though they were booleans. If
you are unsure what the behavior might be, pass in the type to the bool class for an explicit
conversion (or cast).

For strings, an empty string is “falsey”, while non-empty values coerce to True:
>>> bool('')
False
>>> bool('0') # The string containing 0
True

Since a non-empty string behaves as truthy, you can test whether the string has content.
In the code below name has been set, but imagine that it came from user input:
>>> name = 'Paul'
>>> if name:
... print("The name is {}".format(name))
... else:
... print("Name is missing")
The name is Paul

You don’t have to test if the name has a length. So don’t do this:
>>> if len(name) > 0:
... print("The name is {}".format(name))

Also, you don’t need to do this:
>>> if bool(name):
... print("The name is {}".format(name))

because Python will evaluate the contents of the if statement, and coerce to a boolean
for you. Because a string is Truewhen it has content you only need:
>>> if name:
... print("The name is {}".format(name))

70

12.2. Booleans
Note
The built-in types, int, float, str, and bool, are classes. Even though their
capitalization (lowercase) makes it look as if they were functions, they are classes.
Invoking help(str)will confirm this:
>>> help(str)
Help on class str in module builtins:

class str(object)
| str(object='') -> str
| str(bytes_or_buffer[, encoding[, errors]]) -> str
|

This is one of those slight inconsistencieswith Python. User-defined classes typically
follow PEP8, which suggests camel cased naming of classes.

For numbers, zero coerces to Falsewhile other numbers have “truthy” behavior:
>>> bool(0)
False
>>> bool(4)
True

While explicit casting via the bool function is available, it is usually overkill, because
variables are implicitly coerced to booleans when used in conditional statements. For
example, container types, such as lists and dictionaries, when empty, behave as “falsey”.
On the flipside, when they are populated they act as “truthy”.

Tip
Be careful when parsing content that you want to turn into booleans. Strings that are
non-empty evaluate to True. One example of a string that might bite you is the string
'False'which evaluates to True:
>>> bool('False')
True

Here is a table of truthy and falsey values:

Truthy Falsey
True False

Most objects None
1 0

3.2 0.0
[1, 2] [] (empty list)

{'a': 1, 'b': 2} {} (empty dict)
'string' "" (empty string)
'False'

'0'

71

12. Comments, Booleans, and None

Tip
Do not test boolean values to check if they are equal to True. Do not explicitly cast
expressions to boolean results. If you have a variable, done, containing a boolean, this
is sufficient:
if done:

do something

While this is overkill:
if done == True:

do something

As is this:
if bool(done):

do something

Similarly, if youhave a list andneed to distinguish between an empty andnon-empty
list, this is sufficient:
members = []
if members:

do something if members
have values

else:
member is empty

Likewise, this test is superfluous. It is not necessary to determine the truthiness of a
list by its length:
if len(members) > 0:

do something if members
have values

else:
member is empty

72

12.3. None

Note
If you wish to define the implicit truthiness for user-defined objects, the .__bool__
method specifies this behavior. It can return True, or False. If this magic method is
not defined, the .__len__method is checked for a non-zero value. If neither method is
defined, an object defaults to True:
>>> class Nope:
... def __bool__(self):
... return False

>>> n = Nope()
>>> bool(n)
False

If this is confusing, feel free to come back to this example after reading about classes.

12.3 None
None is an instance of NoneType. Other languages have similar constructs such as nil,NULL
or undefined. Variables can be assigned to None to indicate that they are waiting to hold a
real value. None coerces to False in a boolean context:
>>> bool(None)
False

Note
A Python function defaults to returning None if no return statement is specified:
>>> def hello():
... print("hi")

>>> result = hello()
hi
>>> print(result)
None

Note
None is a singleton (Python only has one copy of None in the interpreter). The id for this
value will always be the same:
>>> a = None
>>> id(a)
140575303591440
>>> b = None
>>> id(b)
140575303591440

As any variable containing None is the same object as any other variable containing
None. You typically use is to check for identity with these variables rather than using
== to check for equality:

73

12. Comments, Booleans, and None
>>> a is b
True
>>> a is not b
False

is is faster than == and connotes to the programmer that identity is being compared
rather than the value.

You can put the is expression in an if statement:
>>> if a is None:
... print("A is not set!")
A is not set!

Since None evaluates to False in a boolean context you could also do the following:
>>> if not a:
... print("A is not set!")
A is not set!

But, you should be careful as other values also evaluate to False, such as 0, [], or
'' (empty string). Checking against None is explicit.

12.4 Summary
In this chapter, you learned about comments in Python. Comments are started with a hash,
and any content following the hash until the end of the line is ignored. There are no multi-
line comments.

The chapter also discussed True, False, and boolean coercion. Most values are True in
a boolean context (when used in an if statement). The False values are zero, None, and
empty sequences.

Finally, the None object was mentioned. It is a singleton that is used to indicate that you
have a variable that may be assigned a value in the future. It is also the result of a function
that does not explicitly return a value.

12.5 Exercises
1. Create a variable, age, set to your age. Create another variable, old, that uses a

condition to test whether you are older than 18. The value of old should be True
or False.

2. Create a variable, name, set to your name. Create another variable, second_half, that
tests whether the name would be classified in the second half of the alphabet? What
do you need to compare it to?

3. Create a list, names, with the names of people in a class. Write code to print 'The
class is empty!' or 'Class has enrollments.', based on whether there are
values in names. (See the tip in this chapter for details).

4. Create a variable, car, set to None. Write code to print 'Taxi for you!', or 'You
have a car!', based on whether or not car is set (None is not the name of a car).

74

Chapter 13
Conditionals and Whitespace

In this chapter, you will learn more about making comparisons in Python. Most code needs
to make decisions about which path to execute, so you will look at how this is done.

In addition to the boolean values, True and False, in Python, you can also use
expressions to get boolean values. If you have two numbers, you might want to compare
them to check if they are greater than or less than each other. The operators, > and <, do this
respectively:
>>> 5 > 9
False

Here is a table of comparison operations to create boolean values:

Operator Meaning
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to
== Equal to
!= Not equal to
is Identical object

is not Not identical object

These operations work on most types. If you create a custom class that defines the
appropriate magic methods, your class can use them as well:
>>> name = 'Matt'
>>> name == 'Matt'
True
>>> name != 'Fred'
True
>>> 1 > 3
False

Note
The “rich comparison” magic methods, __gt__, __lt__, __ge__, __le__, __eq__, and
__ne__ correspond to >, <, >=, <=, ==, and != respectively. Defining all of these can be
somewhat tedious and repetitive. For classes where these comparisons are commonly
used, the functools.total_ordering class decorator gives you all of the comparison

75

13. Conditionals and Whitespace
functionality as long as you define __eq__ and __le__. The decoratorwill automatically
derive the remainder of the comparison methods. Otherwise, all six methods should be
implemented:
>>> import functools
>>> @functools.total_ordering
... class Abs(object):
... def __init__(self, num):
... self.num = abs(num)
... def __eq__(self, other):
... return self.num == abs(other)
... def __lt__(self, other):
... return self.num < abs(other)

>>> five = Abs(-5)
>>> four = Abs(-4)
>>> five > four # not using less than!
True

Decorators are considered an intermediate subject and are not covered in this
beginning book.

Tip
The is and is not statements are for comparing identity. When testing for identity—if
two objects are the same actual object with the same id (not just the same value)—use
is or is not. Since None is a singleton and only has one identity, is and is not are
used with None:
>>> if name is None:
... # initialize name

13.1 Combining conditionals
Conditional expressions are combined using boolean logic. This logic consists of the and, or,
and not operators.

Boolean Operator Meaning
x and y Both x and ymust evaluate to True for true result
x or y If x or y is True, result is true
not x Negate the value of x (True becomes False and vice versa)

Below is a simple example for setting a grade based on a score using and to test whether
the score is between two numbers:
>>> score = 91
>>> if score > 90 and score <= 100:
... grade = 'A'

76

13.1. Combining conditionals
Note
Python allows you to do the above example using a range comparison like this:
>>> if 90 < score <=100:
... grade = 'A'

Either style works, but range comparisons are not common in other languages.

Here is an example for checking if a given name is a member of a band:
>>> name = 'Paul'
>>> beatle = False
>>> if name == 'George' or \
... name == 'Ringo' or \
... name == 'John' or \
... name == 'Paul':
... beatle = True
... else:
... beatle = False

Note
In the above example the \ at the end of ”'George' or \” indicates that the statement
will be continued on the next line.

Like most programming languages, Python allows you to wrap conditional
statements in parentheses. Because they are not required in Python, most developers
leave them out unless they are needed for operator precedence. But another subtlety of
using parentheses is that they serve as a hint to the interpreter when a statement is still
open and will be continued on the next line, hence the \ is not needed in that case:
>>> name = 'Paul'
>>> beatle = False
>>> if (name == 'George' or
... name == 'Ringo' or
... name == 'John' or
... name == 'Paul'):
... beatle = True
... else:
... beatle = False

Tip
An idiomatic Python version of checking membership is listed below. To check if a
value is found across a variety of values, you can throw the values in a set and use the
in operator:
>>> beatles = {'George', 'Ringo', 'John', 'Paul'}
>>> beatle = name in beatles

A later chapter will discuss sets further.

Here is an example of using the not keyword in a conditional statement:
>>> last_name = 'unknown'
>>> if name == 'Paul' and not beatle:
... last_name = 'Revere'

77

13. Conditionals and Whitespace
13.2 if statements
Booleans (True and False) are often used in conditional statements. Conditional statements
are instructions that say “if this statement is true, perform a block of code, otherwise execute
some other code.” Branching statements are used frequently in Python. Sometimes, the “if
statement” will check values that contain booleans, other times it will check expressions that
evaluate to booleans. Another common check is for implicit coercion to “truthy” or “falsey”
values:
>>> debug = True
>>> if debug: # checking a boolean
... print("Debugging")
Debugging

13.3 else statements
An else statement can be used in combination with an if statement. The body of the else
statement will execute only if the if statement evaluates to False. Here is an example of
combining an else statementwith an if statement. The school below appears to have grade
inflation:
>>> score = 87
>>> if score >= 90:
... grade = 'A'
... else:
... grade = 'B'

Note that the expression, score >= 90, is evaluated by Python and turns into a False.
Because the “if statement” was false, the statements under the else block are executed, and
the grade variable is set to 'B'.

13.4 More choices
The previous example does not work for most schools. You can add more intermediate
steps if needed using the elif keyword. elif is an abbreviation for “else if”. Below is a
complete grading scheme:
>>> score = 87
>>> if score >= 90:
... grade = 'A'
... elif score >= 80:
... grade = 'B'
... elif score >= 70:
... grade = 'C'
... elif score >= 60:
... grade = 'D'
... else:
... grade = 'F'

The if, elif, and else statements above each have their own block. Python will start
from the top trying to find a statement that evaluates to True, when it does, it runs the block
and then continues executing at the code following all of the elif and else blocks. If none
of the if or elif statements are True, it runs the block for the else statement.

78

13.5. Whitespace
Note
The if statement canhave zero ormore elif statements. The else statement is optional.
If it exists, there can only be one.

13.5 Whitespace

A peculiarity you may have noticed is the colon (:) following the boolean expression in
the if statement. The lines immediately after the if statement were indented by four spaces.
The indented lines are the block of code that is executed when the if expression evaluates
to True.

In other languages, an if statement might look like this:
if (score >= 90) {

grade = 'A';
}

In many of these languages, the curly braces, { and }, denote the boundaries of the if
block. Any code between these braces is executed when the score is greater than or equal
to 90.

Python, unlike those other languages, uses two things to denote blocks:

• a colon (:)
• indentation

If you have programmed in other languages, it is easy to learn the whitespace rules in
Python. All you have to do is replace the left curly bracket ({) with a colon (:) and indent
consistently until the end of the block.

Tip
What is consistent indentation? Normally either tabs or spaces are used to indent code.
The Python interpreter only cares about consistency on a per-file basis. It is possible to
have a project with multiple files that each use different indentation schemes, but this
would be silly.

In Python, using four spaces is the preferred way to indent code. This is described in
PEP 8. If youmix tabs and spaces in the same file, youwill eventually run into problems.

Although spaces are the preferred mechanism, if you are working on code that
already uses tabs, it is better to be consistent. In that case, continue using tabs with
the code.

The python3 executable will complain with a TabError when you mix tabs and
spaces.

13.6 Summary
This chapter discussed the if statement. This statement can be used to create arbitrarily
complex conditions when combining expressions with and, or, and not.

79

http://www.python.org/dev/peps/pep-0008

13. Conditionals and Whitespace
Blocks, indentation, and whitespace were also discussed. Sometimes when people

encounter Python, the required whitespace rules may seem like a nuisance. I’ve run across
such people in my trainings. When asked if and why they indent code in other languages,
they reply “Of course, it makes codemore readable”. In Python, you emphasize readability,
and enforcing whitespace tends to aid in that.

13.7 Exercises
1. Write an if statement to determine whether a variable holding a year is a leap year.

(See the Numbers chapter exercises for the rules for leap years).
2. Write an if statement to determine whether a variable holding an integer is odd.
3. Write an if statement. Look at the indented block and check if your editor indented

with tabs or spaces. If it is indented with tabs, configure your editor to indent with
spaces. Some editors show tabs differently, if yours does not distinguish between tabs
and spaces, an easy way to check if the spacing is a tab is to cursor over it. If the cursor
jumps four or eight characters, then it inserted a tab character.

80

Chapter 14
Containers: Lists, Tuples, and Sets

Many of the types discussed so far have been scalars, which hold a single value. Integers,
floats, and booleans are all scalar values.

Containers hold multiple objects (scalar types or even other containers). This chapter
will discuss some of these types—lists, tuples, and sets.

14.1 Lists
Lists, as the name implies, are used to hold a list of objects. In Python, a list may hold any
type of item and may mix item type. Though in practice, you only store a single item type
in a list. Another way to think of a list is that they give an order to a sequence of items. They
are a mutable type, meaning you can add, remove, and alter the contents of them. There are
two ways to create empty lists, one is to invoke the list class, and the other is to use the
square bracket literal syntax—[and]:
>>> names = list()
>>> other_names = []

If youwant to have prepopulated lists, you can provide the values in between the square
brackets, using the literal syntax:
>>> other_names = ['Fred', 'Charles']

Note
The list class can also create prepopulated lists, but it is somewhat redundant because
you have to pass a list into it:
>>> other_names = list(['Fred', 'Charles'])

Typically, this class is used to coerce other sequence types into a list. For example,
a string is a sequence of characters. If you pass a string into list, you get back a list of
the individual characters:
>>> list('Matt')
['M', 'a', 't', 't']

Lists, like other types, have methods that you can call on them (use dir([]) to see a
complete list of them). For example, to add items to the end of a list, use the .append
method:

81

14. Containers: Lists, Tuples, and Sets
>>> names.append('Matt')
>>> names.append('Fred')
>>> print(names)
['Matt', 'Fred']

Remember that lists are mutable. Python does not return a new list when you append
to a list. Notice that the call to .append did not return a list (the REPL didn’t print anything
out). Rather it returns None and updates the list in place. (In Python, the default return
value is None for a function or a method. There is no way to have a method that doesn’t
return anything).

14.2 Sequence indices
A list is one of the sequence types in Python. Sequences hold ordered collections of objects.
To work effectively with sequences, it is important to understand what an index is. Every
item in a list has an associated index, which describes its location in the list. For example,
the ingredients in potato chips are potatoes, oil, and salt, and they are normally listed in that
order. Potatoes are first in the list, oil is second, and salt is third.

In many programming languages, the first item in a sequence is at index 0, the second
item is at index 1, the third at index 2, and so on. Counting beginning with zero is called
zero-based indexing.

You can access an item in a list using the bracket notation and the index of said item:
>>> names[0]
'Matt'

>>> names[1]
'Fred'

14.3 List insertion
To insert an item at a certain index, use the .insertmethod. Calling .insertwill shift any
items following that index to the right:
>>> names.insert(0, 'George')
>>> print(names)
['George', 'Matt', 'Fred']

The syntax for replacement at an index is the bracket notation:
>>> names[1] = 'Henry'
>>> print(names)
['George', 'Henry', 'Fred']

To append items to the end of a list use the .appendmethod:
>>> names.append('Paul')
>>> print(names)
['George', 'Henry', 'Fred', 'Paul']

82

14.4. List deletion
Note
CPython’s underlying implementation of a list is actually an array of pointers. This
provides quick random access to indices. Also, appending and removing at the end
of a list is quick (O(1)), while inserting and removing from the middle of a list is
slower (O(n)). If you find yourself inserting and popping from the front of a list,
collections.deque is a better data structure to use.

14.4 List deletion
To remove an item, use the .removemethod:
>>> names.remove('Paul')
>>> print(names)
['George', 'Henry', 'Fred']

You can also delete by index using the bracket notation:
>>> del names[1]
>>> print(names)
['George', 'Fred']

14.5 Sorting lists
A common operation on lists is sorting. The .sort method orders the values in the list.
This method sorts the list in place. It does not return a new, sorted copy of the list, rather it
updates the list with the items reordered:
>>> names.sort()
>>> print(names)
['Fred', 'George']

If the previous order of the list was important, you can make a copy of it before sorting.
A more general option for sorting sequences is the sorted function. The sorted function
works with any sequence. It returns a new list that is ordered:
>>> old = [5, 3, -2, 1]
>>> nums_sorted = sorted(old)
>>> print(nums_sorted)
[-2, 1, 3, 5]
>>> print(old)
[5, 3, -2, 1]

Be careful about what you sort. Python wants you to be explicit. In Python 3, when you
try to sort a list that contains heterogeneous types, you might get an error:
>>> things = [2, 'abc', 'Zebra', '1']
>>> things.sort()
Traceback (most recent call last):

...
TypeError: unorderable types: str() < int()

Both the .sortmethod and sorted function allow arbitrary control of sorting by passing
in a function for the key parameter. The key parameter can be any callable (function, class,
method) that takes a single item and returns something that can be compared.

83

14. Containers: Lists, Tuples, and Sets

Figure 14.1: This illustrates sorting a list with the .sortmethod. Note that the list is sorted in-place.
The result of calling the .sortmethod is the list is mutated, and the method returns None.

84

14.5. Sorting lists

Figure 14.2: This illustrates sorting a list by using the sorted function. Note that the list is not
modified, rather a new list is created. Also, note that Python reused the items of the list. It did not
create new items.

85

14. Containers: Lists, Tuples, and Sets

Figure 14.3: Final steps showing that the variable assignment is used to create a variable pointing to
the new list. Note that the sorted function works with any sequence, not only lists.

In this example, by passing in str as the key parameter, every item in the list is sorted
as if it were a string:
>>> things.sort(key=str)
>>> print(things)
['1', 2, 'Zebra', 'abc']

14.6 Useful list hints
As usual, there are other methods found on lists. Do not hesitate to open the Python
interpreter and type in a few examples. Remember that dir and help are your friends.

86

14.6. Useful list hints
Tip
range is a built-in function that constructs integer sequences. The following will create
the numbers zero through four:
>>> nums = range(5)
>>> nums
range(5)

Python 3 tends to be lazy. Note that range does not materialize the list, but rather
gives you an iterable that will return those numbers when iterated over. By passing the
result into list you can see the numbers it would generate:
>>> list(nums)
[0, 1, 2, 3, 4]

Notice that range does not include 5 in its sequence. Many Python functions dealing
with final indices mean “up to but not including”. (Slices are another example of this
you will see later).

If you need to start at a non-zero number, range will accept two parameters. When
there are two parameters, the first is the starting number (including itself), and the
second is the “up to but not including” number:
numbers from 2 to 5
>>> nums2 = range(2, 6)
>>> nums2
range(2, 6)

range also has an optional third parameter—stride. A stride of one (which is the
default) means the next number in the sequence that range returns should be one more
than the previous. A stride of 2would return every other number. Below is an example
that returns only even numbers below eleven:
>>> even = range(0, 11, 2)
>>> even
range(0, 11, 2)

>>> list(even)
[0, 2, 4, 6, 8, 10]

Note
The “up to but not including” construct is more formally known as the half-open interval
convention. It is commonly used when defining sequences of natural numbers. This
construct has a few nice properties:

• The difference between the end and start is the length when dealing with a
sequence of consecutive numbers

• Two subsequences can be spliced together cleanly without overlap

Python adopts this half-open interval idiom widely. Here is an example:
>>> a = range(0, 5)
>>> b = range(5, 10)

87

14. Containers: Lists, Tuples, and Sets
>>> both = list(a) + list(b)
>>> len(both) # 10 - 0
10

>>> both
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

If you are dealing with numeric sequences you might want to follow suit, especially
when defining APIs.

Famous computer scientist, Edsger Dijkstra, posited on the reasons for using zero-
based indexing, and why it is the correct choice.10 He ends by saying:

Many programming languages have been designed without due attention to
this detail.

Luckily, Python is not one of those languages.

14.7 Tuples
Tuples (commonly pronounced as either “two”-ples or “tuh”-ples) are immutable sequences.
You should think of them as ordered records. Once you create them, you cannot change
them. To create a tuple using the literal syntax, use parentheses around the members and
commas in between. There is also a tuple class that you can use to construct a new tuple
from an existing sequence:
>>> row = ('George', 'Guitar')
>>> row
('George', 'Guitar')

>>> row2 = ('Paul', 'Bass')
>>> row2
('Paul', 'Bass')

You can create tuples with zero or one items in them. Though in practice, because tuples
hold record type data, this isn’t super common. There are two ways to create an empty
tuple, using either the tuple function or the literal syntax:
>>> empty = tuple()
>>> empty
()

>>> empty = ()
>>> empty
()

Here are three ways to create a tuple with one item in it:
>>> one = tuple([1])
>>> one
(1,)

>>> one = (1,)
>>> one

10https://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD831.html

88

https://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD831.html

14.7. Tuples
(1,)

>>> one = 1,
>>> one
(1,)

Note
Parentheses are used for denoting the calling of functions or methods in Python. They
are also used to specify operator precedence. In addition, they may be used in tuple
creation. This overloading of parentheses can lead to confusion. Here is the simple rule,
if there is one item in the parentheses, then Python treats the parentheses as normal
parentheses (for operator precedence), such as those that you might use when writing
(2 + 3) * 8. If there aremultiple items separated by commas, then Python treats them
as a tuple:
>>> d = (3)
>>> type(d)
<class 'int'>

In the above example, dmight look like a tuple with parentheses but Python claims
it is an integer. For tuples with only one item, you need to put a comma (,) following
the item—or use the tuple class with a single item list:
>>> e = (3,)
>>> type(e)
<class 'tuple'>

Here are three ways to create a tuple with more than one item. Typically, you would use
the last one to be Pythonic. Because it has parentheses it is easier to see that it is a tuple:
>>> p = tuple(['Steph', 'Curry', 'Guard'])
>>> p
('Steph', 'Curry', 'Guard')

>>> p = 'Steph', 'Curry', 'Guard'
>>> p
('Steph', 'Curry', 'Guard')

>>> p = ('Steph', 'Curry', 'Guard')
>>> p
('Steph', 'Curry', 'Guard')

Because tuples are immutable you cannot append to them:
>>> p.append('Golden State')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AttributeError: 'tuple' object has no attribute
'append'

Note
Why the distinction between tuples and lists? Why not use lists since they appear to be
a super-set of tuples?

89

14. Containers: Lists, Tuples, and Sets
Themain difference between the objects ismutability. Because tuples are immutable,

they are able to serve as keys in dictionaries. Tuples are often used to represent a record
of data such as the row of a database query, which may contain heterogeneous types of
objects. Perhaps a tuple would contain a name, address, and age:
>>> person = ('Matt', '123 North 456 East', 24)

Tuples are used for returning multiple items from a function. Tuples also serve as a
hint to the developer that this type is not meant to be modified.

Tuples also use less memory than lists. If you have sequences that you are not
mutating, consider using tuples to conserve memory.

14.8 Sets
Another container type found in Python is a set. A set is an unordered collection that cannot
contain duplicates. Like a tuple, it can be instantiated with a list or anything you can iterate
over. Unlike a list or a tuple, a set does not care about order. Sets are particularly useful for
two things, removingduplicates and checkingmembership. Because the lookupmechanism
is based on the optimized hash function found in dictionaries, a lookup operation takes very
little time, even on large sets.

Note
Because sets must be able to compute a hash value for each item in the set, sets can only
contain items that are hashable. A hash is a semi-unique number for a given object. If an
object is hashable, it will always generate the same hash number.

In Python, mutable items are not hashable. This means that you cannot hash a
list or dictionary. To hash your own user-created classes, you will need to implement
__hash__ and __eq__.

Sets can be specified by passing in a sequence into the set class (another coercion class that
appears as a function):
>>> digits = [0, 1, 1, 2, 3, 4, 5, 6,
... 7, 8, 9]
>>> digit_set = set(digits) # remove extra 1

They can also be created with a literal syntax using { and }:
>>> digit_set = {0, 1, 1, 2, 3, 4, 5, 6,
... 7, 8, 9}

As was mentioned, a set is great for removing duplicates. When a set is created from a
sequence, any duplicates are removed. The extra 1was removed from digit_set:
>>> digit_set
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

To check for membership, you use the in operation:
>>> 9 in digit_set
True

>>> 42 in digit_set
False

90

14.8. Sets
Note
There is a contains protocol in Python. If a class (set or list, or user-defined class)
implements the __contains__ method (or the iteration protocol), you can use in with
to check for membership. Due to how sets are implemented, membership tests against
them can be much quicker than tests against a list.

Below, a set called odd is created. This set will aid in the following examples:
>>> odd = {1, 3, 5, 7, 9}

Sets provide set operations, such as union (|), intersection (&), difference (-), and xor (^).
The difference (-) operator removes items in one set from another:

>>> odd = {1, 3, 5, 7, 9}

difference
>>> even = digit_set - odd
>>> even
{0, 8, 2, 4, 6}

Notice that the order of the result is somewhat arbitrary at a casual glance. If the order
is important, a set is not the data type you should use.

The intersection (&) operation (you can think of it as the area where two roads intersect)
returns the items found in both sets:
>>> prime = set([2, 3, 5, 7])

those in both
>>> prime_even = prime & even
>>> prime_even
{2}

The union (|) operation returns a set composed of all the items from both sets, with
duplicates removed:
>>> numbers = odd | even
>>> print(numbers)
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Xor (^) is an operation that returns a set of items that only are found in one set or the
other, but not both:
>>> first_five = set([0, 1, 2, 3, 4])
>>> two_to_six = set([2, 3, 4, 5, 6])
>>> in_one = first_five ^ two_to_six
>>> print(in_one)
{0, 1, 5, 6}

Tip
Why use a set instead of a list? Remember that sets are optimized for membership and
removing duplicates. If you find yourself performing unions or differences among lists,
look into using a set instead.

Sets are also much quicker for testing membership. The in operator runs faster for
sets than lists. However, this speed comes at a cost. Sets do not keep the elements in

91

14. Containers: Lists, Tuples, and Sets
any particular order, whereas lists and tuples do. If the order is important for you, use
a data structure that remembers the order.

14.9 Summary
This chapter discussed a fewof the built-in container types. You saw lists, which are ordered
sequences that are mutable. Remember that a list method does not return a new list, but
typically will change the list in place. Lists will support inserting any item, but you typically
put items of the same type in a list.

You also saw tuples. Tuples are also ordered like lists, unlike lists, however, tuples do
not support mutation. In practice, you use them to represent a record of data, like a row
retrieved from a database. When they are representing records, they might hold different
types of objects.

Finally, sets were introduced. Sets are mutable, but they are unordered. They are used
to remove duplicates and check membership. Because of the hashing mechanism they use,
these set operations are fast and efficient. But it requires that the items in the set are hashable.

14.10 Exercises
1. Create a list. Append the names of your colleagues and friends to it. Has the id of the

list changed? Sort the list. What is the first item in the list? What is the second item in
the list?

2. Create a tuple with your first name, last name, and age. Create a list, people, and
append your tuple to it. Make more tuples with the corresponding information from
your friends and append them to the list. Sort the list. When you learn about functions,
you can use the key parameter to sort by any field in the tuple, first name, last name,
or age.

3. Create a list of the names of the first names your friends. Create a list with the top ten
common names. Use set operations to see if any of your friends have common names.

4. Go to Project Gutenberg11 and find a page of text from Shakespeare. Paste it into a
triple-quoted string. Create another string with a paragraph of text from RalphWaldo
Emerson. Use the string’s .split method to get a list of words from each. Using set
operations find the common words and words unique to both authors.

5. Tuples and lists are similar but have different behavior. Use set operations to find the
attributes of a list object that are not in a tuple object.

11https://www.gutenberg.org/

92

https://www.gutenberg.org/

Chapter 15
Iteration

A common idiomwhen dealing with sequences is to loop over the contents of the sequence.
You might want to filter out one of the items, apply a function to it, or print it out. The for
loop is one way to do this. Here is an example of printing out the strings in a list:
>>> for letter in ['c', 'a', 't']:
... print(letter)
c
a
t

>>> print(letter)
t

Note
Notice that a for loop construct contains a colon (:) followed by the indented code.
(The indented code is the block of the for loop).

During a for loop, Pythonmakes a newvariable, letter, that holds the item of iteration.
Note that the value of letter is not the index position, but rather the string. This variable
is not cleaned up by Python after the for loop is done.

15.1 Looping with an index
In languages like C, when you loop over a sequence, you do not loop over the items in the
sequence, rather you loop over the indices. Using those indices you can pull out the items at
those index values. Here is one way to do that in Python using the built-in functions range
and len:
>>> animals = ["cat", "dog", "bird"]
>>> for index in range(len(animals)):
... print(index, animals[index])
0 cat
1 dog
2 bird

The above code is a code smell. It indicates that you are not using Python as you should.
Usually, the reason for iterating over a sequence is to get access to the items in the sequence,
not the indices. But occasionally you will also need the index position of the item. Python

93

15. Iteration

Figure 15.1: This illustrates how a for loop creates a variable. A new variable, letter, is created. At
first, it points to 'c', which is printed. Then the loop continues and the variable points to 'a'.

94

15.1. Looping with an index

Figure 15.2: The for loop continues with the final loop. After 't' is printed, the loop exits. At this
point, the list literal is garbage collected. Because the only thing pointing to 'c' and 'a' was the
list, those are also garbage collected. However, the letter variable is still pointing to 't'. Python
doesn’t clean up this variable, it hangs around after the for loop is done.

95

15. Iteration
provides the built-in enumerate function that makes the combination of range and len
unnecessary. The enumerate function returns a tuple of (index, item) for every item in the
sequence:
>>> animals = ["cat", "dog", "bird"]
>>> for index, value in enumerate(animals):
... print(index, value)
0 cat
1 dog
2 bird

Because the tuple returns a pair of index and value, you can use tuple unpacking to create
two variables, index and value directly in the for loop. You need to put a comma between
the variable names. As long as the tuple is the same length as the number of variables you
include in the for loop, Python will happily create them for us.

15.2 Breaking out of a loop
You may need to stop processing a loop early, without going over every item in the loop.
The break keyword will jump out of the nearest loop you are in. Below is a program that
adds numbers until it comes to the first negative one. It uses the break statement to stop
processing when it comes across a negative number:
>>> numbers = [3, 5, 9, -1, 3, 1]
>>> result = 0
>>> for item in numbers:
... if item < 0:
... break
... result += item
>>> print(result)
17

Note

The line:
result += item

uses what is called augmented assignment. It is similar to writing:
result = result + item

Augmented assignment is slightly quicker as the lookup for the result variable only
occurs once. Another added benefit is that it is easier to type.

Note
The if block inside the for block is indented eight spaces. Blocks can be nested, and
each level needs to be indented consistently.

15.3 Skipping over items in a loop
Another common looping idiom is to skip over items. If the body of the for loop takes
a while to execute, but you only need to execute it for certain items in the sequence, the

96

15.4. The in statement can be used for membership
continue keyword comes in handy. The continue statement tells Python to disregard
processing of the current item in the for loop and “continue” from the top of the for block
with the next value in the loop.

Here is an example of summing all positive numbers:
>>> numbers = [3, 5, 9, -1, 3, 1]
>>> result = 0
>>> for item in numbers:
... if item < 0:
... continue
... result = result + item
>>> print(result)
21

15.4 The in statement can be used for membership
You have used the in statement in a for loop. In Python, the in statement can also be used
to check for membership. If you want to know if a list contains an item, you can use the in
statement to check that:
>>> animals = ["cat", "dog", "bird"]
>>> 'bird' in animals
True

If you want the index location, use the .indexmethod:
>>> animals.index('bird')
2

15.5 Removing items from lists during iteration
It was mentioned previously that lists are mutable. Because they are mutable you can add
or remove items from them. Also, lists are sequences, so you can loop over them. Do not
mutate the list at the same time that you are looping over it.

For example, if youwanted to filter a list of names so it only contained 'John' or 'Paul',
this would be the wrong way to do it:
>>> names = ['John', 'Paul', 'George',
... 'Ringo']
>>> for name in names:
... if name not in ['John', 'Paul']:
... names.remove(name)

>>> print(names)
['John', 'Paul', 'Ringo']

What happened? Python assumes that lists will not be modified while they are being
iterated over. When the loop got to 'George', it removed the name from the list. Internally
Python tracks the index location of the for loop. At that point there are only three items
in the list, 'John', 'Paul', and 'Ringo'. But the for loop internally thinks it is on index
location 3 (the fourth item), and there is no fourth item so the loop stops, leaving 'Ringo'
in.

97

15. Iteration
There are two alternatives to the above contruct of removing items from a list during

iteration. The first is to collect the items to be removed during a pass through the list.
In a subsequent loop, iterate over only the items that need to be deleted (names_to_remove),

and remove them from the original list (names):
>>> names = ['John', 'Paul', 'George',
... 'Ringo']
>>> names_to_remove = []
>>> for name in names:
... if name not in ['John', 'Paul']:
... names_to_remove.append(name)

>>> for name in names_to_remove:
... names.remove(name)

>>> print(names)
['John', 'Paul']

Another option is to iterate over a copy of the list. This can be done relatively painlessly
using the [:] slice copy construct that is covered in the chapter on slicing:
>>> names = ['John', 'Paul', 'George',
... 'Ringo']
>>> for name in names[:]: # copy of names
... if name not in ['John', 'Paul']:
... names.remove(name)

>>> print(names)
['John', 'Paul']

15.6 else clauses
A for loop can also have an else clause. Any code in an else block will execute if the for
loop did not hit a break statement. Below is sample code that checks if numbers in a loop
are positive:
>>> positive = False
>>> for num in items:
... if num < 0:
... break
... else:
... positive = True

Note that continue statements do not have any effect on whether an else block is
executed.

The else statement is somewhat oddly named. For a for loop, it indicates that thewhole
sequence was processed. A typical use of an else statement in a for loop is to indicate that
an item was not found.

15.7 while loops
Python will let you loop over a block of code while a condition holds. This is called a while
loop and you use the while statement to create a it. Awhile loop is followed by an expression
that evaluates to True or False. Then, a colon follows it. Remember what follows a colon

98

15.8. Summary
(:) in Python? Yes, an indented block of code. This block of code will continue to repeat as
long as the expression evaluates to True. This allows you to easily create an infinite loop.

You usually try to avoid infinite loops because they cause your program to ”hang”,
forever caught in the processing of a loop with no way out. One exception to this is a
server, that loops forever, continuing to process requests. Another exception seen in more
advanced Python is an infinite generator. A generator behaves like a lazy list and only
creates values when you loop over it. If you are familiar with stream processing, you could
think of it as a stream. (I don’t cover generators in this book, but do in my more advanced
book.)

Typically, if you have an object that supports iteration, you use a for loop to iterate over
the items. You use while loops when you don’t have easy access to an iterable object.

A common example is counting down:
>>> n = 3
>>> while n > 0:
... print(n)
... n = n - 1
3
2
1

You can also use the break statement to exit a while loop:
>>> n = 3
>>> while True:
... print(n)
... n = n - 1
... if n == 0:
... break

15.8 Summary
This chapter discussed using the for loop to iterate over a sequence. You saw that you can
loop over lists. You can also loop over strings, tuples, dictionaries, and other data structures.
In fact, you can define your own classes that respond to the for statement, by implementing
the .__iter__method.

A for loop creates a variable during iteration. This variable is not garbage collected after
the for loop, it sticks around. If your for loop is inside of a function, the variable will be
garbage collected when the function exits.

The enumerate function was introduced. This function returns a sequence of tuples of
index, item pairs for the sequence passed into it. If you need to get the index location as
well as the item of iteration, use enumerate.

Finally, you saw how to break out of loops, continue to the next item of iteration, and
use else statements. These constructs enable you to adeptly configure your looping logic.

15.9 Exercises
1. Create a list with the names of friends and colleagues. Calculate the average length of

the names.

99

15. Iteration
2. Create a list with the names of friends and colleagues. Search for the name John using

a for loop. Print not found if you didn’t find it. (Hint: use else).
3. Create a list of tuples of first name, last name, and age for your friends and colleagues.

If you don’t know the age, put in None. Calculate the average age, skipping over any
None values. Print out each name, followed by old or young if they are above or below
the average age.

100

Chapter 16
Dictionaries

Dictionaries are a highly optimized built-in type in Python.
You can compare a Python dictionary to an English dictionary. An English dictionary

has words and definitions. The purpose of a dictionary is to allow fast lookup of the word
in order to find the definition. You can quickly lookup any word by doing a binary search
(open up the dictionary to the midpoint, and determine which half the word is in, and
repeat).

A Python dictionary also has words and definitions, but you call them keys and values
respectively. The purpose of a dictionary is to provide fast lookup of the keys. You can
quickly look for a key and pull out the value associated with it. Like an English dictionary,
where it would take a long time to determine the word from a definition (if you didn’t know
the word beforehand), looking up the value is slow.

In Python 3.6, there is a feature that is new for dictionaries. The keys are now sorted by
insertion order. If you are writing Python code that needs to work in prior versions, you
will need to remember that prior to 3.6, keys had an arbitrary order (that allowed Python to
do quick lookups but wasn’t particularly useful to end users).

16.1 Dictionary assignment
Dictionaries provide a link from a key to a value. (Other languages call them hashes, hash
maps, maps, or associative arrays). Suppose you wanted to store information about an
individual. You sawhowyou could use a tuple to represent a record. Adictionary is another
mechanism. Because dictionaries are built into Python, you can use a literal syntax to create
one. This one has first and last names:
>>> info = {'first': 'Pete', 'last': 'Best'}

Note
An alternate way to create a dictionary is with the built-in dict class. If you pass a list
of tuple pairs into the class, it will return a dictionary:
>>> info = dict([('first', 'Pete'),
... ('last', 'Best')])

You can also use named parameters when you call dict:

101

16. Dictionaries

Figure 16.1: This illustrates the creation of a dictionary. In this case, you use an existing variable
for the value. Note that the dictionary does not copy the variable, but it points to it (increasing the
reference count).

>>> info = dict(first='Pete', last='Best')

If you use named parameters, they must be valid Python variable names, and they
will be converted to strings.

You can use index operations to insert values into the dictionary:
>>> info['age'] = 20
>>> info['occupation'] = 'Drummer'

In the above example, the keys are 'first', 'last', 'age', and 'occupation'. For
example, 'age' is the key that maps to the integer 20, the value. You can quickly look up the
value for 'age' by performing a lookup with an index operation:

102

16.2. Retrieving values from a dictionary
>>> info['age']
20

On the flip side, findingwhat the key is that has the value 20 is a slowoperation. It would
be like giving someone a definition from an English Dictionary and asking what word has
that definition.

The above example illustrates the literal syntax for creating an initially populated
dictionary. It also shows how the square brackets (index operations) are used to insert
items into a dictionary and pull them out. An index operation associates a key with a value
when used in combination with the assignment operator (=). When the index operation has
no assignment, it looks up the value for a given key.

16.2 Retrieving values from a dictionary
As you have seen, the square bracket literal syntax can pull a value out of a dictionary when
you use the brackets without assignment:
>>> info['age']
20

Be careful though, if you try to access a key that does not exist in the dictionary, Python
will throw an exception:
>>> info['Band']
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
KeyError: 'Band'

Because Python likes to be explicit and fail fast, raising an exception is the desired
behavior. You know that the 'Band' key is not in the dictionary. It would be bad if Python
decided to return an arbitrary value for a key that was not in the dictionary. Doing so could
allow errors to propagate further in your program and mask a logic error.

16.3 The in operator
Python provides an operator, in, that allows you to quickly check if a key is in a dictionary:
>>> 'Band' in info
False
>>> 'first' in info
True

As you have seen, in also works with sequences. You can use the in statement with a
list, set, or string to check for membership:
>>> 5 in [1, 3, 6]
False

>>> 't' in {'a', 'e', 'i'}
False

>>> 'P' in 'Paul'
True

103

16. Dictionaries
Note
Python 3 removed the .has_key method, which provided the same functionality as
the in statement, but is specific to a dictionary. Hooray for steps forward towards
consistency!

The in statement will work with most containers. In addition, you can define your own
classes that respond to this statement. Your object needs to define the .__contains__ or be
iterable.

16.4 Dictionary shortcuts
The .getmethod of a dictionarywill retrieve a value for a key. .get also accepts an optional
parameter to provide a default value if the key is not found. If you wanted the genre to
default to 'Rock', you could do the following:
>>> genre = info.get('Genre', 'Rock')
>>> genre
'Rock'

Tip
The .get method of dictionaries is one way to get around the KeyError thrown when
trying to use the bracket notation to pull out a key not found in the dictionary.

It is fine to use this method because you are being explicit about what will happen
when the key is missing. You should prefer to fail fast when you aren’t being specific
about the failing case.

16.5 setdefault
A useful, but somewhat confusingly named, method of dictionaries is the .setdefault
method. The method has the same signature as .get and initially behaves like it, returning
a default value if the key does not exist. In addition to that, it also sets the value of the key
to the default value if the key is not found. Because .setdefault returns a value, if you
initialize it to a mutable type, such as a dict or list, you can mutate the result in place.

.setdefault can be used to provide an accumulator or counter for a key. For example,
if you wanted to count the number of people with same name, you could do the following:
>>> names = ['Ringo', 'Paul', 'John',
... 'Ringo']
>>> count = {}
>>> for name in names:
... count.setdefault(name, 0)
... count[name] += 1

Without the .setdefaultmethod, a bit more code is required:
>>> names = ['Ringo', 'Paul', 'John',
... 'Ringo']
>>> count = {}
>>> for name in names:
... if name not in count:

104

16.5. setdefault
... count[name] = 1
... else:
... count[name] += 1

>>> count['Ringo']
2

Tip
Performing these counting types of operations was so common that later the
collections.Counter class was added to the Python standard library. This class can
perform the above operations much more succinctly:
>>> import collections
>>> count = collections.Counter(['Ringo', 'Paul',
... 'John', 'Ringo'])
>>> count
Counter({'Ringo': 2, 'Paul': 1, 'John': 1})
>>> count['Ringo']
2
>>> count['Fred']
0

Here is a somewhat contrived example illustrating mutating the result of .setdefault.
Assume you want to have a dictionary mapping a name to bands that they played in. If a
person named Paul is in two bands, the result should map Paul to a list containing both of
those bands:
>>> band1_names = ['John', 'George',
... 'Paul', 'Ringo']
>>> band2_names = ['Paul']
>>> names_to_bands = {}
>>> for name in band1_names:
... names_to_bands.setdefault(name,
... []).append('Beatles')
>>> for name in band2_names:
... names_to_bands.setdefault(name,
... []).append('Wings')
>>> print(names_to_bands['Paul'])
['Beatles', 'Wings']

To belabor the point, without setdefault this code would be a bit longer:
>>> band1_names = ['John', 'George',
... 'Paul', 'Ringo']
>>> band2_names = ['Paul']
>>> names_to_bands = {}
>>> for name in band1_names:
... if name not in names_to_bands:
... names_to_bands[name] = []
... names_to_bands[name].\
... append('Beatles')
>>> for name in band2_names:
... if name not in names_to_bands:
... names_to_bands[name] = []
... names_to_bands[name].\
... append('Wings')

105

16. Dictionaries
>>> print(names_to_bands['Paul'])
['Beatles', 'Wings']

Tip
The collections module from the Python standard library includes a handy class—
defaultdict. This class behaves like a dictionary but it also allows for setting the
default value of a key to an arbitrary factory. If the default factory is not None, it is
initialized and inserted as a value any time a key is missing.

The previous example re-written with defaultdict is the following:
>>> from collections import defaultdict
>>> names_to_bands = defaultdict(list)
>>> for name in band1_names:
... names_to_bands[name].\
... append('Beatles')
>>> for name in band2_names:
... names_to_bands[name].\
... append('Wings')
>>> print(names_to_bands['Paul'])
['Beatles', 'Wings']

Using defaultdict is slightly more readable than using setdefault.

16.6 Deleting keys
Another common operation on dictionaries is the removal of keys and their corresponding
values. To remove an item from a dictionary, use the del statement:
remove 'Ringo' from dictionary
>>> del names_to_bands['Ringo']

Tip
Python will prevent you from adding to or removing from a dictionary while you are
looping over it. Python will throw a RuntimeError:
>>> data = {'name': 'Matt'}
>>> for key in data:
... del data[key]
Traceback (most recent call last):

...
RuntimeError: dictionary changed size during iteration

16.7 Dictionary iteration
Dictionaries also support iteration using the for statement. By default, when you iterate
over a dictionary, you get back the keys:
>>> data = {'Adam': 2, 'Zeek': 5, 'Fred': 3}
>>> for name in data:
... print(name)
Adam
Zeek

106

16.7. Dictionary iteration
Fred

Note

The dictionary has a method—.keys—that will also list out the keys of a dictionary.
In Python 3, the .keys method returns a view. The view is a window into the current
keys found in the dictionary. You can iterate over it, like a list. But, unlike a list, it is not
a copy of the keys. If you later remove a key from the dictionary, the view will reflect
that change. A list would not.

To iterate over the values of a dictionary, iterate over the .valuesmethod:
>>> for value in data.values():
... print(value)
2
5
3

The result of .values is also a view. It reflects the current state of the values found in a
dictionary.

To retrieve both key and value during iteration, use the .items method, which returns
a view:
>>> for key, value in data.items():
... print(key, value)
Adam 2
Zeek 5
Fred 3

If you materialize the view into a list, you will see that the list is a sequence of (key,
value) tuples—the same thing that dict accepts to create a dictionary:
>>> list(data.items())
[('Adam', 2), ('Zeek', 5), ('Fred', 3)]

Tip
Remember that a dictionary is ordered based on key insertion order. If a different order
is desired, you will need to sort the sequence of iteration.

The built-in function sortedwill return a new sorted list, given a sequence:
>>> for name in sorted(data.keys()):
... print(name)
Adam
Fred
Zeek

The sorted function has an optional argument, reverse, to flip the order of the
output:
>>> for name in sorted(data.keys(),
... reverse=True):
... print(name)
Zeek
Fred
Adam

107

16. Dictionaries
Note
It is possible to have keys of different types. The only requirement for a key is that it be
hashable. For example, a list isn’t hashable because you can mutate it, and Python can’t
generate a consistent hash value for it. If you used a list as a key and then mutated that
key, should the dictionary return the value based on the old list, or the new one, or both?
Python refuses to guess here and makes you use keys that don’t change.

It would be possible to insert items into a dictionary using both integers and strings
as keys:
>>> weird = {1: 'first',
... '1': 'another first'}

Typically, you don’t mix key types, because it is confusing to readers of the code
and also makes sorting keys harder. Python 3 won’t sort mixed type lists without a key
function telling Python explicitly how to compare different types. This is one of those
areas where Python gives you the ability to do something, but that doesn’t mean you
should. In the words of Python core developer Raymond Hettinger:

Many ”Can I do x in Python” questions equate to ”Can I stop a car on train
tracks when no trains are coming?” Yes you can, No you shouldn’t

@raymondh

16.8 Summary
This chapter discussed the dictionary. This data structure is important because it is a
building block in Python. Classes, namespaces, andmodules in Python are all implemented
using a dictionary under the covers.

Dictionaries provide quick lookup or insertion for a key. You can also do a lookup by
value, but it is slow. If you find yourself doing this operation often, it is a code smell that
you should use a different data structure.

You saw how to mutate a dictionary. You can insert and remove keys from a dictionary.
You can also check a dictionary for membership using the in statement.

You looked at some fancier constructs, using .setdefault to insert and return values in
one operation. You saw that Python includes specialized dictionary classes, Counter and
defaultdict in the collectionsmodule.

Because dictionaries are mutable, you can delete keys from them using the del
statement. You can also iterate over the keys of a dictionary using a for loop.

Remember that Python 3.6 introduced ordering to the dictionary. The keys are ordered
by insertion order, not alphabetic or numeric order.

16.9 Exercises
1. Create a dictionary, info, that holds your first name, last name, and age.
2. Create an empty dictionary, phone, that will hold details about your phone. Add the

screen size, memory, OS, brand, etc. to the dictionary.

108

16.9. Exercises
3. Write a paragraph in a triple-quoted string. Use the .splitmethod to create a list of

words. Create a dictionary to hold the count for every word in the paragraph.
4. Count how many times each word is used in a paragraph of text from Ralph Waldo

Emerson.
5. Write code that will print out the anagrams (words that use the same letters) from a

paragraph of text.
6. The PageRank algorithm was used to create the Google search engine. The algorithm

gives a score to each page based on incoming links. It takes one input: a list of pages
that link to other pages. Each page initially gets a score set to 1. Then multiple
iterations of the algorithm are run, typically ten. For each iteration:

• A page transfers its score divided by the number of outgoing links to
each page that it links to.

• The score transferred is multiplied by a damping factor, typically set to
.85.

Write some code to run 10 iterations of this algorithm on a list of tuples of source and
destination links, ie:
links = [('a', 'b'), ('a', 'c'), ('b', 'c')]

109

Chapter 17
Functions

We have come a long way without discussing functions, which are a basic building block of
Python programs. Functions are discrete units of code, isolated into their own block. You
have actually been using built-in functions along theway such as dir, help, (and the classes
that behave like coercion functions—float, int, dict, list, and bool).

One way to think of a function is as a black box that you can send input to (though input
is not required). The black box then performs a series of operations and returns output (it
implicitly returns None if the function ends without return being called). An advantage of
a function is that it enables code reuse. Once a function is defined, you can call it multiple
times. If you have code that you repeatedly run in your program, rather than copying and
pasting it, you can put it in a function once, then call that functionmultiple times. This gives
you less code to reason about, making your programs easier to understand. It is also easier
to change code (or fix bugs) later as you only have to do it in one place.

Here is a simple example of a function. This function, named add_2, takes a number as
input, adds 2 to that value, and returns the result:

Figure 17.1: A function is like a box. It can take input and return output. It can be passed around
and reused.

111

17. Functions

Figure 17.2: This illustrates the creation of a function. Note that Python creates a new function object,
then points a variable to it using the name of the function. Use the dir function on the function name
to see the attributes of the newly created function.

>>> def add_2(num):
... '''
... return 2 more than num
... '''
... result = num + 2
... return result

What are the different components of a function? This whole group of code is known
as a function definition. First, you see the def statement, which is short for define (i.e. define
a function). Following def is a required space (one space is fine) and then the function
name—add_2. This is the name that is used to invoke the function. Synonyms for invoke
include call, execute, or run the function. When Python creates a function, it will create a
new variable, using the name of the function.

Following the function name is a left parenthesis followed by num and a right parenthesis.
The names between the parentheses (there can be an arbitrary number of names, in this case,
there is only one), are the input parameters. These are the objects that youpass into a function.

After the parentheses comes a colon (:). Whenever you see a colon in Python, you should
immediately think the colon is followed by an indented block—similar to the body of the
for loops shown previously. Everything that is indented is the body of the function. It is
also called a block of code.

The body of a function is where the logic lives. You might recognize the first 3 lines of
indented code as a triple-quoted string. This is not a comment, though it appears to have
comment-like text. It is a string. Python allows you to place a string immediately after the
:, this string is called a docstring. A docstring is a string used solely for documentation. It

112

17.1. Invoking functions
should describe the block of code following it. The docstring does not affect the logic in the
function.
Tip
The help function has been emphasized through this book. It is important to note that
the help function gets its content from the docstring of the object passed into it. If you
call help on add_2, you should see the following (provided you actually typed out the
add_2 code above):
>>> help(add_2)
Help on function add_2 in module
__main__:

add_2()
return 2 more than num

(END)

Providing docstrings can be useful to you as a reminder of what your code does. If
they are accurate, the docstrings are invaluable to anyone trying to use your code.

Following the docstring (note that a docstring is optional), comes the logic of the function.
The result is calculated. Finally, the function uses a return statement to indicate that it
has output. A return statement is not necessary, and if it is missing a function will return
None by default. Furthermore, you can usemore than one return statement, and they do not
even have to be at the end of the function. For example, a conditional block may contain a
return statement inside of an if block and another in an else block.

To recap, the main parts of a function are:

• the def keyword
• a function name
• function parameters between parentheses
• a colon (:)
• indentation

• docstring
• logic
• return statement

Creating functions is easy. They allow you to reuse code, whichmakes your code shorter
and easier to understand. They are useful to remove global state by keeping short-lived
variables inside of the function body. Use functions to improve your code.

17.1 Invoking functions
When you call or execute a function, you are invoking a function. In Python, you invoke
functions by adding parentheses following the function name. This code invokes the newly
defined function add_2:

113

17. Functions
>>> add_2(3)
5

To invoke a function, list its name followed by a left parenthesis, the input parameters,
and a right parenthesis. The number of parameters shouldmatch the number of parameters
in the function declaration. Notice that the REPL implicitly prints the result—the integer 5.
The result is what the return statement passes back.

You can pass in whatever object you want to the add_2 function. However, if that object
doesn’t support addition of a number, you will get an exception. If you pass a string in, you
will see a TypeError:
>>> add_2('hello')
Traceback (most recent call last):

...
TypeError: must be str, not int

17.2 Scope
Python looks for variables in various places. You call these places scopes (or namespaces).
When looking for a variable (remember that functions are also variables in Python, as are
classes, modules, and more), Python will look in the following locations, in this order:

• Local scope - Variables that are defined inside of functions.
• Global scope - Variables that are defined at the global level.
• Built-in scope - Variables that are predefined in Python.

In the following code is a function that will look up variables in each of the three scopes:
>>> x = 2 # Global
>>> def scope_demo():
... y = 4 # Local to scope_demo
... print("Local: {}".format(y))
... print("Global: {}".format(x))
... print("Built-in: {}".format(dir))

>>> scope_demo()
Local: 4
Global: 2
Built-in: <built-in function dir>

Note that after scope_demo is invoked, the local variable y is garbage collected and no
longer available in the global scope:
>>> y
Traceback (most recent call last):

...
NameError: name 'y' is not defined

Variables defined inside of a function or method will be local. In general, you should
try to avoid global variables. They make it harder to reason about code. Global variables
are common in books, blogs, and documentation because using them requires writing less
code, and allows you to focus on conceptswithout them beingwrapped in a function. Using
functions and classes are some of the tools that help you remove global variables, make your
code more modular, and easier to understand.

114

17.3. Multiple parameters
Note
Pythonwill allowyou to override variables in the global and built-in scope. At the global
level, you could define your own variable called dir. At that point, the built-in function,
dir, is shadowed by the global variable. You could also do this within a function, and
create a local variable that shadows a global or built-in:
>>> def dir(x):
... print("Dir called")

>>> dir('')
Dir called

You can use the del statement to delete variables in the local or global scope. In
practice though, you don’t see this, as it is better to avoid shadowing built-ins in the
first place:
>>> del dir
>>> dir('')
['__add__', '__class__', '__contains__', ...]

Hint
You can use the locals and globals functions to list these scopes. These return
dictionaries with their current scope in them:
>>> def foo():
... x = 1
... print(locals())

>>> foo()
{'x': 1}

The __builtins__ variable lists the built-in names. If you access its __dict__
attribute, it will give you a dictionary similar to globals and locals.

17.3 Multiple parameters
Functions can have many parameters. Below is a function that takes two parameters and
returns their sum:
>>> def add_two_nums(a, b):
... return a + b

Note that Python is a dynamic language and you don’t specify the types of the
parameters. This function can add two integers:
>>> add_two_nums(4, 6)
10

It can also add floats:
>>> add_two_nums(4.0, 6.0)
10.0

Strings too:

115

17. Functions
>>> add_two_nums('4', '6')
'46'

Note that the strings use + to perform string concatenation (joining two strings together).
However, if you try to add a string and a number, Python will complain:

>>> add_two_nums('4', 6)
Traceback (most recent call last):

...
TypeError: Can't convert 'int' object to str implicitly

This is an instance where Python wants you to be more explicit about what operation is
desired, and it isn’t going to guess for you. If you wanted to add a string type to a number,
youmight want to convert them to numbers first (using float or int). Likewise, it might be
useful to convert from numbers to strings if concatenation is the desired operation. Python
does not implicitly choose which operation to perform. Rather, it throws an error which
should force the programmer to resolve the ambiguity.

17.4 Default parameters
One cool feature of Python functions is default parameters. Like the name implies, default
parameters allow you to specify the default values for function parameters. The default
parameters are then optional, though you can override them if you need to.

The following function is similar to add_two_nums, but will default to adding 3 if the
second number is not provided:
>>> def add_n(num, n=3):
... """default to
... adding 3"""
... return num + n

>>> add_n(2)
5
>>> add_n(15, -5)
10

To create a default value for a parameter, follow the parameter name by an equal sign
(=) and the chosen value.

Note
Default parameters must be declared after non-default parameters. Otherwise, Python
will give you a SyntaxError:
>>> def add_n(num=3, n):
... return num + n
Traceback (most recent call last):

...
SyntaxError: non-default argument follows
default argument

Because default parameters are optional, Python forces you to declare required
parameters before optional ones. The above code wouldn’t work with an invocation
like add_n(4) because the required parameter is missing.

116

17.5. Naming conventions for functions
Tip
Do not use mutable types (lists, dictionaries) for default parameters unless you know
what you are doing. Because of the way Python works, the default parameters are
created only once—at function definition time, not at function execution time. If you
use a mutable default value, you will end up re-using the same instance of the default
parameter during each function invocation:
>>> def to_list(value, default=[]):
... default.append(value)
... return default

>>> to_list(4)
[4]
>>> to_list('hello')
[4, 'hello']

The fact that default parameters are instantiated at the time the function is created
is considered a wart by many. This is because the behavior can be surprising. The
workaround is to push the creation of the default values from function definition time
(which only occurs once) to function runtime (which will create a new value every time
the function is executed).

Change the mutable default parameters so that they default to None. Then, create
an instance of the desired mutable type within the body of the function if the default is
None:
>>> def to_list2(value, default=None):
... if default is None:
... default = []
... default.append(value)
... return default

>>> to_list2(4)
[4]
>>> to_list2('hello')
['hello']

The following code:
... if default is None:
... default = []

Can also be written as a single line using a conditional expression:
... default = default if default is not None else []

17.5 Naming conventions for functions
Function naming conventions are similar to variable naming conventions (and are also
found in the PEP 8 document). This is called snake case, which is claimed to be easier to
read. Function names should:

• be lowercase
• have_an_underscore_between_words

117

http://www.python.org/dev/peps/pep-0008

17. Functions
• not start with numbers
• not override built-ins
• not be a keyword

Languages such as Java have adopted the camel case naming convention. In that style
you might have a variable named sectionList or a method named hasTimeOverlap.
In Python, you would typically name these section_list and has_time_overlap
respectively. While Python code should follow the PEP 8 conventions, there is also an
allowance in PEP 8 for consistency. If the code you are working on has a different style
of naming convention, follow suit and be consistent with the existing code. Indeed, the
unittest module in the standard library still has Java style conventions (because it was
originally a port from the Java library junit).

17.6 Summary
Functions allow you to encapsulate change and side effects within their body. In this
chapter, you learned that functions can take input and return output. There can be multiple
input parameters, and you can also provide default values for them.

Remember that Python is based on objects, and when you create a function, you also
create a variable with the function name that points to it.

Functions can also have a docstring which is a string written immediately after the
declaration. These strings are used to present documentation when the function is passed
into the help function.

17.7 Exercises
1. Write a function, is_odd, that takes an integer and returns True if the number is odd

and False if the number is not odd.
2. Write a function, is_prime, that takes an integer and returns True if the number is

prime and False if the number is not prime.
3. Write a binary search function. It should take a sorted sequence and the item it is

looking for. It should return the index of the item if found. It should return -1 if the
item is not found.

4. Write a function that takes camel cased strings (i.e. ThisIsCamelCased), and converts
them to snake case (i.e. this_is_camel_cased). Modify the function by adding an
argument, separator, so it will also convert to kebab case (i.e. this-is-camel-case) as
well.

118

Chapter 18
Indexing and Slicing

Python provides two constructs to pull data out of sequence-like types (lists, tuples, and
even strings). These are the indexing and slicing constructs. Indexing allows you to access
single items out of a sequence, while slicing allows you to pull out a sub-sequence from a
sequence.

18.1 Indexing
You have seen indexing with lists. For example, if you have a list containing pets, you can
pull out animals by index:
>>> my_pets = ["dog", "cat", "bird"]
>>> my_pets[0]
'dog'

Tip
Remember that in Python indices start at 0. If you want to pull out the first item you
reference it by 0, not 1. This is called zero-based indexing.

Python has a cool featurewhere you can reference items using negative indices. -1 refers
to the last item, -2 the second to last item, etc. This is commonly used to pull off the last
item in a list:
>>> my_pets[-1]
'bird'

Guido van Rossum, the creator of Python, tweeted to explain how to understand
negative index values:

[The] proper way to think of [negative indexing] is to reinterpret a[-X] as
a[len(a)-X]

@gvanrossum

You can also perform an index operation on a tuple or a string:

119

18. Indexing and Slicing

Figure 18.1: This illustrates positive and negative index positions.

>>> ('Fred', 23, 'Senior')[1]
23

>>> 'Fred'[0]
'F'

Some types, such as sets, don’t support index operations. If youwant to define your own
class that supports index operations, you should implement the .__getitem__method.

18.2 Slicing sub lists
In addition to accepting an integer to pull out a single item, a slice may be used to pull out
a sub-sequence. A slice may contain the start index, an optional end index, and an optional
stride, all separated by a colon.

Here is a slice that pulls out the first two items of a list:
>>> my_pets = ["dog", "cat", "bird"] # a list
>>> print(my_pets[0:2])
['dog', 'cat']

Remember that Python uses the half-open interval convention. The list goes up to but
does not include the end index. As mentioned previously, the range function also behaves
similarly with its second parameter.

When you slice with a colon (:), the first index is optional. If the first index is missing,
the slice defaults to starting from the first item of the list (the zeroth item):
>>> print(my_pets[:2])
['dog', 'cat']

You can also use negative indices when slicing. A negative index can be used in the start
location or ending location. The index -1 represents the last item. If you slice up to the last
item, you will get everything but that item:

120

18.2. Slicing sub lists

Figure 18.2: This illustrates slicing off the first four characters of a string. Three options are shown.
The last option is the preferred way. You don’t need the zero index since it is the default. Using
negative indices is just silly. Slicing off the final three characters is shown as well. Again, the final
example is the idiomatic way to do it. The first two assume the string has a length of eight, while the
final code will work with any string that has at least three characters.

>>> my_pets[0:-1]
['dog', 'cat']
>>> my_pets[:-1] # defaults to 0
['dog', 'cat']

>>> my_pets[0:-2]
['dog']

The final index is also optional. If the final index is missing, the slice defaults to the end
of the list:
>>> my_pets[1:]
['cat', 'bird']
>>> my_pets[-2:]
['cat', 'bird']

Finally, you can default both the start and end indices. If both indices are missing, the
slice returned will run from the start to the end (which will contain a copy of the list). This
is a construct you can use to quickly copy lists in Python:

121

18. Indexing and Slicing
>>> print(my_pets[:])
['dog', 'cat', 'bird']

18.3 Striding slices
Slices also take a stride following the starting and ending indices. The default value for an
unspecified stride is 1. A stride of 1 means take every item from a sequence between the
indices. A stride of 2 would take every second item. A stride of 3 would take every third
item:
>>> my_pets = ["dog", "cat", "bird"]
>>> dog_and_bird = my_pets[0:3:2]
>>> print(dog_and_bird)
['dog', 'bird']

>>> zero_three_six = [0, 1, 2, 3, 4, 5, 6][::3]
>>> print(zero_three_six)
[0, 3, 6]

Note
Again, the range function has a similar third parameter that specifies stride:
>>> list(range(0, 7, 3))
[0, 3, 6]

Strides can be negative. A stride of -1means that you move backward right to left. To use
a negative stride, you should make the start slice greater than the end slice. The exception
is if you leave out the start and end indices, a stride of -1will reverse the sequence:
>>> my_pets[0:2:-1]
[]
>>> my_pets[2:0:-1]
['bird', 'cat']

>>> print([1, 2, 3, 4][::-1])
[4, 3, 2, 1]

The next time you are in a job interview and they ask you to reverse a string, you can do
it in a single line:
>>> 'emerih'[::-1]
'hireme'

Of course, they will probably want you to do it in C. Just tell them that you want to
program in Python!

18.4 Summary
You use indexing operations to pull single values out of sequences. This makes it easy to
get a character from a string, or an item from a list or tuple.

If you want subsequences, you can use the slicing construct. Slicing follows the half-
open interval and gives you the sequence up to but not including the last index. If you
provide an optional stride, you can skip elements in a slice.

122

18.5. Exercises
Python has a nice feature that allows you to use negative values to index or slice relative

to the end of the sequence. This lets you do your operations relative to the length of
the sequence, and you don’t have to worry about calculating the length of sequence and
subtracting from that.

18.5 Exercises
1. Create a variable with your name stored as a string. Use indexing operations to pull

out the first character. Pull out the last character. Will your code to pull out the last
character work on a name of arbitrary length?

2. Create a variable, filename. Assuming that it has a three letter extension, and using
slice operations, find the extension. For README.txt, the extension should be txt.
Write code using slice operations that will give the name without the extension. Does
your code work on filenames of arbitrary length?

3. Create a function, is_palindrome, to determine if a supplied word is the same if the
letters are reversed.

123

Chapter 19
File Input and Output

Reading andwriting files is common in programming. Pythonmakes these operations easy.
You can read both text and binary files. You also have a choice of reading a file by the
number of bytes, lines, or even the whole file at once. There are similar options available
for writing files.

19.1 Opening files
The Python function, open, returns a file object. This function has multiple optional
parameters:
open(filename, mode='r', buffering=-1, encoding=None,

errors=None, newline=None, closefd=True, opener=None)

125

19. File Input and Output
Hint
Windows paths use \ as a separator, which can be problematic. Python strings also use
\ as an escape character. If you had a directory named ”test” and wrote "C:\test",
Python would treat \t as a tab character.

The remedy for this is to use raw strings to represent Windows paths. Put an r in
front of the string:
r"C:\test"

You typically are only concernedwith the first two or three parameters. The first parameter,
the filename, is required. The second parameter is the mode, which determines if you are
reading or writing a file and if the file is a text file or binary file. There are various modes.

Mode Meaning
'r' Read text file (default)
'w' Write text file (overwrites if exists)
'x' Write text file, throw FileExistsError if exists.
'a' Append to text file (write to end)

'rb' Read binary file
'wb' Write binary (overwrite)
'w+b' Open binary file for reading and writing
'xb' Write binary file, throw FileExistsError if exists.
'ab' Append to binary file (write to end)

Figure 19.1: File modes

For details on the rest of the options to the open function, pass it into help. This function
has very detailed documentation.

If you are dealing with text files, typically you will use 'r' as the mode to read a file, and
'w' to write a file. Here you open the file /tmp/a.txt for writing. Python will create that
file, or overwrite it if it already exists:
>>> a_file = open('/tmp/a.txt', 'w')

The file object, returned from the open call, has various methods to allow for reading
and writing. This chapter discusses the most commonly used methods. To read the full
documentation on a file object pass it to the help function. It will list all of the methods and
describe what they do.

126

19.2. Reading text files
Note
/tmp is where Unix systems place temporary files. If you are on Windows, you can
inspect the Temp variable by typing:
c:\> ECHO %Temp%

The value is usually:
C:\Users\<username>\AppData\Local\Temp

19.2 Reading text files
Python provides multiple ways to read data from files. If you open a file in text mode (the
default), you read strings from the file or you write strings to it. If you open a file in binary
mode (using a 'rb' for reading or 'wb' for writing), you will read and write byte strings.

If you want to read a single line from an existing text file, use the .readlinemethod. If
you don’t specify a mode, Python will default to reading a text file (mode of r):
>>> passwd_file = open('/etc/passwd')
>>> passwd_file.readline()
'root:x:0:0:root:/root:/bin/bash'

Be careful, if you open a file for reading that does not exist, Python will throw an error:
>>> fin = open('bad_file')
Traceback (most recent call last):

...
IOError: [Errno 2] No such file or
directory: 'bad_file'

Tip
The open function returns a file object instance. This object hasmethods to read andwrite
data.

Common variable names for file objects are fin (file input), fout (file output), fp
(file pointer, used for either input or output) or names such as passwd_file. Names
like fin and fout are useful because they indicate whether the file is used for reading
or writing respectively.

As illustrated above, the .readline method will return one line of a file. You can call it
repeatedly to retrieve every line or use the .readlines method to return a list containing
all the lines.

To read all the contents of a file into one string use the .readmethod:
>>> passwd_file = open('/etc/passwd')
>>> print(passwd_file.read())
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/bin/false
daemon:x:2:2:daemon:/sbin:/bin/false
adm:x:3:4:adm:/var/adm:/bin/false

You should always close your files when you are done with them by calling .close:

127

19. File Input and Output
>>> passwd_file.close()

Closing your files is easy. A bit later you will dig into why you should make sure you
close them.

19.3 Reading binary files
To read a binary file, pass in 'rb' (read binary) as the mode. When you read a binary file
you will not get strings, but byte strings. Don’t worry, as the interface for byte strings is
very similar to strings. Here are the first eight bytes of a PNG file. To read eight bytes, you
will pass 8 to the .readmethod:
>>> bfin = open('img/dict.png', 'rb')
>>> bfin.read(8)
b'\x89PNG\r\n\x1a\n'

Notice the b in front of the string, specifying that this is a byte string. You can also use
.readline on binary files and it will read until it gets to a b'\n'. Binary strings versus
normal strings will be discussed in a later chapter.

19.4 Iteration with files
Iteration over sequences was discussed previously. In Python, it is easy to iterate over the
lines in a file. When dealing with a text file, you can iterate over the .readlinesmethod to
get a line at a time:
>>> fin = open('/etc/passwd')
>>> for line in fin.readlines():
... print(line)

However, because .readlines returns a list, Python will need to read the whole file
to create that list, and that could be problematic. Say the file was a large log file, it could
possibly consume all of your memory to read it. Python has a trick up its sleeve though.
Python allows you to loop over the file instance itself to iterate over the lines of the file.
When you iterate directly over the file, Python is lazy, and only reads the lines of text as
needed:
>>> fin = open('/etc/passwd')
>>> for line in fin:
... print(line)

How can you iterate directly over the file instance? Python has a dunder method,
.__iter__, that defines what the behavior is for looping over an instance. It just so happens
that for the file class, the .__iter__method iterates over the lines in the file.

The .readlinesmethod should be reserved for when you are sure that you can hold the
file in memory and you need to access the lines multiple times. Otherwise, directly iterating
over the file is preferred.

19.5 Writing files
To write to a file, you must first open the file in write mode. If mode is set to 'w', the file is
opened for writing text data:

128

19.6. Closing files
>>> fout = open('/tmp/names.txt', 'w')
>>> fout.write('George')

The above method will try to overwrite the file /tmp/names.txt if it exists, otherwise,
the file will be created. If you don’t have permission to access the file, a Permission Error
will be thrown. If the path is bad, you will see a FileNotFoundError.

Two methods used to place data in a file are .write and .writelines. The .write
method takes a string as a parameter and writes it to the file. The .writelines method
takes a sequence containing string data and writes it to the file.

Note
To include newlines in your file, you need to explicitly pass them to the file methods.
On Unix platforms, strings passed into .write should end with \n. Likewise, each of
the strings in the sequence that is passed into to .writelines should end in \n. On
Windows, the newline string is \r\n.

To program in a cross platform manner, the linesep string found in the osmodule
defines the correct newline string for the platform:
>>> import os
>>> os.linesep # Unix platform
'\n'

Tip
If you are trying this out on the interpreter right now, you may notice that the
/tmp/names.txt file is empty even though you told Python to write George in it. What
is going on?

File output is buffered by the operating system. In order to optimize writes to the
storage media, the operating system will only write data after a certain threshold has
been passed. On Linux systems, this is normally 4K bytes.

To force writing the data, you can call the .flushmethod, which flushes the pending
data to the storage media.

Amore heavy-handedmechanism, to ensure that data is written, is to call the .close
method. This informs Python that you are done writing to the file:
>>> fout2 = open('/tmp/names2.txt',
... 'w')
>>> fout2.write('John\n')
>>> fout2.close()

19.6 Closing files
Asmentioned previously, calling .closewill write the file buffers out to the storage media.
The best practice in Python is to always close files after you are done with them (whether
for writing or reading).

Here are a few reasons why you should explicitly close your files:

• If you have a file in a global variable, it will never be closed while your program is
executing.

129

19. File Input and Output
• cPython will automatically close your files for you if they are garbage collected. Other
Python implementations may not.

• Unless you call .flush you won’t know when your data is written.
• Your operating system probably has a limit of open files per process.
• Some operating systems won’t let you delete an open file.

Python usually takes care of garbage collection for you and you don’t have to worry about
cleaning up objects. Opening and closing files are exceptions. Python will automatically
close the file for you when the file object goes out of scope. But this is a case where you
shouldn’t rely on garbage collection. Be explicit and clean up after yourself. Make sure you
close your files!

Python 2.5 introduced the with statement. The with statement is used with context
managers to enforce conditions that occur before and after a block is executed. The open
function also serves as a context manager to ensure that a file is opened before the block is
entered and that it is closed when the block is exited. Below is an example:
>>> with open('/tmp/names3.txt', 'w') as fout3:
... fout3.write('Ringo\n')

This is the equivalent of:
>>> fout3 = open('/tmp/names3.txt', 'w')
>>> fout3.write('Ringo\n')
>>> fout3.close()

Notice that the with line ends with a colon. When a line ends with a colon in Python,
you always indent the code that follows. The indented content following a colon is called a
block or the body of the context manager. In the above example, the block consists of writing
Ringo to a file. Then the block finishes. You can’t really see it in the above example, but you
know a with block ends when the code is dedented. At this point, the context manager
kicks in and executes the exit logic. The exit logic for the file context manager tells Python
to automatically close the file for you when the block is finished.

Tip
Use the with construct for reading and writing files. It is a good practice to close files,
and if you use the with statement when using files, you do not have to worry about
closing them. The with statement automatically closes the file for you.

19.7 Designing around files
You have seen how to use functions to organize and compartmentalize complicated
programs. One benefit to using functions is that you can re-use those functions throughout
your code. Here is a tip for organizing functions that deal with files.

Assume that you want to write code that takes a filename and creates a sequence of
the lines from the file with the line number inserted before every line. At first thought it
might seem that you want the API (application programming interface) for your functions
to accept the filename of the file that you want to modify, like this:

130

19.8. Summary
>>> def add_numbers(filename):
... results = []
... with open(filename) as fin:
... for num, line in enumerate(fin):
... results.append(
... '{0}-{1}'.format(num, line))
... return results

This code will work okay. But what will happen when you are required to insert line
numbers in front of lines from a source other than a file? If you want to test the code, now
you have access to the file system. One solution is to refactor the add_numbers function
so that it will only open the file in a context manager, and then call another function,
add_nums_to_seq. This new function contains logic that operates on a sequence rather than
depending on a filename. Since a file behaves as a sequence of strings, you preserve the
original functionality:
>>> def add_numbers(filename):
... with open(filename) as fin:
... return add_nums_to_seq(fin)

>>> def add_nums_to_seq(seq):
... results = []
... for num, line in enumerate(seq):
... results.append(
... '{0}-{1}'.format(num, line))
... return results

Now you have a more general function, add_nums_to_seq, that is easier to test and
reuse, because instead of depending on a filename, it depends on a sequence. You can pass
in a list of strings, or create a fake file to pass into it.

Hint
There are other types that also implement the file-like interface (read and write). Any
time you find yourself coding with a filename, ask yourself if you may want to apply
the logic to other sequence-like things. If so, use the previous example of refactoring the
functions to obtain code that is much easier to reuse and test.

19.8 Summary
Python provides a single function to interact with both text and binary files, open. By
specifying the mode, you can tell Python whether you want to read or write to the file.
When you are dealing with text files, you read and write strings. When you are dealing
with binary files, you read and write byte strings.

Make sure you close your files. Using the with statement is the idiomatic way to do this.
Finally, make sure your functions deal with sequences of data instead of filenames as this
makes your code more generally useful.

19.9 Exercises
1. Write a function to write a comma separated value (CSV) file. It should accept a

filename and a list of tuples as parameters. The tuples should have a name, address,

131

19. File Input and Output
and age. The file should create a header row followed by a row for each tuple. If the
following list of tuples was passed in:
[('George', '4312 Abbey Road', 22),
('John', '54 Love Ave', 21)]

it should write the following in the file:
name,address,age
George,4312 Abbey Road,22
John,54 Love Ave,21

2. Write a function that reads a CSV file. It should return a list of dictionaries, using the
first row as key names, and each subsequent row as values for those keys. For the data
in the previous example it would return:
[{'name': 'George', 'address': '4312 Abbey Road', 'age': 22},
{'name': 'John', 'address': '54 Love Ave', 'age': 21}]

132

Chapter 20
Unicode

We’ve seen strings all over the place, but we haven’t really talked about one of the biggest
changes that came in Python 3, Unicode strings! Python 2 had support for Unicode strings,
but you needed to explicitly create them. This is no longer the case, everything is Unicode.

20.1 Background
What is Unicode? It is a standard for representing glyphs (the characters that create most
written language, as well as symbols and emoji). The standard can be found on the Unicode
website12, and is frequently updated. The standard consists of various documents or charts
that map code points (hexadecimal numbers such as 0048 or 1F600) to glyphs (such as H or
😀), and names (LATIN CAPITAL H and GRINNING FACE). The code points and names are
unique, though many glyphs may look very similar.

Here is a condensed history. As computers became prevalent, different providers had
different schemes to map binary data to string data. One encoding, ASCII, would use 7 bits
of data tomap to 128 symbols and control codes. That works fine in a Latin character-centric
environment such as English. Having 128 different glyphs would provide enough space for
lowercase characters, uppercase characters, digits, and common punctuation.

As support for non-English languages became more common, ASCII was not sufficient.
Windows systems throughWindows 98 supported an encoding called Windows-1252, that
had support for various accented characters, and symbols such as the Euro sign.

All of these encoding schemes provided a one-to-onemapping of bytes to a character. In
order to support Chinese, Korean, and Japanese scripts, many more than 128 symbols were
needed. Using four bytes provided support for over 4 billion characters. But this encoding
came at a cost. For the majority of people using only ASCII-centric characters, requiring
those characters to be encoded in four times as much data seemed like a colossal waste of
memory.

A compromise that provided both the ability to support all characters but not waste
memory, was to stop encoding characters to a sequence of bits. Rather, the characters were
abstracted. Each character insteadmapped to a unique code point (that has a hex value and a
unique name). Various encodings thenmapped these code points to bit encodings. Unicode
maps from character to a code point—it is not the encoding. For different contexts, an
alternate encoding might provide better characteristics.

12https://unicode.org

133

https://unicode.org

20. Unicode

Figure 20.1: This illustrates how to read code charts found at unicode.org. The charts have tables
listing glyphs by their hex code points. Following that table is another table with the codepoint,
glyph, and name. You can use a glyph, the name, or the code point. If the code point has more than
4 digits, you need to use capital U and left pad with 0 until you have 8 digits. If it has 4 or less digits,
you need to use a lowercase u and left pad with 0 until you have 4 digits. Also shown is an example
decoding the UTF-8 byte string to the corresponding glyph.

134

20.2. Basic steps in Python
One encoding, UTF-32, uses four bytes to store the character information. This

representation is easy for low-level programmers to use as indexing operations are trivial.
But it uses four times the amount of memory as ASCII to encode a Latin sequence of letters.

The notion of variable width encodings also helped alleviate memory waste. UTF-8 is
one such encoding. It uses between one and four bytes to represent a character. In addition,
UTF-8 is backward compatiblewithASCII. UTF-8 is themost common encoding on theweb,
and is a great choice for encoding sincemany applications and operating systems knowhow
to deal with it.
Tip
You can find out what the preferred encoding is on your machine by running the
following code. Here is mine on a 2015 Mac:
>>> import locale
>>> locale.getpreferredencoding(False)
'UTF-8'

Let’s be clear. UTF-8 is an encoding of bytes for Unicode code points. To say that UTF-8 is
Unicode is sloppy at best and connotes a lack of understanding of character encodings at
worst. In fact, the name is derived from Unicode Transformation Format - 8-bit, ie. it is a
format for Unicode.

Let’s look at an example. The character named, SUPERSCRIPT TWO, is defined in the
Unicode standard as code pointU+00b2. It has a glyph (a written representation) of ². ASCII
has no way to represent this character. Windows-1252 does, it is encoded as the hex byte
b2 (which happens to be the same as the code point, note that this is not guaranteed). In
UTF-8 it is encoded as c2 b2. Likewise, UTF-16 encodes it as ff fe b2 00. There are multiple
encodings for this Unicode code point.

20.2 Basic steps in Python
You can create Unicode strings in Python. In fact, you have been doing it all along.
Remember in Python 3, strings are Unicode strings. But you probably want to create a
string that has a non-ASCII character. Below is code to make a string that has x squared
(x²) in it. If you can find the glyph youwant to use, you can copy that character in into your
code:
>>> result = 'x²'

This works in general. Though you might run into problems if your font does not
support said glyph. Then you will get what is sometimes called tofu because it looks either
like an empty box or a diamond with a question mark. Another way to include non-ASCII
characters is to use the hex Unicode code point following \u:
>>> result2 = 'x\u00b2'

Note that this string is the same as the previous string:
>>> result == result2
True

Finally, you can use the name of the code point inside of the curly braces in \N{}:

135

20. Unicode

Figure 20.2: Image illustrates the encoding (in this case using UTF-8) of a Unicode string into its byte
representation, and then the decoding of the same byte string back into Unicode (also using UTF-8).
Note that you should be explicit when decoding as there are other encodings that if used, might
produce erroneous data or mojibake (character transformation).

>>> result3 = 'x\N{SUPERSCRIPT TWO}'

All of these work. They all return the same Unicode string:
>>> print(result, result2, result3)
x² x² x²

The third option is a little verbose and requires a little more typing. But if you don’t
speak native Unicode or have font support, it is perhaps the most readable.

Tip
The Python help documentation has an entry for Unicode. Type help(), then UNICODE.
It actually doesn’t discuss Unicode that much, rather the different ways to create Python
strings.

20.3 Encoding
Perhaps one of the keys to grokking Unicode in Python is to understand that you encode a
Unicode string to a byte string. You never encode a byte string. You decode a byte string to
a Unicode string. Likewise, you never decode a Unicode string. Another way of looking
at encoding and decoding is that encoding transforms a human-readable or meaningful
representation into an abstract representation meant for storage (Unicode to bytes or letter
to bytes), and decoding transforms that abstract representation back to a human readable
or meaningful representation.

136

20.3. Encoding
Given a Unicode string, you can call the .encode method to see the representation in

various encodings. Let’s start off with UTF-8:
>>> x_sq = 'x\u00b2'
>>> x_sq.encode('utf-8')
b'x\xc2\xb2'

If Python does not support an encoding, it will throw a UnicodeEncodeError. This
means that theUnicode code points are not supported in that encoding. For example, ASCII,
does not have support for the squared character:
>>> x_sq.encode('ascii')
Traceback (most recent call last):

...
UnicodeEncodeError: 'ascii' codec can't encode character
'\xb2' in position 1: ordinal not in range(128)

If you use Python long enough, you will probably encounter this error. It means that
the specified encoding does not have the ability to represent all of the characters. If you
are certain that you want to force Python to this encoding, there are a few different options
you can provide to the errors parameter. To ignore characters Python can’t encode, use
errors='ignore':
>>> x_sq.encode('ascii', errors='ignore')
b'x'

If you specify errors='replace', Python will insert a question mark for the
unsupported bytes:
>>> x_sq.encode('ascii', errors='replace')
b'x?'

Note
The encodings module has a mapping of aliases of encodings that Python supports.
There are 99 encodings in Python 3.6. Most modern applications try to stay in UTF-8,
but if you need support for other encodings, there is a good chance that Python has
support for it.

This mapping is found in encodings.aliases.aliases. Alternatively, the
documentation on the module at the Python website13 has a table of the encodings.

Here are some other possible encodings for this string:
>>> x_sq.encode('cp1026') # Turkish
b'\xa7\xea'
>>> x_sq.encode('cp949') # Korean
b'x\xa9\xf7'
>>> x_sq.encode('shift_jis_2004') # Japanese
b'x\x85K'

Though Python supports many encodings, their usage is becoming more rare. Typically
they are used for legacy applications. Today, most applications use UTF-8.

13https://docs.python.org/3/library/codecs.html

137

https://docs.python.org/3/library/codecs.html

20. Unicode
20.4 Decoding
Decoding has a specific meaning in Python. It means to take a sequence of bytes and create
a Unicode string from them. In Python, you never encode bytes, you decode them (in fact
there is no .encode method on bytes). If you can remember that rule, it can save a bit of
frustration when dealing with non-ASCII characters.

Let’s assume that you have the UTF-8 byte sequence for x²:
>>> utf8_bytes = b'x\xc2\xb2'

When you are dealing with character data represented as bytes, you want to get it
into a Unicode string as soon as possible. Typically, you will only deal with strings in
your application and use bytes as a serialization mechanism (i.e. when persisting to files
or sending over the network). If you received these bytes somehow and the framework
or library that you were using did not convert it into a string for you, you could do the
following:
>>> text = utf8_bytes.decode('utf-8')
>>> text
'x²'

Another thing to note is that in general, you cannot divine what a sequence of bytes was
encoded as. You know that the sequence in the code listed is UTF-8 because you just created
it, but if unidentified bytes were sent to you from another source then it could certainly be
another encoding.

Note
You need to be told the encoding. Otherwise, you might try to decode with the wrong
encoding and have bad data. When this happens, the miscoded string is calledmojibake.
This is a Japanese word that means character mutation, but mojibake sounds cooler.

Here are some examples of erroneous decoding:
>>> b'x\xc2\xb2'.decode('cp1026') # Turkish
'ÌB¥'

>>> b'x\xc2\xb2'.decode('cp949') # Korean
'x짼'

>>> b'x\xc2\xb2'.decode('shift_jis_2004') # Japanese
'x ﾂ ｲ '

But some encodings don’t support all byte sequences. If you decode with the wrong
encoding, sometimes instead of getting bad data, you get an exception. For example, ASCII,
does not support this byte sequence:
>>> b'x\xc2\xb2'.decode('ascii')
Traceback (most recent call last):

...
UnicodeDecodeError: 'ascii' codec can't decode byte 0xc2
in position 1: ordinal not in range(128)

A UnicodeDecodeErrormeans that youwere trying to convert a byte string to aUnicode
string and the encoding did not have support to create Unicode strings for all of the bytes.
Typically, this means that you are using the wrong encoding. For best results, try to
determine and use the correct encoding.

138

20.5. Unicode and files
If you really don’t know the encoding, you can pass the errors='ignore' parameter,

but then you are losing data. This should only be used as a last resort:
>>> b'x\xc2\xb2'.decode('ascii', errors='ignore')
'x'

20.5 Unicode and files
When you read a text file, Pythonwill give you Unicode strings. By default, Pythonwill use
the default encoding (locale.getpreferredencoding(False)). If you want to encode a
text file in another encoding, you can pass that information with the encoding parameter
to the open function.

Likewise, you can specify the encoding when you open a file for writing. Remember,
you should treat encodings as a serialization format (used to transfer information over the
internet or store the data in a file). Here are two examples of writing to a file. With the
first file no encoding is defined, and it therefore defaults to UTF-8 (per the system’s default
encoding). In the second example, CP949 (Korean) is set as the encoding parameter:
>>> with open('/tmp/sq.utf8', 'w') as fout:
... fout.write('x²')

>>> with open('/tmp/sq.cp949', 'w', encoding='cp949') as fout:
... fout.write('x²')

From the UNIX terminal, look at the files. You see that they have different contents,
because they are using different encodings:
$ hexdump /tmp/sq.utf8
0000000 78 c2 b2
0000003

$ hexdump /tmp/sq.cp949
0000000 78 a9 f7
0000003

You can read the data back:
>>> data = open('/tmp/sq.utf8').read()
>>> data
'x²'

Remember, that in Python, explicit is better than implicit. When dealing with encodings,
you need to be specific. Python on a UTF-8 system will try and decode from UTF-8 when
you read a file. This is fine if the file is encoded with UTF-8, but if it is not, you will either
get mojibake, or an error:
>>> data = open('/tmp/sq.cp949').read()
Traceback (most recent call last):

...
UnicodeDecodeError: 'utf-8' codec can't decode byte
0xa9 in position 1: invalid start byte

If you are explicit and tell Python that this file was encoded with the CP949 encoding,
you will get the correct data from this file:
>>> data = open('/tmp/sq.cp949', encoding='cp949').read()
>>> data
'x²'

139

20. Unicode
If you are dealing with text files that contain non-ASCII characters, make sure you

specify their encoding.

20.6 Summary
Unicode is a mapping of code points to glyphs. In Python, strings can hold Unicode glyphs.
You can encode the Unicode string to a byte string using various encodings. You never
decode Python strings.

When you read a text file, you can specify the encoding to make sure that you get a
Unicode string containing the correct characters. When you write text files, you can use the
encoding parameter to declare the encoding to use.

UTF-8 is the most popular encoding these days. Unless you have a reason to use another
encoding, you should default to using UTF-8.

20.7 Exercises
1. Go to http://unicode.org and download a chart that has code points on it. Choose

a non-ASCII character and write Python code to print the character by both the code
point and name.

2. There are various Unicode characters that appear to be upside down versions of ASCII
characters. Find a mapping of these characters (they should be a search away). Write
a function that takes a string with ASCII characters, and returns the upside down
version of that string.

3. Write the upside down version of your name to a file. What are some of the possible
encodings that support your name? What are some encodings that don’t?

4. Smart quotes (or curly quotes) are not supported with ASCII. Write a function that
takes an ASCII string as input and returns a string where the double quotes are
replaced with smart quotes. For example, the string Python comes with ”batteries
included”, should become Python comes with “batteries included” (if you look closely,
you will see that with smart quotes, the left quotes curve differently than the right
quotes).

5. Write a function that takes text with old school emojis in it (:), :P, etc.). Using the
emoji chart14, add code to your function that replaces the text emojis, with Unicode
versions found in the chart.

14http://unicode.org/emoji/charts/full-emoji-list.html

140

http://unicode.org
http://unicode.org/emoji/charts/full-emoji-list.html

Chapter 21
Classes

Strings, dictionaries, files, and integers are all objects. Even functions are objects. In Python,
almost everything is an object. There are some exceptions, keywords (such as in) are not
objects. Also, variable names are not objects, but they do point to them. This chapter will
delve deeper into what an object really is.

Object is a somewhat ambiguous term. One definition of “Object-Oriented Program-
ming” is using structures to group together data (state) and methods (functions to alter
state). Many object-oriented languages such as C++, Java, and Python use classes to define
what state an object can hold and themethods to alter that state. Whereas classes are the def-
inition of the state and methods, instances are occurrences of said classes. Generally when
people say object they mean an instance of a class.

In Python, str is the name of the class used to store strings. The str class defines the
methods of strings.

You can create an instance of the str class, b, by using Python’s literal string syntax:
>>> b = "I'm a string"
>>> b
"I'm a string"

There are many terms that you will see thrown about to talk about b. You may hear, “b
is a string”, “b is an object”, “b is an instance of a string”. The latter is perhaps the most
specific. But, b is not a string class.

141

21. Classes

Figure 21.1: This illustrates a string object. All objects have types, which are really just the class of
the object. In this case the class is str.

Note
The str class can also be used to create strings, but is normally used for casting. Strings
are built into the language, so it is overkill to pass in a string literal into the str class.

You wouldn’t say:
>>> c = str("I'm a string")

Because Python automatically creates a string when you put quotes around characters.
The term literalmeans that this is a special syntax built into Python to create strings.

On the flipside, if you have a number that you want to convert to a string, you could
call str:
>>> num = 42
>>> answer = str(num)
>>> answer
'42'

It is said that Python comes with “batteries included”—it has libraries and classes
predefined for your use. These classes tend to be generic. You can define your own classes

142

Figure 21.2: This illustrates an updated version of a string object. Type has been changed to
__class__, because when you inspect the object, the __class__ attribute points to the class of the
object. Note that this class has various methods, this image only shows capitalize, but there are
many more. Methods are also objects, as shown in the image.

143

21. Classes
that deal specifically with your problem domain. You can create customized objects that
contain state, and as well as logic to change that state.

21.1 Planning for a class
First of all, classes are not always needed in Python. You should give some thought to
whether you need to define a class or whether a function (or group of functions) would be
sufficient. Classes might be useful to provide a programmatic representation of something
that is a physical object, or a conceptual object. Something that is a description such as
speed, temperature, average, or color are not good candidates for classes.

Once you have decided that you want to model something with a class, ask yourself the
following questions:

• Does it have a name?
• What are the properties that is has?
• Are these properties constant between instances of the class? ie:

– Which of these properties are common to the class?
– Which of these properties are unique to each member?

• What actions does it do?

Here’s a concrete example. Assume that you work for a ski resort and want to model how
people use the chairlifts. One way to do so would be to create a class that defines a chair on
a chairlift. A chairlift, if you are not familiar with it, is a contraption that has many chairs.
These chairs are like a bench that multiple skiers may sit on. Skiers queue up at the bottom
of a hill to board the chairs, then unboard once the chair has lifted them to the top of the hill.

Obviously, you will need to abstract your model to some degree. You are not going to
model every low-level property of a chair. For example, you don’t care whether a chair
is made of steel or aluminum or wood for calculating usage. That might matter for other
people.

Does this thing you want to model have a name? Yes, chair. A few properties of the
chair include chair number, capacity, whether it has a safety bar, and if it has padded seats.
To dive in a little deeper, capacity can be broken down into maximum capacity and current
occupants. Maximum capacity should stay constant, whereas occupants can change at a
point in time.

A chair is involvedwith a few actions. Some actions include adding people at the bottom
of the hill and removing people when they reach the top of the hill. Another action might
be the position of the safety bar. You are going handle loading and unloading but ignore
bar position for your model.

21.2 Defining a class
Here is a Python class to represent a chair on a chairlift. Below is a simple class definition.
The comments are numbered for discussion following the code:

144

21.2. Defining a class
>>> class Chair: # 1
... ''' A Chair on a chairlift ''' # 2
... max_occupants = 4 # 3
...
... def __init__(self, id): # 4
... self.id = id # 5
... self.count = 0
...
... def load(self, number): # 6
... self.count += number
...
... def unload(self, number): # 7
... self.count -= number

The class statement in Python defines a class. You need to give it a name (1), followed
by a colon. Remember that in Python, you indent following a colon (unless it is a slice).
Note, that you indented consistently below the class definition. Also note that the name of
the class was capitalized.

Note
Class names are actually camel cased. Because Chair is a single word, you might not
have noticed. Unlike functions where words are joined together with underscores, in
camel casing, you capitalize the first letter of each word and then shove them together.
Normally class names are nouns. In Python, they cannot start with numbers. The
following are examples of class names, both good and bad:

• Kitten # good

• jaguar # bad - starts with lowercase

• SnowLeopard # good - camel case

• White_Tiger # bad - has underscores

• 9Lives # bad - starts with a number

See PEP 8 for further insight into class naming.
Note that many of the built-in types do not follow this rule: str, int, float, etc.

Immediately following the declaration of the class, you can insert a docstring (2). This is
just a string. Note that if it is a triple-quoted string, it may span multiple lines. Docstrings
are optional, but they are useful to readers of your code, and also appear when you use the
help function to inspect your code in the REPL. Use them judiciously and it will pay great
dividends.

Inside the indented body of the class, you can create class attributes (3). A class attribute
is used to hold state that is shared among all instances of a class. In this example, any chair
that you create will have a maximum of four occupants. (Skiers call these types of chairlifts
quads). There are advantages to creating class attributes. Because the class is setting this
number, you don’t have to repeat yourself and set the value each time you create a chair.
On the flipside, you have hardcoded your chair to only support four seats on it. Later, you
will see how to override the class attribute.

145

http://www.python.org/dev/peps/pep-0008

21. Classes

Figure 21.3: This illustrates what happens when you define a class. Pythonwill create a new type for
you. Any class attributes or methods will be stored as attributes of the new class. Instance attributes
(id and count) are not found in the class as they will be defined on the instances.

Next you see a def statement (4). It looks like you are defining a function inside of
the class body. And you are, except when you define a function directly inside of a class
body, you call it a method. Because this method has a special name, __init__, you call it
a constructor. It has two parameters, self and id. Most methods have self as the first
parameter. You can interpret self as being the instance of the class.

146

21.2. Defining a class
A constructor is called when you create an instance of a class. If you consider a class

to be a factory that provides a template or blueprint for instances, then the constructor is
what initializes the state for the instances. The constructor takes an instance as input (the
self parameter), and updates it inside the method. Python takes care of passing around
the instance for us. This can be confusing and will be discussed more later.

Inside the body of the constructor (5) (it is indented because it follows a colon), you
attach two attributes that will be unique to the instance, id and count. On most chairlifts,
each chair on the chairlift has a unique number painted on the chair. The id represents this
number. Also, a chair may hold a number of skiers—you store this in the count attribute
and initialize it to zero. Note, that the constructor does not return anything, but rather it
updates values that are unique to the instance.

Note
Remember that id is a built-in function in Python, but you can also use that as an
attribute name in a class. You will still have access to the id function. Every time you
want to access the id attribute you will do a lookup on the instance. If the instance was
named chair, you would get the id by calling chair.id. So, this is not shadowing the
built-in function and is ok.

You can tell that the constructor logic is finished when you see that the indentation level
has stepped back out. You see another method defined (6), load. This method represents
an action that an instance of the class can perform. In this case, a chair may load passengers
onto it, and this method tells the instance what to do when that happens. Again, self (the
instance), is the first parameter to themethod. The second parameter, number, is the number
of people that get on the chair. Remember that a chair on a chairlift can usually hold more
than one person, and in this case, you said that your chairmay hold up to four people. When
skiers board the chair you would want to call the load`method on the chair, and inside of
the body of that method, update the count attribute on the instance.

Likewise, there is a correspondingmethod, unload (7), that should be calledwhen skiers
dismount at the top of the hill.

Note
Don’t be intimidated by methods. You have already seen many methods, such as the
.capitalize method defined on a string. Methods are functions that are attached to
a class. Instead of calling the method by itself, you need to call it on an instance of the
class:
>>> 'matt'.capitalize()
'Matt'

In summary, creating a class is easy. You define the attributes you want. The attributes that
are constant are put inside the class definition. The attributes that are unique to an instance
are put in the constructor. You can also define methods that contain actions that modify the
instance of the class. After the class is defined, Python will create a variable with the name
of the class that points to the class:
>>> Chair
<class '__main__.Chair'>

147

21. Classes
You can inspect the class with the dir function. Note that the class attributes are defined

on the class, and you can access them directly on the class:
>>> dir(Chair)
['__class__', '__delattr__', '__dict__', '__dir__', '__doc__',
'__eq__', '__format__', '__ge__', '__getattribute__', '__gt__',
'__hash__', '__init__', '__le__', '__lt__', '__module__',
'__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__',
'__setattr__', '__sizeof__', '__str__', '__subclasshook__',
'__weakref__', 'load', 'max_occupants', 'unload']

>>> Chair.max_occupants
4

The figure in this section showed how the attributes andmethods of the class are stored.
We can also inspect them from the REPL. Because everything is an object in Python, they
will all have a __class__ attribute:
>>> Chair.__class__
<class 'type'>
>>> Chair.max_occupants.__class__
<class 'int'>
>>> Chair.__init__.__class__
<class 'function'>
>>> Chair.load.__class__
<class 'function'>
>>> Chair.unload.__class__
<class 'function'>

The methods are also defined on the class, but the instance attributes are not. Because
instance attributes are unique to the instance, they will be stored on the instance.

If you have docstrings defined on your class or its methods, you can inspect them with
help:
>>> help(Chair)

Help on class Chair in module __main__:

class Chair(builtins.object)
| A Chair on a chairlift
|
| Methods defined here:
|
| __init__(self, id)
|
| load(self, number)
|
| unload(self, number)
|
| --
| Data descriptors defined here:
|
| __dict__
| dictionary for instance variables (if defined)
|
| __weakref__
| list of weak references to the object (if defined)
|
| --
| Data and other attributes defined here:

148

21.3. Creating an instance of a class
|
| max_occupants = 4

21.3 Creating an instance of a class
Now that you have defined a class to represent a chair, you can create instances of chairs.
One way to think of the Chair class is to compare it to a factory. The factory takes in bare
objects and churns out chair objects.

To be more specific, this is pretty much what the constructor method, __init__ does.
You’ll notice that self is the first parameter, this is the bare object. Python assigns the
__class__ attribute (pointing the Chair class) to the object before passing it into the
constructor.

Another analogy that might help understand classes is to consider how cartoons depict
the delivery of babies. The unborn babies live in the clouds somewhere. At some point in
time, a stork comes along, picks up a baby from the cloud and delivers it to a crib in the
parent’s house. When you call the constructor, Python goes out and picks a baby up from
the cloud (gets an object for you). It delivers it to the house, making it a member of the
family (it sets the __class__ to Chair or whatever your class is). Once the baby is inside
the house, you canmold her, cut her hair, etc. Remember that objects store state andmutate
the state.

Below is code to create chair number 21 in Python. When you invoke the class (i.e. put
parentheses after the class name), you tell Python that you want to call the constructor.
Unlike some languages, you don’t need to say new or add the variable type, you just add
parentheses with the constructor parameters following the name of the class:
>>> chair = Chair(21)

Again, to be specific with terminology, the chair variable points to an object or instance.
It does not point to a class. The object has a class, Chair. The instance has a few attributes,
including count and id.

You can access an instance attribute from the instance, chair:
>>> chair.count
0

>>> chair.id
21

Python has a hierarchy for looking up attributes. First, Python will look for the attribute
on the instance. If that fails, Python will try to find the attribute on the class. Because
instances know about their class, Python will look there next. If that fails Python will raise
an AttributeError, an apt error for a missing attribute. The max_occupants attribute is
actually stored on the class, but you can access it from the instance:
>>> chair.max_occupants
4

Under the covers Python is doing this for you:
>>> chair.__class__.max_occupants
4

Attribute lookup is different that variable lookup. Recall that Python looks for variables
first in the local scope, then global scope, then the built-in scope, and finally raises a

149

21. Classes

Figure 21.4: This illustrates constructing an object. When the constructor is called, the proverbial
Python ”stork” drops a baby object as self into the constructor. The baby object has the __class__
attribute set, but the constructor is free to alter the instance, by adding attributes. This object will
turn into chair.

150

21.4. Calling a method on a class
NameError if it was unsuccessful. Attribute lookup occurs first on the instance, then the
class, then the parent classes, andwill raise a AttributeError if the attributewas not found.

21.4 Calling a method on a class
When you have an instance of a class, you can callmethods on it. Methods—like functions—
are invoked by adding parentheses with any arguments inside of them. Here you will call
the .loadmethod to add 3 skiers to the chair:
>>> chair.load(3)

Here’s a review of the syntax of method invocation. First, you list the instance, chair,
which is followed by a period. A period means search for an attribute in Python (unless it
is following a number literal). When you see a period following an instance, remember that
Python is going to search for what follows the period.

First, Python will look on the instance for load. This attribute was not found on the
instance, recall that only count and id were set on the instance inside of the constructor.
But the instance has a link to its class. So if the search fails on the instance, Python will look
for those attributes on the class. The .loadmethod is defined on the Chair class, so Python
returns that. The parentheses mean invoke or call the method. You are passing 3 in as a
parameter to the method.

Recall that the declaration of load looked like this:
... def load(self, number): # 6
... self.count += number

In the declaration, there were two parameters, self and number. But in the invocation,
you only passed a single parameter, 3. Why the mismatch? The self parameter represents
the instance, which is chair in your case. Python will call the .load method by inserting
chair as the self parameter and 3 as the number parameter. In effect, Python handles
passing around the self parameter for you automatically.

Note
When you call:
chair.load(3)

What happens under the covers is similar to this:
Chair.load(chair, 3)

You can try this out to validate that it works, but you wouldn’t do this in real life
because it is harder to read, and also requires more typing.

21.5 Examining an instance
If you have an instance and want to know what its attributes are, you have a few options.
You can look up the documentation (if it exists). You can read the code where the class was
defined. Or you can use dir to examine it for you:
>>> dir(chair)
['__class__', '__delattr__', '__dict__', '__dir__',
'__doc__', '__eq__', '__format__', '__ge__', '__getattribute__',

151

21. Classes
'__gt__', '__hash__', '__init__', '__le__', '__lt__',
'__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__',
'__repr__', '__setattr__', '__sizeof__', '__str__',
'__subclasshook__', '__weakref__', 'count', 'id', 'load',
'max_occupants', 'unload']

Recall that the dir function lists the attributes of an object. If you look at the
documentation for dir, you see that the definition previously provided for dir is not quite
correct. The documentation reads:

return an alphabetized list of names comprising (some of) the attributes of the
given object, and of attributes reachable from it.

help(dir) (emphasis added)

This function shows the attributes that are reachable from an object. The actual state of
the instance is stored in the __dict__ attribute, a dictionary mapping attribute names to
values:
>>> chair.__dict__
{'count': 3, 'id': 21}

So, the instance really only stores count and id, the other attributes are available through
the class. Where is the class stored? In the __class__ attribute:
>>> chair.__class__
<class '__main__.Chair'>

It is important that an instance knowwhat its class is because the class stores themethods
and class attributes.

21.6 Private and protected
Some languages have the notion of private attributes or methods. These are methods that
are meant to be implementation details and end users can’t call them. In fact, the language
may prevent access to them.

Python does not make an effort to prevent users from doingmuch of anything. Rather, it
takes the attitude that you are an adult and you should take responsibility for your actions.
If you want to access something, you can do it. But you should be willing to accept the
consequences.

Python programmers realize that it can be convenient to store state andmethods that are
implementation details. To signify to end users that they should not access these members,
you prefix their namewith an underscore. Here is a class that has a helpermethod, ._check,
that is not meant to be called publicly:
>>> class CorrectChair:
... ''' A Chair on a chairlift '''
... max_occupants = 4
...
... def __init__(self, id):
... self.id = id
... self.count = 0
...
... def load(self, number):
... new_val = self._check(self.count + number)

152

21.7. A simple program modeling flow
... self.count = new_val
...
... def unload(self, number):
... new_val = self._check(self.count - number)
... self.count = new_val
...
... def _check(self, number):
... if number < 0 or number > self.max_occupants:
... raise ValueError('Invalid count:{}'.format(
... number))
... return number

The ._checkmethod is considered private, only the instance should access it inside the
class. In the class, the .load and .unload methods call the private method. If wanted,
you could call it from outside the class. But you shouldn’t, as anything with an underscore
should be considered an implementation detail that might not exist in future versions of the
class.

21.7 A simple program modeling flow
Let’s use the class above to model flow of skiers up a hill. You will make some basic
assumptions, such as every chair has an equal probability of 0 to max_occupants riding
on it. It will turn on the chairlift, load it, and run forever. Four times a second it prints out
the current statistics:
import random
import time

class CorrectChair:
''' A Chair on a chairlift '''
max_occupants = 4

def __init__(self, id):
self.id = id
self.count = 0

def load(self, number):
new_val = self._check(self.count + number)
self.count = new_val

def unload(self, number):
new_val = self._check(self.count - number)
self.count = new_val

def _check(self, number):
if number < 0 or number > self.max_occupants:

raise ValueError('Invalid count:{}'.format(
number))

return number

NUM_CHAIRS = 100

chairs = []
for num in range(1, NUM_CHAIRS + 1):

chairs.append(CorrectChair(num))

153

21. Classes

def avg(chairs):
total = 0
for c in chairs:

total += c.count
return total/len(chairs)

in_use = []
transported = 0
while True:

loading
loading = chairs.pop(0)
in_use.append(loading)
in_use[-1].load(random.randint(0, CorrectChair.max_occupants))

unloading
if len(in_use) > NUM_CHAIRS / 2:

unloading = in_use.pop(0)
transported += unloading.count
unloading.unload(unloading.count)
chairs.append(unloading)

print('Loading Chair {} Count:{} Avg:{:.2} Total:{}'.format
(loading.id, loading.count, avg(in_use), transported))

time.sleep(.25)

This program will run forever printing out how many people are riding on the chairlift.
It outputs to the terminal, but the print function could be replaced with code that writes a
CSV file as well.

By changing two numbers, the global NUM_CHAIRS and the class attribute Cor-
rectChair.max_occupants, you could change how the model behaves to represent larger
or smaller chairlifts. The call to random.randint could be replaced with a function that
more precisely represents the usage distribution.

21.8 Summary
We dove into classes a bit in this chapter. The terminology around classes was discussed.
You can say object or instance; they are interchangeable. Each object has a class. The class
is like a factory that determines how its instance objects behave.

An object is created by the constructor method. This method is named __init__. You
may define other methods for classes as well.

Give some thought to creating a class. What are the attributes? If the attributes remain
consistent across the objects, define them on the class. If they are unique to the object, set
them in the constructor.

21.9 Exercises
1. Imagine you are designing a banking application. What would a customer look like?

What attributes would she have? What methods would she have?
2. Imagine you are creating a Super Mario game. You need to define a class to represent

Mario. What would it look like? If you aren’t familiar with Super Mario, use your
own favorite video or board game to model a player.

154

21.9. Exercises
3. Create a class that could represent a tweet. If you aren’t familiar with Twitter,

Wikipedia describes it as:

[...] an online news and social networking service where users post and
interact with messages, ”tweets”, restricted to 140 characters.

https://en.wikipedia.org/wiki/Twitter

4. Create a class that could represent a household appliance (toaster, washer,
refrigerator, etc.).

155

https://en.wikipedia.org/wiki/Twitter

Chapter 22
Subclassing a Class

Besides grouping state and action in a coherent place, classes also enable re-use. If you
already have a class but want one that behaves slightly differently, one way to re-use the
existing class is to subclass it. The class that you subclass from is called the superclass.
(Another common term for superclass is parent class).

Suppose that you wanted to create a chair that can hold six people. To create a class
representing a six-person chair, Chair6, which is a more specialized version of a Chair,
you can create a subclass. Subclasses allow you to inherit methods of parent classes, and
overridemethods you want to change.

Here is the class Chair6, which is a subclass of CorrectChair:
>>> class Chair6(CorrectChair):
... max_occupants = 6

Note that you put the parent class, CorrectChair, in parentheses following the class
name. Notice that Chair6 doesn’t define a constructor inside of the body, yet you can still
create instances of the class:
>>> sixer = Chair6(76)

How does Python create an object, when the class doesn’t define the constructor? Here
is what happens: when Python looks for the .__init__ method, it will search for it on
Chair6 first. Since the Chair6 class only has a max_occupants attribute, Python will not
find the .__init__ method there. But, because Chair6 is a subclass of CorrectChair, it
has a __bases__ attribute that lists the base classes in a tuple:
>>> Chair6.__bases__
(__main__.CorrectChair,)

Python will then search the base classes for the constructor. It will find the constructor
in CorrectChair and use it to create the new class.

The same lookup happens when you call .load on an instance. The instance doesn’t
have an attribute matching the method name, so Python looks at the class of the instance.
Chair6 does not have the .loadmethod either, so Python looks for the attribute on the base
class, CorrectChair. Here the .loadmethod is called with a count that is too large, leading
to a ValueError:
>>> sixer.load(7)
Traceback (most recent call last):

File "/tmp/chair.py", line 30, in <module>
sixer.load(7)

File "/tmp/chair.py", line 13, in load

157

22. Subclassing a Class

Figure 22.1: Illustration of the __bases__ attribute in a subclass. This connection between a subclass
and its parent classes allows you to look up attributes in a well-defined manner. If the instance of
a subclass has an attribute defined, it uses that attribute. If not, after searching the instance, the
class (__class__) of the instance is searched. Failing that, parent classes (__bases__) of the class are
searched.

158

Figure 22.2: Illustration depicting the instantiation of a subclass. Note that the instance points to its
class and that the class points to any parent classes using the __bases__ attribute.

159

22. Subclassing a Class
new_val = self._check(self.count + number)

File "/tmp/chair.py", line 23, in _check
number))

ValueError: Invalid count:7

Python finds the method on the base class, but the call to the ._check method raises a
ValueError.

22.1 Counting stalls
A semi-common occurrence is that a skier fails to mount the chair correctly. In that case, a
chairlift operator will slow down or stop the chairlift to assist the skier. You can use Python
to create a new class that will be able to account for the number of times a stall happens.

Assume that you want to call a function every time .load is called, and this function
will return a boolean indicating whether a stall occurred. The function takes as parameters
the number of skiers and the chair object.

Below is a class that accepts an is_stalled function in the constructor. It will call this
function every time .load is invoked to determine if the chairlift has stalled:
>>> class StallChair(CorrectChair):
... def __init__(self, id, is_stalled):
... super().__init__(id)
... self.is_stalled = is_stalled
... self.stalls = 0
...
... def load(self, number):
... if self.is_stalled(number, self):
... self.stalls += 1
... super().load(number)

To create an instance of this class, you must provide an is_stalled function. Here is a
simple function that stalls ten percent of the time:
>>> import random
>>> def ten_percent(number, chair):
... """Return True 10% of time"""
... return random.random() < .1

Now you can create an instance using the ten_percent function as your is_stalled
parameter:
>>> stall42 = StallChair(42, ten_percent)

22.2 super
Remember that StallChair defines its own .__init__ method, which is called when the
instance is created. Note that the first line in the constructor is:
super().__init__(id)

When super is called inside of a method, it gives you access to the correct parent class.
This line in the constructor allows you to invoke the CorrectChair constructor. Rather than
repeat the logic of setting the id and count attribute, you can reuse the logic from the parent
class. Because StallChair has additional attributes it wants to set on the instance, you can
do that following the call to the parent constructor.

160

22.2. super

Figure 22.3: A figure showing the code for creating a subclass with custom methods. Note that you
use super() to call the method on the parent class. This illustrates what objects are created when
you create a class that is a subclass.

161

22. Subclassing a Class
Note that the .loadmethod also has a call to super:

def load(self, number):
if self.is_stalled(number, self):

self.stalls += 1
super().load(number)

In the .load method, you call your is_stalled function to determine whether the
chair was stalled. Then you dispatch back to the original .load functionality found in
CorrectChair by using super.

Having general code appear in one place (the base class) eliminates bugs and repeating
code.
Note
There are two cases where super really comes in handy. One is for resolving method
resolution order (MRO) in classes that have multiple parents. superwill guarantee that
this order is consistent. The other is when you change the base class, super is intelligent
about determining who the new base is. This aids in code maintainability.

22.3 Summary
This chapter discussed subclasses, which are new specialized classes that reuse code from
their base class (also referred to as superclass or parent class). For any method that you
don’t implement in a subclass, Python will reuse the parent class’ functionality. You can
choose to implement a method to override completely, or you can call out to super. When
you call super, it gives you access to the parent class so you can reuse any functionality
found there.

22.4 Exercises
1. Create a class to represent a cat. What can a cat do? What are the properties of a cat?

Create a subclass of a cat for a tiger. How does it behave differently?
2. In the previous chapter, you created a class to represent Mario from the Super Mario

Brothers video game. In later editions of the game, there were different characters that
you could play. They all had the same basic functionality15 but differed in skill. Create
a base class for the character, then implement four subclasses. One for Mario, Luigi,
Toad, and Princess Toadstool.

Name Mario Luigi Toad Princess Toadstool
Speed 4 3 5 2
Jump 4 5 2 3
Power 4 3 5 2

Special Skill Float jump

15https://www.mariowiki.com/Super_Mario_Bros._2#Playable_characters

162

https://www.mariowiki.com/Super_Mario_Bros._2##Playable_characters

Chapter 23
Exceptions

A computer may be told to perform an action that it cannot do. Reading files that do not
exist or dividing by zero are two examples. Python allows you to deal with such exceptions
when they occur. In these cases, Python throws an exception or raises an exception.

Normally when an exception occurs, Python will halt and print out a stack trace
explaining where the problem occurred. This stack trace is useful in that it tells you the
line and file of the error:
>>> 3/0
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ZeroDivisionError: division by zero

The above states that in line 1 of the file <stdin> (this is the name of the interpreter
“file”) there was a divide by zero error. When you execute a program with an exception,
the stack trace will indicate the file name and line number of where the problem occurred.
This example from the interpreter isn’t particularly helpful as there is only a single line of
code. But in bigger programs you could have deeply nested stack traces due to functions
calling other functions and methods:

If you had the following in a file and a tried to run it, you would see a traceback:
def err():

1/0

def start():
return middle()

def middle():
return more()

def more():
err()

start()

Here is the stacktrace:
Traceback (most recent call last):

File "/tmp/err.py", line 13, in <module>
start()

File "/tmp/err.py", line 5, in start
return middle()

File "/tmp/err.py", line 8, in middle

163

23. Exceptions
return more()

File "/tmp/err.py", line 11, in more
err()

File "/tmp/err.py", line 2, in err
1/0

ZeroDivisionError: division by zero

Tracebacks are easiest to read when you start from the bottom, find the error, and see
where it occurred. As youmove up the traceback, you are in effect looking up the call chain.
This can help you pinpoint what is going on in your program.

23.1 Look before you leap
Suppose you have a program that performs division. Depending on how it is coded, it may
be possible that it tries to divide by zero at some point. There are two styles for dealing
with exceptions that programmers commonly use. The first is look before you leap (LBYL).
The idea is to check for exceptional cases before performing an action. In this case, the
programwould examine the denominator value and determine if it is zero or not. If it is not
zero, the program could perform the division, otherwise, it could skip it.

In Python, look before you leap can be implemented with if statements:
>>> numerator = 10
>>> divisor = 0
>>> if divisor != 0:
... result = numerator / divisor
... else:
... result = None

Note
Look before you leap is not always a guarantee of success. If you check that a file exists
before you open it (looking before leaping), that does not mean that the file will still be
around later. In multi-threaded environments, this is known as a race condition.

Note
None is used to represent the undefined state. This is a common idiom throughout
Pythondom. Be careful though, try not to invoke methods on a variable that is assigned
to None, as that will raise an exception.

23.2 Easier to ask for forgiveness
Another option for dealing with exceptions is known as easier to ask for forgiveness than
permission (EAFP). The idea here is to always perform the operation inside of a try block.
If the operation fails, the exception will be caught by the exception block.

The try...except construct provides a mechanism for Python to catch exceptional
cases:

164

23.2. Easier to ask for forgiveness
>>> numerator = 10
>>> divisor = 0
>>> try:
... result = numerator / divisor
... except ZeroDivisionError as e:
... result = None

Notice that the try construct creates a block following the try statement (because there
is a colon and indentation). Inside of the try block are the statements that might throw
exceptions. If the statements actually throw an exception, Python looks for an except block
that catches that exception (or a parent class of it).

In the code above, the except block states that it will catch an exception that is an instance
(or subclass) of the ZeroDivisionError class. When the stated exception is thrown in the
try block, the except block is executed and result is set to None.

Note that line:
except ZeroDivisionError as e:

has as e: on the end. This part is optional. If it is included then e (or whatever
you choose as a valid variable name) will point to an instance of a ZeroDivisionError
exception. You can inspect the exception as they often have more details. The e variable
points to the active exception. If you leave ”as e” off the end of the except statement, you
will still have an active exception, but you won’t be able to access the instance of it.

Tip
Try to limit the scope of the try block. Instead of including all the code in a function
inside a try block, include only the line that will possibly throw the error.

Because the look before you leap style of handling is not guaranteed to prevent errors, in
general, most Python developers favor the easier to ask for forgiveness style of exception
handling. Here are some rules of thumb for exception handling:

• Gracefully handle errors you know how to handle and can reasonably expect.
• Do not silence exceptions that you cannot handle or do not reasonably expect.
• Use a global exception handler to gracefully handle unexpected errors.

Tip
If you were making a server type application that needs to run without stopping, here
is one way to do it. The functions process_input and log_error don’t exist but serve
as placeholders:
while 1:

try:
result = process_input()

except Exception as e:
log_error(e)

165

23. Exceptions
23.3 Multiple exception cases
If there are multiple exceptions that your code needs to be aware of, you can chain a list of
except statements together:
try:

some_function()
except ZeroDivisionError as e:

handle specific
except Exception as e:

handle others

In this case, when some_function throws an exception, the interpreter checks first if it
is a ZeroDivisionError (or a subclass of it). If that is not the case, it checks if the exception
is a subclass of Exception. Once an except block is entered, Python no longer checks the
subsequent blocks.

If an exception is not handled by the chain, code somewhere up the stack must deal with
the exception. If the exception is unhandled, Python will stop running and will print the
stack trace.

An example of dealing with multiple exceptions is found in the standard library. The
argparse module from the standard library provides an easy way to parse command line
options. It allows you to specify a type for certain options, such as integers or files (the
options all come in as strings). In the ._get_valuemethod there are examples of multiple
except clauses. Based on the type of the exception that occurs a different error message is
provided:
def _get_value(self, action, arg_string):

type_func = self._registry_get('type', action.type, action.type)
if not callable(type_func):

msg = _('%r is not callable')
raise ArgumentError(action, msg % type_func)

convert the value to the appropriate type
try:

result = type_func(arg_string)

ArgumentTypeErrors indicate errors
except ArgumentTypeError:

name = getattr(action.type, '__name__', repr(action.type))
msg = str(_sys.exc_info()[1])
raise ArgumentError(action, msg)

TypeErrors or ValueErrors also indicate errors
except (TypeError, ValueError):

name = getattr(action.type, '__name__', repr(action.type))
args = {'type': name, 'value': arg_string}
msg = _('invalid %(type)s value: %(value)r')
raise ArgumentError(action, msg % args)

return the converted value
return result

166

23.4. finally clause
Note
This code example also shows that a single except statement can catch more than one
exception type if you provide a tuple of exception classes:
except (TypeError, ValueError):

Note
This example also shows an older style of string formatting using the % operator. The
lines:
msg = _('invalid %(type)s value: %(value)r')
raise ArgumentError(action, msg % args)

would be written in a more modern style as:
msg = _('invalid {type!s} value: {value!r}')
raise ArgumentError(action, msg.format(**args))

23.4 finally clause
Another clause for error handling is the finally clause. This statement is used to place
code that will always execute, regardless of whether an exception happens or not. If the try
block succeeds, then the finally block will be executed.

The finally always executes. If the exception is handled, the finally blockwill execute
after the handling. If the exception is not handled, the finally block will execute and then
the exception will be re-raised:
try:

some_function()
except Exception as e:

handle errors
finally:

cleanup

Usually, the purpose of the finally clause is to cleanup external resources, such as files,
network connections, or databases. These resources should be freed regardless of whether
an operation was successful or not.

An example from the timeitmodule found in the standard library might aid in seeing
the utility of the finally statement. The timeit module allows developers to run a
benchmark on their code. One of the things that it does while running the benchmark is
tell the Python garbage collector to disable itself during the run. But, you want to ensure
that garbage collection is working after the benchmark is done regardless of whether the
run worked or errored out.

Here is themethod, timeit that dispatches to run the benchmark. It checks if the garbage
collector was enabled, then turns off the garbage collector, runs the timing code, and finally,
re-enables garbage collection if it was previously enabled:
def timeit(self, number=default_number):

"""Time 'number' executions of the main statement.

To be precise, this executes the setup statement once, and
then returns the time it takes to execute the main statement

167

23. Exceptions
a number of times, as a float measured in seconds. The
argument is the number of times through the loop, defaulting
to one million. The main statement, the setup statement and
the timer function to be used are passed to the constructor.
"""
it = itertools.repeat(None, number)
gcold = gc.isenabled()
gc.disable()
try:

timing = self.inner(it, self.timer)
finally:

if gcold:
gc.enable()

return timing

It is possible that the call to self.inner will throw an exception, but because the
standard library uses finally, garbage collection will always be turned back on regardless
(if the gcold boolean is true).

Note
This book doesn’t address context managers, but to prepare you for your future as a
Python expert, here is a hint. The try/finally combination is a code smell in Python.
Seasoned Python programmers will use a context manager in these cases. Put this on
your list of things to study after you have mastered basic Python.

23.5 else clause
The optional else clause in a try statement is executed when no exception is raised. It
must follow any except statements and executes before the finally block. Here is a simple
example:
>>> try:
... print('hi')
... except Exception as e:
... print('Error')
... else:
... print('Success')
... finally:
... print('at last')
hi
Success
at last

Here is an example from the heapq module found in the in the standard library.
According to the comments, there is a shortcut if you want the get the smallest values and
you ask for more values than the size of the heap. However, if you try to get the size of
the heap and get an error, the code calls pass. This ignores the error and continues on with
the slower way of getting the small items. If there was no error, you can follow the else
statement and take the fast path if n is greater than the size of the heap:
def nsmallest(n, iterable, key=None):

Code removed here

When n>=size, it's faster to use sorted()

168

23.6. Raising exceptions
try:

size = len(iterable)
except (TypeError, AttributeError) as e:

pass
else:

if n >= size:
return sorted(iterable, key=key)[:n]

Code removed here Try slower way

23.6 Raising exceptions
In addition to catching exceptions, Python also allows you to raise exceptions (or throw
them). Remember that the Zen of Pythonwants you to be explicit and refuse the temptation
to guess. If invalid input is passed into your function and you know that youwill not be able
to handle it, you may raise an exception. Exceptions are subclasses of the BaseException
class, and are raised using the raise statement:
raise BaseException('Program failed')

Normally you will not raise the generic BaseException class but will raise subclasses
that are predefined, or defined by you.

Another common way of using the raise statement is to use it all by itself. Recall that
when you are inside of an except statement, you have what is called an active exception. If
that is the case, you can use a bare raise statement. A bare raise statement allows you to
deal with the exception, but re-raise the original exception. If you try to use:
except (TypeError, AttributeError) as e:

log('Hit an exception')
raise e

You will succeed in raising the original exception, but the stack trace will state that the
original exception now occurred in the line with raise e rather than where the exception
first occurred. You have two options to deal with this. The first is a bare “raise“ statement.
The second is using exception chaining, described later.

Here is an example from the configparsermodule in the standard library. Thismodule
handles reading and creating INI files. An INI file is usually used for configuration andwas
popular before JSON and YAMLwere around. The .read_dictmethod will try to read the
configuration from a dictionary. If the instance is in strict mode, it will raise an error if you
try to add the same section more than once. If you are not in strict mode, the method allows
duplicate keys; the last one wins. Here is a portion of the method showing the bare raise
method:
def read_dict(self, dictionary, source='<dict>'):

elements_added = set()
for section, keys in dictionary.items():

section = str(section)
try:

self.add_section(section)
except (DuplicateSectionError, ValueError):

if self._strict and section in elements_added:
raise

elements_added.add(section)
code removed from here

169

23. Exceptions
When a duplicate is added in strict mode, the stack trace will show the error in the

.add_sectionmethod, because that is where it occurred.

23.7 Wrapping exceptions
Python 3 has introduced another feature similar to a bare raise in “PEP 3134 – Exception
Chaining and Embedded Tracebacks”When handling an exception, another exception may
occur in the handling code. In this case, it is useful to know about both exceptions.

Here is some basic code. The function, divide_work, might have problems dividing by
zero. You can catch that error and log that it occurred. Suppose that your log function is
calling out to a cloud-based service that is down (you’ll simulate that by having log raise
an exception):
>>> def log(msg):
... raise SystemError("Logging not up")

>>> def divide_work(x, y):
... try:
... return x/y
... except ZeroDivisionError as ex:
... log("System is down")

When you call divide_work with 5 and 0 as input, Python will show two errors, the
ZeroDivisionError, and the SystemError. It will show SystemError last because it
happened last:
>>> divide_work(5, 0)
Traceback (most recent call last):

File "begpy.py", line 3, in divide_work
return x/y

ZeroDivisionError: division by zero

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
File "begpy.py", line 1, in <module>

divide_work(5, 0)
File "begpy.py", line 5, in divide_work

log("System is down")
File "begpy.py", line 2, in log

raise SystemError("Logging not up")
SystemError: Logging not up

Suppose your cloud logging service is now working (the log function no longer throws
an error). If you want to change the type of the ZeroDivisionError in divide_work to
ArithmeticError, you can use a syntax described in PEP 3134. You can use the raise ...
from syntax:
>>> def log(msg):
... print(msg)

>>> def divide_work(x, y):
... try:
... return x/y
... except ZeroDivisionError as ex:
... log("System is down")

170

http://www.python.org/dev/peps/pep-3134

23.8. Defining your own exceptions
... raise ArithmeticError() from ex

You will see two exceptions now: the original ZeroDivisionError and the Arith-
meticErrorwhich is no longer shadowed by ZeroDivisionError:
>>> divide_work(3, 0)
Traceback (most recent call last):

File "begpy.py", line 3, in divide_work
return x/y

ZeroDivisionError: division by zero

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
File "begpy.py", line 1, in <module>

divide_work(3, 0)
File "begpy.py", line 6, in divide_work

raise ArithmeticError() from ex
ArithmeticError

If you want to suppress the original exception, the ZeroDivisionError, you can use the
following code. This is described in “PEP 0409 – Suppressing exception context”:
>>> def divide_work(x, y):
... try:
... return x/y
... except ZeroDivisionError as ex:
... log("System is down")
... raise ArithmeticError() from None

Now you only see the outermost error, ArithmeticError:
>>> divide_work(3, 0)
Traceback (most recent call last):

File "begpy.py", line 1, in <module>
divide_work(3, 0)

File "begpy.py", line 6, in divide_work
raise ArithmeticError() from None

ArithmeticError

23.8 Defining your own exceptions
Python has many built-in exceptions defined in the exceptions module. If your error
corresponds well with the existing exceptions, you can re-use them. The following lists
the class hierarchy for the built-in exceptions:
BaseException

SystemExit
KeyboardInterrupt
GeneratorExit
Exception

StopIteration
ArithmeticError

FloatingPointError
OverflowError
ZeroDivisionError

AssertionError
AttributeError

171

http://www.python.org/dev/peps/pep-0409

23. Exceptions
BufferError
EnvironmentError

IOError
OSError

EOFError
ImportError
LookupError

IndexError
KeyError

MemoryError
NameError

UnboundLocalError
ReferenceError
RuntimeError

NotImplementedError
SyntaxError

IndentationError
TabError

SystemError
TypeError
ValueError

UnicodeError
UnicodeDecodeError
UnicodeEncodeError
UnicodeTranslateError

Warning
DeprecationWarning
PendingDeprecationWarning
RuntimeWarning
SyntaxWarning
UserWarning
FutureWarning
ImportWarning
UnicodeWarning
BytesWarning

When defining your own exception, you should subclass from Exception or below. The
reason for this is that other subclasses of BaseException are not necessarily “exceptions”.
For example, if you caught KeyboardInterrupt, you wouldn’t be able to stop the process
with control-C. If you caught GeneratorExit, generators would stop working.

Here is an exception for defining that a program is missing information:
>>> class DataError(Exception):
... def __init__(self, missing):
... self.missing = missing

Using your custom exception is easy:
>>> if 'important_data' not in config:
... raise DataError('important_data missing')

23.9 Summary
This chapter introduced strategies for dealing with exceptions. In Look Before You Leap,
you make sure the environment will not throw an error before trying something. In Easier

172

23.10. Exercises
to Ask for Forgiveness than Permission, you wrap any code that you knowmight throw an
error with a try/catch block. You should favor the latter style of programming in Python.

The various mechanisms for catching errors, raising them, and re-raising them were
discussed. Finally, the chapter showed how you could subclass an existing exception to
create your own.

23.10 Exercises
1. Write a program that serves as a basic calculator. It asks for two numbers, then it asks

for an operator. Gracefully deal with input that doesn’t cleanly convert to numbers.
Deal with division by zero errors.

2. Write a program that inserts line numbers in front the lines of a file. Accept a filename
being passed in on the command line. Import the sys module and read the filename
from the sys.argv list. Gracefully deal with a bogus file being passed in.

173

Chapter 24
Importing Libraries

The previous chapters have covered the basic constructs for Python. In this chapter, you’ll
learn about importing code. Many languages have the concept of libraries or reusable chunks
of code. Python comes with a whole swath of libraries, commonly referred to as “batteries
included”. You need to know how to use the batteries that are found in these libraries.

To use a library, you have to load the code from that library into your namespace. The
namespace holds the functions, classes, and variables you have access to. If you want to
calculate the sine of an angle you will need to define a function that does that or load a
preexisting function. The built-in math library has a sin function that calculates the sine of
an angle expressed in radians. It also has a variable that defines a value for pi:
>>> from math import sin, pi
>>> sin(pi/2)
1.0

The above code loads the math module. But it doesn’t put math in your namespace.
Rather it creates a variable that points to the sin function from the math module. It also
creates a variable that points to the pi variable found in the math module. If you inspect
your current namespace using the dir function you can confirm this:
>>> 'sin' in dir()
True

24.1 Multiple ways to import
In the previous example, you imported a single function from a library. It is also possible to
load the library into your namespace and reference all of its classes, functions, and variables.
To import the mathmodule into your namespace type:
>>> import math

In the above, you imported the math library. This created a new variable, math, that
points to the module. The module has various attributes. You can use the dir function to
list the attributes:
>>> dir(math)
['__doc__', '__file__', '__loader__', '__name__',
'__package__', '__spec__', 'acos', 'acosh', 'asin',
'asinh', 'atan', 'atan2', 'atanh', 'ceil', 'copysign',
'cos', 'cosh', 'degrees', 'e', 'erf', 'erfc', 'exp',
'expm1', 'fabs', 'factorial', 'floor', 'fmod', 'frexp',

175

24. Importing Libraries

Figure 24.1: This illustrates importing a module. Note that this code creates a new variable, math,
that points to a module. The module has various attributes that you can access using a period.

'fsum', 'gamma', 'gcd', 'hypot', 'inf', 'isclose',
'isfinite', 'isinf', 'isnan', 'ldexp', 'lgamma', 'log',
'log10', 'log1p', 'log2', 'modf', 'nan', 'pi', 'pow',
'radians', 'sin', 'sinh', 'sqrt', 'tan', 'tanh', 'trunc']

Most of these attributes are functions. If you want to call the tan function, you can’t
invoke it, because tan isn’t in your namespace, only math is. But, you can do a lookup on
the math variable using the period (.) operator. The period operator will look up attributes
on an object. Because everything in Python is an object, you can use the period to lookup
the tan attribute on the math object:
>>> math.tan(0)
0.0

If you want to read the associated documentation for the tan function, you can enlist the
help function for aid:

176

24.2. Conflicting import names
>>> help(math.tan)
Help on built-in function tan in module math:

tan(...)
tan(x)

Return the tangent of x (measured in radians).

Tip
When would you import a function using from versus the import statement? If you
are only using a couple attributes from a library, you might want to use the from
style import. It is possible to specify multiple comma-delimited attributes in the from
construct:
>>> from math import sin, cos, tan
>>> cos(0)
1.0

However if you need to access most of the library, it requires less typing to import
the library using the import statement. It is also a hint to anyone reading your code
(including you), as to where the function (or class or variable) came from.

Note
If you need to importmultiple attributes from a library, youmight need to spanmultiple
lines. If you continue importing functions on the next line, you will run into an error:
>>> from math import sin,
... cos
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
SyntaxError: trailing comma not allowed
without surrounding parentheses

You will need to use a backslash, to indicate that the line continues on the next line:
>>> from math import sin,\
... cos

Otherwise, you can specify multiple imports with parentheses. Open parentheses
(or braces, or brackets) indicate that the statement continues on the next line:
>>> from math import (sin,
... cos)

This latter form is more idiomatic Python.

24.2 Conflicting import names
If you were working on a program that performs trigonometric operations, you might
already have a function named sin. What if you also want to use the sin function from
the math library? One option is to import math, then math.sinwould reference the library
and sin would reference your function.

Python has another option too. You can redefine the name of what you want to import
using the as keyword:

177

24. Importing Libraries
>>> from math import sin as other_sin
>>> other_sin(0)
0.0

Now, other_sin is a reference to the sin found in math and you may continue using
your sinwithout having to refactor your code.

The as keyword construct also works on import statements. If you had a variable (or
a function) that conflicted with the math name in your namespace, the following would be
one way to get around it:
>>> import math as other_math
>>> other_math.sin(0)
0.0

Tip
The as keyword can also be used to eliminate typing. If your favorite library has overly
long and verbose names you can easily shorten them in your code. Users of theNumpy16
library have adopted the standard of reducing keystrokes by using a two-letter acronym:
>>> import numpy as np

The Pandas17 library has adopted a similar standard:
>>> import pandas as pd

24.3 Star imports
Python also allows you to clobber your namespace with what are known as star imports:
>>> from math import *
>>> asin(0)
0.0

Notice that the above code calls the arc sine function, which was not defined. The line
where asin is invoked is the first reference to asin in the code. What happened? When
you say from math import *, that is a star import, and it tells Python to throw everything
from the math library (class definitions, functions, and variables) into the local namespace.
While this might appear handy at first glance, it is quite dangerous.

Star imports make debugging harder because it is not explicit where code comes from.
Even worse are star imports from multiple libraries. Subsequent library imports might
override something defined in an earlier library. As such, star imports are discouraged
and frowned upon.

Tip
Do not use star imports!

16numpy.scipy.org
17pandas.pydata.org

178

24.4. Nested libraries
The possible exceptions to this rule are when you are writing your own testing code,

or messing around in the REPL. Library authors do this as a shortcut to importing
everything from the library that they want to test. And this often ends up in the
documentation. Do not be tempted because you see it in other’s code, to use star imports
in your code.

Remember the Zen of Python:

Explicit is better than implicit

24.4 Nested libraries
Some Python packages have a nested namespace. For example, the XML library that comes
with Python has support for minidom and etree. Both libraries live under the xml parent
package:
>>> from xml.dom.minidom import \
... parseString
>>> dom = parseString(
... '<xml><foo/></xml>')

>>> from xml.etree.ElementTree import \
... XML
>>> elem = XML('<xml><foo/></xml>')

Notice that the from construct allows importing only the functions and classes needed.
Using the import construct (without from)would requiremore typing (but also allow access
to everything from the package):
>>> import xml.dom.minidom
>>> dom = xml.dom.minidom.parseString(
... '<xml><foo/></xml>')

>>> import xml.etree.ElementTree
>>> elem = xml.etree.ElementTree.XML(
... '<xml><foo/></xml>')

24.5 Import organization
According to PEP 8, import statements should be located at the top of the file following the
module docstring. There should be one import per line and imports should be grouped by:

• Standard library imports
• 3rd party imports
• Local package imports

An example module might have the following at the start:
#!/usr/bin/env python3
"""
This module converts records into JSON
and shoves them into a database
"""

179

http://www.python.org/dev/peps/pep-0008

24. Importing Libraries
import json # standard libs
import sys

import psycopg2 # 3rd party lib

import recordconverter # local library
...

Tip
It is useful to organize the grouped imports alphabetically.

Tip
It can be useful to postpone some imports to:

• Avoid circular imports. A circular import is where modules mutually import one
another. If you are not able (or willing) to refactor to remove the circular import, it
is possible to place the import statement within the function or method containing
the code that invokes it.

• Avoid importing modules that are not available on some systems.
• Avoid importing large modules that you may not use.

24.6 Summary
This chapter discussed importing libraries in Python. Python has a large standard library18,
and you will need to import those libraries to use them. Throughout this book, it has
emphasized that everything is an object, and you often create variables that point to those
objects. When you import a module, you create a variable that points to a module object.
Anything within the module’s namespace can be accessed using the lookup operation (.).

You can also selectively import parts out of the module’s namespace, using the from
statement. If you want to rename what you are importing, you can use an as statement to
change what the variable name will be.

24.7 Exercises
1. Find a package in the Python standard library for dealing with JSON. Import the

library module and inspect the attributes of the module. Use the help function to
learn more about how to use the module. Serialize a dictionary mapping 'name' to
your name and 'age' to your age, to a JSON string. Deserialize the JSON back into
Python.

2. Find a package in the Python standard library for listing directory contents. Using
that package, write a function that accepts a directory name. The function should get

18https://docs.python.org/3/library/index.html

180

https://docs.python.org/3/library/index.html

24.7. Exercises
all the files in that directory and print out a report of the count of files by extension
type.

181

Chapter 25
Libraries: Packages and Modules

The previous chapter discussed how to import libraries. This chapterwill dive a little deeper
into what constitutes a library. There are two requirements for importing a library:

1. The library must be a module or a package
2. The library must exist in the PYTHONPATH environment variable or sys.path

Python variable.

25.1 Modules
Modules are Python files that end in .py, and have a name that is importable. PEP 8 states
that module filenames should be short and in lowercase. Underscores may be used for
readability.

25.2 Packages
A package in Python is a directory that contains a file named __init__.py. The file named
__init__.py can have any implementation it pleases or it can be empty. In addition, the
directory may contain an arbitrary number of modules and sub packages.

When writing code, should you prefer a module or a package? I usually start simple
and use a module. When I need to break coherent parts out into their own modules, then I
refactor into modules in a package.

Here is an example from the directory layout of the popular SQLAlchemy19 project (an
Object Relational Mapper for databases).
sqlalchemy/

__init__.py
engine/

__init__.py
base.py

schema.py

PEP 8 states that directory names for packages should be short and lowercase.
Underscores should not be used.

19https://www.sqlalchemy.org/

183

http://www.python.org/dev/peps/pep-0008
http://www.python.org/dev/peps/pep-0008
https://www.sqlalchemy.org/

25. Libraries: Packages and Modules
25.3 Importing packages
To import a package, use the import statementwith the package name (the directory name):
>>> import sqlalchemy

This will import the sqlalchemy/__init__.py file into the current namespace if the
package is found in PYTHONPATH or sys.path.

If you wanted to use the Column and ForeignKey classes found in the schema.py
module, either of the code snippets below would work. The first puts sqlalchemy.schema
in your namespace, while the latter only puts schema in your namespace:
>>> import sqlalchemy.schema
>>> col = sqlalchemy.schema.Column()
>>> fk = sqlalchemy.schema.ForeignKey()

or:
>>> from sqlalchemy import schema
>>> col = schema.Column()
>>> fk = schema.ForeignKey()

Alternatively, to access only the Column class, import that class in one of the following
two ways:
>>> import sqlalchemy.schema.Column
>>> col = sqlalchemy.schema.Column()

or:
>>> from sqlalchemy.schema import Column
>>> col = Column()

25.4 PYTHONPATH
PYTHONPATH is an environment variable listing non-standard directories that Python
looks for modules or packages in. This variable is usually empty. It is not necessary to
change PYTHONPATH unless you are developing code and want to use libraries that have not
been installed.
Tip
Leave PYTHONPATH empty unless you have a good reason to change it. This section
illustrates what can happen if you change it. This can be confusing to others trying
to debug your code who forget that PYTHONPATH has been changed.

If you had some code in /home/test/a/plot.py, but were working out of /home/test/b/,
using PYTHONPATH allows access to that code. Otherwise, if plot.pywas not installed using
system or Python tools, trying to import it would raise an ImportError:
>>> import plot
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ImportError: No module named plot

If you start Python by setting the PYTHONPATH, it indicates to Python where to look for
libraries:

184

25.5. sys.path
$ PYTHONPATH=/home/test/a python3
Python 3.6.0 (default, Dec 24 2016, 08:01:42)
>>> import plot
>>> plot.histogram()
...

Tip
Python packages can be installed via package managers, Windows executables or
Python specific tools such as pip20.

25.5 sys.path
The sys module has an attribute, path, that lists the directories that Python searches for
libraries. If you inspect sys.path, you will see all the locations that are scanned:
>>> import sys
>>> sys.path

['',
'/usr/lib/python35.zip',
'/usr/lib/python3.6',
'/usr/lib/python3.6/plat-darwin',
'/usr/lib/python3.6/lib-dynload',
'/usr/local/lib/python3.6/site-packages']

Tip
If you see errors like:
ImportError: No module named plot

Look at the sys.path variable to see if it has the directory holding foo.py (if it is a
module). If plot is a package, then the plot/ directory should be located in one of the
paths in sys.path:
>>> import plot
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ImportError: No module named plot
>>> sys.path.append('/home/test/a')
>>> import plot
>>> plot.histogram()

Alternatively, you can set PYTHONPATH to point to that directory from the command
used to invoke Python.

Again, typically you don’t manually set sys.path or PYTHONPATH, normally you
install libraries, and the installer puts them in the correct location.

20https://pip.pypa.io/

185

https://pip.pypa.io/

25. Libraries: Packages and Modules
Tip

If you want to know the location of the library on the filesystem, you can inspect the
__file__ attribute:
>>> import json
>>> json.__file__
'/usr/lib/python3.6/json/__init__.py'

This only works with libraries implemented in Python. The sys module is not
implemented in Python, so this fails:
>>> import sys
>>> sys.__file__
Traceback (most recent call last):

...
AttributeError: module 'sys' has no attribute '__file__'

25.6 Summary
This chapter discussed modules and packages. A module is a Python file. A package is
a directory that has a file named __init__.py in it. A package may also contain other
modules and packages.

There is a list of paths that determines where Python looks to import libraries. This list
is stored in sys.path. You can inspect it to see where Python looks. You can also update its
value via the PYTHONPATH environment variable, or mutate the list directly. But typically,
you don’t set this variable to install packages, you use something like pip to install packages.

25.7 Exercises
1. Create amodule, begin.py, that has a function named prime in it. The prime function

should take a number and return a boolean indicating whether the number is a prime
number (divisible only by 1 and itself). Go to another directory, launch Python, and
run:
from begin import prime

It should fail. Update the sys.path variable, so that you can import the function from
the module. Then, set PYTHONPATH to get it to load.

2. Create a package, utils. In the __init__.py file, place the prime code from the
previous exercise. Go to a different directory in the terminal, launch Python, and run:
from utils import prime

It should fail. Update the sys.path variable, so that you can import the function from
the package. Then, set PYTHONPATH to get it to load.

186

Chapter 26
A Complete Example

This chapter covers how to layout codewithin a script. It includes the source for a simplified
implementation of the Unix command cat. The cat command reads filenames from the
command line and prints their contents to the screen. There are various options to do things
like add line numbering. This script will illustrate how the code is laid out in a typical
Python file.

26.1 cat.py
Below are the contents of the Python implementation of the Unix command cat. It only
includes an option for adding line numbers (--number), but none of the other cat options.
You can put this in a file named cat.py:
#!/usr/bin/env python3

r"""A simple implementation of the unix ``cat``
command. It only implements the ``--number``
option. It is useful for illustrating file
layout and best practices in Python.

This is a triple quoted docstring for the whole
module (this file). If you import this module
somewhere else and run ``help(cat)``, you will
see this.

This docstring also contains a ``doctest`` which
serves as an example of programmatically using
the code. It also functions as a doctest. The
``doctest`` module can execute this docstring
and validate it by checking any output.

>>> import io
>>> fin = io.StringIO(\
... 'hello\nworld\n')
>>> fout = io.StringIO()
>>> cat = Catter([fin],
... show_numbers=True)
>>> cat.run(fout)
>>> print(fout.getvalue())

1 hello
2 world

187

26. A Complete Example

"""

import argparse
import logging
import sys

__version__ = '0.0.1'

logging.basicConfig(
level=logging.DEBUG)

class Catter(object):
"""
A class to concatenate files to
standard out

This is a class docstring,
``help(cat.Catter)`` would show
this.
"""

def __init__(self, files,
show_numbers=False):

self.files = files
self.show_numbers = show_numbers

def run(self, fout):
use 6 spaces for numbers and right align
fmt = '{0:>6} {1}'
for fin in self.files:

logging.debug('catting {0}'.format(fin))
for count, line in enumerate(fin, 1):

if self.show_numbers:
fout.write(fmt.format(

count, line))
else:

fout.write(line)

def main(args):
"""
Logic to run a cat with arguments
"""
parser = argparse.ArgumentParser(

description='Concatenate FILE(s), or '
'standard input, to standard output')

parser.add_argument('--version',
action='version', version=__version__)

parser.add_argument('-n', '--number',
action='store_true',
help='number all output lines')

parser.add_argument('files', nargs='*',
type=argparse.FileType('r'),

188

26.2. What does this code do?
default=[sys.stdin], metavar='FILE')

parser.add_argument('--run-tests',
action='store_true',
help='run module tests')

args = parser.parse_args(args)

if args.run_tests:
import doctest
doctest.testmod()

else:
cat = Catter(args.files, args.number)
cat.run(sys.stdout)
logging.debug('done catting')

if __name__ == '__main__':
main(sys.argv[1:])

If you don’t feel like typing in this code, you can grab a copy here21.

26.2 What does this code do?
This code will echo the contents of a file (optionally with line numbers) to a terminal on
Windows and Unix systems:
$ python3 cat.py -n README.md

1 # IllustratedPy3
2
3 If you have questions or concerns, click on Issues above.

If you run this code with -h it will print out the help documentation for the command
line arguments:
$ python3 cat.py -h
usage: cat.py [-h] [--version] [-n] [--run-tests] [FILE [FILE ...]]

Concatenate FILE(s), or standard input, to standard output

positional arguments:
FILE

optional arguments:
-h, --help show this help message and exit
--version show program's version number and exit
-n, --number number all output lines
--run-tests run module tests

The command line parsing functionality is implemented in the main function and
provided by the argparse module found in the standard library. The argparse module
handles command line argument parsing.

If you want to know what the argparse module does, you can look up the
documentation on the web or you can use the help function. The basic idea of the module
is that you create an instance of the ArgumentParser class and call .add_argument for each
command line option. You provide the command line switches, tell it what kind of action

21https://github.com/mattharrison/IllustratedPy3/

189

https://github.com/mattharrison/IllustratedPy3/

26. A Complete Example
to do (the default stores the value following the switch), and provide help documentation.
After you have added arguments, you call the .parse_args method on the command line
arguments (we get that from sys.argv). The result of .parse_args is an object that has
attributes attached to it based on the option names. In this case, there will be a .files
attribute and a .number attribute.
Note
You can also use the REPL to inspect this module and any documentation that it ships
with. Remember the help function? You can pass a module to it and it will print out
the module level docstring.

If you wanted to look at the source code for this module, you can do that too.
Remember the dir function? It lists attributes of an object. If you inspect the argparse
module, you see that it has a __file__ attribute. This points to the location on your
computer where the file is:
>>> import argparse
>>> argparse.__file__
'/usr/local/Cellar/python3/3.6.0/Frameworks/
Python.framework/Versions/3.6/lib/python3.6/argparse.py'

Because it is written in Python (some modules are written in C), you can inspect the
source. At this point, you should be able to read the module and understand what it is
trying to do.

After parsing the arguments, you create an instance of the Catter class that is defined in
the code, and call the .runmethod on it.

This example might seem a little overwhelming, but you have covered all of the syntax
that it illustrates over the course of the book. The rest of this chapter will discuss the layout
and other aspects of this code.

26.3 Common layout
Here are the common components found in a Python module and the order in which they
are found:

• #!/usr/bin/env python3 (shebang) (used if module also serves as a script.)
• module docstring
• imports
• metadata/globals
• logging
• implementation
• if __name__ == '__main__': (used if module also serves as a script.)
• argparse

190

26.4. Shebang
Note
The above list is a recommendation. Most of those items can be in an arbitrary order.
And not every file will have all these items. For instance not every file needs to be
executable as a shell script.

You are free to organize files how you please, but you do so at your own peril. Users
of your code will likely complain (or submit patches). As a reader of code, you will
appreciate code that follows the recommendation, since it will be quickly discoverable.

26.4 Shebang
The first line in a file (that is also used as a script) is the shebang line (#!/usr/bin/env
python3). On Unix operating systems, this line is parsed to determine how to execute the
script. Thus, this line is only included in files that are meant to be executable as scripts.

It should say python3, as python refers to Python version 2 on most systems.

191

26. A Complete Example
Note
The Windows platform ignores the shebang line. So this is safe to include. Indeed you
will find it in libraries that are also popular on Windows.

Note
Rather than hardcoding a specific path to a Python executable, /usr/bin/env selects
the first python3 executable found on the user’s PATH. Tools such as venv22 will modify
your PATH to use a custom python3 executable and will work with this convention.

Tip
On Unix systems, if the directory containing the file is present in the user’s PATH
environment variable, and the file is executable, then the file name alone is sufficient
for execution from a shell.

Type:
$ chmod +x <path/to/file.py>

to make it executable.

26.5 Docstring
A module may have a module-level docstring at the top of the file. It should follow the
shebang line but precede any other Python code. A docstring serves as an overview of the
module and should contain a basic summary of the code. Also, it may contain examples of
using the module.

Tip
Python includes a library, doctest that can verify examples from an interactive
interpreter. Using docstrings that contain REPL code snippets can serve both as
documentation and simple sanity tests for your library.

cat.py includes doctest code at the end of its docstring. When cat.py runs with --
run-tests, the doctest library will check any docstrings and validate the code found
in them. This was included for illustration purposes only. Normally a non-developer
end user would not see options for running tests in a script, though you could include
doctests in the docstrings. In this case, the --run-tests option is included as an
example of using the doctestmodule.

26.6 Imports
Imports are usually included at the top of Python modules. The import lines are normally
grouped by location of the library. First, list any libraries found in the Python standard
library. Next list third-party libraries. Finally, list the libraries that are local to the current

22https://docs.python.org/3/library/venv.html

192

https://docs.python.org/3/library/venv.html

26.7. Metadata and globals
code. Such organization allows end users of your code to quickly see imports, requirements,
and where the code is coming from.

26.7 Metadata and globals
If you have legitimate module-level global variables, define them after the imports. This
makes it easy to scan a module and quickly determine what the globals are.

Global variables are defined at the module-level and are accessible throughout that
module. Because Python allows any variable to be modified, global variables are potential
sources of bugs. In addition, it is easier to understand code when variables are defined and
modified only within the function scope. Then you can be sure of what data you have and
who is changing it. If you have multiple places where a global variable is being modified
(especially if it is in a different module) you are setting yourself up for a long debugging
session.

One legitimate use for globals is to emulate constants found in other programming
languages. A constant variable is a variable whose value does not change. Python doesn’t
support variables that don’t change, but you can use a convention to indicate to the user
that they should treat a variable as read-only. PEP 8 states that global constants should
have names that are the same as variables except they should be capitalized. For example,
if you wanted to use the golden ratio you could define it like this:
>>> GOLDEN_RATIO = 1.618

If this code was defined in a module, the capitalization serves as a hint that you should
not rebind this variable.
Note
By defining constants as globals, and using well thought-out variable names, you can
avoid a problem found in programming—magic numbers. A magic number is a number
sitting in code or a formula that is not stored in a variable. That in itself is bad enough,
especially when someone else starts reading your code.

Another problem with magic numbers is that the same value tends to propagate
through the code over time. This isn’t a problem until you want to change that value.
Do you do a search and replace? What if the magic number actually represents two
different values, i.e. the number of sides of a triangle and number of dimensions? In
that case, a global search and replace will introduce bugs.

The solution to both these problems (context and repetition) is to put the value in
a named variable. Having them in a variable gives context and naming around the
number. It also allows you to easily change the value in one place.

In addition to global variables, there are alsometadata variables found at that level. Metadata
variables hold information about the module, such as author and version. Normally
metadata variables are specified using “dunder” variables such as __author__.

For example, PEP 396 recommends that the module version should be specified in a
string, __version__, at the global module level.

193

http://www.python.org/dev/peps/pep-0008
http://www.python.org/dev/peps/pep-0396

26. A Complete Example
Note
It is a good idea to define a version for your library if you intend on releasing it to the
wild. PEP 396 suggests best practices for how to declare version strings.

Other common metadata variables include author, license, date, and contact. If these were
specified in code they might look like this:
__author__ = 'Matt Harrison'
__date__ = 'Jan 1, 2017'
__contact__ = 'matt_harrison <at> someplace.com'
__version__ = '0.1.1'

26.8 Logging
One more variable that is often declared at the global level is the logger for a module. The
Python standard library includes the logging library that allows you to report different
levels of information in well-defined formats.

Multiple classes or functions in the same module will likely need to log information. It
is common to perform logger initialization once at the global level and then reuse the logger
handle that you get back throughout the module.

26.9 Other globals
You should not use a global variable when local a variable will suffice. The common globals
found in Python code are metadata, constants, and logging.

It is not uncommon to see globals scattered about in sample code. Do not fall to the
temptation to copy this code. Place it into a function or a class. This will pay dividends in
the future when you are refactoring or debugging your code.

26.10 Implementation
Following any global and logging setup comes the actual meat of the code—the
implementation. Functions and classeswill be a substantial portion of this code. The Catter
class would be considered the core logic of the module.

26.11 Testing
Normally, bonafide test code is separated from the implementation code. Python allows a
small exception to this. Python docstrings can be defined at module, function, class, and
method levels. Within docstrings, you can place Python REPL snippets illustrating how to
use the function, class, or module. These snippets, if well crafted and thought-out, can be
effective in documenting common usage of the module.

Another nice feature of doctest is validation of documentation. If your snippets once
worked, but now they fail, either your code has changed or your snippets are wrong. You
can easily find this out before end users start complaining to you.

194

http://www.python.org/dev/peps/pep-0396

26.12. if __name__ == '__main__':

Tip
doctest code can be in a stand-alone text file. To execute arbitrary files using doctest,
use the testfile function:
import doctest
doctest.testfile('module_docs.txt')

Note
In addition to doctest, the Python standard library includes the unittestmodule that
implements the common xUnit style methodology—setup, assert and teardown. There
are pro’s and con’s to both doctest and unittest styles of testing. doctest tends to
be more difficult to debug, while unittest contains boilerplate code that is regarded
as too Java-esque. It is possible to combine both to achieve well documented and well
tested code.

26.12 if __name__ == '__main__':
If your file is meant to be run as a script, you will find this snippet at the bottom of your
script:
if __name__ == '__main__':

sys.exit(main(sys.argv[1:]) or 0)

To understand the statement, you should understand the __name__ variable.

26.13 __name__
Python defines the module level variable __name__ for any module you import, or any file
you execute. Normally __name__’s value is the name of the module:
>>> import sys
>>> sys.__name__
'sys'
>>> import xml.sax
>>> xml.sax.__name__
'xml.sax'

There is an exception to this rule. When a module is executed (i.e. python3
some_module.py), then the value of __name__ is the string "__main__".

In effect, the value of __name__ indicates whether a file is being loaded as a library, or
run as a script.

Note
It is easy to illustrate __name__. Create a file, some_module.py, with the following
contents:
print("The __name__ is: {0}".format(__name__))

Now run a REPL and import this module:

195

26. A Complete Example
>>> import some_module
The __name__ is: some_module

Now execute the module:
$ python3 some_module.py
The __name__ is: __main__

It is a common idiom throughout Pythondom to place a check similar to the following at
the bottom of a module that could also serve as a script. This check will determine whether
the file is being executed or imported:
if __name__ == '__main__':

execute
sys.exit(main(sys.argv[1:]) or 0)

This simple statement will run the main function when the file is executed. Conversely,
if the file is used as a module, mainwill not be run automatically. It calls sys.exitwith the
return value of main (or 0 if main does not return an exit code) to behave as a good citizen
in the Unix world.

The main function takes the command line options as parameters. sys.argv holds the
command line options. It also contains python3 at the front, so you need to slice sys.argv
to ignore that, before you pass the options into main.

Tip
Some people place the execution logic (the code inside the main function) directly under
the if __name__ == '__main__': test. Reasons to keep the logic inside a function
include:

• The main function can be called by others
• The main function can be tested easily with different arguments
• Reduce the amount of code executing at the global level

26.14 Summary
In this chapter, you dissected Python code in a script. The chapter discussed best practices
and common coding conventions.

By laying out your code as described in this chapter, you will be following best practices
for Python code. This layout will also aid others needing to read your code.

26.15 Exercises
1. Copy the cat.py code. Get it working on your computer. This isn’t just busy work.

Much of the time when you are programming, you aren’t creating something from
scratch, but rather are reusing code that others have written.

2. Write a script, convert.py, that will convert a file from one encoding to another.
Accept the following command line options:

196

26.15. Exercises
• An input filename
• An input encoding (default to utf-8)
• An output encoding
• An option for handling errors (ignore/raise)

197

Chapter 27
Onto Bigger and Better

At this point you should have a pretty good understanding of how Python programs work.
You should feel comfortable using the Python REPL and exploring classes using dir and
help.

What comes next? That is up to you. You should now have the prerequisites to use
Python to create websites, GUI programs, or numerical applications.

One huge benefit of Python is the various communities associated with the different
areas of programming. There are local user groups, newsgroups, mailing lists and social
networks for many aspects of Python. Most of these groups are welcoming to new
programmers and willing to share their knowledge. Do not be afraid to try something new,
Python makes it easy and most likely there are others who have similar interests.

199

Appendix A
File Navigation

If you are not familiar with file navigation from a terminal, here is a basic introduction.
First, you need to open a terminal. A terminal is one of those windows you see on the
movies where hackers type in a lot of text. You don’t have to use one to program, but being
able to navigate and run commands from the terminal is a useful skill to have.

A.1 Mac and Unix
On Mac, type command-space to bring up Spotlight, then type terminal to launch the
terminal application included on Macs.

On Linux systems, launching a terminal depends on your desktop environment. For
example, onUbuntu systems you canhit the keyboard shortcut ctr-alt-T.Aminimal terminal
found in most systems is called xterm.

There are a few commands to know:

• cd - Change directory changes to a different directory. Typing:
$ cd ~/Documents

will change to the Documents directory found in your home folder (~ is a shortcut for
home, which is /Users/<username> on Mac and /home/<username> on Linux.

• pwd - Print working directory will list the current directory that you are in.
• ls - List directory will list the contents of the current directory.

If you had a Python script located at ~/work/intro-to-py/hello.py, you could type the
following to run it:
$ cd ~/work/intro-to-py
$ python3 hello.py

A.2 Windows
OnWindows, typeWin-R to bring up the ”RunWindow” interface, then type cmd to launch
the command prompt.

There are a few commands to know:

201

A. File Navigation
• cd - Change directory changes to a different directory. Typing:

c:> cd C:\Users

will change to the C:\Users directory.
• echo %CD% - Will list the current directory that you are in.
• dir - List directory will list the contents of the current directory.

If you had a Python script located at C:\Users\matt\intro-to-py\hello.py, you could
type the following to run it:
C:> cd C:\Users\matt\intro-to-py
C:\Users\matt\intro-to-py> python hello.py

202

Appendix B
Useful Links

Here are some useful Python links:

• https://python.org/ - Python home page
• https://github.com/mattharrison/Tiny-Python-3.6-Notebook - Python 3.6 reference
• http://docutils.sourceforge.net/ - reStructuredText - lightweight markup language
for Python documentation

• https://pyformat.info - Useful string formatting reference
• https://pypi.python.org/pypi - Python Package Index - 3rd party packages
• https://www.python.org/dev/peps/pep-0008/ - PEP 8 - Coding conventions
• https://www.anaconda.com/download/ - Anaconda - Alternate Python installer
with many 3rd party packages included

• https://www.djangoproject.com/ - Django - Popular web framework
• http://scikit-learn.org/ - Machine learning with Python
• https://www.tensorflow.org/ - Deep learning with Python
• https://www.reddit.com/r/Python/ - News for Python

203

https://python.org/
https://github.com/mattharrison/Tiny-Python-3.6-Notebook
http://docutils.sourceforge.net/
https://pyformat.info
https://pypi.python.org/pypi
https://www.python.org/dev/peps/pep-0008/
https://www.anaconda.com/download/
https://www.djangoproject.com/
http://scikit-learn.org/
https://www.tensorflow.org/
https://www.reddit.com/r/Python/

About the Author

Matt Harrison has been using Python since 2000. He runs MetaSnake, a Python and
Data Science consultancy and corporate training shop. In the past, he has worked across
the domains of search, build management and testing, business intelligence, and storage.

He has presented and taught tutorials at conferences such as Strata, SciPy, SCALE,
PyCON, and OSCON as well as local user conferences. The structure and content of this
book is based on first-hand experience teaching Python to many individuals.

He blogs at hairysun.com and occasionally tweets useful Python related information at
@__mharrison__.

Technical Editors
Roger A. Davidson is currently the Dean of Mathematics at American River College in
Sacramento, CA. His doctorate is in aerospace engineering, but he also holds degrees in
computer science, electrical engineering and systems engineering in addition to a recent
graduate certificate in data science (where his current love of Python began). During
his career thus far Roger has worked for NASA, Fortune 50 companies, startups, and
community colleges. He is passionate about education, science (not just the data kind),
wild blackberry cobbler and guiding diverse teams to solve big problems.

Andrew McLaughlin is a programmer and designer, a sysadmin by day, and family
man by night. With a love for detail, he’s been building things for the web since 1998. A

205

About the Author
graduate with honors from George Fox University, Andrew has a degree in Management
and Information Systems. In his free time he enjoys hiking with his wife and two kids,
and occasionally working in his woodshop. He has all ten fingers. Follow him on twitter:
@amclaughlin

206

Index

Index

!=, 75
() (invocation), 113
() (tuple literal), 88
* (multiplication), 43
**, 45
+=, 96
..., 12
/, 44
//, 44
: (indenting), 79
: (slices), 120
;, 59
<, 75
<=, 75
==, 75
>, 75
>=, 75
>>>, 12
[] (index operation), 101, 119
[] (list literal), 81
[] (slices), 120
(comment), 69
#! (shebang), 17, 191
% (modulo), 44
% (string operator), 53
__bases__, 157
__bool__, 72
__builtin__, 30
__builtins__, 115
__dict__, 152
__file__, 186
__iter__, 128
__main__, 195
__name__, 195
{} (dictionary literal), 101
{} (format placeholder), 51
{} (set literal), 90
active exception, 165

and, 76
as, 177
augmented assignment, 96
binary files, 128
boolean, 70
break, 96
builtins, 30
byte strings, 128
camel case, 145
chmod, 18
class, 144
class attribute, 145
class docstring, 145
close, 129
collections.Counter, 105
collections.defaultdict, 106
constructor, 145
continue, 96
Counter, 105
decode, 136
decode, 138
def, 111, 112
default parameters, 116
defaultdict, 106
del, 115
dict, 101
dir, 57, 152
docstring, 145, 192
dunder methods, 58
duplicates (removing), 90
EAFP, 164
Easier to ask for forgiveness than permis-

sion, 164
editor, 6
elif, 78
else, 78, 168

207

Index
encode, 136
enumerate, 93
except, 164
exception chaining, 170
exceptions, 163
f-string, 54
False, 70
finally, 167
float, floating point, 41
flush, 129
for, 93
format, 51
from, 177
function, 111, 112
functools.total_ordering, 75
get, 104
globals, 115
half-open interval, 87, 120
hash-bang, 17
help, 53, 58
identity, 33, 36
IDLE, 6
if, 78
immutable, 36
import, 175
in, 77, 90, 103
index operation, 101
indexing, 119
inheritance, 157
input, 21
instance, 149
int, 41
integer, 41
interpreter, 9
invocation, 113
is, 33, 75
is not, 75
items, 107
iteration, 93
iteration, dictionary, 106
key, 83
keys, 107
keywords, 28
LBYL, 164

library, 175, 183
list, 81
locals, 115
long, 45
Look before you leap, 164
magic methods, 58
membership, 90
method, 145, 151
module, 183
mojibake, 138
mutability, 36
mutable, 36
namespace, 175
None, 73
not, 76
numbers, 41
object, 144
open, 125
or, 76
output, 21
package, 183
pass, 168
PATH, 191
pdb, 59
PYTHONPATH, 183, 184
raise, 169
range, 86
range comparison, 77
raw string, 50
raw strings, 126
readline, 127
readlines, 128
reference count, 24
REPL, 9
return, 113
scope, 114, 115
semicolon, 59
set, 77, 90
setdefault, 104
shadow, 115
shebang, 17, 191
slices, :, 120
sort, 83
sorted, 83, 107

208

Index
stack trace, 163
stride, 122
string formatting, 51
strings, 49
subclass, 157
super, 160
sys.path, 183, 185
tabs, 79
text editor, 6
traceback, 163
True, 70
try, 164
tuple, 88
type, 34
unicode, 133
values, 107
variable naming, 28
variables, 23
views, 107
while, 98
whitespace, 79
Windows paths, 126
with, 129
write, 128

209

213

Also Available

Also Available

Treading on Python: Vol 2: Intermediate Python

214

Reviews
Treading on Python: Vol 2: Intermediate Python23 by Matt Harrison is the complete book

on intermediate Python. Designed to up your Python game by covering:

• Functional Programming
• Lambda Expressions
• List Comprehensions
• Generator Comprehensions
• Iterators
• Generators
• Closures
• Decorators
• And more …

Reviews
Complete! All you must know about Python Decorators: theory, practice,
standard decorators.
All written in a clear and direct way and very affordable price.
Nice to read in Kindle.

F. De Arruda (Brazil)

This is a very well written piece that delivers. No fluff and right to the point,
Matt describes how functions and methods are constructed, then describes the
value that decorators offer.
…
Highly recommended, even if you already know decorators, as this is a very
good example of how to explain this syntax illusion to others in a way they can
grasp.

J Babbington

Decorators explained the way they SHOULD be explained …
There is an old saying to the effect that “Every stick has two ends, one bywhich it
may be picked up, and one bywhich itmay not.” I believe thatmost explanations
of decorators fail because they pick up the stick by the wrong end.
What I like about Matt Harrison’s e-book “Guide to: Learning Python
Decorators” is that it is structured in the way that I think an introduction to
decorators should be structured. It picks up the stick by the proper end…

23http://hairysun.com/books/treadvol2/

215

http://hairysun.com/books/treadvol2/

Also Available
Which is just as it should be.

S. Ferg

This book will clear up your confusions about functions even before you start
to read about decoration at all. In addition to getting straight about scope,
you’ll finally get clarity about the difference between arguments and parameters,
positional parameters, named parameters, etc. The author concedes that this
introductory material is something that some readers will find “pedantic,” but
reports that many people find it helpful. He’s being toomodest. The distinctions
he draws are essential tomoving your programming skills beyonddoing a pretty
good imitation to real fluency.

R. Careago

216

One more thing

Thank you for buying and reading this book.
If you have found this book helpful, I have a big favor to ask. As a self-published author,

I don’t have a big Publishing House with lots of marketing power pushing my book. I also
try to price my books so that they are much more affordable.

If you enjoyed this book, I hope that youwould take amoment to leave an honest review
on Amazon. A short comment on how the book helped you and what your learned makes
a huge difference. A quick review is useful to others who might be interested in the book.

Thanks again!

217

	Why Python?
	Which Version of Python?
	Python installation
	Which editor?
	Summary
	Exercises

	The Interpreter
	REPL
	A REPL example
	Summary
	Exercises

	Running Programs
	Running from IDLE
	Unixy embellishments
	Summary
	Exercises

	Writing and Reading Data
	Simple output
	Getting user input
	Summary
	Exercises

	Variables
	Mutation and state
	Python variables are like tags
	Cattle tags
	Rebinding variables
	Naming variables
	Additional naming considerations
	Summary
	Exercises

	More about Objects
	Identity
	Type
	Mutability
	Using IDLE
	Summary
	Exercises

	Numbers
	Addition
	Subtraction
	Multiplication
	Division
	Modulo
	Power
	Order of operations
	Other operations
	Summary
	Exercises

	Strings
	Formatting Strings
	Format string syntax
	Some format examples
	F-Strings
	Summary
	Exercises

	dir, help, and pdb
	Dunder methods
	help
	pdb
	Summary
	Exercises

	Strings and Methods
	Common string methods
	endswith
	find
	format
	join
	lower
	startswith
	strip
	upper
	Other methods
	Summary
	Exercises

	Comments, Booleans, and None
	Comments
	Booleans
	None
	Summary
	Exercises

	Conditionals and Whitespace
	Combining conditionals
	if statements
	else statements
	More choices
	Whitespace
	Summary
	Exercises

	Containers: Lists, Tuples, and Sets
	Lists
	Sequence indices
	List insertion
	List deletion
	Sorting lists
	Useful list hints
	Tuples
	Sets
	Summary
	Exercises

	Iteration
	Looping with an index
	Breaking out of a loop
	Skipping over items in a loop
	The in statement can be used for membership
	Removing items from lists during iteration
	else clauses
	while loops
	Summary
	Exercises

	Dictionaries
	Dictionary assignment
	Retrieving values from a dictionary
	The in operator
	Dictionary shortcuts
	setdefault
	Deleting keys
	Dictionary iteration
	Summary
	Exercises

	Functions
	Invoking functions
	Scope
	Multiple parameters
	Default parameters
	Naming conventions for functions
	Summary
	Exercises

	Indexing and Slicing
	Indexing
	Slicing sub lists
	Striding slices
	Summary
	Exercises

	File Input and Output
	Opening files
	Reading text files
	Reading binary files
	Iteration with files
	Writing files
	Closing files
	Designing around files
	Summary
	Exercises

	Unicode
	Background
	Basic steps in Python
	Encoding
	Decoding
	Unicode and files
	Summary
	Exercises

	Classes
	Planning for a class
	Defining a class
	Creating an instance of a class
	Calling a method on a class
	Examining an instance
	Private and protected
	A simple program modeling flow
	Summary
	Exercises

	Subclassing a Class
	Counting stalls
	super
	Summary
	Exercises

	Exceptions
	Look before you leap
	Easier to ask for forgiveness
	Multiple exception cases
	finally clause
	else clause
	Raising exceptions
	Wrapping exceptions
	Defining your own exceptions
	Summary
	Exercises

	Importing Libraries
	Multiple ways to import
	Conflicting import names
	Star imports
	Nested libraries
	Import organization
	Summary
	Exercises

	Libraries: Packages and Modules
	Modules
	Packages
	Importing packages
	PYTHONPATH
	sys.path
	Summary
	Exercises

	A Complete Example
	cat.py
	What does this code do?
	Common layout
	Shebang
	Docstring
	Imports
	Metadata and globals
	Logging
	Other globals
	Implementation
	Testing
	if __name__ == '__main__':
	__name__
	Summary
	Exercises

	Onto Bigger and Better
	File Navigation
	Mac and Unix
	Windows

	Useful Links
	About the Author
	Technical Editors

	Also Available
	Treading on Python: Vol 2: Intermediate Python
	Reviews

	One more thing

