

Chapter 1 Overview of program, p. 28
Comparison of Java IDEs, p. 41
Examples of various error types, p. 43
Developing a solution of PP 1.2, p. 55

Chapter 2 Example using strings and escape sequences, p. 63
Review of primitive date and expressions, p. 76
Example using the Scanner class, p. 91
Example using drawn shapes, p. 101
Developing a solution of PP 2.8, p. 109

Chapter 3 Creating objects, p. 115
Example using the Random and Math classes, p. 129
Example using frames and panels, p. 150
Developing a solution of PP 3.5, p. 157

Chapter 4 Dissecting the Die class, p. 164
Discussion of the Account class, p. 178
Example using an extended JPanel , p. 182
Overview of GUI development, p. 191
Developing a solution of PP 4.2, p. 202

Chapter 5 Examples using conditionals, p. 221
 Examples using while loops, p. 233

Examples using check boxes and radio buttons, p. 255
Developing a solution of PP 5.4, p. 264

Chapter 6 Examples using for loops, p. 280
Developing a solution of PP 6.2, p. 296

Chapter 7 Exploring the static modifier, p. 305
Examples of method overloading, p. 344
Discussion of layout managers, p. 356
Developing a solution of PP 7.1, p. 374

Chapter 8 Overview of arrays, p. 382
Discussion of the LetterCount example, p. 388
Example using rubberbanding and arrays, p. 423
Developing a solution of PP 8.5, p. 436

Chapter 9 Overview of inheritance, p. 449
Example using a class hierarchy, p. 461
Example using the Timer class, p. 475
Developing a solution of PP 9.8, p. 483

Chapter 10 Exploring the Firm program, p. 490
 Sorting Comparable objects, p. 506

Developing a solution of PP 10.1, p. 534

Chapter 11 Proper exception handling, p. 545
Exploring GUI design details, p. 561
Developing a solution of PP 11.1, p. 580

Chapter 12 Tracing the MazeSearch program, p. 594
Exploring the Towers of Hanoi, p. 597
Developing a solution of PP 12.1, p. 613

Chapter 13 Example using a linked list, p. 620
Implementing a queue, p. 628
Developing a solution of PP 13.3, p. 638

LOCATION OF VIDEONOTES IN THE TEXT

Through the power of practice and immediate personalized

feedback, MyProgrammingLab improves your performance.

Learn more at www.myprogramminglab.com

get with the programming

 JOHN LEWIS
 Virginia Tech

 �t
 WILLIAM LOFTUS

 Accenture

 FOUNDATIONS OF PROGRAM DESIGN

 Addison-Wesley
 Boston Columbus Indianapolis New York San Francisco Upper Saddle River

 Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
 Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

 SOFTWARE SOLUTIONS

 Seventh Edition

TM

Editorial Director: Marcia Horton
Editor-in-Chief: Michael Hirsch
Editorial Assistant: Stephanie Sellinger
Vice President, Marketing: Patrice Jones
Marketing Manager: Yezan Alayan
Marketing Coordinator: Kathryn Ferranti
Vice President, Production: Vince O•Brien
Managing Editor: Jeff Holcomb
Production Project Manager: Heather McNally
Senior Operations Supervisor: Alan Fischer
Manufacturing Buyer: Lisa McDowell
Art Director: Linda Knowles
Cover Designer: Suzanne Harbison

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear below,
or on appropriate page within text.

Photo Credits: Page 11: NASA Earth Observing System. Page 205: Susan Van Etten /PhotoEdit. Page 267: David Joel /Stone/
Getty Images. Page 377 (left and right): National Oceanic and Atmospheric Administration NOAA. Page 441: Matthew McVay/
Stone/Getty Images. Page 485: Mario Fourmy/REA/Redux Pictures.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other countries. Screen
shots and icons reprinted with permission from the Microsoft Corporation. This book is not sponsored or endorsed by or affili-
ated with the Microsoft Corporation.

Copyright © 2012, 2009, 2007, 2005, 2003 Pearson Education, Inc., publishing as Addison-Wesley, 501 Boylston Street,
Suite 900, Boston, Massachusetts 02116. All rights reserved. Manufactured in the United States of America. This publication
is protected by Copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, stor-
age in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. To obtain permission(s) to use material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, Addison-Wesley, 501 Boylston Street, Suite 900, Boston, Massachusetts 02116.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in
initial caps or all caps.

Library of Congress Cataloging-in-Publication Data

10 9 8 7 6 5 4 3 2 1„QWT„15 14 13 12 11

Image Permission Coordinator: Rita Wenning
Cover Photograph: © Creative Crop/Digital
 Vision/Getty Images
Media Editor: Daniel Sandin
Media Project Manager: Wanda Rockwell
Full-Service Project
 Management: Rose Kernan,

 Nesbitt Graphics, Inc.
Composition: Glyph International
Printer/Binder: Quebecor World Book

 Services, Taunton
Cover Printer: Coral Graphics Services,

 Inc.
Text Font: Sabon LT Std

ISBN 10: 0-13-214918-4

 ISBN 13: 978-0-13-214918-1

This book is dedicated to our families.

Sharon, Justin, Kayla, Nathan, and Samantha Lewis

and

Veena, Isaac, and Dévi Loftus

vii

Welcome to the Seventh Edition of Java Software Solutions: Foundations of
Program Design. We are pleased that this book has served the needs of so many
students and faculty over the years. This edition has been tailored further to
improve the coverage of topics key to introductory computing.

New to This Edition

� Split Chapter 5 of the 6th edition into two for better coverage and flow.

� Moved the coverage of the ArrayList class earlier in the book to permit
more interesting projects earlier.

� Improved the discussion of an array as a programming construct.

� Improved the discussions of visibility modifiers, especially regarding the
protected modifier.

� Replaced and updated examples throughout the book.

� Replaced, updated, and added exercises and programming projects.

� Available with MyProgrammingLab (see details later in this Preface).

Feedback from both instructors and students continues to make it clear
that we have hit the mark with the overall vision of the book. The emphasis
remains on presenting underlying core concepts in a clear and gradual man-
ner. The Graphics Track sections in each chapter still segregate the coverage
of graphics and graphical user interfaces, giving extreme flexibility in how that
material gets covered. The casual writing style and entertaining examples still
rule the day.

The enhancements in this edition are designed to allow the instructor more
flexibility in topic coverage. In an attempt to cover all issues related to condi-
tionals and loops, Chapter 5 in the previous edition had become very large and
a bit too encyclopedic. In this edition that chapter has been carefully redesigned
into two, giving the coverage of those topics a better flow. The new organization
allows more interesting examples to be explored earlier.

One effect of this reorganization is that it allowed us to bring the coverage of
the ArrayList class earlier in the book. Although arrays are used internally to

Preface

viii PREFACE

implement the ArrayList class, there is no reason to wait for arrays to be covered
to introduce the ArrayList class. Like many other classes in the Java API, the
ArrayList class can be used without needing to know how it works internally. An
ArrayList object can be used for its (very valuable) functionality as soon as loops
are available. The new organization in this edition does exactly that. If the instruc-
tor chooses, coverage of ArrayList can still be deferred as it has been before, but
now the option is there to introduce them earlier.

In addition to these changes, various discussions throughout the book have
been revamped and improved. For example, the explanation of the effects of
the protected visibility modifier has enhanced to clarify its use. Furthermore,
throughout the book older examples have been rejuvenated, and end-of-chapter
exercises and programming projects have been augmented.

Cornerstones of the Text
This text is based on the following basic ideas that we believe make for a sound
introductory text:

� True object-orientation. A text that really teaches a solid object-oriented
approach must use what we call object-speak. That is, all processing should
be discussed in object-oriented terms. That does not mean, however, that
the first program a student sees must discuss the writing of multiple classes
and methods. A student should learn to use objects before learning to write
them. This text uses a natural progression that culminates in the ability to
design real object-oriented solutions.

� Sound programming practices. Students should not be taught how to
program; they should be taught how to write good software. There•s a
difference. Writing software is not a set of cookbook actions, and a good
program is more than a collection of statements. This text integrates
practices that serve as the foundation of good programming skills. These
practices are used in all examples and are reinforced in the discussions.
Students learn how to solve problems as well as how to implement solu-
tions. We introduce and integrate basic software engineering techniques
throughout the text. The Software Failure vignettes reiterate these lessons
by demonstrating the perils of not following these sound practices.

� Examples. Students learn by example. This text is filled with fully imple-
mented examples that demonstrate specific concepts. We have intertwined
small, readily understandable examples with larger, more realistic ones.
There is a balance between graphics and nongraphics programs. The
VideoNotes provide additional examples in a live presentation format.

PREFACE ix

� Graphics and GUIs. Graphics can be a great motivator for students, and
their use can serve as excellent examples of object-orientation. As such,
we use them throughout the text in a well-defined set of sections that we
call the Graphics Track. This coverage includes the use of event processing
and GUIs. Students learn to build GUIs in the appropriate way by using a
natural progression of topics. The Graphics Track can be avoided entirely
for those who do not choose to use graphics.

Chapter Breakdown
Chapter 1 (Introduction) introduces computer systems in general, including basic
architecture and hardware, networking, programming, and language translation.
Java is introduced in this chapter, and the basics of general program development,
as well as object-oriented programming, are discussed. This chapter contains
broad introductory material that can be covered while students become familiar
with their development environment.

Chapter 2 (Data and Expressions) explores some of the basic types of data used
in a Java program and the use of expressions to perform calculations. It discusses
the conversion of data from one type to another and how to read input interac-
tively from the user with the help of the standard Scanner class.

Chapter 3 (Using Classes and Objects) explores the use of predefined classes
and the objects that can be created from them. Classes and objects are used to
manipulate character strings, produce random numbers, perform complex calcu-
lations, and format output. Enumerated types are also discussed.

Chapter 4 (Writing Classes) explores the basic issues related to writing classes
and methods. Topics include instance data, visibility, scope, method parameters,
and return types. Encapsulation and constructors are covered as well. Some of the
more involved topics are deferred to or revisited in Chapter 6.

Chapter 5 (Conditionals and Loops) covers the use of boolean expressions to
make decisions. Then the if statement and while loop are explored in detail.
Once loops are established, the concept of an iterator is introduced and the
Scanner class is revisited for additional input parsing and the reading of text files.
Finally, the ArrayList class introduced, which provides the option for managing
a large number of objects.

Chapter 6 (More Conditionals and Loops) examines the rest of Java•s condi-
tional (switch) and loop (do, for) statements. All related statements for condi-
tionals and loops are discussed, including the enhanced version of the for loop.
The for-each loop is also used to process iterators and ArrayList objects.

x PREFACE

Chapter 7 (Object-Oriented Design) reinforces and extends the coverage of
issues related to the design of classes. Techniques for identifying the classes and
objects needed for a problem and the relationships among them are discussed.
This chapter also covers static class members, interfaces, and the design of enu-
merated type classes. Method design issues and method overloading are also
discussed.

Chapter 8 (Arrays) contains extensive coverage of arrays and array processing.
The nature of an array as a low-level programming structure is contrasted to the
higher-level object management approach. Additional topics include command-
line arguments, variable length parameter lists, and multidimensional arrays.

Chapter 9 (Inheritance) covers class derivations and associated concepts such
as class hierarchies, overriding, and visibility. Strong emphasis is put on the
proper use of inheritance and its role in software design.

Chapter 10 (Polymorphism) explores the concept of binding and how it relates
to polymorphism. Then we examine how polymorphic references can be accom-
plished using either inheritance or interfaces. Sorting is used as an example of
polymorphism. Design issues related to polymorphism are examined as well.

Chapter 11 (Exceptions) explores the class hierarchy from the Java standard
library used to define exceptions, as well as the ability to define our own excep-
tion objects. We also discuss the use of exceptions when dealing with input and
output and examine an example that writes a text file.

Chapter 12 (Recursion) covers the concept, implementation, and proper use of
recursion. Several examples from various domains are used to demonstrate how
recursive techniques make certain types of processing elegant.

Chapter 13 (Collections) introduces the idea of a collection and its underlying
data structure. Abstraction is revisited in this context and the classic data struc-
tures are explored. Generic types are introduced as well. This chapter serves as an
introduction to a CS2 course.

Supplements

Student Online Resources

These student resources can be accessed at the book•s Companion Website,
www.pearsonhighered.com/lewis:

� Source Code for all the programs in the text

� Links to Java development environments

� VideoNotes: short step-by-step videos demonstrating how to solve prob-
lems from design through coding. VideoNotes allow for self-paced

PREFACE xi

instruction with easy navigation including the ability to select, play, re-
wind, fast-forward, and stop within each VideoNote exercise. Margin icons
in your textbook let you know when a VideoNote video is available for a
particular concept or homework problem.

Online Practice and Assessment
MyProgrammingLab helps students fully grasp the logic, semantics, and syntax
of programming. Through practice exercises and immediate, personalized feed-
back, MyProgrammingLab improves the programming competence of beginning
students who often struggle with the basic concepts and paradigms of popular
high-level programming languages.

A self-study and homework tool, MyProgrammingLab consists of hundreds
of small practice problems organized around the structure of this textbook. For
students, the system automatically detects errors in the logic and syntax of their
code submissions and offers targeted hints that enable students to figure out what
went wrong„and why. For instructors, a comprehensive gradebook tracks cor-
rect and incorrect answers and stores the code submitted by students for review.

MyProgrammingLab is offered to users of this book in partnership with
Turing•s Craft, the makers of the CodeLab interactive programming exer-
cise system. For a full demonstration, to see feedback from instructors and
students, or to get started using MyProgrammingLab in your course, visit
www.myprogramminglab.com.

Instructor Resources
The following supplements are available to qualified instructors only. Visit the
Pearson Education Instructor Resource Center (www.pearsonhighered.com/irc)
or send an e-mail to computing@pearson.com for information on how to access
them:

� Presentation Slides„in PowerPoint.

� Solutions„includes solutions to exercises and programming projects.

� Test Bank with powerful test generator software„includes a wealth of free
response, multiple-choice, and true/false type questions.

� Lab Manual„lab exercises are designed to accompany the topic
progression in the text.

xii PREFACE

Java Integrated Development Environment (IDE)
Resource Kits
Instructors can order this text with a kit that includes a disk containing 7 popu-
lar Java IDEs (the most recent JDK from Oracle, Eclipse, NetBeans, jGRASP,
DrJava, BlueJ, and TextPad) and access to a website containing written and video
tutorials for getting started in each IDE. For Instructors, ordering information
can be found at www.pearsonhighered.com/cs, or from your campus Pearson
Education sales representative. For Students, if your instructor didn•t request the
Java IDE Resource Kit, links for downloading the IDEs can be found at the book•s
Companion Website.

Features
Key Concepts. Throughout the text, the Key Concept boxes highlight funda-
mental ideas and important guidelines. These concepts are summarized at the
end of each chapter.

Listings. All programming examples are presented in clearly labeled listings, fol-
lowed by the program output, a sample run, or screen shot display as appropri-
ate. The code is colored to visually distinguish comments and reserved words.

Syntax Diagrams. At appropriate points in the text, syntactic elements of the
Java language are discussed in special highlighted sections with diagrams that
clearly identify the valid forms for a statement or construct. Syntax diagrams for
the entire Java language are presented in Appendix L.

Graphics Track. All processing that involves graphics and graphical user inter-
faces is discussed in one or two sections at the end of each chapter that we col-
lectively refer to as the Graphics Track. This material can be skipped without
loss of continuity, or focused on specifically as desired. The material in any
Graphics Track section relates to the main topics of the chapter in which it is
found. Graphics Track sections are indicated by a brown border on the edge of
the page.

Summary of Key Concepts. The Key Concepts presented throughout a chap-
ter are summarized at the end of the chapter.

Self-Review Questions and Answers. These short-answer questions review
the fundamental ideas and terms established in the preceding section. They are
designed to allow students to assess their own basic grasp of the material. The
answers to these questions can be found at the end of the book in Appendix N.

Exercises. These intermediate problems require computations, the analysis or writ-
ing of code fragments, and a thorough grasp of the chapter content. While the exer-
cises may deal with code, they generally do not require any online activity.

PREFACE xiii

Programming Projects. These problems require the design and implementation
of Java programs. They vary widely in level of difficulty.

MyProgrammingLab. Many of the problems in the book can be done online
in MyProgrammingLab. Through practice exercises and immediate, personal-
ized feedback, MyProgrammingLab improves the programming competence of
beginning students who often struggle with the basic concepts and paradigms of
popular high-level programming languages.

VideoNotes. Presented by the author, VideoNotes explain topics visually
through informal videos in an easy-to-follow format, giving students the extra
help they need to grasp important concepts. Look for this VideoNote icon to see
which in-chapter topics and end-of-chapter Programming Projects are available
as VideoNotes.

Software Failures. These between-chapter vignettes discuss real-world flaws in
software design, encouraging students to adopt sound design practices from the
beginning.

Acknowledgments
I am most grateful to the faculty and students from around the world who have
provided their feedback on previous editions of this book. I am pleased to see
the depth of the faculty•s concern for their students and the students• thirst for
knowledge. Your comments and questions are always welcome.

I am particularly thankful for the assistance, insight, and attention to detail
of Robert Burton from Brigham Young University. For years, Robert has con-
sistently provided valuable feedback that helps shape and evolve this textbook.
Recently he also performed a revision of the material in Chapter 1 about personal
computing systems that brought it back to a state-of-the-art discussion.

Brian Fraser of Simon Fraser University also has recently provided some excel-
lent feedback that helped clarify some issues in this edition. Such interaction with
computing educators is incredibly valuable.

I also want to thank Dan Joyce from Villanova University, who developed the
Self-Review questions, ensuring that each relevant topic had enough review mate-
rial, as well as developing the answers to each.

I continue to be amazed at the talent and effort demonstrated by the team at
Pearson Addison-Wesley. Michael Hirsch, our editor, has amazing insight and
commitment. His assistant, Stephanie Sellinger, is a source of consistent and helpful
support. Marketing Manager Yez Alayan makes sure that instructors understand
the pedagogical advantages of the text. The cover was designed by the skilled talents
of Suzanne Harbison. Jeff Holcomb and Heather McNally led the production effort.

xiv PREFACE

The Addison-Wesley folks were supported by a phenomenal team at Nesbitt
Graphics, including Jerilyn Bockorick for the interior design, Rose Kernan for
project management, Diane Paluba for production coordination. We thank all of
these people for ensuring that this book meets the highest quality standards.

Special thanks go to the following people who provided valuable advice to us
about this book via their participation in focus groups, interviews, and reviews.
They, as well as many other instructors and friends, have provided valuable feed-
back. They include:

Elizabeth Adams James Madison University
David Atkins University of Oregon
Lewis Barnett University of Richmond
Thomas W. Bennet Mississippi College
Gian Mario Besana DePaul University
Hans-Peter Bischof Rochester Institute of Technology
Robert Burton Brigham Young University
John Chandler Oklahoma State University
Robert Cohen University of Massachusetts, Boston
Dodi Coreson Linn Benton Community College
James H. Cross II Auburn University
Eman El-Sheikh University of West Florida
Christopher Eliot University of Massachusetts, Amherst
Wanda M. Eanes Macon State College
Stephanie Elzer Millersville University
Matt Evett Eastern Michigan University
Marj Feroe Delaware County Community College,

Pennsylvania
John Gauch University of Kansas
Chris Haynes Indiana University
James Heliotis Rochester Institute of Technology
Laurie Hendren McGill University
Mike Higgs Austin College
Stephen Hughes Roanoke College
Saroja Kanchi Kettering University
Karen Kluge Dartmouth College
Jason Levy University of Hawaii
Peter MacKenzie McGill University
Blayne Mayfield Oklahoma State University
Gheorghe Muresan Rutgers University
Laurie Murphy Pacific Lutheran University
Dave Musicant Carleton College
Faye Navabi-Tadayon Arizona State University

PREFACE xv

Lawrence Osborne Lamar University
Barry Pollack City College of San Francisco
B. Ravikumar University of Rhode Island
David Riley University of Wisconsin (La Crosse)
Jerry Ross Lane Community College
Patricia Roth Southeastern Polytechnic State University
Carolyn Schauble Colorado State University
Arjit Sengupta Georgia State University
Bennet Setzer Kennesaw State University
Vijay Srinivasan JavaSoft, Sun Microsystems, Inc.
Stuart Steiner Eastern Washington University
Katherine St. John Lehman College, CUNY
Alexander Stoytchev Iowa State University
Ed Timmerman University of Maryland, University College
Shengru Tu University of New Orleans
Paul Tymann Rochester Institute of Technology
John J. Wegis JavaSoft, Sun Microsystems, Inc.
Linda Wilson Dartmouth College
David Wittenberg Brandeis University
Wang-Chan Wong California State University (Dominguez Hills)

Thanks also go to my friends and former colleagues at Villanova University
who have provided so much wonderful feedback. They include Bob Beck, Cathy
Helwig, Anany Levitin, Najib Nadi, Beth Taddei, and Barbara Zimmerman.

Special thanks go to Pete DePasquale of The College of New Jersey for the
design and evolution of the PaintBox project, as well as the original Java Class
Library appendix.

Many other people have helped in various ways. They include Ken Arnold,
Mike Czepiel, John Loftus, Sebastian Niezgoda, and Saverio Perugini. Our apolo-
gies to anyone we may have omitted.

The ACM Special Interest Group on Computer Science Education (SIGCSE) is
a tremendous resource. Their conferences provide an opportunity for educators
from all levels and all types of schools to share ideas and materials. If you are
an educator in any area of computing and are not involved with SIGCSE, you•re
missing out.

Contents

Preface vii

Chapter 1 Introduction 1

1.1 Computer Processing 2
Software Categories 3
Digital Computers 4
Binary Numbers 7

1.2 Hardware Components 10
Computer Architecture 11
Input/Output Devices 12
Main Memory and Secondary Memory 13
The Central Processing Unit 17

1.3 Networks 20
Network Connections 20
Local-Area Networks and

Wide-Area Networks 22
The Internet 23
The World Wide Web 24
Uniform Resource Locators 25

1.4 The Java Programming Language 26
A Java Program 27
Comments 29
Identifiers and Reserved Words 31
White Space 33

1.5 Program Development 36
Programming Language Levels 36
Editors, Compilers, and Interpreters 38
Development Environments 40
Syntax and Semantics 41
Errors 42

xvii

xviii CONTENTS

1.6 Object-Oriented Programming 44
Problem Solving 45
Object-Oriented Software Principles 46

Chapter 2 Data and Expressions 57

2.1 Character Strings 58
The print and println Methods 58
String Concatenation 60
Escape Sequences 63

2.2 Variables and Assignment 65
Variables 65
The Assignment Statement 67
Constants 69

2.3 Primitive Data Types 71
Integers and Floating Points 71
Characters 73
Booleans 74

2.4 Expressions 75
Arithmetic Operators 75
Operator Precedence 76
Increment and Decrement Operators 80
Assignment Operators 81

2.5 Data Conversion 83
Conversion Techniques 85

2.6 Interactive Programs 87
The Scanner Class 87

2.7 Graphics 92
Coordinate Systems 92
Representing Color 94

2.8 Applets 95
Executing Applets Using the Web 98

2.9 Drawing Shapes 99
The Graphics Class 99

Software Failure:
NASA Mars Climate Orbiter

and Polar Lander 111

CONTENTS xix

Chapter 3 Using Classes and Objects 113

3.1 Creating Objects 114
Aliases 116

3.2 The String Class 118

3.3 Packages 122
The import Declaration 124

3.4 The Random Class 126

3.5 The Math Class 129

3.6 Formatting Output 132
The NumberFormat Class 132
The DecimalFormat Class 134
The printf Method 135

3.7 Enumerated Types 138

3.8 Wrapper Classes 141
Autoboxing 143

3.9 Components and Containers 143
Frames and Panels 144

3.10 Nested Panels 148

3.11 Images 151

Chapter 4 Writing Classes 159

4.1 Classes and Objects Revisited 160

4.2 Anatomy of a Class 162
Instance Data 167
UML Class Diagrams 167

4.3 Encapsulation 169
Visibility Modifiers 170
Accessors and Mutators 171

4.4 Anatomy of a Method 172
The return Statement 174
Parameters 175

xx CONTENTS

Local Data 175
Bank Account Example 176

4.5 Constructors Revisited 181

4.6 Graphical Objects 182

4.7 Graphical User Interfaces 191

4.8 Buttons 192

4.9 Text Fields 196

Software Failure:
Denver Airport Baggage

Handling System 205

Chapter 5 Conditionals and Loops 207

5.1 Boolean Expressions 208
Equality and Relational Operators 209
Logical Operators 210

5.2 The if Statement 213
The if-else Statement 216
Using Block Statements 219
Nested if Statements 223

5.3 Comparing Data 226
Comparing Floats 226
Comparing Characters 227
Comparing Objects 228

5.4 The while Statement 230
Infinite Loops 234
Nested Loops 236
The break and continue Statements 239

5.5 Iterators 241
Reading Text Files 242

5.6 The ArrayList Class 245

5.7 Determining Event Sources 248

CONTENTS xxi

5.8 Check Boxes and Radio Buttons 251
Check Boxes 251
Radio Buttons 255

Software Failure:
Therac-25 267

Chapter 6 More Conditionals and Loops 269

6.1 The switch Statement 270

6.2 The Conditional Operator 274

6.3 The do Statement 275

6.4 The for Statement 279
The for-each Loop 282
Comparing Loops 284

6.5 Drawing with Loops and Conditionals 285

6.6 Dialog Boxes 291

Chapter 7 Object-Oriented Design 301

7.1 Software Development Activities 302

7.2 Identifying Classes and Objects 303
Assigning Responsibilities 305

7.3 Static Class Members 305
Static Variables 306
Static Methods 306

7.4 Class Relationships 310
Dependency 310
Dependencies Among Objects

of the Same Class 310
Aggregation 316
The this Reference 320

7.5 Interfaces 322
The Comparable Interface 327
The Iterator Interface 328

xxii CONTENTS

7.6 Enumerated Types Revisited 329

7.7 Method Design 332
Method Decomposition 333
Method Parameters Revisited 338

7.8 Method Overloading 343

7.9 Testing 345
Reviews 346
Defect Testing 346

7.10 GUI Design 349

7.11 Layout Managers 350
Flow Layout 352
Border Layout 356
Grid Layout 359
Box Layout 361

7.12 Borders 365

7.13 Containment Hierarchies 369

Software Failure:
2003 Northeast Blackout 377

Chapter 8 Arrays 379

8.1 Array Elements 380

8.2 Declaring and Using Arrays 381
Bounds Checking 384
Alternate Array Syntax 389
Initializer Lists 389
Arrays as Parameters 390

8.3 Arrays of Objects 392

8.4 Command-Line Arguments 402

8.5 Variable Length Parameter Lists 404

8.6 Two-Dimensional Arrays 408
Multidimensional Arrays 412

CONTENTS xxiii

8.7 Polygons and Polylines 413
The Polygon Class 416

8.8 Mouse Events 418

8.9 Key Events 427

Software Failure:
LA Air Traffic Control 441

Chapter 9 Inheritance 443

9.1 Creating Subclasses 444
The protected Modifier 447
The super Reference 450
Multiple Inheritance 453

9.2 Overriding Methods 455
Shadowing Variables 457

9.3 Class Hierarchies 458
The Object Class 460
Abstract Classes 461
Interface Hierarchies 463

9.4 Visibility 463

9.5 Designing for Inheritance 466
Restricting Inheritance 467

9.6 The Component Class Hierarchy 468

9.7 Extending Adapter Classes 471

9.8 The Timer Class 475

Software Failure:
Ariane 5 Flight 501 485

Chapter 10 Polymorphism 487

10.1 Late Binding 488

10.2 Polymorphism via Inheritance 489

xxiv CONTENTS

10.3 Polymorphism via Interfaces 502

10.4 Sorting 504
Selection Sort 505
Insertion Sort 511
Comparing Sorts 512

10.5 Searching 513
Linear Search 513
Binary Search 515
Comparing Searches 519

10.6 Designing for Polymorphism 519

10.7 Event Processing 521

10.8 File Choosers 522

10.9 Color Choosers 525

10.10 Sliders 527

Chapter 11 Exceptions 537

11.1 Exception Handling 538

11.2 Uncaught Exceptions 539

11.3 The try-catch Statement 540
The finally Clause 544

11.4 Exception Propagation 545

11.5 The Exception Class Hierarchy 549
Checked and Unchecked Exceptions 552

11.6 I/O Exceptions 553

11.7 Tool Tips and Mnemonics 557

11.8 Combo Boxes 564

11.9 Scroll Panes 569

11.10 Split Panes 572

CONTENTS xxv

Chapter 12 Recursion 583

12.1 Recursive Thinking 584
Infinite Recursion 584
Recursion in Math 585

12.2 Recursive Programming 586
Recursion vs. Iteration 589
Direct vs. Indirect Recursion 589

12.3 Using Recursion 590
Traversing a Maze 591
The Towers of Hanoi 596

12.4 Recursion in Graphics 601
Tiled Pictures 601
Fractals 604

Chapter 13 Collections 617

13.1 Collections and Data Structures 618
Separating Interface from Implementation 618

13.2 Dynamic Representations 619
Dynamic Structures 619
A Dynamically Linked List 620
Other Dynamic List Representations 625

13.3 Linear Data Structures 627
Queues 627
Stacks 628

13.4 Non-Linear Data Structures 631
Trees 631
Graphs 632

13.5 The Java Collections API 634
Generics 634

xxvi CONTENTS

Appendix A Glossary 641

Appendix B Number Systems 665

Appendix C The Unicode Character Set 673

Appendix D Java Operators 677

Appendix E Java Modifiers 683

Appendix F Java Coding Guidelines 687

Appendix G Java Applets 693

Appendix H Regular Expressions 695

Appendix I Javadoc Documentation Generator 697

Appendix J The PaintBox Project 703

Appendix K GUI Events 715

Appendix L Java Syntax 719

Appendix M The Java Class Library 733

Appendix N Answers to Self-Review Questions 735

Index 789

1

C H A P T E R O B J E C T I V E S
� Describe the relationship between hardware and software.

� Define various types of software and how they are used.

� Identify the core hardware components of a computer and explain their
roles.

� Explain how the hardware components interact to execute programs and
manage data.

� Describe how computers are connected into networks to share information.

� Introduce the Java programming language.

� Describe the steps involved in program compilation and execution.

� Present an overview of object-oriented principles.

This book is about writing well-designed software. To understand

software, we must first have a fundamental understanding of its role

in a computer system. Hardware and software cooperate in a com-

puter system to accomplish complex tasks. The purpose of various

hardware components, and the way those components are connected

into networks, are important prerequisites to the study of software

development. This chapter first discusses basic computer processing

and then begins our exploration of software development by intro-

ducing the Java programming language and the principles of object-

oriented programming.

Introduction 1

1.1 Computer Processing

 We begin our exploration of computer systems with an overview of computer
processing, defining some fundamental terminology and showing how the key
pieces of a computer system interact.

 A computer system is made up of hardware and software. The hardware com-
ponents of a computer system are the physical, tangible pieces that support the
computing effort. They include chips, boxes, wires, keyboards, speakers, disks,
memory cards, USB flash drives (also called jump drives), cables, plugs, printers,
mice, monitors, routers, and so on. If you can physically touch it and it can be
considered part of a computer system, then it is computer hardware.

 The hardware components of a computer are essentially useless
without instructions to tell them what to do. A program is a series of
instructions that the hardware executes one after another. Software
consists of programs and the data those programs use. Software is
the intangible counterpart to the physical hardware components.

Together they form a tool that we can use to help solve problems.

 The key hardware components in a computer system are

� central processing unit (CPU)

� input/output (I/O) devices

� main memory

� secondary memory devices

 Each of these hardware components is described in detail in the next section. For
now, let•s simply examine their basic roles. The central processing unit (CPU) is
the device that executes the individual commands of a program. Input/output
(I/O) devices , such as the keyboard, mouse, and monitor, allow a human being to
interact with the computer.

 Programs and data are held in storage devices called memory, which fall into
two categories: main memory and secondary memory. Main memory is the storage
device that holds the software while it is being processed by the CPU. Secondary
memory devices store software in a relatively permanent manner. The most impor-
tant secondary memory device of a typical computer system is the hard disk that
resides inside the main computer box. A USB flash drive is also an important sec-
ondary memory device. A typical USB flash drive cannot store nearly as much infor-
mation as a hard disk. USB flash drives have the advantage of portability; they can
be removed temporarily or moved from computer to computer as needed. Another
portable secondary memory device is the compact disc (CD).

 Figure 1.1 shows how information moves among the basic hardware compo-
nents of a computer. Suppose you have an executable program you wish to run.

2 CHAPTER 1 Introduction

 KEY CONCEPT
 A computer system consists of
hardware and software that work in
concert to help us solve problems.

The program is stored on some secondary memory device, such as a hard disk.
When you instruct the computer to execute your program, a copy of the program
is brought in from secondary memory and stored in main memory. The CPU reads
the individual program instructions from main memory. The CPU
then executes the instructions one at a time until the program ends.
The data that the instructions use, such as two numbers that will
be added together, also are stored in main memory. They are either
brought in from secondary memory or read from an input device
such as the keyboard. During execution, the program may display
information to an output device such as a monitor.

 The process of executing a program is fundamental to the operation of a com-
puter. All computer systems basically work in the same way.

 Software Categories
 Software can be classified into many categories using various criteria. At this point
we will simply differentiate between system programs and application programs.

 The operating system is the core software of a computer. It performs two
important functions. First, it provides a user interface that allows the user to inter-
act with the machine. Second, the operating system manages computer resources
such as the CPU and main memory. It determines when programs are allowed
to run, where they are loaded into memory, and how hardware devices commu-
nicate. It is the operating system•s job to make the computer easy to use and to
ensure that it runs efficiently.

 Several popular operating systems are in use today. The Windows
operating system was developed for personal computers by Microsoft,
which has captured an operating system market share of almost
90%. Various versions of the Unix operating system are also quite

1.1 Computer Processing 3

 FIGURE 1.1 A simplified view of a computer system

 KEY CONCEPT
 The CPU reads the program
instructions from main memory,
executing them one at a time until
the program ends.

 KEY CONCEPT
 The operating system provides
a user interface and manages
computer resources.

4 CHAPTER 1 Introduction

popular, especially in larger computer systems. A version of Unix called Linux
was developed as an open source project, which means that many people contrib-
uted to its development and its code is freely available. Because of that, Linux has
become a particular favorite among some users. Mac OS X is an operating system
used for computing systems developed by Apple Computers.

 An application is a generic term for just about any software other than the
operating system. Word processors, missile control systems, database managers,
Web browsers, and games all can be considered application programs. Each appli-
cation program has its own user interface that allows the user to interact with that
particular program.

 The user interface for most modern operating systems and applications is a
graphical user interface (GUI, pronounced •gooeyŽ), which, as the name implies,
make use of graphical screen elements. Among many others, these elements
include

� windows , which are used to separate the screen into distinct work areas

� icons , which are small images that represent computer resources, such as a file

� menus, checkboxes, and radio buttons , which provide the user with select-
able options

� sliders , which allow the user to select from a range of values

� buttons , which can be •pushedŽ with a mouse click to indicate a user selection

 The mouse is the primary input device used with GUIs; thus, GUIs are some-
times called point-and-click interfaces . The screen shot in Figure 1.2 shows an
example of a GUI.

 The interface to an application or operating system is an impor-
tant part of the software because it is the only part of the program
with which the user interacts directly. To the user, the interface is
the program. Throughout this book we discuss the design and imple-

mentation of graphical user interfaces.

 The focus of this book is the development of high-quality application pro-
grams. We explore how to design and write software that will perform calcula-
tions, make decisions, and present results textually or graphically. We use the
Java programming language throughout the text to demonstrate various comput-
ing concepts.

 Digital Computers
 Two fundamental techniques are used to store and manage information: analog
and digital. Analog information is continuous, in direct proportion to the source
of the information. For example, an alcohol thermometer is an analog device

 KEY CONCEPT
 As far as the user is concerned, the
interface is the program.

1.1 Computer Processing 5

for measuring temperature. The alcohol rises in a tube in direct proportion to
the temperature outside the tube. Another example of analog information is an
electronic signal used to represent the vibrations of a sound wave. The signal•s
voltage varies in direct proportion to the original sound wave. A stereo amplifier
sends this kind of electronic signal to its speakers, which vibrate to reproduce
the sound. We use the term analog because the signal is directly analogous to the
information it represents. Figure 1.3 graphically depicts a sound wave captured
by a microphone and represented as an electronic signal.

Digital technology breaks information into discrete pieces and represents those
pieces as numbers. The music on a compact disc is stored digitally, as a series of
numbers. Each number represents the voltage level of one specific
instance of the recording. Many of these measurements are taken in
a short period of time, perhaps 44,000 measurements every second.
The number of measurements per second is called the sampling rate .
If samples are taken often enough, the discrete voltage measurements

 FIGURE 1.2 An example of a graphical user interface (GUI)

 KEY CONCEPT
 Digital computers store information
by breaking it into pieces and repre-
senting each piece as a number.

6 CHAPTER 1 Introduction

can be used to generate a continuous analog signal that is •close enoughŽ to the
original. In most cases, the goal is to create a reproduction of the original signal
that is good enough to satisfy the human senses.

Figure 1.4 shows the sampling of an analog signal. When analog information
is converted to a digital format by breaking it into pieces, we say it has been
digitized. Because the changes that occur in a signal between samples are lost, the
sampling rate must be sufficiently fast.

Sound wave Analog signal of the sound wave

 FIGURE 1.3 A sound wave and an electronic analog signal
that represents the wave

Information can be lost
between samples

Analog signal

Sampling process

Sampled values 12 11 39 40 7 14 47

FIGURE 1.4 Digitizing an analog signal by sampling

1.1 Computer Processing 7

 Sampling is only one way to digitize information. For example, a sentence of
text is stored on a computer as a series of numbers, where each number represents
a single character in the sentence. Every letter, digit, and punctuation symbol has
been assigned a number. Even the space character is assigned a number. Consider
the following sentence:

 Hi, Heather.

 The characters of the sentence are represented as a series of 12 numbers, as
shown in Figure 1.5 . When a character is repeated, such as the uppercase 'H' , the
same representation number is used. Note that the uppercase version of a letter is
stored as a different number from the lowercase version, such as the 'H' and 'h'

in the word Heather. They are considered separate and distinct characters.

 Modern electronic computers are digital. Every kind of information, including
text, images, numbers, audio, video, and even program instructions is broken into
pieces. Each piece is represented as a number. The information is stored by storing
those numbers.

 Binary Numbers
 A digital computer stores information as numbers, but those numbers are not stored
as decimal values. All information in a computer is stored and managed as binary
values. Unlike the decimal system, which has 10 digits (0 through 9), the binary
number system has only two digits (0 and 1). A single b inary dig it is called a bit .

 All number systems work according to the same rules. The base value of a
number system dictates how many digits we have to work with and indicates the
place value of each digit in a number. The decimal number system
is base 10, whereas the binary number system is base 2. Appendix B
contains a detailed discussion of number systems.

 Modern computers use binary numbers because the devices that
store and move information are less expensive and more reliable if
they have to represent only one of two possible values. Other than
this characteristic, there is nothing special about the binary number

72 105 44 32 72 101 97 104 114116 101 46

H i , H e a t h e r .

 FIGURE 1.5 Text is stored by mapping each character to a number

 KEY CONCEPT
 Binary is used to store and move
information in a computer because
the devices that store and manipu-
late binary data are inexpensive and
reliable.

8 CHAPTER 1 Introduction

system. Computers have been created that use other number systems to store and
move information, but they aren•t as convenient.

Some computer memory devices, such as hard drives, are magnetic in nature.
Magnetic material can be polarized easily to one extreme or the other, but intermedi-
ate levels are difficult to distinguish. Therefore, magnetic devices can be used to rep-
resent binary values quite effectively„a magnetized area represents a binary 1 and a
demagnetized area represents a binary 0. Other computer memory devices are made
up of tiny electrical circuits. These devices are easier to create and are less likely to fail
if they have to switch between only two states. We•re better off reproducing millions
of these simple devices than creating fewer, more complicated ones.

Binary values and digital electronic signals go hand in hand. They improve our
ability to transmit information reliably along a wire. As we•ve seen, an analog signal
has continuously varying voltage with infinitely many states, but a digital signal is
discrete, which means the voltage changes dramatically between one extreme (such
as +5 volts) and the other (such as …5 volts). At any point, the voltage of a digital
signal is considered to be either •high,Ž which represents a binary 1, or •low,Ž
which represents a binary 0. Figure 1.6 compares these two types of signals.

As a signal moves down a wire, it gets weaker and degrades due to environ-
mental conditions. That is, the voltage levels of the original signal change slightly.
The trouble with an analog signal is that as it fluctuates, it loses its original infor-
mation. Since the information is directly analogous to the signal, any change in
the signal changes the information. The changes in an analog signal cannot be
recovered because the degraded signal is just as valid as the original. A digital
signal degrades just as an analog signal does, but because the digital signal is
originally at one of two extremes, it can be reinforced before any information is
lost. The voltage may change slightly from its original value, but it still can be
interpreted correctly as either high or low.

The number of bits we use in any given situation determines the number of
unique items we can represent. A single bit has two possible values, 0 and 1, and

Analog signal Digital signal

FIGURE 1.6 An analog signal vs. a digital signal

1.1 Computer Processing 9

therefore can represent two possible items or situations. If we want to represent
the state of a light bulb (off or on), one bit will suffice, because we can interpret 0
as the light bulb being off and 1 as the light bulb being on. If we want to represent
more than two things, we need more than one bit.

 Two bits, taken together, can represent four possible items because there are
exactly four permutations of two bits: 00, 01, 10, and 11. Suppose we want to
represent the gear that a car is in (park, drive, reverse, or neutral). We would need
only two bits, and could set up a mapping between the bit permutations and the
gears. For instance, we could say that 00 represents park, 01 represents drive, 10
represents reverse, and 11 represents neutral. In this case, it wouldn•t matter if we
switched that mapping around, though in some cases the relationships between
the bit permutations and what they represent are important.

 Three bits can represent eight unique items, because there are
eight permutations of three bits. Similarly, four bits can represent 16
items, five bits can represent 32 items, and so on. Figure 1.7 shows
the relationship between the number of bits used and the number of
items they can represent. In general, N bits can represent 2 N unique
items. For every bit added, the number of items that can be represented doubles.

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

00000

00001

00010

00011

00100

00101

00110

00111

01000

01001

01010

01011

01100

01101

01110

01111

10000

10001

10010

10011

10100

10101

10110

10111

11000

11001

11010

11011

11100

11101

11110

11111

1 bit 2 bits 3 bits 4 bits
2 items 4 items 8 items 16 items

5 bits
32 items

000

001

010

011

100

101

110

111

00

01

10

11

0

1

FIGURE 1.7 The number of bits used determines the number
of items that can be represented

 KEY CONCEPT
 There are exactly 2 N permutations of
N bits. Therefore, N bits can repre-
sent up to 2 N unique items.

10 CHAPTER 1 Introduction

We•ve seen how a sentence of text is stored on a computer by mapping char-
acters to numeric values. Those numeric values are stored as binary numbers.
Suppose we want to represent character strings in a language that contains 256
characters and symbols. We would need to use eight bits to store each character
because there are 256 unique permutations of eight bits (28 equals 256). Each bit
permutation, or binary value, is mapped to a specific character.

How many bits would be needed to represent 195 countries of the world?
Seven wouldn•t be enough, because 27 equals 128. Eight bits would be enough,
but some of the 256 permutations would not be mapped to a country.

Ultimately, representing information on a computer boils down to the number
of items there are to represent and determining the way those items are mapped
to binary values.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 1.1 What is hardware? What is software?

SR 1.2 What are the two primary functions of an operating system?

SR 1.3 The music on a CD is created using a sampling rate of 44,000 mea-
surements per second. Each measurement is stored as a number that
represents a specific voltage level. How many such numbers are used
to store a three-minute long song? How many such numbers does it
take to represent one hour of music?

SR 1.4 What happens to information when it is stored digitally?

SR 1.5 How many unique items can be represented with the following?

a. 2 bits
b. 4 bits
c. 5 bits
d. 7 bits

SR 1.6 Suppose you want to represent each of the 50 states of the United
States using a unique permutation of bits. How many bits would be
needed to store each state representation? Why?

1.2 Hardware Components

Let•s examine the hardware components of a computer system in more detail.
Consider the computer described in Figure 1.8. What does it all mean? Is the sys-
tem capable of running the software you want it to? How does it compare with
other systems? These terms are explained throughout this section.

 1.2 Hardware Components 11

Computer Architecture
The architecture of a house defines its structure. Similarly, we use the term com-
puter architecture to describe how the hardware components of a computer are put
together. Figure 1.9 illustrates the basic architecture of a generic computer system.
Information travels between components across a group of wires called a bus.

FIGURE 1.8 The hardware specification of a particular computer

FIGURE 1.9 Basic computer architecture

12 CHAPTER 1 Introduction

 The CPU and the main memory make up the core of a computer.
As we mentioned earlier, main memory stores programs and data
that are in active use, and the CPU methodically executes program
instructions one at a time.

 Suppose we have a program that computes the average of a list of
numbers. The program and the numbers must reside in main memory
while the program runs. The CPU reads one program instruction from

main memory and executes it. If an instruction needs data, such as a number in the
list, to perform its task, the CPU reads that information as well. This process repeats
until the program ends. The average, when computed, is stored in main memory to
await further processing or long-term storage in secondary memory.

 Almost all devices in a computer system other than the CPU and main memory
are called peripherals ; they operate at the periphery, or outer edges, of the system
(although they may be in the same box). Users don•t interact directly with the
CPU or main memory. Although they form the essence of the machine, the CPU
and main memory would not be useful without peripheral devices.

Controllers are devices that coordinate the activities of specific peripherals. Every
device has its own particular way of formatting and communicating data, and part
of the controller•s role is to handle these idiosyncrasies and isolate them from the
rest of the computer hardware. Furthermore, the controller often handles much of
the actual transmission of information, allowing the CPU to focus on other activities.

 Input/output (I/O) devices and secondary memory devices are considered periph-
erals. Another category of peripherals consist of data transfer devices , which allow
information to be sent and received between computers. The computer specified in
 Figure 1.8 includes a network card, also called a wireless network interface controller
(WNIC), which connects to a radio-based computer network.

 In some ways, secondary memory devices and data transfer devices can be
thought of as I/O devices because they represent a source of information (input)
and a place to send information (output). For our discussion, however, we define
I/O devices as those devices that allow the user to interact with the computer.

 Input/Output Devices
 Let•s examine some I/O devices in more detail. The most common input devices
are the keyboard and the mouse. Others include

� bar code readers , such as the ones used at a retail store checkout

� microphones , used by voice recognition systems that interpret voice commands

� virtual reality devices , such as handheld devices that interpret the move-
ment of the user•s hand

 KEY CONCEPT
 The core of a computer is made up
of main memory, which stores pro-
grams and data, and the CPU, which
executes program instructions one
at a time.

1.2 Hardware Components 13

� scanners , which convert text, photographs, and graphics into machine-
readable form

 Monitors and printers are the most common output devices. Others include

� plotters , which move pens across large sheets of paper (or vice versa)

� speakers , for audio output

� goggles , for virtual reality display

 Some devices can provide both input and output capabilities. A touch screen
system can detect the user touching the screen at a particular place. Software can
then use the screen to display text and graphics in response to the user•s touch.
Touch screens have become commonplace for handheld devices.

 The computer described in Figure 1.8 includes a monitor with a 17-inch diago-
nal display area. It is a flat screen, which makes use of liquid crystal display (LCD)
technology, unlike the older cathode ray tube (CRT) monitors that required
substantial voltage and generally were not portable. A picture is represented in a
computer by breaking it up into separate picture elements, or pixels . The monitor
might display a grid of 1280 by 1024 pixels. Representing and managing graphi-
cal data is discussed in more detail in Chapter 2 .

 Main Memory and Secondary Memory
 Main memory is made up of a series of small, consecutive memory
locations , as shown in Figure 1.10 . Associated with each memory
location is a unique number called an address .

Addresses

4802

4803

4804

4805

4806

4807

4808

4809

4810

4811

4812

Data values are stored in
memory locations.

Large values are stored
in consecutive memory
locations.

 FIGURE 1.10 Memory locations

 KEY CONCEPT
 An address is a unique number asso-
ciated with a memory location.

14 CHAPTER 1 Introduction

 When data is stored in a memory location, it overwrites and destroys any
information that was previously stored at that location. However, the process of
reading data from a memory location does not affect it.

 On many computers, each memory location consists of eight bits, or one byte ,
of information. If we need to store a value that cannot be represented in a single
byte, such as a large number, then multiple, consecutive bytes are used to store
the data.

 The storage capacity of a device such as main memory is the total number of
bytes it can hold. Devices can store thousands or millions of bytes, so you should
become familiar with larger units of measure. Because computer memory is based
on the binary number system, all units of storage are powers of two. A kilobyte
(KB) is 1024, or 2 10 , bytes. Some larger units of storage are a megabyte (MB), a
gigabyt e (GB), a terabyte (TB), and a petabyte (PB) as listed in Figure 1.11 . It•s
usually easier to think about these capacities by rounding them off. For example,
most computer users think of a kilobyte as approximately one thousand bytes, a
megabyte as approximately one million bytes, and so forth.

 Many personal computers have four gigabytes of main memory,
or RAM, such as the system described in Figure 1.8 (we discuss
RAM in more detail later in this chapter). A large main memory
allows large programs or multiple programs to run efficiently,
because they don•t have to retrieve information from secondary
memory as often.

 Main memory is usually volatile , meaning that the information stored in it
will be lost if its electric power supply is turned off. When you are working
on a computer, you should often save your work onto a secondary memory
device such as a USB flash drive in case the power goes out. Secondary memory
devices are usually nonvolatile ; the information is retained even if the power
supply is turned off.

byte

kilobyte

megabyte

gigabyte

terabyte

petabyte

KB

MB

GB

TB

PB

20 = 1

210 = 1024

220 = 1,048,576

230 = 1,073,741,824

240 = 1,099,511,627,776

250 = 1,125,899,906,842,624

Unit Symbol Number of Bytes

 FIGURE 1.11 Units of binary storage

 KEY CONCEPT
 Main memory is volatile, meaning
the stored information is maintained
only as long as electric power is
supplied.

 1.2 Hardware Components 15

The cache is used by the central processing unit (CPU) to reduce the average
access time to instructions and data. The cache is a small, fast memory that stores
the contents of the most frequently used main memory locations. Contemporary
CPUs include an instruction cache to speed up the fetching of executable instruc-
tions and a data cache to speed up the fetching and storing of data.

The most common secondary storage devices are hard disks and USB flash
drives. A typical USB flash drive stores between 1 GB and 256 GB of information.
The storage capacities of hard drives vary, but on personal computers, capacities
typically range between 120 GB and 500 GB, such as in the system described in
Figure 1.8. Some hard disks can store 2 TB of data.

A USB flash drive consists of a small printed circuit board carrying the circuit
elements and a USB connector, insulated electrically and protected inside a plastic,
metal, or rubberized case, which can be carried in a pocket or on a key chain, for
example.

A disk is a magnetic medium on which bits are represented as magnetized parti-
cles. A read/write head passes over the spinning disk, reading or writing information
as appropriate. A hard disk drive might actually contain several disks in a vertical
column with several read/write heads, such as the one shown in Figure 1.12.

To get an intuitive feel for how much information these devices can store,
consider that all the information in this book, including pictures and formatting,
requires about 7 MB of storage.

Magnetic tapes also have been used as secondary storage but are considerably
slower than hard disk and USB flash drives because of the way information is
accessed. A hard disk is a direct access device since the read/write head can move, in
general, directly to the information needed. A USB flash drive is also a direct access

Disks

Read/write
head

FIGURE 1.12 A hard disk drive with multiple disks and read/write heads

16 CHAPTER 1 Introduction

device, but nothing moves mechanically. The terms direct access and random access
are often used interchangeably. However, information on a tape can be accessed
only after first getting past the intervening data. A tape must be rewound or fast-for-
warded to get to the appropriate position. A tape is therefore considered a sequential
access device . For these reasons, tapes largely have fallen out of use as a computing
storage device, just as audio cassettes have been supplanted by compact discs.

 Two other terms are used to describe memory devices: random access
memory (RAM) and read-only memory (ROM). It•s important to understand
these terms because they are used often and their names can be misleading. The
terms RAM and main memory are basically interchangeable, describing the
memory where active programs and data are stored. ROM can refer to chips
on the computer motherboard or to portable storage such as a compact disc.
ROM chips typically store software called BIOS (basic input/output system)
that provide the preliminary instructions needed when the computer is turned
on initially. After information is stored on ROM, generally it is not altered (as
the term read-only implies) during typical computer use. Both RAM and ROM
are direct (or random) access devices.

 A CD-ROM is a portable secondary memory device. CD stands
for compact disc. It is called ROM because information is stored
permanently when the CD is created and cannot be changed. Like
its musical CD counterpart, a CD-ROM stores information in binary
format. When the CD is initially created, a microscopic pit is pressed
into the disc to represent a binary 1, and the disc is left smooth to

represent a binary 0. The bits are read by shining a low-intensity laser beam onto
the spinning disc. The laser beam reflects strongly from a smooth area on the
disc but weakly from a pitted area. A sensor receiving the reflection determines
whether each bit is a 1 or a 0 accordingly. A typical CD-ROM•s storage capacity
ranges between 650 and 900 MB.

 Variations on basic CD technology emerged quickly. Most personal computers
are equipped with a CD-Recordable (CD-R) drive. A CD-R can be used to cre-
ate a CD for music or for general computer storage. Once created, you can use a
CD-R disc in a standard CD player, but you can•t change the information on a
CD-R disc once it has been •burned.Ž Music CDs that you buy are pressed from
a mold, whereas CD-Rs are burned with a laser.

 A CD-Rewritable (CD-RW) disc can be erased and reused. It can be reused because
the pits and flat surfaces of a normal CD are simulated on a CD-RW
by coating the surface of the disc with a material that, when heated
to one temperature becomes amorphous (and therefore nonreflective)
and when heated to a different temperature becomes crystalline (and
therefore reflective). The CD-RW media doesn•t work in all players, but
CD-RW drives can create both CD-R and CD-RW discs.

 KEY CONCEPT
 The surface of a CD has both
smooth areas and small pits. A pit
represents a binary 1 and a smooth
area represents a binary 0.

 KEY CONCEPT
 A rewritable CD simulates the pits
and smooth areas of a regular CD
by using a coating that can be made
amorphous or crystalline as needed.

 1.2 Hardware Components 17

CDs were initially a popular format for music; they later evolved to be used
as a general computer storage device. Similarly, the DVD format was originally
created for video and is now making headway as a general format for computer
data. DVD once stood for digital video disc or digital versatile disc, but now the
acronym generally stands on its own. A DVD has a tighter format (more bits per
square inch) than a CD and can therefore store much more information. DVD-
ROMs eventually may replace CD-ROMs completely because there is a compat-
ible migration path, meaning that a DVD drive can read a CD-ROM. Similar to
CD-R and CD-RW, there are DVD-R and DVD-RW discs. The drive listed in
Figure 1.8 allows the user to read and write CD-RW discs and read DVD-ROMs,
including the ability to play music CDs and watch DVD videos.

The speed of a CD or DVD is expressed in multiples of x, which represents
a data transfer speed of 153,600 bytes of data per second for a CD; nine times
that speed, or about 1.5 megabytes of data per second, for a DVD; and three
times the speed of a DVD, or 4.5 megabytes of data per second, for a Blu-ray
disc. The drive described in Figure 1.8 has a maximum data access speed of
16x, or about 72 MB of data per second. A dual-layer Blu-ray disc has a stor-
age capacity of 50 GB.

The capacity of storage devices changes continually as technology improves.
A general rule in the computer industry suggests that storage capacity approxi-
mately doubles every 18 months. However, this progress eventually will slow
down as capacities approach absolute physical limits.

The Central Processing Unit
The central processing unit (CPU) interacts with main memory to perform all
fundamental processing in a computer. The CPU interprets and executes instruc-
tions, one after another, in a continuous cycle. It is made up of three important
components, as shown in Figure 1.13. The control unit coordinates the processing
steps, the registers provide a small amount of storage space in the CPU itself, and
the arithmetic/logic unit performs calculations and makes decisions. The registers
are the smallest, fastest cache in the system.

The control unit coordinates the transfer of data and instructions between
main memory and the registers in the CPU. It also coordinates the execution of
the circuitry in the arithmetic/logic unit to perform operations on data stored in
particular registers.

In most CPUs, some registers are reserved for special purposes. For example,
the instruction register holds the current instruction being executed. The pro-
gram counter is a register that holds the address of the next instruction to be
executed. In addition to these and other special-purpose registers, the CPU also

18 CHAPTER 1 Introduction

contains a set of general-purpose registers that are used for temporary storage
of values as needed.

 The concept of storing both program instructions and data together in main
memory is the underlying principle of the von Neumann architecture of computer
design, named after John von Neumann, a Hungarian-American mathematician
who first advanced this programming concept in 1945. These computers continu-
ally follow the fetch-decode-execute cycle depicted in Figure 1.14 . An instruction
is fetched from main memory at the address stored in the program counter and is

put into the instruction register. The program counter is incremented
at this point to prepare for the next cycle. Then the instruction is
decoded electronically to determine which operation to carry out.
Finally, the control unit activates the correct circuitry to carry out
the instruction, which may load a data value into a register or add

two values together, for example.

 The CPU is constructed on a chip called a microprocessor, a device that is part
of the main circuit board of the computer. This board also contains ROM chips

Bus

CPU

Registers

Arithmetic/logic
unit

Main
memory

Control unit

 FIGURE 1.13 CPU components and main memory

Fetch an instruction
from main memory

Execute the instruction

Decode the instruction
and increment program

counter

 FIGURE 1.14 The continuous fetch-decode-execute cycle

 KEY CONCEPT
 The fetch-decode-execute cycle
forms the foundation of computer
processing.

 1.2 Hardware Components 19

and communication sockets to which device controllers, such as the controller
that manages the video display, can be connected.

Another crucial component of the main circuit board is the system clock. The
clock generates an electronic pulse at regular intervals, which synchronizes the events
of the CPU. The rate at which the pulses occur is called the clock speed, and it varies
depending on the processor. The computer described in Figure 1.8 includes an Intel
Core i7 processor that runs at a clock speed of 3.07 gigahertz (GHz), or approxi-
mately 3.1 billion pulses per second. The speed of the system clock provides a rough
measure of how fast the CPU executes instructions. Similar to storage capacities, the
speed of processors is constantly increasing with advances in technology.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 1.7 How many bytes are in each of the following?

a. 3 KB
b. 2 MB
c. 4 GB

SR 1.8 How many bits are there in each of the following?

a. 8 bytes
b. 2 KB
c. 4 MB

SR 1.9 The music on a CD is created using a sampling rate of 44,000 mea-
surements per second. Each measurement is stored as a number that
represents a specific voltage level. Suppose each of these numbers
requires two bytes of storage space. How many MB does it take to
represent one hour of music?

SR 1.10 What are the two primary hardware components in a computer? How
do they interact?

SR 1.11 What is a memory address?

SR 1.12 What does volatile mean? Which memory devices are volatile and
which are nonvolatile?

SR 1.13 Select the word from the following list that best matches each of the
following phrases:

 controller, CPU, main, network card, peripheral, RAM, register,
ROM, secondary

a. Almost all devices in a computer system, other than the CPU and
the main memory, are categorized as this.

20 CHAPTER 1 Introduction

 b. A device that coordinates the activities of a peripheral device.
 c. Allows information to be sent and received.
 d. This type of memory is usually volatile.
 e. This type of memory is usually nonvolatile.
 f. This term basically is interchangeable with the term •main memory.Ž
 g. Where the fundamental processing of a computer takes place.

1.3 Networks

 A single computer can accomplish a great deal, but connecting several computers
together into networks can dramatically increase productivity and facilitate the
sharing of information. A network consists of two or more computers connected
together so they can exchange information. Using networks has become the nor-

mal mode of commercial computer operation. New technologies are
emerging every day to capitalize on the connected environments of
modern computer systems.

 Figure 1.15 shows a simple computer network. One of the devices
on the network is a printer, which allows any computer connected

to the network to print a document on that printer. One of the computers on
the network is designated as a file server, which is dedicated to storing programs
and data that are needed by many network users. A file server usually has a large
amount of secondary memory. When a network has a file server, each individual
computer doesn•t need its own copy of a program.

 Network Connections
 If two computers are directly connected, they can communicate in basically the
same way that information moves across wires inside a single machine. When

Shared printer

File server

FIGURE 1.15 A simple computer network

 KEY CONCEPT
 A network consists of two or more
computers connected together so
that they can exchange information.

1.3 Networks 21

connecting two geographically close computers, this solution works well and
is called a point-to-point connection. However, consider the task of connecting
many computers together across large distances. If point-to-point connections are
used, every computer is directly connected by a wire to every other computer in the
network. A separate wire for each connection is not a workable solution because
every time a new computer is added to the network, a new communication line
will have to be installed for each computer already in the network. Furthermore,
a single computer can handle only a small number of direct connections.

 Figure 1.16 shows multiple point-to-point connections. Consider the number
of communication lines that would be needed if two or three additional comput-
ers were added to the network.

 Compare the diagrams in Figure 1.15 and Figure 1.16 . All of the computers
shown in Figure 1.15 share a single communication line. Each computer on the
network has its own network address, which uniquely identifies it. These addresses
are similar in concept to the addresses in main memory except that they identify
individual computers on a network instead of individual memory locations inside
a single computer. A message is sent across the line from one computer to another
by specifying the network address of the computer for which it is intended.

 Sharing a communication line is cost effective and makes adding
new computers to the network relatively easy. However, a shared line
introduces delays. The computers on the network cannot use the com-
munication line at the same time. They have to take turns sending infor-
mation, which means they have to wait when the line is busy.

 One technique to improve network delays is to divide large mes-
sages into segments, called packets, and then send the individual packets across
the network intermixed with pieces of other messages sent by other users. The
packets are collected at the destination and reassembled into the original message.
This situation is similar to a group of people using a conveyor belt to move a set
of boxes from one place to another. If only one person were allowed to use the
conveyor belt at a time, and that person had a large number of boxes to move,
the others would be waiting a long time before they could use it. By taking turns,

 FIGURE 1.16 Point-to-point connections

 KEY CONCEPT
 Sharing a communication line creates
delays, but it is cost effective and
simplifies adding new computers to
the network.

22 CHAPTER 1 Introduction

each person can put one box on at a time, and they all can get their work done.
It•s not as fast as having a conveyor belt of your own, but it•s not as slow as hav-
ing to wait until everyone else is finished.

 Local-Area Networks and Wide-Area Networks
 A local-area network (LAN) is designed to span short distances and connect a
relatively small number of computers. Usually a LAN connects the machines in
only one building or in a single room. LANs are convenient to install and manage

and are highly reliable. As computers became increasingly small and
versatile, LANs provided an inexpensive way to share information
throughout an organization. However, having a LAN is like having
a telephone system that allows you to call only the people in your
own town. We need to be able to share information across longer
distances.

 A wide-area network (WAN) connects two or more LANs, often across long
distances. Usually one computer on each LAN is dedicated to handling the com-
munication across a WAN. This technique relieves the other computers in a LAN
from having to perform the details of long-distance communication. Figure 1.17
shows several LANs connected into a WAN. The LANs connected by a WAN are
often owned by different companies or organizations and might even be located
in different countries.

LAN

Long-distance
connection

One computer
in a LAN

 FIGURE 1.17 LANs connected into a WAN

 KEY CONCEPT
 A local-area network (LAN) is an
effective way to share information
and resources throughout an
organization.

1.3 Networks 23

 The impact of networks on computer systems has been dramatic. Computing
resources can now be shared among many users, and computer-based commu-
nication across the entire world is common. In fact, the use of networks is now
so pervasive that some computers require network resources in order to operate.

 The Internet
 Throughout the 1970s, an agency in the Department of Defense known as the
Advanced Research Projects Agency (ARPA) funded several projects to explore
network technology. One result of these efforts was the ARPANET, a WAN that
eventually became known as the Internet. The Internet is a network of networks.
The term Internet comes from the WAN concept of internetworking „connecting
many smaller networks together.

 From the late 1980s through the present day, the Internet has
grown incredibly. In 1983, there were fewer than 600 computers
connected to the Internet. At the present time, the Internet serves
billions of users worldwide. As more and more computers con-
nect to the Internet, the task of keeping up with the larger number of users
and heavier traffic has been difficult. New technologies have replaced the
ARPANET several times since the initial development, each time providing more
capacity and faster processing.

 A protocol is a set of rules that governs how two things communicate. The
software that controls the movement of messages across the Internet must con-
form to a set of protocols called TCP/IP (pronounced by spelling out the let-
ters, T-C-P-I-P). TCP stands for Transmission Control Protocol, and IP stands
for Internet Protocol. The IP software defines how information is formatted
and transferred from the source to the destination. The TCP software handles
problems such as pieces of information arriving out of their original order or
information getting lost, which can happen if too much information converges
at one location at the same time.

 Every computer connected to the Internet has an IP address that uniquely iden-
tifies it among all other computers on the Internet. An example of an IP address
is 204.192.116.2. Fortunately, the users of the Internet rarely have
to deal with IP addresses. The Internet allows each computer to be
given a name. Like IP addresses, the names must be unique. The
Internet name of a computer is often referred to as its Internet
address. An example of Internet address is hector.vt.edu.

 The first part of an Internet address is the local name of a specific computer.
The rest of the address is the domain name, which indicates the organization to
which the computer belongs. For example, vt.edu is the domain name for the
network of computers at Virginia Tech, and hector is the name of a particular

 KEY CONCEPT
 The Internet is a wide-area network
(WAN) that spans the globe.

 KEY CONCEPT
 Every computer connected to the
Internet has an IP address that
uniquely identifies it.

24 CHAPTER 1 Introduction

computer on that campus. Because the domain names are unique, many organiza-
tions can have a computer named hector without confusion. Individual depart-
ments might be assigned subdomains that are added to the basic domain name
to uniquely distinguish their set of computers within the larger organization. For
example, the cs.vt.edu subdomain is devoted to the Department of Computer
Science at Virginia Tech.

 The last part of each domain name, called a top-level domain (TLD), usually
indicates the type of organization to which the computer belongs. The TLD edu
typically indicates an educational institution. The TLD com often refers to a com-
mercial business. Another common TLD is org , usually used by nonprofit orga-
nizations. During an international meeting held in Paris in 2008, a process was
started for introducing generic top-level domains (gTLD). The new rules could
result in hundreds of new gTLDs. Many computers, especially those outside of
the United States, use a country-code top-level domain (ccTLD) that denotes the
country of origin, such as uk for the United Kingdom or au for Australia.

 When an Internet address is referenced, it gets translated to its corresponding
IP address, which is used from that point on. The software that does this transla-
tion is called the Domain Name System (DNS). Each organization connected to
the Internet operates a domain server that maintains a list of all computers at
that organization and their IP addresses. It works somewhat like telephone direc-
tory assistance in that you provide the name, and the domain server gives back a
number. If the local domain server does not have the IP address for the name, it
contacts another domain server that does.

 The Internet has revolutionized computer processing. Initially, the primary use
of interconnected computers was to send electronic mail, but Internet capabilities
continue to improve. One of the most significant uses of the Internet is the World
Wide Web.

 The World Wide Web
 The Internet gives us the capability to exchange information. The World Wide
Web (also known as WWW or simply the Web) makes the exchange of infor-

mation easy for humans. Web software provides a common user
interface through which many different types of information can be
accessed with the click of a mouse.

 The Web is based on the concepts of hypertext and hypermedia.
The term hypertext was coined in 1965 by Ted Nelson. It describes

a way to organize information so that the flow of ideas was not constrained to a
linear progression. Paul Otlet (1868…1944), considered by some to be the father of
information science, envisioned that concept as a way to manage large amounts of
information. The underlying idea is that documents can be linked at various points

 KEY CONCEPT
 The World Wide Web is software that
makes sharing information across a
network easy for humans.

1.3 Networks 25

according to natural relationships so that the reader can jump from one document
to another, following the appropriate path for that reader•s needs. When other
media components are incorporated, such as graphics, sound, animations, and
video, the resulting organization is called hypermedia.

 The terms Internet and World Wide Web are sometimes used interchange-
ably, but there are important differences between the two. The Internet makes it
possible to communicate via computers around the world. The Web makes that
communication a straightforward and enjoyable activity. The Web is essentially a
distributed information service and is based on a set of software applications. It is
not a network. Although it is used effectively with the Internet, it is not inherently
bound to it. The Web can be used on a LAN that is not connected to any other
network or even on a single machine to display HTML documents.

 A browser is a software tool that loads and formats Web documents for view-
ing. Mosaic, the first graphical interface browser for the Web, was released in
1993. The designer of a Web document defines to other Web information that
might be anywhere on the Internet. Some of the people who developed Mosaic
went on to found the Netscape Communications Corporation and create the
Netscape Navigator browser. Popular contemporary browsers include Internet
Explorer, Mozilla Firefox, Apple Safari, Google Chrome, and Opera.

 A computer dedicated to providing access to Web documents is called a
 Web server . Browsers load and interpret documents provided by a Web server.
Many such documents are formatted using the HyperText Markup Language
(HTML). The Java programming language has an intimate relationship with
Web processing, because links to Java programs can be embedded in HTML
documents and executed through Web browsers. We explore this relationship
in more detail in Chapter 2 .

 Uniform Resource Locators
 Information on the Web is found by identifying a Uniform Resource Locator
(URL, pronounced by spelling out the letters U-R-L). A URL uniquely specifies
documents and other information for a browser to obtain and display. The fol-
lowing is an example URL:

 http://www.google.com

 The Web site at this particular URL is the home of the well-known
Google search engine , which enables you to search the Web for
information using particular words or phrases.

 A URL contains several pieces of information. The first piece is
a protocol, which determines the way the browser transmits and

 KEY CONCEPT
 A URL uniquely specifies documents
and other information found on the
Web for a browser to obtain and
display.

26 CHAPTER 1 Introduction

processes information. The second piece is the Internet address of the machine on
which the document is stored. The third piece of information is the file name or
resource of interest. If no file name is given, as is the case with the Google URL,
the Web server usually provides a default page (such as index.html).

Let•s look at another example URL:

http://www.whitehouse.gov/photos-and-video/photogallery/photo-day

In this URL, the protocol is http, which stands for HyperText Transfer Protocol .
The machine referenced is www (a typical reference to a Web server), found at
domain whitehouse.gov . Finally, photos-and-video/photogallery/photo-day
represents a file (or a reference that generates a file) to be transferred to the browser
for viewing. Many other forms for URLs exist, but this form is the most common.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 1.14 What is a file server?

SR 1.15 What is the total number of communication lines needed for a fully
connected point-to-point network of five computers? Six computers?

SR 1.16 Describe a benefit of having computers on a network share a communica-
tion line. Describe a cost/drawback of sharing a communication line.

SR 1.17 What is the etymology of the word Internet?

SR 1.18 The TCP/IP set of protocols describes communication rules for soft-
ware that uses the Internet. What does TCP stand for? What does IP
stand for?

SR 1.19 Explain the parts of the following URLs:

a. duke.csc.villanova.edu/jss/examples.html
b. java.sun.com/products/index.html

1.4 The Java Programming Language

Let•s now turn our attention to the software that makes a computer system use-
ful. A program is written in a particular programming language that uses specific
words and symbols to express the problem solution. A programming language
defines a set of rules that determines exactly how a programmer can combine the
words and symbols of the language into programming statements, which are the
instructions that are carried out when the program is executed.

Since the inception of computers, many programming languages have been
created. We use the Java language in this book to demonstrate various program-
ming concepts and techniques. Although our main goal is to learn these underlying

1.4 The Java Programming Language 27

software development concepts, an important side effect will be to become pro-
ficient in the development of Java programs.

 Java is a relatively new programming language as compared with many oth-
ers. It was initiated in 1991 by James Gosling at Sun Microsystems as one of his
many set-top box projects. The language initially was called Oak, then Green, and
ultimately Java. Java was introduced to the public in 1995 and has gained tre-
mendous popularity since. In 2010, Sun Microsystems was purchased by Oracle.

 Java has undergone various changes since its creation. There are variations
of the Java Platform, including the Standard Edition, which is the mainstream
version of the language and the associated tools; the Enterprise Edition, which
includes extra libraries to support large-scale system development; and the Micro
Edition, which is specifically for developing software for portable devices such as
cell phones. This book focuses on the Standard Edition.

 Some parts of early Java technologies have been deprecated, which means they
are considered old-fashioned and should not be used. When it is important, we
point out deprecated elements and discuss their preferred alternatives.

 One reason Java attracted some initial attention was because it was the first pro-
gramming language to deliberately embrace the concept of writing programs (called
applets) that can be executed using the Web. Since then, the techniques for creating
a Web page that has dynamic, functional capabilities have expanded dramatically.

 Java is an object-oriented programming language. Objects are
the fundamental elements that make up a program. The principles
of object-oriented software development are the cornerstone of this
book. We explore object-oriented programming concepts later in
this chapter and throughout the rest of the book.

 The Java language is accompanied by a library of extra software that we can use
when developing programs. This software is referred to as the Java API , which stands
for Application Programmer Interface, or simply the standard class library . The Java API
provides the ability to create graphics, communicate over networks, and interact with
databases, among many other features. The Java API is huge and quite versatile. We
won•t be able to cover all aspects of the library, though we will explore several of them.

 Java is used in commercial environments all over the world. It is one of the
fastest growing programming technologies of all time. So not only is it a good
language in which to learn programming concepts, it is also a practical language
that will serve you well in the future.

 A Java Program
 Let•s look at a simple but complete Java program. The program in Listing 1.1
prints two sentences to the screen. This particular program prints a quote by
Abraham Lincoln. The output is shown below the program listing.

 KEY CONCEPT
 This book focuses on the principles
of object-oriented programming.

28 CHAPTER 1 Introduction

 All Java applications have a similar basic structure. Despite its small size and
simple purpose, this program contains several important features. Let•s carefully
dissect it and examine its pieces.

 The first few lines of the program are comments, which start with
the // symbols and continue to the end of the line. Comments don•t
affect what the program does but are included to make the program
easier to understand by humans. Programmers can and should include
comments as needed throughout a program to clearly identify the pur-

pose of the program and describe any special processing. Any written comments or
documents, including a user•s guide and technical references, are called documenta-
tion. Comments included in a program are called inline documentation.

 The rest of the program is a class definition. This class is called Lincoln ,
though we could have named it just about anything we wished. The class defini-
tion runs from the first opening brace ({) to the final closing brace (}) on the last
line of the program. All Java programs are defined using class definitions.

//**
// Lincoln.java Author: Lewis/Loftus
//
// Demonstrates the basic structure of a Java application.
 //**

public class Lincoln
 {
 //---
 // Prints a presidential quote.
 //---
 public static void main (String[] args)
 {
 System.out.println ("A quote by Abraham Lincoln:");

 System.out.println ("Whatever you are, be a good one.");
 }
 }

 O U T P U T

 A quote by Abraham Lincoln:
 Whatever you are, be a good one.

 L I S T I N G 1 . 1

 KEY CONCEPT
 Comments do not affect a program•s
processing; instead, they serve to
facilitate human comprehension.

 Overview of program
elements.

VideoNote

 1.4 The Java Programming Language 29

Inside the class definition are some more comments describing the purpose of
the main method, which is defined directly below the comments. A method is a
group of programming statements that is given a name. In this case, the name of
the method is main and it contains only two programming statements. Like a class
definition, a method is also delimited by braces.

All Java applications have a main method, which is where processing begins.
Each programming statement in the main method is executed, one at a time in
order, until the end of the method is reached. Then the program ends, or termi-
nates. The main method definition in a Java program is always preceded by the
words public , static , and void , which we examine later in the text. The use of
String and args does not come into play in this particular program. We describe
these later also.

The two lines of code in the main method invoke another method called
println (pronounced print line). We invoke, or call, a method when we want
it to execute. The println method prints the specified characters to the screen.
The characters to be printed are represented as a character string, enclosed
in double quote characters ("). When the program is executed, it calls the
println method to print the first statement, calls it again to print the second
statement, and then, because that is the last line in the main method, the pro-
gram terminates.

The code executed when the println method is invoked is not defined in this
program. The println method is part of the System.out object, which is part of
the Java standard class library. It•s not technically part of the Java language, but
is always available for use in any Java program. We explore the println method
in more detail in Chapter 2.

Comments
Let•s examine comments in more detail. Comments are the only language feature
that allows programmers to compose and communicate their thoughts indepen-
dent of the code. Comments should provide insight into the programmer•s origi-
nal intent. A program is often used for many years, and often many modifications
are made to it over time. The original programmer often will not remember the
details of a particular program when, at some point in the future, modifications
are required. Furthermore, the original programmer is not always available to
make the changes; thus, someone completely unfamiliar with the program will
need to understand it. Good documentation is therefore essential.

As far as the Java programming language is concerned, the content of com-
ments can be any text whatsoever. Comments are ignored by the computer; they
do not affect how the program executes.

30 CHAPTER 1 Introduction

The comments in the Lincoln program represent one of two types of com-
ments allowed in Java. The comments in Lincoln take the following form:

// This is a comment.

This type of comment begins with a double slash (//) and continues to the end of the
line. You cannot have any characters between the two slashes. The computer ignores
any text after the double slash to the end of the line. A comment can follow code on
the same line to document that particular line, as in the following example:

System.out.println ("Monthly Report"); // always use this title

The second form a Java comment may have is the following:

/* This is another comment. */

This comment type does not use the end of a line to indicate the end of the com-
ment. Anything between the initiating slash-asterisk (/*) and the terminating
asterisk-slash (*/) is part of the comment, including the invisible newline charac-
ter that represents the end of a line. Therefore, this type of comment can extend
over multiple lines. No space can be between the slash and the asterisk.

If there is a second asterisk following the /* at the beginning of a comment,
the content of the comment can be used to automatically generate external docu-
mentation about your program by using a tool called javadoc. More information
about javadoc is given in Appendix I.

The two basic comment types can be used to create various documentation
styles, such as:

// This is a comment on a single line.

//---
// Some comments such as those above methods or classes
// deserve to be blocked off to focus special attention
// on a particular aspect of your code. Note that each of
// these lines is technically a separate comment.
//---

/*
 This is one comment
 that spans several lines.
*/

Programmers often concentrate so much on writing code that they focus too lit-
tle on documentation. You should develop good commenting practices and follow
them habitually. Comments should be well written, often in complete sentences.

1.4 The Java Programming Language 31

They should not belabor the obvious but should provide appropriate insight into
the intent of the code. The following examples are not good comments:

 System.out.println ("hello"); // prints hello
 System.out.println ("test"); // change this later

 The first comment paraphrases the obvious purpose of the line and
does not add any value to the statement. It is better to have no com-
ment than a useless one. The second comment is ambiguous. What
should be changed later? When is later? Why should it be changed?

 Identifiers and Reserved Words
 The various words used when writing programs are called identifiers. The identi-
fiers in the Lincoln program are class , Lincoln , public , static , void , main ,
 String , args , System , out , and println . These fall into three categories:

 � words that we make up when writing a program (Lincoln and args)

 � words that another programmer chose (String , System , out , println , and
 main)

 � words that are reserved for special purposes in the language (class ,
 public , static , and void)

 While writing the program, we simply chose to name the class Lincoln , but
we could have used one of many other possibilities. For example, we could have
called it Quote , or Abe , or GoodOne . The identifier args (which is short for argu-
ments) is often used in the way we use it in Lincoln , but we could have used just
about any other identifier in its place.

 The identifiers String , System , out , and println were chosen by other pro-
grammers. These words are not part of the Java language. They are part of the
Java standard library of predefined code, a set of classes and methods that some-
one has already written for us. The authors of that code chose the identifiers in
that code„we•re just making use of them.

 Reserved words are identifiers that have a special meaning in a programming
language and can only be used in predefined ways. A reserved word cannot be
used for any other purpose, such as naming a class or method. In the Lincoln pro-
gram, the reserved words used are class , public , static , and void . Throughout
the book, we show Java reserved words in blue type. Figure 1.18 lists all of the
Java reserved words in alphabetical order. The words marked with an asterisk
have been reserved, but currently have no meaning in Java.

 An identifier that we make up for use in a program can be composed of
any combination of letters, digits, the underscore character (_), and the dol-
lar sign ($), but it cannot begin with a digit. Identifiers may be of any length.

 KEY CONCEPT
 Inline documentation should provide
insight into your code. It should not
be ambiguous or belabor the obvious.

32 CHAPTER 1 Introduction

Therefore, total , label7 , nextStockItem , NUM_BOXES, and $amount are all
valid identifiers, but 4th_word and coin#value are not valid.

Both uppercase and lowercase letters can be used in an identifier, and the dif-
ference is important. Java is case sensitive, which means that two identifier names
that differ only in the case of their letters are considered to be different identifiers.
Therefore, total , Total , ToTaL, and TOTAL are all different identifiers. As you can
imagine, it is not a good idea to use multiple identifiers that differ only in their
case, because they can be easily confused.

abstract

assert

boolean

break

byte

case

catch

char

class

const *

continue

default

do

double

else

enum

extends

false

final

finally

float

for

goto *

if

implements

import

instanceof

int

interface

long

native

new

null

package

private

protected

public

return

short

static

strictfp

super

switch

synchronized

this

throw

throws

transient

true

try

void

volatile

while

FIGURE 1.18 Java reserved words

Identifier

Java Letter

Java Letter

Java Digit

An identifier is a letter followed by zero or more letters and digits.
A Java Letter includes the 26 English alphabetic characters in both
uppercase and lowercase, the $ and _ (underscore) characters, as well
as alphabetic characters from other languages. A Java Digit includes
the digits 0 through 9.

Examples:

total
MAX_HEIGHT
num1
Keyboard
System

1.4 The Java Programming Language 33

 Although the Java language doesn•t require it, using a consistent
case format for each kind of identifier makes your identifiers easier
to understand. There are various Java conventions regarding identi-
fiers that should be followed, though technically they don•t have to
be. For example, we use title case (uppercase for the first letter of
each word) for class names. Throughout the text, we describe the preferred case
style for each type of identifier when it is first encountered.

 While an identifier can be of any length, you should choose your names care-
fully. They should be descriptive but not verbose. You should avoid meaningless
names such as a or x . An exception to this rule can be made if the short name
is actually descriptive, such as using x and y to represent (x , y) coordinates on a
two-dimensional grid. Likewise, you should not use unnecessarily long names,
such as the identifier theCurrentItemBeingProcessed . The name currentItem

would serve just as well. As you might imagine, the use of identifiers that are
verbose is a much less prevalent problem than the use of names that are not
descriptive.

 You should always strive to make your programs as readable as possible.
Therefore, you should always be careful when abbreviating words. You might
think curStVal is a good name to represent the current stock value,
but another person trying to understand the code may have trouble
figuring out what you meant. It might not even be clear to you two
months after writing it.

 White Space
 All Java programs use white space to separate the words and symbols used in a
program. White space consists of blanks, tabs, and newline characters. The phrase
•white spaceŽ refers to the fact that, on a white sheet of paper with black print-
ing, the space between the words and symbols is white. The way a programmer
uses white space is important because it can be used to emphasize parts of the
code and can make a program easier to read.

 Except when it•s used to separate words, the computer ignores
white space. It does not affect the execution of a program. This fact
gives programmers a great deal of flexibility in how they format a
program. The lines of a program should be divided in logical places,
and certain lines should be indented and aligned so that the pro-
gram•s underlying structure is clear.

 Because white space is ignored, we can write a program in many different
ways. For example, taking white space to one extreme, we could put as many
words as possible on each line. The code in Listing 1.2 , the Lincoln2 program, is
formatted quite differently from Lincoln but prints the same message.

 KEY CONCEPT
 Java is case sensitive. The uppercase
and lowercase versions of a letter
are distinct.

 KEY CONCEPT
 Identifier names should be descrip-
tive and readable.

 KEY CONCEPT
 Appropriate use of white space
makes a program easier to read and
understand.

34 CHAPTER 1 Introduction

 Taking white space to the other extreme, we could write almost every word
and symbol on a different line with varying amounts of spaces, such as Lincoln3 ,
shown in Listing 1.3 .

 All three versions of Lincoln are technically valid and will execute
in the same way, but they are radically different from a reader•s
point of view. Both of the latter examples show poor style and make
the program difficult to understand. You may be asked to adhere
to particular guidelines when you write your programs. A software

development company often has a programming style policy that it requires its
programmers to follow. In any case, you should adopt and consistently use a set
of style guidelines that increase the readability of your code.

//**
// Lincoln2.java Author: Lewis/Loftus
//
// Demonstrates a poorly formatted, though valid, program.
//**

 public class Lincoln2{ public static void main(String[]args){
 System.out.println("A quote by Abraham Lincoln:");
 System.out.println("Whatever you are, be a good one.");}}

 O U T P U T

 A quote by Abraham Lincoln:
 Whatever you are, be a good one.

 L I S T I N G 1 . 2

 KEY CONCEPT
 You should adhere to a set of guide-
lines that establish the way you for-
mat and document your programs.

//**
// Lincoln3.java Author: Lewis/Loftus
//
// Demonstrates another valid program that is poorly formatted.
//**
 public class
 Lincoln3
 {
 public
 static
 void
 main

L I S T I N G 1 . 3

 1.4 The Java Programming Language 35

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 1.20 When was the Java programming language developed? By whom?
When was it introduced to the public?

SR 1.21 Where does processing begin in a Java application?

SR 1.22 What do you predict would be the result of the following line in a
Java program?

System.out.println("Hello"); // prints hello

SR 1.23 What do you predict would be the result of the following line in a
Java program?

// prints hello System.out.println("Hello");

SR 1.24 Which of the following are not valid Java identifiers? Why?

a. RESULT

b. result

c. 12345

d. x12345y

e. black&white

f. answer_7

 (
String
 []
 args)
 {
 System.out.println (
"A quote by Abraham Lincoln:")
 ; System.out.println
 (
 "Whatever you are, be a good one."
)
 ;
}
 }

O U T P U T

A quote by Abraham Lincoln:
Whatever you are, be a good one.

L I S T I N G 1 . 3 continued

36 CHAPTER 1 Introduction

SR 1.25 Suppose a program requires an identifier to represent the sum of the
test scores of a class of students. For each of the following names,
state whether or not each is a good name to use for the identifier.
Explain your answers.

a. x

b. scoreSum

c. sumOfTheTestScoresOfTheStudents

d. smTstScr

SR 1.26 What is white space? How does it affect program execution? How
does it affect program readability?

1.5 Program Development

The process of getting a program running involves various activities. The program
has to be written in the appropriate programming language, such as Java. That
program has to be translated into a form that the computer can execute. Errors
can occur at various stages of this process and must be fixed. Various software
tools can be used to help with all parts of the development process as well. Let•s
explore these issues in more detail.

Programming Language Levels
Suppose a particular person is giving travel directions to a friend. That person might
explain those directions in any one of several languages, such as English, Russian, or
Italian. The directions are the same no matter which language is used to explain them,
but the manner in which the directions are expressed is different. The friend must be
able to understand the language being used in order to follow the directions.

Similarly, a problem can be solved by writing a program in one of many pro-
gramming languages, such as Java, Ada, C, C++, C#, Pascal, and Smalltalk. The
purpose of the program is essentially the same no matter which language is used,
but the particular statements used to express the instructions, and the overall
organization of those instructions, vary with each language. A computer must be
able to understand the instructions in order to carry them out.

Programming languages can be categorized into the following four groups.
These groups basically reflect the historical development of computer languages.

� machine language

� assembly language

1.5 Program Development 37

� high-level languages

� fourth-generation languages

 In order for a program to run on a computer, it must be expressed in that
computer•s machine language. Each type of CPU has its own language. For that
reason, we can•t run a program specifically written for a Sun Workstation, with
its Sparc processor, on a Dell PC, with its Intel processor.

 Each machine language instruction can accomplish only a simple
task. For example, a single machine language instruction might copy
a value into a register or compare a value to zero. It might take four
separate machine language instructions to add two numbers together
and to store the result. However, a computer can do millions of these
instructions in a second, and therefore many simple commands can
be executed quickly to accomplish complex tasks.

 Machine language code is expressed as a series of binary digits and is extremely
difficult for humans to read and write. Originally, programs were entered into the
computer by using switches or some similarly tedious method. Early programmers
found these techniques to be time consuming and error prone.

 These problems gave rise to the use of assembly language, which replaced
binary digits with mnemonics, short English-like words that represent commands
or data. It is much easier for programmers to deal with words than with binary
digits. However, an assembly language program cannot be executed directly on a
computer. It must first be translated into machine language.

 Generally, each assembly language instruction corresponds to an equivalent
machine language instruction. Therefore, similar to machine language, each assembly
language instruction accomplishes only a simple operation. Although assembly
language is an improvement over machine code from a programmer•s perspec-
tive, it is still tedious to use. Both assembly language and machine language are
considered low-level languages.

 Today, most programmers use a high-level language to write soft-
ware. A high-level language is expressed in English-like phrases, and
thus is easier for programmers to read and write. A single high-level
language programming statement can accomplish the equivalent of
many„perhaps hundreds„of machine language instructions. The
term high-level refers to the fact that the programming statements are expressed in
a way that is far removed from the machine language that is ultimately executed.
Java is a high-level language, as are Ada, C++, Smalltalk, and many others.

 Figure 1.19 shows equivalent expressions in a high-level language, assembly
language, and machine language. The expressions add two numbers together. The
assembly language and machine language in this example are specific to a Sparc
processor.

 KEY CONCEPT
 All programs must be translated to a
particular CPU•s machine language in
order to be executed.

 KEY CONCEPT
 High-level languages allow a pro-
grammer to ignore the underlying
details of machine language.

38 CHAPTER 1 Introduction

The high-level language expression in Figure 1.19 is readable and intuitive for
programmers. It is similar to an algebraic expression. The equivalent assembly
language code is somewhat readable, but it is more verbose and less intuitive.
The machine language is basically unreadable and much longer. In fact, only a
small portion of the binary machine code to add two numbers together is shown
in Figure 1.19. The complete machine language code for this particular expression
is over 400 bits long.

A high-level language insulates programmers from needing to know the
underlying machine language for the processor on which they are working. But
high-level language code must be translated into machine language in order to be
executed.

Some programming languages are considered to operate at an even higher
level than high-level languages. They might include special facilities for automatic
report generation or interaction with a database. These languages are called
fourth-generation languages, or simply 4GLs, because they followed the first three
generations of computer programming: machine, assembly, and high-level.

Editors, Compilers, and Interpreters
Several special-purpose programs are needed to help with the process of develop-
ing new programs. They are sometimes called software tools because they are
used to build programs. Examples of basic software tools include an editor, a
compiler, and an interpreter.

Initially, you use an editor as you type a program into a computer and store
it in a file. There are many different editors with many different features. You
should become familiar with the editor you will use regularly because it can dra-
matically affect the speed at which you enter and modify your programs.

High-Level Language Assembly Language Machine Language

a + b 1d [%fp…20], %o0

1d [%fp…24], %o1

add %o0, %o1, %o0

...

1101 0000 0000 0111

1011 1111 1110 1000

1101 0010 0000 0111

1011 1111 1110 1000

1001 0000 0000 0000

...

 FIGURE 1.19 A high-level expression and its assembly language and
machine language equivalent

1.5 Program Development 39

 Figure 1.20 shows a very basic view of the program development process. After
editing and saving your program, you attempt to translate it from high-level code
into a form that can be executed. That translation may result in errors, in which
case you return to the editor to make changes to the code to fix the problems.
Once the translation occurs successfully, you can execute the program and evalu-
ate the results. If the results are not what you want, or if you want to enhance
your existing program, you again return to the editor to make changes.

 The translation of source code into (ultimately) machine language for a par-
ticular type of CPU can occur in a variety of ways. A compiler is a program that
translates code in one language to equivalent code in another language. The origi-
nal code is called source code, and the language into which it is translated is called
the target language. For many traditional compilers, the source code is translated
directly into a particular machine language. In that case, the translation process
occurs once (for a given version of the program), and the resulting executable
program can be run whenever needed.

 An interpreter is similar to a compiler but has an important difference. An
interpreter interweaves the translation and execution activities. A small part of
the source code, such as one statement, is translated and executed. Then another
statement is translated and executed, and so on. One advantage of this technique
is that it eliminates the need for a separate compilation phase. However, the pro-
gram generally runs more slowly because the translation process occurs during
each execution.

 The process generally used to translate and execute Java programs
combines the use of a compiler and an interpreter. This process is
pictured in Figure 1.21 . The Java compiler translates Java source
code into Java bytecode, which is a representation of the program in
a low-level form similar to machine language code. The Java inter-
preter reads Java bytecode and executes it on a specific machine.
Another compiler could translate the bytecode into a particular machine language
for efficient execution on that machine.

 The difference between Java bytecode and true machine language code is that
Java bytecode is not tied to any particular processor type. This approach has the

Edit and
save program

Translate program
into executable form

errors errors

Execute program and
evaluate results

FIGURE 1.20 Editing and running a program

 KEY CONCEPT
 A Java compiler translates Java
source code into Java bytecode, a
low-level, architecture-neutral repre-
sentation of the program.

40 CHAPTER 1 Introduction

distinct advantage of making Java architecture neutral, and therefore easily por-
table from one machine type to another. The only restriction is that there must
be a Java interpreter or a bytecode compiler for each processor type on which the
Java bytecode is to be executed.

Since the compilation process translates the high-level Java source code into
a low-level representation, the interpretation process is more efficient than inter-
preting high-level code directly. Executing a program by interpreting its bytecode
is still slower than executing machine code directly, but it is fast enough for
most applications. Note that for efficiency, Java bytecode could be compiled into
machine code.

Development Environments
A software development environment is the set of tools used to create, test, and
modify a program. Some development environments are available for free while
others, which may have advanced features, must be purchased. Some environ-
ments are referred to as integrated development environments (IDEs) because
they integrate various tools into one software program and provide a convenient
graphical user interface.

Any development environment will contain certain key tools, such as a Java
compiler and interpreter. Some will include a debugger, which helps you find

Java source
code

Java
bytecodeJava compiler

Java
interpreter

Bytecode
compiler

Machine
code

FIGURE 1.21 The Java translation and execution process

1.5 Program Development 41

errors in a program. Other tools that may be included are documentation genera-
tors, archiving tools, and tools that help you visualize your program structure.

 Included in the download of the Java Standard Edition is the Java Software
Development Kit (SDK), which is sometimes referred to simply as the Java
Development Kit (JDK). The Java SDK contains the core development tools
needed to get a Java program up and running, but it is not an integrated envi-
ronment. The commands for compilation and interpretation are executed on the
command line. That is, the SDK does not have a GUI. It also does not include an
editor, although any editor that can save a document as simple text can be used.

 One of the most popular Java IDEs is called Eclipse (see www.eclipse.org).
Eclipse is an open source project, meaning that it is developed by a wide collection
of programmers and is available for free. Other popular Java IDEs include jEdit
(www.jedit.org), DrJava (drjava.sourceforge.net), jGRASP (www.jgrasp.com), and
BlueJ (www.bluej.org).

 Various other Java development environments are available. A
Web search will unveil dozens of them. The choice of which devel-
opment environment to use is important. The more you know about
the capabilities of your environment, the more productive you can
be during program development.

 Syntax and Semantics
 Each programming language has its own unique syntax. The syntax rules of a
language dictate exactly how the vocabulary elements of the language can be
combined to form statements. These rules must be followed in order to create a
program. We•ve already discussed several Java syntax rules. For instance, the fact
that an identifier cannot begin with a digit is a syntax rule. The fact that braces
are used to begin and end classes and methods is also a syntax rule. Appendix L
formally defines the basic syntax rules for the Java programming language, and
specific rules are highlighted throughout the text.

 During compilation, all syntax rules are checked. If a program is not syntacti-
cally correct, the compiler will issue error messages and will not produce byte-
code. Java has a similar syntax to the programming languages C and C++, and
therefore the look and feel of the code is familiar to people with a background in
those languages.

 The semantics of a statement in a programming language define what will
happen when that statement is executed. Programming languages are generally
unambiguous, which means the semantics of a program are well defined. That is,
there is one and only one interpretation for each statement. On the other hand,
the natural languages that humans use to communicate, such as English and

 KEY CONCEPT
 Many different development environ-
ments exist to help you create and
modify Java programs.

 Comparison of Java
IDEs.

VideoNote

42 CHAPTER 1 Introduction

Italian, are full of ambiguities. A sentence can often have two or more different
meanings. For example, consider the following sentence:

 Time flies like an arrow.

 The average human is likely to interpret this sentence as a general
observation: that time moves quickly in the same way that an arrow
moves quickly. However, if we interpret the word time as a verb
(as in •run the 50-yard dash and I•ll time youŽ) and the word flies
as a noun (the plural of fly), the interpretation changes completely.

We know that arrows don•t time things, so we wouldn•t normally interpret the
sentence that way, but it is a valid interpretation of the words in the sentence.
A computer would have a difficult time trying to determine which meaning is
intended. Moreover, this sentence could describe the preferences of an unusual
insect known as a •time fly,Ž which might be found near an archery range. After
all, fruit flies like a banana.

 The point is that one specific English sentence can have multiple valid mean-
ings. A computer language cannot allow such ambiguities to exist. If a program-
ming language instruction could have two different meanings, a computer would
not be able to determine which one should be carried out.

 Errors
 Several different kinds of problems can occur in software, particularly during
program development. The term computer error is often misused and varies in
meaning depending on the situation. From a user•s point of view, anything that
goes awry when interacting with a machine can be called a computer error. For
example, suppose you charged a $23 item to your credit card, but when you
received the bill, the item was listed at $230. After you have the problem fixed,
the credit card company apologizes for the •computer error.Ž Did the computer
arbitrarily add a zero to the end of the number, or did it perhaps multiply the

value by 10? Of course not. A computer follows the commands we
give it and operates on the data we provide. If our programs are
wrong or our data inaccurate, then we cannot expect the results to
be correct. A common phrase used to describe this situation is •gar-
bage in, garbage out.Ž

 You will encounter three kinds of errors as you develop programs:

� compile-time error

� run-time error

� logical error

 KEY CONCEPT
 Syntax rules dictate the form of
a program. Semantics dictate the
meaning of the program statements.

 KEY CONCEPT
 The programmer is responsible for
the accuracy and reliability of a
program.

1.5 Program Development 43

 The compiler checks to make sure you are using the correct syn-
tax. If you have any statements that do not conform to the syntactic
rules of the language, the compiler will produce a syntax error. The
compiler also tries to find other problems, such as the use of incom-
patible types of data. The syntax might be technically correct, but
you may be attempting to do something that the language doesn•t semantically
allow. Any error identified by the compiler is called a compile-time error. If a
compile-time error occurs, an executable version of the program is not created.

 The second kind of problem occurs during program execution. It is called a
run-time error and causes the program to terminate abnormally. For example, if
we attempt to divide by zero, the program will •crashŽ and halt execution at that
point. Because the requested operation is undefined, the system simply abandons
its attempt to continue processing your program. The best programs are robust ;
that is, they avoid as many run-time errors as possible. For example, the program
code could guard against the possibility of dividing by zero and handle the situa-
tion appropriately if it arises. In Java, many run-time problems are called excep-
tions that can be caught and dealt with accordingly.

 The third kind of software problem is a logical error. In this case, the software
compiles and executes without complaint, but it produces incorrect results. For
example, a logical error occurs when a value is calculated incorrectly or when a
graphical button does not appear in the correct place. A programmer must test the
program thoroughly, comparing the expected results to those that actually occur.
When defects are found, they must be traced back to the source of the problem in
the code and corrected. The process of finding and correcting defects in a program
is called debugging. Logical errors can manifest themselves in many ways, and the
actual root cause might be difficult to discover.

 SELF-REVIEW QUESTIONS (see answers in Appendix N)

 SR 1.27 We all know that computers are used to perform complex jobs. In this
section, you learned that a computer•s instructions can do only simple
tasks. Explain this apparent contradiction.

 SR 1.28 What is the relationship between a high-level language and a machine
language?

 SR 1.29 What is Java bytecode?

 SR 1.30 Select the word from the following list that best matches each of the
following phrases:

 assembly, compiler, high-level, IDE, interpreter, Java, low-level, machine

 a. A program written in this type of language can run directly on a
computer.

 KEY CONCEPT
 A Java program must be syntactically
correct or the compiler will not pro-
duce bytecode.

 Examples of various
error types.

VideoNote

44 CHAPTER 1 Introduction

b. Generally, each language instruction in this type of language
corresponds to an equivalent machine language instruction.

c. Most programmers write their programs using this type of
language.

d. Java is an example of this type of language.
e. This type of program translates code in one language to code in

another language.
f. This type of program interweaves the translation of code and the

execution of the code.

SR 1.31 What do we mean by the syntax and semantics of a programming
language?

SR 1.32 Categorize each of the following situations as a compile-time error,
run-time error, or logical error.

a. Misspelling a Java reserved word.
b. Calculating the average of an empty list of numbers by dividing

the sum of the numbers on the list (which is zero) by the size of
the list (which is also zero).

c. Printing a student•s high test grade when the student•s average test
grade should have been output.

1.6 Object-Oriented Programming

As we stated earlier in this chapter, Java is an object-oriented (OO) language. As
the name implies, an object is a fundamental entity in a Java program. This book
is focused on the idea of developing software by defining objects that interact
with each other.

The principles of object-oriented software development have been around for
many years, essentially as long as high-level programming languages have been
used. The programming language Simula, developed in the 1960s, had many
characteristics that define the modern OO approach to software development.
In the 1980s and 1990s, object-oriented programming became wildly popular,
due in large part to the development of programming languages such as C++ and
Java. It is now the dominant approach used in commercial software development.

One of the most attractive characteristics of the object-oriented approach is the
fact that objects can be used quite effectively to represent real-world entities. We
can use a software object to represent an employee in a company, for instance.
We•d create one object per employee, each with behaviors and characteristics that
we need to represent. In this way, object-oriented programming allows us to map

1.6 Object-Oriented Programming 45

our programs to the real situations that the programs represent. That
is, the object-oriented approach makes it easier to solve problems,
which is the point of writing a program in the first place.

 Let•s discuss the general issues related to problem solving, and then
explore the specific characteristics of the object-oriented approach that
helps us solve those problems.

 Problem Solving
 In general, problem solving consists of multiple steps:

1. Understanding the problem.
2. Designing a solution.
3. Considering alternatives to the solution and refining the solution.
4. Implementing the solution.
5. Testing the solution and fixing any problems that exist.

 Although this approach applies to any kind of problem solving, it works par-
ticularly well when developing software. These steps aren•t purely linear. That
is, some of the activities will overlap others. But at some point, all of these steps
should be carefully addressed.

 The first step, understanding the problem, may sound obvious, but a lack of
attention to this step has been the cause of many misguided software development
efforts. If we attempt to solve a problem we don•t completely understand, we
often end up solving the wrong problem or at least going off on improper tan-
gents. Each problem has a problem domain , the real-world issues that are key to
our solution. For example, if we are going to write a program to score a bowling
match, then the problem domain includes the rules of bowling. To develop a good
solution, we must thoroughly understand the problem domain.

 The key to designing a problem solution is breaking it down
into manageable pieces. A solution to any problem can rarely be
expressed as one big task. Instead, it is a series of small cooperating
tasks that interact to perform a larger task. When developing soft-
ware, we don•t write one big program. We design separate pieces
that are responsible for certain parts of the solution, and then inte-
grate them with the other parts.

 Our first inclination toward a solution may not be the best one. We must
always consider alternatives and refine the solution as necessary. The earlier we
consider alternatives, the easier it is to modify our approach.

 Implementing the solution is the act of taking the design and putting it in a
usable form. When developing a software solution to a problem, the implementation

 KEY CONCEPT
 Object-oriented programming helps
us solve problems, which is the
purpose of writing a program.

 KEY CONCEPT
 Program design involves breaking
a solution down into manageable
pieces.

46 CHAPTER 1 Introduction

stage is the process of actually writing the program. Too often programming is
thought of as writing code. But in most cases, the act of designing the program
should be far more interesting and creative than the process of implementing the
design in a particular programming language.

At many points in the development process, we should test our solution to find
any errors that exist so that we can fix them. Testing cannot guarantee that there
aren•t still problems yet to be discovered, but it can raise our confidence that we
have a viable solution.

Throughout this text we explore techniques that allow us to design and imple-
ment elegant programs. Although we will often get immersed in these details, we
should never forget that our primary goal is to solve problems.

Object-Oriented Software Principles
Object-oriented programming ultimately requires a solid understanding of the
following terms:

� object

� attribute

� method

� class

� encapsulation

� inheritance

� polymorphism

In addition to these terms, there are many associated concepts that allow us
to tailor our solutions in innumerable ways. This book is designed to help you
evolve your understanding of these concepts gradually and naturally. This section
provides an overview of these ideas at a high level to establish some terminology
and provide the big picture.

We mentioned earlier that an object is a fundamental element in a program. A
software object often represents a real object in our problem domain, such as a
bank account. Every object has a state and a set of behaviors. By •stateŽ we mean
state of being„fundamental characteristics that currently define the object. For
example, part of a bank account•s state is its current balance. The behaviors of
an object are the activities associated with the object. Behaviors associated with
a bank account probably include the ability to make deposits and withdrawals.

In addition to objects, a Java program also manages primitive data. Primitive
data includes fundamental values such as numbers and characters. Objects usually
represent more interesting or complex entities.

1.6 Object-Oriented Programming 47

 An object•s attributes are the values it stores internally, which may
be represented as primitive data or as other objects. For example, a
bank account object may store a floating point number (a primitive
value) that represents the balance of the account. It may contain
other attributes, such as the name of the account owner. Collectively,
the values of an object•s attributes define its current state.

 As mentioned earlier in this chapter, a method is a group of programming
statements that is given a name. When a method is invoked, its statements are
executed. A set of methods is associated with an object. The methods of an object
define its potential behaviors. To define the ability to make a deposit into a bank
account, we define a method containing programming statements that will update
the account balance accordingly.

 An object is defined by a class . A class is the model or blueprint from which
an object is created. Consider the blueprint created by an architect when design-
ing a house. The blueprint defines the important characteristics of the house„its
walls, windows, doors, electrical outlets, and so on. Once the blueprint is created,
several houses can be built using it, as depicted in Figure 1.22 .

 In one sense, the houses built from the blueprint are different. They are in
different locations, have different addresses, contain different furniture, and are
inhabited by different people. Yet in many ways they are the •sameŽ house. The

 FIGURE 1.22 A class is used to create objects just as a house blueprint is
used to create different, but similar, houses

 KEY CONCEPT
 Each object has a state, defined by
its attributes, and a set of behaviors,
defined by its methods.

48 CHAPTER 1 Introduction

layout of the rooms and other crucial characteristics are the same in each. To cre-
ate a different house, we would need a different blueprint.

 A class is a blueprint of an object. It establishes the kind of data an object of
that type will hold and defines the methods that represent the behavior of such
objects. However, a class is not an object any more than a blueprint is a house. In
general, a class contains no space to store data. Each object has space for its own
data, which is why each object can have its own state.

 Once a class has been defined, multiple objects can be created
from that class. For example, once we define a class to represent the
concept of a bank account, we can create multiple objects that rep-
resent specific, individual bank accounts. Each bank account object
would keep track of its own balance.

 An object should be encapsulated , which means it protects and manages its
own information. That is, an object should be self-governing. The only changes
made to the state of the object should be accomplished by that object•s methods.
We should design objects so that other objects cannot •reach inŽ and change their
states.

 Classes can be created from other classes by using inheritance . That is, the defi-
nition of one class can be based on another class that already exists. Inheritance is
a form of software reuse , capitalizing on the similarities between various kinds of
classes that we may want to create. One class can be used to derive several new
classes. Derived classes can then be used to derive even more classes. This creates
a hierarchy of classes, where the attributes and methods defined in one class are
inherited by its children, which in turn pass them on to their children, and so on.
For example, we might create a hierarchy of classes that represent various types
of accounts. Common characteristics are defined in high-level classes, and specific
differences are defined in derived classes.

Polymorphism is the idea that we can refer to multiple types of related objects
over time in consistent ways. It gives us the ability to design powerful and elegant
solutions to problems that deal with multiple objects.

 Some of the core object-oriented concepts are depicted in Figure 1.23 . We
don•t expect you to understand these ideas fully at this point. Most of this book
is designed to flesh out these ideas. This overview is intended only to set the stage.

 KEY CONCEPT
 A class is a blueprint of an object.
Multiple objects can be created from
one class definition.

 1.6 Object-Oriented Programming 49

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 1.33 List the five general steps required to solve a problem.

SR 1.34 Why is it important to consider more than one approach to solving a
problem? Why is it important to consider alternatives early in the
process of solving a problem?

SR 1.35 What are the primary concepts that support object-oriented
programming?

John's Bank Account
Balance: $5,257

Multiple encapsulated objects
can be created from one class

A class defines
a concept

Classes can be organized
into inheritance hierarchies

Bill's Bank Account
Balance: $1,245,069

Mary's Bank Account
Balance: $16,833

Bank Account

 Account

 Charge Account Bank Account

 Savings Account Checking Account

FIGURE 1.23 Various aspects of object-oriented software

50 CHAPTER 1 Introduction

� A computer system consists of hardware and software that work in
concert to help us solve problems.

� The CPU reads the program instructions from main memory, executing
them one at a time until the program ends.

� The operating system provides a user interface and manages computer
resources.

� As far as the user is concerned, the interface is the program.

� Digital computers store information by breaking it into pieces and repre-
senting each piece as a number.

� Binary is used to store and move information in a computer because the
devices that store and manipulate binary data are inexpensive and reliable.

� There are exactly 2N permutations of N bits. Therefore, N bits can repre-
sent up to 2N unique items.

� The core of a computer is made up of main memory, which stores pro-
grams and data, and the CPU, which executes program instructions one at
a time.

� An address is a unique number associated with a memory location.

� Main memory is volatile, meaning the stored information is maintained
only as long as electric power is supplied.

� The surface of a CD has both smooth areas and small pits. A pit repre-
sents a binary 1 and a smooth area represents a binary 0.

� A rewritable CD simulates the pits and smooth areas of a regular CD by
using a coating that can be made amorphous or crystalline as needed.

� The fetch-decode-execute cycle forms the foundation of computer
processing.

� A network consists of two or more computers connected together so that
they can exchange information.

� Sharing a communication line creates delays, but it is cost effective and
simplifies adding new computers to the network.

� A local-area network (LAN) is an effective way to share information and
resources throughout an organization.

� The Internet is a wide-area network (WAN) that spans the globe.

� Every computer connected to the Internet has an IP address that uniquely
identifies it.

Summary of Key Concepts

 Summary of Key Concepts 51

� The World Wide Web is software that makes sharing information across a
network easy for humans.

� A URL uniquely specifies documents and other information found on the
Web for a browser to obtain and display.

� This book focuses on the principles of object-oriented programming.

� Comments do not affect a program•s processing; instead, they serve to
facilitate human comprehension.

� Inline documentation should provide insight into your code. It should not
be ambiguous or belabor the obvious.

� Java is case sensitive. The uppercase and lowercase versions of a letter are
distinct.

� Identifier names should be descriptive and readable.

� Appropriate use of white space makes a program easier to read and
understand.

� You should adhere to a set of guidelines that establish the way you format
and document your programs.

� All programs must be translated to a particular CPU•s machine language in
order to be executed.

� High-level languages allow a programmer to ignore the underlying details
of machine language.

� A Java compiler translates Java source code into Java bytecode, a low-
level, architecture-neutral representation of the program.

� Many different development environments exist to help you create and
modify Java programs.

� Syntax rules dictate the form of a program. Semantics dictate the meaning
of the program statements.

� The programmer is responsible for the accuracy and reliability of a program.

� A Java program must be syntactically correct or the compiler will not
produce bytecode.

� Object-oriented programming helps us solve problems, which is the pur-
pose of writing a program.

� Program design involves breaking a solution down into manageable pieces.

� Each object has a state, defined by its attributes, and a set of behaviors,
defined by its methods.

� A class is a blueprint of an object. Multiple objects can be created from
one class definition.

52 CHAPTER 1 Introduction

Exercises
Visit www.myprogramminglab.com to complete many of these Exercises
online and get instant feedback.

EX 1.1 Describe the hardware components of your personal computer or
of a computer in a lab to which you have access. Include the pro-
cessor type and speed, storage capacities of main and secondary
memory, and types of I/O devices. Explain how you determined
your answers.

EX 1.2 Why do we use the binary number system to store information
on a computer?

EX 1.3 How many unique items can be represented with each of the fol-
lowing?

a. 1 bit

b. 3 bits

c. 6 bits

d. 8 bits

e. 10 bits

f. 16 bits

EX 1.4 If a picture is made up of 128 possible colors, how many bits
would be needed to store each pixel of the picture? Why?

EX 1.5 If a language uses 240 unique letters and symbols, how many bits
would be needed to store each character of a document? Why?

EX 1.6 How many bits are there in each of the following? How many
bytes are there in each?

a. 12 KB

b. 5 MB

c. 3 GB

d. 2 TB

EX 1.7 Explain the difference between random access memory (RAM)
and read-only memory (ROM).

EX 1.8 A disk is a random-access device but it is not RAM (random
access memory). Explain.

EX 1.9 Determine how your computer, or a computer in a lab to which
you have access, is connected to others across a network. Is it
linked to the Internet? Draw a diagram to show the basic
connections in your environment.

 Exercises 53

EX 1.10 Explain the differences between a local-area network (LAN) and a
wide-area network (WAN). What is the relationship between them?

EX 1.11 What is the total number of communication lines needed for a
fully connected point-to-point network of eight computers? Nine
computers? Ten computers? What is a general formula for deter-
mining this result?

EX 1.12 Explain the difference between the Internet and the World Wide
Web.

EX 1.13 List and explain the parts of the URLs for:

a. your school

b. the Computer Science department of your school

c. your instructor•s Web page

EX 1.14 Use a Web browser to access information through the Web about
the following topics. For each one, explain the process you used to
find the information and record the specific URLs you found.

a. the Philadelphia Phillies baseball team

b. wine production in California

c. the subway systems in two major cities

d. vacation opportunities in the Caribbean

EX 1.15 Give examples of the two types of Java comments and explain
the differences between them.

EX 1.16 Which of the following are not valid Java identifiers? Why?

a. Factorial

b. anExtremelyLongIdentifierIfYouAskMe

c. 2ndLevel

d. level2

e. MAX_SIZE

f. highest$

g. hook&ladder

EX 1.17 Why are the following valid Java identifiers not considered good
identifiers?

a. q

b. totVal

c. theNextValueInTheList

54 CHAPTER 1 Introduction

EX 1.18 Java is case sensitive. What does that mean?

EX 1.19 What do we mean when we say that the English language is
ambiguous? Give two examples of English ambiguity (other than
the example used in this chapter) and explain the ambiguity.
Why is ambiguity a problem for programming languages?

EX 1.20 Categorize each of the following situations as a compile-time
error, run-time error, or logical error.

a. multiplying two numbers when you meant to add them

b. dividing by zero

c. forgetting a semicolon at the end of a programming statement

d. spelling a word incorrectly in the output

e. producing inaccurate results

f. typing a { when you should have typed a (

Programming Projects
Visit www.myprogramminglab.com to complete many of these
Programming Projects online and get instant feedback.

PP 1.1 Enter, compile, and run the following application:

public class Test

 {
 public static void main (String[] args)
 {
 System.out.println ("An Emergency Broadcast");
 }
 }

PP 1.2 Introduce the following errors, one at a time, to the program
from PP 1.1. Record any error messages that the compiler pro-
duces. Fix the previous error each time before you introduce a
new one. If no error messages are produced, explain why. Try to
predict what will happen before you make each change.

a. change Test to test

b. change Emergency to emergency

c. remove the first quotation mark in the string

d. remove the last quotation mark in the string

e. change main to man

 Programming Projects 55

f. change println to bogus

g. remove the semicolon at the end of the println statement

h. remove the last brace in the program

PP 1.3 Write an application that prints, on separate lines, your name,
your birthday, your hobbies, your favorite book, and your favorite
movie. Label each piece of information in the output.

PP 1.4 Write an application that prints the phrase Knowledge is Power :

a. on one line

b. on three lines, one word per line, with the words centered relative
to each other

c. inside a box made up of the characters = and |

PP 1.5 Write an application that prints a list of four or five web sites
that you enjoy. Print both the site name and the URL.

PP 1.6 Write an application that prints the first few verses of a song
(your choice). Label the chorus.

PP 1.7 Write an application that prints the outline of a tree using aster-
isk (*) characters.

PP 1.8 Write an application that prints a paragraph from a novel of
your choice.

PP 1.9 Write an application that prints the following diamond shape.
Don•t print any unneeded characters. (That is, don•t make any
character string longer than it has to be.)

 *

 *

Developing a solution
for PP 1.2.

VideoNote

56 CHAPTER 1 Introduction

PP 1.10 Write an application that displays your initials in large block
letters. Make each large letter out of the corresponding regular
character. For example:

JJJJJJJJJJJJJJJ AAAAAAAAA LLLL
JJJJJJJJJJJJJJJ AAAAAAAAAAA LLLL
 JJJJ AAA AAA LLLL
 JJJJ AAA AAA LLLL
 JJJJ AAAAAAAAAAA LLLL
J JJJJ AAAAAAAAAAA LLLL
JJ JJJJ AAA AAA LLLL
 JJJJJJJJJJJ AAA AAA LLLLLLLLLLLLLL
 JJJJJJJJJ AAA AAA LLLLLLLLLLLLLL

57

C H A P T E R O B J E C T I V E S
� Discuss the use of character strings, concatenation, and escape

sequences.

� Explore the declaration and use of variables.

� Describe the Java primitive data types.

� Discuss the syntax and processing of expressions.

� Define the types of data conversions and the mechanisms for
accomplishing them.

� Introduce the Scanner class to create interactive programs.

� Explore basic graphics concepts and the techniques for drawing shapes.

� Introduce the concept of a Java applet.

This chapter explores some of the basic types of data used in a

Java program and the use of expressions to perform calculations. It

discusses the conversion of data from one type to another and how

to read input interactively from the user running a program. This

chapter also begins the Graphics Track for the book, in which we

introduce the concepts of graphical programming, explore the rela-

tionship between Java and the Web, and delve into Java•s abilities to

manipulate color and draw shapes.

Data and
Expressions 2

2.1 Character Strings

In Chapter 1 we discussed the basic structure of a Java program, including the
use of comments, identifiers, and white space, using the Lincoln program as an
example. Chapter 1 also included an overview of the various concepts involved
in object-oriented programming, such as objects, classes, and methods. Take a
moment to review these ideas if necessary.

A character string is an object in Java, defined by the class String . Because
strings are so fundamental to computer programming, Java provides the ability
to use a string literal, delimited by double quotation characters, as we•ve seen in
previous examples. We explore the String class and its methods in more detail in
Chapter 3. For now, let•s explore the use of string literals in more detail.

The following are all examples of valid string literals:

"The quick brown fox jumped over the lazy dog."
"602 Greenbriar Court, Chalfont PA 18914"
"x"
""

A string literal can contain any valid characters, including numeric digits, punc-
tuation, and other special characters. The last example in the list above contains
no characters at all.

The print and println Methods
In the Lincoln program in Chapter 1, we invoked the println method as follows:

System.out.println ("Whatever you are, be a good one.");

This statement demonstrates the use of objects. The System.out object represents
an output device or file, which by default is the monitor screen. To be more pre-
cise, the object•s name is out and it is stored in the System class. We explore that
relationship in more detail at the appropriate point in the text.

The println method is a service that the System.out object performs for us.
Whenever we request it, the object will print a character string to the screen. We
can say that we send the println message to the System.out object to request
that some text be printed.

Each piece of data that we send to a method is called a parameter. In this
case, the println method takes only one parameter: the string of characters to
be printed.

58 CHAPTER 2 Data and Expressions

 The System.out object also provides another service we can use:
the print method. The difference between print and println is
small but important. The println method prints the information
sent to it, then moves to the beginning of the next line. The print
method is similar to println , but does not advance to the next line
when completed.

 The program shown in Listing 2.1 is called Countdown , and it invokes both the
 print and println methods.

 Carefully compare the output of the Countdown program, shown at the bot-
tom of the program listing, to the program code. Note that the word Liftoff is
printed on the same line as the first few words, even though it is printed using the
 println method. Remember that the println method moves to the beginning of
the next line after the information passed to it has been printed.

2.1 Character Strings 59

//**
// Countdown.java Author: Lewis/Loftus
//
// Demonstrates the difference between print and println.
//**
public class Countdown
 {
 //---
 // Prints two lines of output representing a rocket countdown.
 //---
 public static void main (String[] args)
 {
 System.out.print ("Three... ");
 System.out.print ("Two... ");
 System.out.print ("One... ");
 System.out.print ("Zero... ");
 System.out.println ("Liftoff!"); // appears on first output line
 System.out.println ("Houston, we have a problem.");
 }
 }

 O U T P U T

Three... Two... One... Zero... Liftoff!
Houston, we have a problem.

 L I S T I N G 2 . 1

 KEY CONCEPT
 The print and println methods
represent two services provided by
the System.out object.

60 CHAPTER 2 Data and Expressions

String Concatenation
A string literal cannot span multiple lines in a program. The following program
statement is improper syntax and would produce an error when attempting to
compile:

// The following statement will not compile
System.out.println ("The only stupid question is
the one that is not asked.");

When we want to print a string that is too long to fit on one line in a program,
we can rely on string concatenation to append one string to the end of another.
The string concatenation operator is the plus sign (+). The following expression
concatenates one character string to another, producing one long string:

"The only stupid question is " + "the one that is not asked."

The program called Facts shown in Listing 2.2 contains several println
statements. The first one prints a sentence that is somewhat long and will not
fit on one line of the program. Since a character literal cannot span two lines in
a program, we split the string into two and use string concatenation to append
them. Therefore, the string concatenation operation in the first println statement
results in one large string that is passed to the method to be printed.

Note that we don•t have to pass any information to the println method, as
shown in the second line of the Facts program. This call does not print any vis-
ible characters, but it does move to the next line of output. So in this case calling
println with no parameters has the effect of printing a blank line.

The last three calls to println in the Facts program demonstrate another
interesting thing about string concatenation: Strings can be concatenated with
numbers. Note that the numbers in those lines are not enclosed in double quotes
and are therefore not character strings. In these cases, the number is automatically
converted to a string, and then the two strings are concatenated.

Because we are printing particular values, we simply could have included the
numeric value as part of the string literal, such as:

"Speed of ketchup: 40 km per year"

Digits are characters and can be included in strings as needed. We separate them
in the Facts program to demonstrate the ability to concatenate a string and a
number. This technique will be useful in upcoming examples.

As you can imagine, the + operator is also used for arithmetic addition.
Therefore, what the + operator does depends on the types of data on which it

 2.1 Character Strings 61

//**
// Facts.java Author: Lewis/Loftus
//
// Demonstrates the use of the string concatenation operator and the
// automatic conversion of an integer to a string.
//**

public class Facts
{
 //---
 // Prints various facts.
 //---
 public static void main (String[] args)
 {
 // Strings can be concatenated into one long string
 System.out.println ("We present the following facts for your "
 + "extracurricular edification:");

 System.out.println ();

 // A string can contain numeric digits
 System.out.println ("Letters in the Hawaiian alphabet: 12");

 // A numeric value can be concatenated to a string
 System.out.println ("Dialing code for Antarctica: " + 672);

 System.out.println ("Year in which Leonardo da Vinci invented "
 + "the parachute: " + 1515);

 System.out.println ("Speed of ketchup: " + 40 + " km per year");
 }
}

O U T P U T

We present the following facts for your extracurricular edification:

Letters in the Hawaiian alphabet: 12
Dialing code for Antarctica: 672
Year in which Leonardo da Vinci invented the parachute: 1515
Speed of ketchup: 40 km per year

L I S T I N G 2 . 2

62 CHAPTER 2 Data and Expressions

operates. If either or both of the operands of the + operator are strings, then string
concatenation is performed.

The Addition program shown in Listing 2.3 demonstrates the distinction
between string concatenation and arithmetic addition. The Addition program
uses the + operator four times. In the first call to println , both + operations per-
form string concatenation, because the operators are executed left to right. The
first operator concatenates the string with the first number (24), creating a larger
string. Then that string is concatenated with the second number (45), creating an
even larger string, which gets printed.

In the second call to println , we use parentheses to group the + operation
with the two numeric operands. This forces that operation to happen first.
Because both operands are numbers, the numbers are added in the arithmetic

//**
// Addition.java Author: Lewis/Loftus
//
// Demonstrates the difference between the addition and string
// concatenation operators.
//**

public class Addition
{
 //---
 // Concatenates and adds two numbers and prints the results.
 //---
 public static void main (String[] args)
 {
 System.out.println ("24 and 45 concatenated: " + 24 + 45);

 System.out.println ("24 and 45 added: " + (24 + 45));
 }
}

O U T P U T

24 and 45 concatenated: 2445
24 and 45 added: 69

L I S T I N G 2 . 3

2.1 Character Strings 63

sense, producing the result 69 . That number is then concatenated with the string,
producing a larger string that gets printed.

 We revisit this type of situation later in this chapter when we formalize the
precedence rules that define the order in which operators get evaluated.

 Escape Sequences
 Because the double quotation character (") is used in the Java language to
indicate the beginning and end of a string, we must use a special technique to
print the quotation character. If we simply put it in a string ("""), the compiler
gets confused because it thinks the second quotation character is the end of
the string and doesn•t know what to do with the third one. This results in a
compile-time error.

 To overcome this problem, Java defines several escape sequences
to represent special characters. An escape sequence begins with the
backslash character (\), which indicates that the character or char-
acters that follow should be interpreted in a special way. Figure 2.1
lists the Java escape sequences.

 The program in Listing 2.4 , called Roses , prints some text resembling a poem. It
uses only one println statement to do so, despite the fact that the poem is several
lines long. Note the escape sequences used throughout the string. The \n escape
sequence forces the output to a new line, and the \t escape sequence represents a
tab character. The \" escape sequence ensures that the quote character is treated
as part of the string, not the termination of it, which enables it to be printed as
part of the output.

Escape Sequence Meaning

\b

\t

\n

\r

\"

\'

\\

backspace

tab

newline

carriage return

double quote

single quote

backslash

 FIGURE 2.1 Java escape sequences

 KEY CONCEPT
 An escape sequence can be used to
represent a character that would oth-
erwise cause compilation problems.

 Example using strings
and escape sequences.

VideoNote

64 CHAPTER 2 Data and Expressions

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 2.1 What is a string literal?

SR 2.2 What is the difference between the print and println methods?

SR 2.3 What is a parameter?

SR 2.4 What output is produced by the following code fragment?

System.out.println ("One ");
System.out.print ("Two ");
System.out.println ("Three ");

//**
// Roses.java Author: Lewis/Loftus
//
// Demonstrates the use of escape sequences.
//**

public class Roses
{
 //---
 // Prints a poem (of sorts) on multiple lines.
 //---
 public static void main (String[] args)
 {
 System.out.println ("Roses are red,\n\tViolets are blue,\n" +
 "Sugar is sweet,\n\tBut I have \"commitment issues\",\n\t" +
 "So I'd rather just be friends\n\tAt this point in our " +
 "relationship.");
 }
}

O U T P U T

Roses are red,
 Violets are blue,
Sugar is sweet,
 But I have "commitment issues",
 So I'd rather just be friends
 At this point in our relationship.

L I S T I N G 2 . 4

2.2 Variables and Assignment 65

SR 2.5 What output is produced by the following code fragment?

System.out.print ("Ready ");
System.out.println ();
System.out.println ("Set ");
System.out.println ();
System.out.println ("Go ");

SR 2.6 What output is produced by the following statement? What is pro-
duced if the inner parentheses are removed?

 System.out.println ("It is good to be " + (5 + 5));

SR 2.7 What is an escape sequence? Give some examples.

SR 2.8 Write a single println statement that will output the following exactly
as shown (including line breaks and quotation marks).

 •I made this letter longer than usual because I lack the time to
make it short.Ž
 Blaise Pascal

2.2 Variables and Assignment

 Most of the information we manage in a program is represented by variables.
Let•s examine how we declare and use them in a program.

 Variables
 A variable is a name for a location in memory used to hold a data
value. A variable declaration instructs the compiler to reserve a por-
tion of main memory space large enough to hold a particular type
of value and indicates the name by which we refer to that location.

 Consider the program PianoKeys , shown in Listing 2.5 . The first
line of the main method is the declaration of a variable named keys

that holds an integer (int) value. The declaration also gives keys an initial value
of 88. If an initial value is not specified for a variable, the value is undefined. Most
Java compilers give errors or warnings if you attempt to use a variable before
you•ve explicitly given it a value.

 The keys variable, with its value, could be pictured as follows:

keys 88

 KEY CONCEPT
 A variable is a name for a memory
location used to hold a value of a
particular data type.

66 CHAPTER 2 Data and Expressions

Local Variable Declaration

Variable Declarator

A variable declaration consists of a Type followed by a list of vari-
ables. Each variable can be initialized in the declaration to the value of
the specified Expression. If the final modifier precedes the declaration,
the identifiers are declared as named constants whose values cannot
be changed once set.

Examples:

int total;
double num1, num2 = 4.356, num3;
char letter = 'A', digit = '7';
final int MAX = 45;

Type Variable Declarator

,

;

final

Identifier

= Expression

Array Initializer

//**
// PianoKeys.java Author: Lewis/Loftus
//
// Demonstrates the declaration, initialization, and use of an
// integer variable.
//**

public class PianoKeys
{
 //---
 // Prints the number of keys on a piano.
 //---
 public static void main (String[] args)

L I S T I N G 2 . 5

 2.2 Variables and Assignment 67

In the PianoKeys program, two pieces of information are used in the call
to the println method. The first is a string, and the second is the variable
keys . When a variable is referenced, the value currently stored in it is used.
Therefore, when the call to println is executed, the value of keys , which is
88, is obtained. Because that value is an integer, it is automatically converted
to a string and concatenated with the initial string. The concatenated string is
passed to println and printed.

A variable declaration can have multiple variables of the same type declared on
one line. Each variable on the line can be declared with or without an initializing
value. For example:

int count, minimum = 0, result;

The Assignment Statement
Let•s examine a program that changes the value of a variable. Listing 2.6 shows
a program called Geometry . This program first declares an integer variable called
sides and initializes it to 7. It then prints out the current value of sides .

The next line in main changes the value stored in the variable sides :

sides = 10;

This is called an assignment statement because it assigns a value to a variable.
When executed, the expression on the right-hand side of the assignment opera-
tor (=) is evaluated, and the result is stored in the memory location indicated
by the variable on the left-hand side. In this example, the expression is simply
a number, 10. We discuss expressions that are more involved than this in the
next section.

 {
 int keys = 88;
 System.out.println ("A piano has " + keys + " keys.");
 }
}

O U T P U T

A piano has 88 keys.

L I S T I N G 2 . 5 continued

68 CHAPTER 2 Data and Expressions

 A variable can store only one value of its declared type. A new
value overwrites the old one. In this case, when the value 10 is
assigned to sides , the original value 7 is overwritten and lost for-
ever, as follows:

//**
// Geometry.java Author: Lewis/Loftus
//
// Demonstrates the use of an assignment statement to change the
// value stored in a variable.
//**

 public class Geometry
 {
 //---
 // Prints the number of sides of several geometric shapes.
 //---
 public static void main (String[] args)
 {
 int sides = 7; // declaration with initialization
 System.out.println ("A heptagon has " + sides + " sides.");

 sides = 10; // assignment statement
 System.out.println ("A decagon has " + sides + " sides.");

 sides = 12;
 System.out.println ("A dodecagon has " + sides + " sides.");
 }
 }

 O U T P U T

A heptagon has 7 sides.
A decagon has 10 sides.
A dodecagon has 12 sides.

 L I S T I N G 2 . 6

sidesAfter initiali zation: 7

After �r st assignment: 10sides

 KEY CONCEPT
 Accessing data leaves it intact in
memory, but an assignment state-
ment overwrites the old data.

2.2 Variables and Assignment 69

 When a reference is made to a variable, such as when it is printed, the value
of the variable is not changed. This is the nature of computer memory: Accessing
(reading) data leaves the values in memory intact, but writing data replaces the
old data with the new.

 The Java language is strongly typed, meaning that we are not
allowed to assign a value to a variable that is inconsistent with its
declared type. Trying to combine incompatible types will generate
an error when you attempt to compile the program. Therefore, the
expression on the right-hand side of an assignment statement must
evaluate to a value compatible with the type of the variable on the left-hand side.

 Constants
 Sometimes we use data that is constant throughout a program. For instance, we
might write a program that deals with a theater that can hold no more than 427
people. It is often helpful to give a constant value a name, such as MAX_OCCUPANCY ,
instead of using a literal value, such as 427, throughout the code. The purpose
and meaning of literal values such as 427 is often confusing to someone reading
the code. By giving the value a name, you help explain its role in the program.

 Constants are identifiers and are similar to variables except that
they hold a particular value for the duration of their existence.
Constants are, to use the English meaning of the words, not variable.
Their value doesn•t change.

 In Java, if you precede a declaration with the reserved word final , the identi-
fier is made a constant. By convention, uppercase letters are used when naming
constants to distinguish them from regular variables, and individual words are

 Basic Assignment

 The basic assignment statement uses the assignment operator (=) to
store the result of the Expression into the specified Identifier, usually
a variable.

 Examples:

total = 57;
count = count + 1;
value = (min / 2) * lastValue;

ExpressionIdentifier = ;

 KEY CONCEPT
 We cannot assign a value of one type
to a variable of an incompatible type.

 KEY CONCEPT
 Constants hold a particular value for
the duration of their existence.

70 CHAPTER 2 Data and Expressions

separated using the underscore character. For example, the constant describing
the maximum occupancy of a theater could be declared as follows:

final int MAX_OCCUPANCY = 427;

The compiler will produce an error message if you attempt to change the value
of a constant once it has been given its initial value. This is another good reason
to use constants. Constants prevent inadvertent coding errors because the only
valid place to change their value is in the initial assignment.

There is a third good reason to use constants. If a constant is used throughout
a program and its value needs to be modified, then you have to change it in only
one place. For example, if the capacity of the theater changes (because of a reno-
vation) from 427 to 535, then you have to change only one declaration, and all
uses of MAX_OCCUPANCY automatically reflect the change. If the literal 427 had been
used throughout the code, each use would have to be found and changed. If you
were to miss any uses of the literal value, problems would surely arise.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 2.9 What is a variable declaration?

SR 2.10 Given the following variable declarations, answer each question.

int count = 0, value, total;
final int MAX_VALUE = 100;
int myValue = 50;

a. How many variables are declared?
b. What is the type of these declared variables?
c. Which of the variables are given an initial value?
d. Based on the above declarations, is the following assignment state-

ment legal? Explain.

myValue = 100;

e. Based on the above declarations is the following assignment state-
ment legal? Explain.

MAX_VALUE = 50;

SR 2.11 Your program needs a variable of type int to hold the number of CDs
in a music collection. The initial value should be zero. Write a declara-
tion statement for the variable.

SR 2.12 Your program needs a variable of type int to hold the number of feet
in a mile (5,280). Write a declaration statement for the variable.

SR 2.13 Briefly describe three reasons for using a constant in a program instead
of a literal value.

2.3 Primitive Data Types 71

2.3 Primitive Data Types

 There are eight primitive data types in Java: four subsets of integers, two sub-
sets of floating point numbers, a character data type, and a boolean data type.
Everything else is represented using objects. Let•s examine these eight primitive
data types in some detail.

 Integers and Floating Points
 Java has two basic kinds of numeric values: integers, which have no fractional
part, and floating points, which do. There are four integer data types (byte ,
short , int , and long) and two floating point data types (float and double). All
of the numeric types differ by the amount of memory space used
to store a value of that type, which determines the range of values
that can be represented. The size of each data type is the same for
all hardware platforms. All numeric types are signed, meaning that
both positive and negative values can be stored in them. Figure 2.2
summarizes the numeric primitive types.

 Recall from our discussion in Chapter 1 that a bit can be either a 1 or a 0.
Because each bit can represent two different states, a string of N bits can be used
to represent 2 N different values. Appendix B describes number systems and these
kinds of relationships in more detail.

 When designing programs, we sometimes need to be careful about picking
variables of appropriate size so that memory space is not wasted. This occurs in
situations where memory space is particularly restricted, such as a program that
runs on a personal data assistant (PDA). In such cases, we can choose a variable•s
data type accordingly. For example, if the value of a particular variable will not

byte

short

int

long

float

double

8 bits

16 bits

32 bits

64 bits

32 bits

64 bits

…128

…32,768

…2,147,483,648

…9,223,372,036,854,775,808

Approximately …3.4E+38
with 7 significant digits

Approximately …1.7E+308
with 15 significant digits

127

32,767

2,147,483,647

9,223,372,036,854,775,807

Approximately 3.4E+38
with 7 significant digits

Approximately 1.7E+308
with 15 significant digits

Type Storage Min Value Max Value

 FIGURE 2.2 The Java numeric primitive types

 KEY CONCEPT
 Java has two kinds of numeric
values: integer and floating point.
There are four integer data types and
two floating point data types.

72 CHAPTER 2 Data and Expressions

vary outside of a range of 1 to 1000, then a two-byte integer (short) is large
enough to accommodate it. On the other hand, when it•s not clear what the range
of a particular variable will be, we should provide a reasonable, even generous,
amount of space. In most situations memory space is not a serious restriction, and
we can usually afford generous assumptions.

Note that even though a float value supports very large (and very small) num-
bers, it has only seven significant digits. Therefore, if it is important to accurately
maintain a value such as 50341.2077, we need to use a double .

As we•ve already discussed, a literal is an explicit data value used in a pro-
gram. The various numbers used in programs such as Facts and Addition and
PianoKeys are all integer literals. Java assumes all integer literals are of type int ,
unless an L or l is appended to the end of the value to indicate that it should be
considered a literal of type long , such as 45L .

Likewise, Java assumes that all floating point literals are of type double . If we
need to treat a floating point literal as a float , we append an F or f to the end
of the value, as in 2.718F or 123.45f . Numeric literals of type double can be fol-
lowed by a D or d if desired.

Decimal Integer Literal

An integer literal is composed of a series of digits followed by
an optional suffix to indicate that it should be considered a integer.
Negation of a literal is considered a separate operation.

Examples:

5
2594

4920328L

0

1 - 9 0 - 9 L

l

The following are examples of numeric variable declarations in Java:

int answer = 42;
byte smallNumber1, smallNumber2;
long countedStars = 86827263927L;
float ratio = 0.2363F;
double delta = 453.523311903;

2.3 Primitive Data Types 73

 Characters
 Characters are another fundamental type of data used and managed on a com-
puter. Individual characters can be treated as separate data items, and, as we•ve
seen in several examples, they can be combined to form character strings.

 A character literal is expressed in a Java program with single quotes, such as
'b' or 'J' or ';' . You will recall that string literals are delineated using double
quotation marks, and that the String type is not a primitive data type in Java; it
is a class name. We discuss the String class in detail in the next chapter.

 Note the difference between a digit as a character (or part of a string) and a
digit as a number (or part of a larger number). The number 602 is a numeric value
that can be used in an arithmetic calculation. But in the string "602 Greenbriar

Court" the 6 , 0 , and 2 are characters, just like the rest of the characters that make
up the string.

 The characters we can manage are defined by a character set , which is simply
a list of characters in a particular order. Each programming language supports a
particular character set that defines the valid values for a character variable in that
language. Several character sets have been proposed, but only a few have been
used regularly over the years. The ASCII character set is a popular choice. ASCII
stands for the American Standard Code for Information Interchange. The basic
ASCII set uses seven bits per character, providing room to support 128 different
characters, including:

 � uppercase letters, such as 'A' , 'B' , and 'C'

 � lowercase letters, such as 'a' , 'b' , and 'c'

 � punctuation, such as the period ('.'), semicolon (';'), and comma (',')

� the digits '0' through '9'

� the space character, ' '

� special symbols, such as the ampersand ('&'), vertical bar ('|'), and back-
slash ('\')

� control characters, such as the carriage return, null, and end-of-text marks

 The control characters are sometimes called nonprinting or invisible characters
because they do not have a specific symbol that represents them. Yet they are as
valid as any other character and can be stored and used in the same ways. Many
control characters have special meaning to certain software applications.

 As computing became a worldwide endeavor, users demanded a more flexible
character set containing other language alphabets. ASCII was extended
to use eight bits per character, and the number of characters in the set
doubled to 256. The extended ASCII contains many accented and
diacritical characters used in languages other than English.

 KEY CONCEPT
 Java uses the 16-bit Unicode charac-
ter set to represent character data.

74 CHAPTER 2 Data and Expressions

However, even with 256 characters, the ASCII character set cannot represent
the world•s alphabets, especially given the various Asian alphabets and their
many thousands of ideograms. Therefore, the developers of the Java program-
ming language chose the Unicode character set, which uses 16 bits per character,
supporting 65,536 unique characters (and techniques that allow even more char-
acters to be represented using multiple bytes). The characters and symbols from
many languages are included in the Unicode definition. ASCII is a subset of the
Unicode character set, comprising the first 256 characters. Appendix C discusses
the Unicode character set in more detail.

A character set assigns a particular number to each character, so by definition
the characters are in a particular order. This is referred to as lexicographic order.
In the ASCII and Unicode ordering, the digit characters '0' through '9' are
continuous (no other characters intervene) and in order. Similarly, the lowercase
alphabetic characters 'a' through 'z' are continuous and in order, as are the
uppercase alphabetic characters 'A' through 'Z' . These characteristics make it
relatively easy to keep things in alphabetical order.

In Java, the data type char represents a single character. The following are
some examples of character variable declarations in Java:

char topGrade = 'A';
char symbol1, symbol2, symbol3;
char terminator = ';', separator = ' ';

Booleans
A boolean value, defined in Java using the reserved word boolean , has only
two valid values: true and false . A boolean variable is usually used to indicate
whether a particular condition is true, but it can also be used to represent any
situation that has two states, such as a light bulb being on or off.

A boolean value cannot be converted to any other data type, nor can any other
data type be converted to a boolean value. The words true and false are reserved
in Java as boolean literals and cannot be used outside of this context.

The following are some examples of boolean variable declarations in Java:

boolean flag = true ;
boolean tooHigh, tooSmall, tooRough;
boolean done = false ;

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 2.14 What is primitive data? How are primitive data types different from
objects?

2.4 Expressions 75

SR 2.15 How many values can be stored in an integer variable?

SR 2.16 What are the four integer data types in Java? How are they different?

SR 2.17 What type does Java automatically assign to an integer literal? How
can you indicate that an integer literal should be considered a different
type?

SR 2.18 What type does Java automatically assign to a floating point literal?
How can you indicate that a floating point literal should be considered
a different type?

SR 2.19 What is a character set?

SR 2.20 How many characters are supported by the ASCII character set, the
extended ASCII character set, and the Unicode character set?

2.4 Expressions

 An expression is a combination of one or more operators and oper-
ands that usually perform a calculation. The value calculated does
not have to be a number, but it often is. The operands used in the
operations might be literals, constants, variables, or other sources
of data. The manner in which expressions are evaluated and used is
fundamental to programming. For now we will focus on arithmetic
expressions that use numeric operands and produce numeric results.

 Arithmetic Operators
 The usual arithmetic operations are defined for both integer and floating point
numeric types, including addition (+), subtraction (…), multiplication (*), and divi-
sion (/). Java also has another arithmetic operation: The remainder operator (%)
returns the remainder after dividing the second operand into the first. The remain-
der operator is sometimes called the modulus operator. The sign of the result of a
remainder operation is the sign of the numerator. Therefore:

Operation Result

1

-2

0

3

% 4

% 3

% -5

% 8

17

-20

10

3

 KEY CONCEPT
 Expressions are combinations of
operators and operands used to
perform a calculation.

76 CHAPTER 2 Data and Expressions

 As you might expect, if either or both operands to any numeric operator
are floating point values, the result is a floating point value. However, the
division operator produces results that are less intuitive, depending on the
types of the operands. If both operands are integers, the / operator performs
integer division , meaning that any fractional part of the result is discarded.
If one or the other or both operands are floating point values, the / operator
performs floating point division , and the fractional part of the result is kept.
For example, the result of 10/4 is 2, but the results of 10.0/4 and 10/4.0 and
 10.0/4.0 are all 2.5.

 A unary operator has only one operand, while a binary operator has two. The
 + and - arithmetic operators can be either unary or binary. The binary versions
accomplish addition and subtraction, and the unary versions represent positive
and negative numbers. For example, - 1 is an example of using the unary negation
operator to make the value negative. The unary + operator is rarely used.

 Java does not have a built-in operator for raising a value to an exponent.
However, the Math class provides methods that perform exponentiation and many
other mathematical functions. The Math class is discussed in Chapter 3 .

 Operator Precedence
 Operators can be combined to create more complex expressions. For example,
consider the following assignment statement:

 result = 14 + 8 / 2;

 The entire right-hand side of the assignment is evaluated, and then
the result is stored in the variable. But what is the result? If the addi-
tion is performed first, the result is 11 ; if the division operation is
performed first, the result is 18. The order of operator evaluation
makes a big difference. In this case, the division is performed before
the addition, yielding a result of 18 .

 Note that in this and subsequent examples, we use literal values rather than
variables to simplify the expression. The order of operator evaluation is the same
if the operands are variables or any other source of data.

 All expressions are evaluated according to an operator precedence hierarchy
that establishes the rules that govern the order in which operations are evaluated.
The arithmetic operators generally follow the same rules you learned in algebra.
Multiplication, division, and the remainder operator all have equal precedence
and are performed before (have higher precedence than) addition and subtraction.
Addition and subtraction have equal precedence.

 Review of primitive data
and expressions.

VideoNote

 KEY CONCEPT
 Java follows a well-defined set of
precedence rules that governs the
order in which operators will be
evaluated in an expression.

 2.4 Expressions 77

Any arithmetic operators at the same level of precedence are performed left to
right. Therefore we say the arithmetic operators have a left-to-right association.

Precedence, however, can be forced in an expression by using parentheses. For
instance, if we really wanted the addition to be performed first in the previous
example, we could write the expression as follows:

result = (14 + 8) / 2;

Any expression in parentheses is evaluated first. In complicated expressions, it
is good practice to use parentheses, even when it is not strictly necessary, to make
it clear how the expression is evaluated.

Parentheses can be nested, and the innermost nested expressions are evaluated
first. Consider the following expression:

result = 3 * ((18 … 4) / 2);

In this example, the result is 21. First, the subtraction is performed, forced by
the inner parentheses. Then, even though multiplication and division are at the
same level of precedence and usually would be evaluated left to right, the division
is performed first because of the outer parentheses. Finally, the multiplication is
performed.

After the arithmetic operations are complete, the computed result is stored
in the variable on the left-hand side of the assignment operator (=). In other
words, the assignment operator has a lower precedence than any of the arith-
metic operators.

The evaluation of a particular expression can be shown using an expression
tree, such as the one in Figure 2.3. The operators are executed from the bottom
up, creating values that are used in the rest of the expression. Therefore, the
operations lower in the tree have a higher precedence than those above, or they
are forced to be executed earlier using parentheses.

Evaluating
a + (b … c) / d

+

/a

d…

cb

FIGURE 2.3 An expression tree

78 CHAPTER 2 Data and Expressions

The parentheses used in expressions are actually operators themselves. Parentheses
have a higher precedence than almost any other operator. Figure 2.4 shows a prece-
dence table with the relationships between the arithmetic operators, parentheses, and
the assignment operator. Appendix D includes a full precedence table showing all
Java operators.

For an expression to be syntactically correct, the number of left parentheses
must match the number of right parentheses and they must be properly nested.
The following examples are not valid expressions:

result = ((19 + 8) % 3) … 4); // not valid
result = (19 (+ 8 %) 3 … 4); // not valid

Keep in mind that when a variable is referenced in an expression, its current
value is used to perform the calculation. In the following assignment statement,
the current value of the variable count is added to the current value of the variable
total , and the result is stored in the variable sum:

sum = count + total;

The original value contained in sum before this assignment is overwritten by the
calculated value. The values stored in count and total are not changed.

The same variable can appear on both the left-hand side and the right-hand
side of an assignment statement. Suppose the current value of a variable called
count is 15 when the following assignment statement is executed:

count = count + 1;

1

2

3

4

+

…

*
/

%

+

…

+

=

unary plus

unary minus

multiplication

division

remainder

addition

subtraction

string concatenation

assignment

R to L

L to R

L to R

R to L

Precedence
Level Operator Operation Associates

FIGURE 2.4 Precedence among some of the Java operators

 2.4 Expressions 79

Because the right-hand expression is evaluated first, the original value of count is
obtained and the value 1 is added to it, producing the result 16. That result is then
stored in the variable count , overwriting the original value of 15 with the new value of
16. Therefore, this assignment statement increments, or adds 1 to, the variable count .

Let•s look at another example of expression processing. The program in Listing 2.7,
called TempConverter , converts a particular Celsius temperature value to its equiva-
lent Fahrenheit value using an expression that computes the following formula:

Fahrenheit = Celsius + 329
5

//**
// TempConverter.java Author: Lewis/Loftus
//
// Demonstrates the use of primitive data types and arithmetic
// expressions.
//**

public class TempConverter
{
 //---
 // Computes the Fahrenheit equivalent of a specific Celsius
 // value using the formula F = (9/5)C + 32.
 //---
 public static void main (String[] args)
 {
 final int BASE = 32;
 final double CONVERSION_FACTOR = 9.0 / 5.0;

 double fahrenheitTemp;
 int celsiusTemp = 24; // value to convert

 fahrenheitTemp = celsiusTemp * CONVERSION_FACTOR + BASE;

 System.out.println ("Celsius Temperature: " + celsiusTemp);
 System.out.println ("Fahrenheit Equivalent: " + fahrenheitTemp);
 }
}

O U T P U T

Celsius Temperature: 24
Fahrenheit Equivalent: 75.2

L I S T I N G 2 . 7

80 CHAPTER 2 Data and Expressions

Note that in the temperature conversion program, the operands to the division
operation are floating point literals to ensure that the fractional part of the num-
ber is kept. The precedence rules dictate that the multiplication happens before
the addition in the final conversion computation.

The TempConverter program is not very useful because it converts only one
data value that we included in the program as a constant (24 degrees Celsius).
Every time the program is run it produces the same result. A far more useful ver-
sion of the program would obtain the value to be converted from the user each
time the program is executed. Interactive programs that read user input are dis-
cussed later in this chapter.

Increment and Decrement Operators
There are two other useful arithmetic operators. The increment operator (++)
adds 1 to any integer or floating point value. The two plus signs that make up
the operator cannot be separated by white space. The decrement operator (--) is
similar except that it subtracts 1 from the value. They are both unary operators
because they operate on only one operand. The following statement causes the
value of count to be incremented:

count++;

The result is stored back into the variable count . Therefore it is functionally
equivalent to the following statement, which we discussed in the previous section:

count = count + 1;

The increment and decrement operators can be applied after the variable
(such as count++ or count--), creating what is called the postfix form of the
operator. They can also be applied before the variable (such as ++count or
--count), in what is called the prefix form. When used alone in a statement,
the prefix and postfix forms are functionally equivalent. That is, it doesn•t
matter if you write

count++;

or

++count;

However, when such a form is written as a statement by itself, it is usually written
in its postfix form.

When the increment or decrement operator is used in a larger expression, it can
yield different results depending on the form used. For example, if the variable

 2.4 Expressions 81

count currently contains the value 15, the following statement assigns the value
15 to total and the value 16 to count :

total = count++;

However, the following statement assigns the value 16 to both total and count :

total = ++count;

The value of count is incremented in both situations, but the value used in the
larger expression depends on whether a prefix or postfix form of the increment
operator is used.

Because of the subtle differences between the prefix and postfix forms of the
increment and decrement operators, they should be used with care. As always,
favor the side of readability.

Assignment Operators
As a convenience, several assignment operators have been defined in Java that
combine a basic operation with assignment. For example, the += operator can be
used as follows:

total += 5;

This performs the same operation as the following statement:

total = total + 5;

The right-hand side of the assignment operator can be a full expression. The
expression on the right-hand side of the operator is evaluated, then that result is
added to the current value of the variable on the left-hand side, and that value is
stored in the variable. Therefore, the following statement:

total += (sum - 12) / count;

is equivalent to:

total = total + ((sum - 12) / count);

Many similar assignment operators are defined in Java, including those that
perform subtraction (-=), multiplication (*=), division (/=), and remainder (%=).
The entire set of Java operators is discussed in Appendix D.

All of the assignment operators evaluate the entire expression on the right-
hand side first, then use the result as the right operand of the other operation.
Therefore, the following statement:

result *= count1 + count2;

82 CHAPTER 2 Data and Expressions

is equivalent to:

result = result * (count1 + count2);

Likewise, the following statement:

result %= (highest - 40) / 2;

is equivalent to:

result = result % ((highest - 40) / 2);

Some assignment operators perform particular functions depending on the
types of the operands, just as their corresponding regular operators do. For exam-
ple, if the operands to the += operator are strings, then the assignment operator
performs string concatenation.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 2.21 What is the result of 19%5 when evaluated in a Java expression?
Explain.

SR 2.22 What is the result of 13/4 when evaluated in a Java expression?
Explain.

SR 2.23 If an integer variable diameter currently holds the value 5, what is its
value after the following statement is executed? Explain.

diameter = diameter * 4;

SR 2.24 What is operator precedence?

SR 2.25 What is the value of each of the following expressions?

a. 15 + 7 * 3

b. (15 + 7) * 3

c. 3 * 6 + 10 / 5 + 5

d. 27 % 5 + 7 % 3

e. 100 / 2 / 2 / 2

f. 100 / (2 / 2) / 2

SR 2.26 For each of the following expressions state whether they are valid or
invalid. If invalid, explain why.

a. result = (5 + 2);

b. result = (5 + 2 * (15 - 3);

c. result = (5 + 2 (;

d. result = (5 + 2 (4));

 2.5 Data Conversion 83

SR 2.27 What value is contained in the integer variable result after the
following sequence of statements is executed?

result = 27;
result = result + 3;
result = result / 7;
result = result * 2;

SR 2.28 What value is contained in the integer variable result after the
following sequence of statements is executed?

int base;
int result;
base = 5;
result = base + 3;
base = 7;

SR 2.29 What is an assignment operator?

SR 2.30 If an integer variable weight currently holds the value 100, what is its
value after the following statement is executed? Explain.

weight -= 17;

2.5 Data Conversion

Because Java is a strongly typed language, each data value is associated with a
particular type. It is sometimes helpful or necessary to convert a data value of
one type to another type, but we must be careful that we don•t lose important
information in the process. For example, suppose a short variable that holds the
number 1000 is converted to a byte value. Because a byte does not have enough
bits to represent the value 1000, some bits would be lost in the conversion, and
the number represented in the byte would not keep its original value.

A conversion between one primitive type and another falls into one of two
categories: widening conversions and narrowing conversions. Widening conver-
sions are the safest because they usually do not lose information. They are called
widening conversions because they go from one data type to another type that
uses an equal or greater amount of space to store the value. Figure 2.5 lists the
Java widening conversions.

For example, it is safe to convert from a byte to a short because a byte is stored
in 8 bits and a short is stored in 16 bits. There is no loss of information. All widening
conversions that go from an integer type to another integer type, or from a floating
point type to another floating point type, preserve the numeric value exactly.

84 CHAPTER 2 Data and Expressions

 Although widening conversions do not lose any information
about the magnitude of a value, the widening conversions that result
in a floating point value can lose precision. When converting from
an int or a long to a float , or from a long to a double , some of the
least significant digits may be lost. In this case, the resulting floating

point value will be a rounded version of the integer value, following the rounding
techniques defined in the IEEE 754 floating point standard.

Narrowing conversions are more likely to lose information than widening con-
versions are. They often go from one type to a type that uses less space to store
a value, and therefore some of the information may be compromised. Narrowing
conversions can lose both numeric magnitude and precision. Therefore, in gen-
eral, they should be avoided. Figure 2.6 lists the Java narrowing conversions.

 An exception to the space-shrinking situation in narrowing conversions is when
we convert a byte (8 bits) or short (16 bits) to a char (16 bits). These are still

byte

short

char

int

long

float

short , int , long , float , or double

int , long , float , or double

int , long , float , or double

long , float , or double

float or double

double

From To

 FIGURE 2.5 Java widening conversions

byte

short

char

int

long

char

byte or char

byte or short

byte , short , or char

byte , short , char , or int

float byte , short , char , int , or long

double byte , short , char , int , long , or float

From To

FIGURE 2.6 Java narrowing conversions

 KEY CONCEPT
 Narrowing conversions should be
avoided because they can lose
information.

 2.5 Data Conversion 85

considered narrowing conversions, because the sign bit is incorporated into the
new character value. Since a character value is unsigned, a negative integer will
be converted into a character that has no particular relationship to the numeric
value of the original integer.

Note that boolean values are not mentioned in either widening or narrowing
conversions. A boolean value cannot be converted to any other primitive type
and vice versa.

Conversion Techniques
In Java, conversions can occur in three ways:

� assignment conversion

� promotion

� casting

Assignment conversion occurs when a value of one type is assigned to a vari-
able of another type during which the value is converted to the new type. Only
widening conversions can be accomplished through assignment. For example,
if money is a float variable and dollars is an int variable, then the following
assignment statement automatically converts the value in dollars to a float :

money = dollars;

Therefore, if dollars contains the value 25, after the assignment, money con-
tains the value 25.0 . However, if we attempt to assign money to dollars , the
compiler will issue an error message alerting us to the fact that we are attempting
a narrowing conversion that could lose information. If we really want to do this
assignment, we have to make the conversion explicit by using a cast.

Conversion via promotion occurs automatically when certain operators need
to modify their operands in order to perform the operation. For example, when
a floating point value called sum is divided by an integer value called count , the
value of count is promoted to a floating point value automatically, before the
division takes place, producing a floating point result:

result = sum / count;

A similar conversion is taking place when a number is concatenated with a
string. The number is first converted (promoted) to a string, then the two strings
are concatenated.

Casting is the most general form of conversion in Java. If a conversion can be
accomplished at all in a Java program, it can be accomplished using a cast. A cast
is a Java operator that is specified by a type name in parentheses. It is placed in

86 CHAPTER 2 Data and Expressions

front of the value to be converted. For example, to convert money to an integer
value, we could put a cast in front of it:

dollars = (int) money;

The cast returns the value in money, truncating any fractional part. If money
contained the value 84.69 , then after the assignment, dollars would contain
the value 84. Note, however, that the cast does not change the value in money.
After the assignment operation is complete, money still contains the value
84.69 .

Casts are helpful in many situations where we need to treat a value tem-
porarily as another type. For example, if we want to divide the integer value
total by the integer value count and get a floating point result, we could do
it as follows:

result = (float) total / count;

First, the cast operator returns a floating point version of the value in total .
This operation does not change the value in total . Then, count is treated as a
floating point value via arithmetic promotion. Now the division operator will per-
form floating point division and produce the intended result. If the cast had not
been included, the operation would have performed integer division and truncated
the answer before assigning it to result . Also note that because the cast operator
has a higher precedence than the division operator, the cast operates on the value
of total , not on the result of the division.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 2.31 Why are widening conversions safer than narrowing conversions?

SR 2.32 Identify each of the following conversions as either a widening conver-
sion or a narrowing conversion.

a. int to long

b. int to byte

c. byte to short

d. byte to char

e. short to double

SR 2.33 Assuming result is a float variable and value is an int variable,
what type of variable will value be after the following assignment
statement is executed? Explain.

result = value;

2.6 Interactive Programs 87

SR 2.34 Assuming result is a float variable that contains the value 27.32 and
value is an int variable that contains the value 15, what are the val-
ues of each of the variables after the following assignment statement is
executed? Explain.

value = (int) result;

SR 2.35 Given the following declarations, what result is stored by each of the
following assignment statements.

int iResult, num1 = 17, num2 = 5;
double fResult, val1 = 12.0, val2 = 2.34;

 a. iResult = num1 / num2;
 b. fResult = num1 / num2;
 c. fResult = val1 / num2;
 d. fResult = (double) num1 / num2;
 e. iResult = (int) val1 / num2;

 2.6 Interactive Programs

 It is often useful to design a program to read data from the user interactively dur-
ing execution. That way, new results can be computed each time the program is
run, depending on the data that is entered.

 The Scanner Class
 The Scanner class, which is part of the standard Java class library,
provides convenient methods for reading input values of various
types. The input could come from various sources, including data
typed interactively by the user or data stored in a file. The Scanner
class can also be used to parse a character string into separate pieces.
 Figure 2.7 lists some of the methods provided by the Scanner class.

 We must first create a Scanner object in order to invoke its methods. Objects
in Java are created using the new operator. The following declaration creates a
 Scanner object that reads input from the keyboard:

 Scanner scan = new Scanner (System.in);

 This declaration creates a variable called scan that represents a Scanner object.
The object itself is created by the new operator and a call to a special method

 KEY CONCEPT
 The Scanner class provides methods
for reading input of various types
from various sources.

88 CHAPTER 2 Data and Expressions

Scanner (InputStream source)
Scanner (File source)
Scanner (String source)
 Constructors: sets up the new scanner to scan values from the specified source.

String next()
 Returns the next input token as a character string.

String nextLine()
 Returns all input remaining on the current line as a character string.

boolean nextBoolean()

byte nextByte()
double nextDouble()
float nextFloat()
int nextInt()
long nextLong()

short nextShort()

 Returns the next input token as the indicated type. Throws

 InputMismatchException if the next token is inconsistent with the type.

boolean hasNext()
 Returns true if the scanner has another token in its input.

Scanner useDelimiter (String pattern)

Scanner useDelimiter (Pattern pattern)

 Sets the scanner's delimiting pattern.

Pattern delimiter()

 Returns the pattern the scanner is currently using to match delimiters.

String findInLine (String pattern)

String findInLine (Pattern pattern)

 Attempts to find the next occurrence of the specified pattern, ignoring delimiters.

FIGURE 2.7 Some methods of the Scanner class

 2.6 Interactive Programs 89

called a constructor to set up the object. The Scanner constructor accepts a
parameter that indicates the source of the input. The System.in object represents
the standard input stream, which by default is the keyboard. Creating objects
using the new operator is discussed further in the next chapter.

Unless specified otherwise, a Scanner object assumes that white space charac-
ters (space characters, tabs, and new lines) are used to separate the elements of
the input, called tokens, from each other. These characters are called the input
delimiters. The set of delimiters can be changed if the input tokens are separated
by characters other than white space.

The next method of the Scanner class reads the next input token as a string
and returns it. Therefore, if the input consisted of a series of words separated by
spaces, each call to next would return the next word. The nextLine method reads
all of the input until the end of the line is found, and returns it as one string.

The program Echo, shown in Listing 2.8, simply reads a line of text typed by the
user, stores it in a variable that holds a character string, then echoes it back to the screen.

The import statement above the definition of the Echo class tells the program
that we will be using the Scanner class in this program. The Scanner class is
part of the java.util class library. The use of the import statement is discussed
further in Chapter 3.

Various Scanner methods such as nextInt and nextDouble are provided to
read data of particular types. The GasMileage program, shown in Listing 2.9,
reads the number of miles traveled as an integer, and the number of gallons of
fuel consumed as a double, then computes the gas mileage.

//**
// Echo.java Author: Lewis/Loftus
//
// Demonstrates the use of the nextLine method of the Scanner class
// to read a string from the user.
//**

import java.util.Scanner;

public class Echo
{
 //---
 // Reads a character string from the user and prints it.
 //---
 public static void main (String[] args)

L I S T I N G 2 . 8

90 CHAPTER 2 Data and Expressions

As you can see by the output of the GasMileage program, the calculation pro-
duces a floating point result that is accurate to several decimal places. In the next
chapter we discuss classes that help us format our output in various ways, includ-
ing rounding a floating point value to a particular number of decimal places.

 {
 String message;
 Scanner scan = new Scanner (System.in);

 System.out.println ("Enter a line of text:");

 message = scan.nextLine();

 System.out.println ("You entered: \"" + message + "\"");
 }
}

O U T P U T

Enter a line of text:
Set your laser printer on stun!
You entered: "Set your laser printer on stun!"

L I S T I N G 2 . 8 continued

//**
// GasMileage.java Author: Lewis/Loftus
//
// Demonstrates the use of the Scanner class to read numeric data.
//**

import java.util.Scanner;

public class GasMileage
{
 //---
 // Calculates fuel efficiency based on values entered by the
 // user.
 //---
 public static void main (String[] args)

L I S T I N G 2 . 9

 2.6 Interactive Programs 91

A Scanner object processes the input one token at a time, based on the meth-
ods used to read the data and the delimiters used to separate the input values.
Therefore, multiple values can be put on the same line of input or can be sepa-
rated over multiple lines, as appropriate for the situation.

In Chapter 5 we use the Scanner class to read input from a data file and
modify the delimiters it uses to parse the data. Appendix H explores how to use
the Scanner class to analyze its input using patterns called regular expressions.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 2.36 Identify which line of the GasMileage program does each of the following.

a. Tells the program that we will be using the Scanner class.
b. Creates a Scanner object.
c. Sets up the Scanner object scan to read from the standard input

stream.
d. Reads an integer from the standard input stream.

 {
 int miles;
 double gallons, mpg;

 Scanner scan = new Scanner (System.in);

 System.out.print ("Enter the number of miles: ");
 miles = scan.nextInt();

 System.out.print ("Enter the gallons of fuel used: ");
 gallons = scan.nextDouble();

 mpg = miles / gallons;

 System.out.println ("Miles Per Gallon: " + mpg);
 }
}

O U T P U T

Enter the number of miles: 328
Enter the gallons of fuel used: 11.2
Miles Per Gallon: 29.28571428571429

L I S T I N G 2 . 9 continued

Example using the
Scanner class.

VideoNote

92 CHAPTER 2 Data and Expressions

SR 2.37 Assume you already have instantiated a Scanner object named
myScanner and an int variable named value as follows in your
program:

 Scanner myScanner = new Scanner (System.in);
 int value = 0;

 Write program statements that will ask the user to enter their age, and
store their response in value .

 2.7 Graphics

 Graphics play a crucial role in computer systems. Throughout this book we explore
various aspects of graphics and discuss how they are accomplished. In fact, the last
one or two sections of each chapter are devoted to graphics topics. We refer to this as
the Graphics Track through the book. These sections can be skipped without losing

continuity through the rest of the text, incorporated into the
regular flow of the chapters, or explored as a group.

 A picture, like all other information stored on a computer,
must be digitized by breaking the information into pieces
and representing those pieces as numbers. In the case of pic-
tures, we break the picture into pixels (picture elements). A

pixel is a tiny region that represents a very small piece of the picture. The complete
picture is stored by storing the color of each individual pixel.

 A digitized picture can be reproduced when needed by reassembling its pixels.
The more pixels used to represent a picture, the more realistic it looks when it is
reproduced. The number of pixels used to represent a picture is called the picture
resolution . The number of pixels that can be displayed by a monitor is called the
monitor resolution .

 A black and white picture can be stored by representing each pixel using a
single bit. If the bit is 0, that pixel is white; if the bit is 1, it is black. Figure 2.8
shows a black and white picture that has been stored digitally and an enlargement
of a portion of that picture, which shows the individual pixels.

 Coordinate Systems
 When drawn, each pixel of a picture is mapped to a pixel on the monitor screen.
Each computer system and programming language defines a coordinate system so
that we can refer to particular pixels.

 KEY CONCEPT
 Graphical data is represented by
dividing it into many small pieces
called pixels.

 A traditional two-dimensional Cartesian coordinate system has two axes that
meet at the origin. Values on either axis can be negative or positive. The Java
programming language has a relatively simple coordinate system in which all of
the visible coordinates are positive. Figure 2.9 compares a traditional coordinate
system to the Java coordinate system.

 Each point in the Java coordinate system is represented
using an (x, y) pair of values. The top-left corner of any Java
drawing area has coordinates (0, 0). The x -axis coordinates
get larger as you move to the right, and the y -axis coordi-
nates get larger as you move down.

 FIGURE 2.8 A digitized picture with a small portion magnified

Y Axis

X Axis

Y Axis

(0,0)

(0,0)

x

y

X Axis

(x,y)

 FIGURE 2.9 A traditional coordinate system and the Java coordinate system

2.7 Graphics 93

 KEY CONCEPT
 Java•s coordinate system has the
origin in the upper-left corner and all
visible coordinates are positive.

 As we•ve seen in previous examples, a Java program does not have to be graph-
ical in nature. However, if it is, each graphical component in the program has its
own coordinate system, with the origin (0, 0) in the top-left corner. This consis-
tent approach makes it relatively easy to manage various graphical elements.

 Representing Color
 Color pictures are divided into pixels, just as black and white pictures are.
However, because each pixel can be one of many possible colors, it is not suffi-
cient to represent each pixel using only one bit. There are various ways to repre-
sent the color of a pixel. Let•s briefly discuss one popular technique.

 Every color can be represented as a mix of three primary
colors : red, green, and blue. In Java, as in many other com-
puter languages, colors are specified by three numbers that
are collectively referred to as an RGB value. RGB stands for
Red-Green-Blue. Each number represents the contribution
of a primary color. Using one byte (eight bits) to store each

of the three numbers, the numbers can range from 0 to 255. The level of each
primary color determines the overall color. For example, high values of red and green
combined with a low level of blue results in a shade of yellow.

black

blue

cyan

gray

dark gray

light gray

green

magenta

orange

pink

red

white

yellow

Color.black

Color.blue

Color.cyan

Color.gray

Color.darkGray

Color.lightGray

Color.green

Color.magenta

Color.orange

Color.pink

Color.red

Color.white

Color.yellow

0, 0, 0

0, 0, 255

0, 255, 255

128, 128, 128

64, 64, 64

192, 192, 192

0, 255, 0

255, 0, 255

255, 200, 0

255, 175, 175

255, 0, 0

255, 255, 255

255, 255, 0

Color Object RGB Value

 FIGURE 2.10 Predefined colors in the Color class

94 CHAPTER 2 Data and Expressions

 KEY CONCEPT
 Colors are represented in Java using
an RGB value„three values that rep-
resent the contributions of the pri-
mary colors red, green, and blue.

 2.8 Applets

 There are two kinds of Java programs: Java applets and Java
applications. A Java applet is a Java program that is intended
to be embedded into an HTML document, transported
across a network, and executed using a Web browser. A Java
 application is a stand-alone program that can be executed
using a Java interpreter. All programs presented thus far in
this book have been Java applications.

 The Web enables users to send and receive various types of media, such as text,
graphics, and sound, using a point-and-click interface that is extremely convenient
and easy to use. A Java applet was the first kind of executable program that could
be retrieved using Web software. Java applets are considered just another type of
media that can be exchanged across the Web.

 Though Java applets are generally intended to be transported across a network,
they don•t have to be. They can be viewed locally using a Web browser. For that
matter, they don•t even have to be executed through a Web browser at all. A tool
in Sun•s Java Software Development Kit called appletviewer can be used to interpret
and execute an applet. We use appletviewer to display applets in this book. However,

 In Java, a programmer uses the Color class, which is part
of the java.awt package, to define and manage colors. Each
object of the Color class represents a single color. The class
contains several instances of itself to provide a basic set of
predefined colors. Figure 2.10 lists the predefined colors of
the Color class. It also contains methods to define and man-
age many other colors.

 SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 2.38 How can a black and white picture be represented using 1s and 0s?

SR 2.39 Three corners of a rectangle drawn using the Java coordinate system
have coordinates (3, 4), (3, 7), and (8, 7). What are the coordinates of
the fourth corner?

SR 2.40 Two corners of a square drawn using the Java coordinate system have
coordinates (5, 10) and (8, 10). What are the coordinates of the other
two corners?

SR 2.41 How many bits are needed to store a color picture that is 300 pixels wide
and 200 pixels high? Assume color is represented using the RGB technique
described in this chapter and that no special compression technique is used.

 KEY CONCEPT
 The Color class contains several
predefined colors that are commonly
used, and can be used to define
many others.

 KEY CONCEPT
 Applets are Java programs that are
usually transported across a network
and executed using a Web browser.

2.8 Applets 95

usually the point of making a Java applet is to provide a link to it on a Web page and
allow it to be retrieved and executed by Web users anywhere in the world.

Java bytecode (not Java source code) is linked to an HTML document and sent
across the Web. A version of the Java interpreter embedded in a Web browser is
used to execute the applet once it reaches its destination. A Java applet must be
compiled into bytecode format before it can be used with the Web.

There are some important differences between the structure of a Java applet
and the structure of a Java application. Because the Web browser that executes
an applet is already running, applets can be thought of as a part of a larger pro-
gram. As such they do not have a main method where execution starts. The paint
method in an applet is automatically invoked by the applet. Consider the program
in Listing 2.10, in which the paint method is used to draw a few shapes and write
a quotation by Albert Einstein to the screen.

The two import statements at the beginning of the program explicitly indicate
the packages that are used in the program. In this example, we need the JApplet

//**
// Einstein.java Author: Lewis/Loftus
//
// Demonstrates a basic applet.
//**

import javax.swing.JApplet;
import java.awt.*;

public class Einstein extends JApplet
{
 //---
 // Draws a quotation by Albert Einstein among some shapes.
 //---
 public void paint (Graphics page)
 {
 page.drawRect (50, 50, 40, 40); // square
 page.drawRect (60, 80, 225, 30); // rectangle
 page.drawOval (75, 65, 20, 20); // circle
 page.drawLine (35, 60, 100, 120); // line

 page.drawString ("Out of clutter, find simplicity.", 110, 70);
 page.drawString ("-- Albert Einstein", 130, 100);
 }
}

L I S T I N G 2 . 1 0

96 CHAPTER 2 Data and Expressions

class, which is part of the javax.swing package, and various graphics capabilities
defined in the java.awt package. Chapter 3 explores import statements further.

A class that defines an applet extends the JApplet class, as indicated in the
header line of the class declaration. This process is making use of the object-
oriented concept of inheritance, which we discussed in Chapter 1 and explore
in more detail later in the book. Applet classes must also be declared as public .

The paint method is one of several applet methods that have particular sig-
nificance. It is invoked automatically whenever the graphic elements of the applet
need to be painted to the screen, such as when the applet is first run or when
another window that was covering it is moved.

Note that the paint method accepts a Graphics object as a parameter. A
Graphics object defines a particular graphics context with which we can interact.
The graphics context passed into an applet•s paint method represents the entire
applet window. Each graphics context has its own coordinate system. In later
examples, we will have multiple components, each with its own graphics context.

A Graphics object allows us to draw various shapes using methods such as
drawRect , drawOval , drawLine , and drawString . The parameters passed to the
drawing methods specify the coordinates and sizes of the shapes to be drawn. We
explore these and other methods that draw shapes in the next section.

D I S P L A Y

L I S T I N G 2 . 1 0 continued

 2.8 Applets 97

Executing Applets Using the Web
In order for the applet to be transmitted over the Web and executed by a browser,
it must be referenced in a HyperText Markup Language (HTML) document. An
HTML document contains tags that specify formatting instructions and identify
the special types of media that are to be included in a document. A Java program
is considered a specific media type, just as text, graphics, and sound are.

An HTML tag is enclosed in angle brackets. The following is an example of
an applet tag:

<applet code="Einstein.class" width="350" height="175">
</applet>

This tag dictates that the bytecode stored in the file Einstein.class should be trans-
ported over the network and executed on the machine that wants to view this particu-
lar HTML document. The applet tag also indicates the width and height of the applet.

There are other tags that can be used to reference an applet in an HTML file,
including the <object> tag and the <embed> tag. The <object> tag is actually the
tag that should be used, according to the World Wide Web Consortium (W3C).
However, browser support for the <object> tag is not consistent. For now, the most
reliable solution is to use the <applet> tag.

Note that the applet tag refers to the bytecode file of the Einstein applet, not to the
source code file. Before an applet can be transported using the Web, it must be compiled
into its bytecode format. Then, as shown in Figure 2.11, the document can be loaded
using a Web browser, which will automatically interpret and execute the applet.

Across the
Internet

using HTML

Local computer
Remote computer

Java source
code

Java
bytecodeJava compiler

Java
interpreter

Bytecode
compiler

Machine
code

Web browser

Java
interpreter

FIGURE 2.11 The Java translation and execution process, including applets

98 CHAPTER 2 Data and Expressions

 SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 2.42 What is the difference between a Java application and a Java applet?

SR 2.43 When is an applet•s paint method invoked?

SR 2.44 What is wrong with the following HTML applet tag? Explain.

<applet code="DrawHouse.java" width="400" height="300">
</applet>

 2.9 Drawing Shapes

 The Java standard class library provides many classes that let us present and
manipulate graphical information. The Graphics class is fundamental to all such
processing.

 The Graphics Class
 The Graphics class is defined in the java.awt package. It
contains various methods that allow us to draw shapes,
including lines, rectangles, and ovals. Figure 2.12 lists some
of the fundamental drawing methods of the Graphics class.
Note that these methods also let us draw circles and squares, which are just spe-
cific types of ovals and rectangles, respectively. We discuss additional drawing
methods of the Graphics class later in the book at appropriate points.

 The methods of the Graphics class allow us to specify whether we want a
shape filled or unfilled. An unfilled shape shows only the outline of the shape and
is otherwise transparent (you can see any underlying graphics). A filled shape is
solid between its boundaries and covers any underlying graphics.

 All of these methods rely on the Java coordinate system,
which we discussed earlier in this chapter. Recall that point
 (0,0) is in the upper-left corner, such that x values get larger as
we move to the right, and y values get larger as we move down.
Any shapes drawn at coordinates that are outside the visible
area will not be seen.

 Many of the Graphics drawing methods are self-explanatory, but some require
a little more discussion. Note, for instance, that an oval drawn by the drawOval

method is defined by the coordinate of the upper-left corner and dimensions that
specify the width and height of a bounding rectangle . Shapes with curves, such

2.9 Drawing Shapes 99

 KEY CONCEPT
 Most shapes can be drawn filled
(opaque) or unfilled (as an outline).

 KEY CONCEPT
 A bounding rectangle is used to
define the position and size of
curved shapes such as ovals.

void drawLine (int x1, int y1, int x2, int y2)
Paints a line from point (x1, y1) to point (x2, y2).

void drawRect (int x, int y, int width, int height)
Paints a rectangle with upper left corner (x, y) and dimensions width and
height.

void drawOval (int x, int y, int width, int height)
Paints an oval bounded by the rectangle with an upper left corner of (x, y) and
dimensions width and height.

void drawString (String str, int x, int y)
Paints the character string str at point (x, y), extending to the right.

void drawArc (int x, int y, int width, int height, int
startAngle, int arcAngle)

Paints an arc along the oval bounded by the rectangle defined by x, y, width,
and height. The arc starts at startAngle and extends for a distance defined by
arcAngle.

void fillRect (int x, int y, int width, int height)
Same as their draw counterparts, but filled with the current foreground color.

void fillOval (int x, int y, int width, int height)

void fillArc (int x, int y, int width, int height,
int startAngle, int arcAngle)

Color getColor ()
Returns this graphics context's foreground color.

void setColor (Color color)
Sets this graphics context's foreground color to the specified color.

 FIGURE 2.12 Some methods of the Graphics class

as ovals, are often defined by a rectangle that encompasses
their perimeters. Figure 2.13 depicts a bounding rectangle
for an oval.

 An arc can be thought of as a segment of an oval. To draw
an arc, we specify the oval of which the arc is a part and the
portion of the oval in which we•re interested. The starting point

100 CHAPTER 2 Data and Expressions

 KEY CONCEPT
 An arc is a segment of an oval begin-
ning at a specific start angle and
extending for a distance specified by
the arc angle.

of the arc is defined by the start angle and the ending point of the arc is defined by
the arc angle. The arc angle does not indicate where the arc ends, but rather its range.
The start angle and the arc angle are measured in degrees. The origin for the start
angle is an imaginary horizontal line passing through the center of the oval and can
be referred to as 0°, as shown in Figure 2.14.

Every graphics context has a current foreground color that is used whenever
shapes or strings are drawn. Every surface that can be drawn on has a background
color. The foreground color is set using the setColor method of the Graphics
class, and the background color is set using the setBackground method of the
component on which we are drawing, such as the applet.

Listing 2.11 shows an applet called Snowman. It uses various drawing and color
methods to draw a winter scene featuring a snowman. Review the code carefully
to note how each shape is drawn to create the overall picture.

Note that the snowman figure is based on two constant values called MID and
TOP, which define the midpoint of the snowman (left to right) and the top of the

height

width

FIGURE 2.13 An oval and its bounding rectangle

drawArc (10, 10, 60, 30, 20, 90)

height
30

width 60

90°

90°

20°
0°

20°

110°

<10, 10>

FIGURE 2.14 An arc defined by an oval, a start angle, and an arc angle

 2.9 Drawing Shapes 101

Example using
drawn shapes.

VideoNote

//**
// Snowman.java Author: Lewis/Loftus
//
// Demonstrates basic drawing methods and the use of color.
//**

import javax.swing.JApplet;
import java.awt.*;

public class Snowman extends JApplet
{
 //---
 // Draws a snowman.
 //---
 public void paint (Graphics page)
 {
 final int MID = 150;
 final int TOP = 50;

 setBackground (Color.cyan);

 page.setColor (Color.blue);
 page.fillRect (0, 175, 300, 50); // ground

 page.setColor (Color.yellow);
 page.fillOval (-40, -40, 80, 80); // sun

 page.setColor (Color.white);
 page.fillOval (MID-20, TOP, 40, 40); // head
 page.fillOval (MID-35, TOP+35, 70, 50); // upper torso
 page.fillOval (MID-50, TOP+80, 100, 60); // lower torso

 page.setColor (Color.black);
 page.fillOval (MID-10, TOP+10, 5, 5); // left eye
 page.fillOval (MID+5, TOP+10, 5, 5); // right eye

 page.drawArc (MID-10, TOP+20, 20, 10, 190, 160); // smile

 page.drawLine (MID-25, TOP+60, MID-50, TOP+40); // left arm
 page.drawLine (MID+25, TOP+60, MID+55, TOP+60); // right arm

 page.drawLine (MID-20, TOP+5, MID+20, TOP+5); // brim of hat
 page.fillRect (MID-15, TOP-20, 30, 25); // top of hat
 }
}

L I S T I N G 2 . 1 1

102 CHAPTER 2 Data and Expressions

snowman•s head. The entire snowman figure is drawn relative to these values.
Using constants like these makes it easier to create the snowman and to make
modifications later. For example, to shift the snowman to the right or left in our
picture, only one constant declaration would have to change.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 2.45 What is a bounding rectangle?

SR 2.46 Assuming you have a Graphics object called page , write a statement
that will draw a square with a side length of 50, such that its upper-
left corner is at point (16, 12).

SR 2.47 Assuming you have a Graphics object called page , write a sequence of
statements that will draw a blue rectangle with a height of 20 and a
width of 40, such that its upper-left corner is at point (30, 35).

D I S P L A Y

L I S T I N G 2 . 1 1 continued

 2.9 Drawing Shapes 103

SR 2.48 What would be the result of making each of the following changes
separately to the Snowman program? You may make the change, com-
pile and run the program, and observe and report the results. Briefly
explain what you observe.

a. The value of MID is set to 120 instead of 150.
b. The value of TOP is set to 25 instead of 50.
c. Just before the last two statements of the program (the statements

that draw the hat) we include the statement

page.setColor (Color.blue);

d. In the statement that creates the smile, the 190 is changed to a 10.
e. Just before the statement that creates the upper torso, the fore-

ground color is set to cyan. It is set back to white immediately
after the upper torso is created.

104 CHAPTER 2 Data and Expressions

 Summary of Key Concepts 105

Summary of Key Concepts

� The print and println methods represent two services provided by the
System.out object.

� An escape sequence can be used to represent a character that would other-
wise cause compilation problems.

� A variable is a name for a memory location used to hold a value of a par-
ticular data type.

� Accessing data leaves it intact in memory, but an assignment statement
overwrites the old data.

� We cannot assign a value of one type to a variable of an incompatible type.

� Constants hold a particular value for the duration of their existence.

� Java has two kinds of numeric values: integer and floating point. There are
four integer data types and two floating point data types.

� Java uses the 16-bit Unicode character set to represent character data.

� Expressions are combinations of operators and operands used to perform
a calculation.

� Java follows a well-defined set of precedence rules that governs the order
in which operators will be evaluated in an expression.

� Narrowing conversions should be avoided because they can lose information.

� The Scanner class provides methods for reading input of various types
from various sources.

� Graphical data is represented by dividing it into many small pieces called pixels.

� Java•s coordinate system has the origin in the upper-left corner and all
visible coordinates are positive.

� Colors are represented in Java using an RGB value„three values that
represent the contributions of the primary colors red, green, and blue.

� The Color class contains several predefined colors that are commonly
used, and can be used to define many others.

� Applets are Java programs that are usually transported across a network
and executed using a Web browser.

� Most shapes can be drawn filled (opaque) or unfilled (as an outline).

� A bounding rectangle is used to define the position and size of curved
shapes such as ovals.

� An arc is a segment of an oval beginning at a specific start angle and
extending for a distance specified by the arc angle.

106 CHAPTER 2 Data and Expressions

Exercises
Visit www.myprogramminglab.com to complete many of these Exercises
online and get instant feedback.

EX 2.1 Explain the following programming statement in terms of objects
and the services they provide:

System.out.println ("I gotta be me!");

EX 2.2 What output is produced by the following code fragment?
Explain.

System.out.print ("Here we go!");
System.out.println ("12345");
System.out.print ("Test this if you are not sure.");
System.out.print ("Another.");
System.out.println ();
System.out.println ("All done.");

EX 2.3 What is wrong with the following program statement? How can
it be fixed?

System.out.println ("To be or not to be, that
is the q uestion.");

EX 2.4 What output is produced by the following statement? Explain.

System.out.println ("50 plus 25 is " + 50 + 25);

EX 2.5 What is the output produced by the following statement?
Explain.

System. out.println ("He thrusts his fists\n\tagainst" +
"the po st \nand still insists\n\the sees the \"ghost\"");

EX 2.6 What value is contained in the integer variable size after the fol-
lowing statements are executed?

size = 18;
size = size + 12;
size = size * 2;
size = size / 4;

EX 2.7 What value is contained in the floating point variable depth after
the following statements are executed?

depth = 2.4;
depth = 20 … depth * 4;
depth = d epth / 5;

 Exercises 107

EX 2.8 What value is contained in the integer variable length after the
following statements are executed?

length = 5;
length *= 2;
length *= length;
length /= 100;

EX 2.9 Write four different program statements that increment the value
of an integer variable total .

EX 2.10 Given the following declarations, what result is stored in each of
the listed assignment statements?

int iResult, num1 = 25, num2 = 40, num3 = 17, num4 = 5;
double fResult, val1 = 17.0, val2 = 12.78;

a. iResult = num1 / num4;

b. fResult = num1 / num4;

c. iResult = num3 / num4;

d. fResult = num3 / num4;

e. fResult = val1 / num4;

f. fResult = val1 / val2;

g. iResult = num1 / num2;

h. fResult = (double) num1 / num2;

i. fResult = num1 / (double) num2;

j. fResult = (double) (num1 / num2);

k. iResult = (int) (val1 / num4);

l. fResult = (int) (val1 / num4);

m. fResult = (int) ((double) num1 / num2);

n. iResult = num3 % num4;

o. iResult = num2 % num3;

p. iResult = num3 % num2;

q. iResult = num2 % num4;

EX 2.11 For each of the following expressions, indicate the order in
which the operators will be evaluated by writing a number
beneath each operator.

a. a … b … c … d

b. a … b + c … d

c. a + b / c / d

d. a + b / c * d

e. a / b * c * d

f. a % b / c * d

g. a % b % c % d

108 CHAPTER 2 Data and Expressions

h. a … (b … c) … d

i. (a … (b … c)) … d

j. a … ((b … c) … d)

k. a % (b % c) * d * e

l. a + (b … c) * d … e

m. (a + b) * c + d * e

n. (a + b) * (c / d) % e

EX 2.12 Explain the role played by the Web in the translation and execu-
tion of some Java programs.

EX 2.13 Compare and contrast a traditional coordinate system and the
coordinate system used by Java graphical components.

EX 2.14 How many bits are needed to store a color picture that is 400
pixels wide and 250 pixels high? Assume color is represented
using the RGB technique described in this chapter and that no
special compression is done.

EX 2.15 Assuming you have a Graphics object called page , write a state-
ment that will draw a line from point (20, 30) to point (50, 60).

EX 2.16 Assuming you have a Graphics object called page , write a state-
ment that will draw a rectangle with height 70 and width 35,
such that its upper-left corner is at point (10, 15).

EX 2.17 Assuming you have a Graphics object called page , write a state-
ment that will draw a circle centered on point (50, 50) with a
radius of 20 pixels.

EX 2.18 The following lines of code draw the eyes of the snowman in the
Snowman applet. The eyes seem centered on the face when drawn,
but the first parameters of each call are not equally offset from
the midpoint. Explain.

page.fillOval (MID-10, TOP+10, 5, 5);

page.fillOval (MID+5, TOP+10, 5, 5);

Programming Projects
Visit www.myprogramminglab.com to complete many of these
Programming Projects online and get instant feedback.

PP 2.1 Create a revised version of the Lincoln application from Chapter
1 such that quotes appear around the quotation.

PP 2.2 Write an application that reads three integers and prints their
average.

 Programming Projects 109

PP 2.3 Write an application that prompts for and reads a person•s name,
age, college, and pet•s name. Then print the following paragraph,
inserting the appropriate data:

Hello, my name is name and I am age years
old. I•m enjoying my time at college, though
I miss my pet petname very much!

PP 2.4 Write an application that reads two floating point numbers and
prints their sum, difference, and product.

PP 2.5 Create a version of the TempConverter application to convert
from Fahrenheit to Celsius. Read the Fahrenheit temperature
from the user.

PP 2.6 Write an application that converts miles to kilometers. (One mile
equals 1.60935 kilometers.) Read the miles value from the user
as a floating point value.

PP 2.7 Write an application that prompts for and reads integer values
for speed and distance traveled, then prints the time required for
the trip as a floating point result.

PP 2.8 Write an application that reads values representing a time dura-
tion in hours, minutes, and seconds and then prints the equiva-
lent total number of seconds. (For example, 1 hour, 28 minutes,
and 42 seconds is equivalent to 5322 seconds.)

PP 2.9 Create a version of the previous project that reverses the
computation. That is, read a value representing a number of sec-
onds, then print the equivalent amount of time as a combination
of hours, minutes, and seconds. (For example, 9999 seconds is
equivalent to 2 hours, 46 minutes, and 39 seconds.)

PP 2.10 Write an application that determines the value of the coins in a jar
and prints the total in dollars and cents. Read integer values that
represent the number of quarters, dimes, nickels, and pennies.

PP 2.11 Write an application that prompts for and reads a double value
representing a monetary amount. Then determine the fewest
number of each bill and coin needed to represent that amount,
starting with the highest (assume that a ten-dollar bill is the max-
imum size needed). For example, if the value entered is 47.63
(forty-seven dollars and sixty-three cents), then the program
should print the equivalent amount as:

4 ten dollar bills

1 five dollar bills

2 one dollar bills

Developing a solution of
PP 2.10.

VideoNote

110 CHAPTER 2 Data and Expressions

2 quarters

1 dimes

0 nickles

3 pennies

PP 2.12 Write an application that prompts for and reads an integer rep-
resenting the length of a square•s side, then prints the square•s
perimeter and area.

PP 2.13 Write an application that prompts for and reads the numerator
and denominator of a fraction as integers, then prints the deci-
mal equivalent of the fraction.

PP 2.14 Create a revised version of the Snowman applet with the following
modifications:

� Add two red buttons to the upper torso.
� Make the snowman frown instead of smile.
� Move the sun to the upper-right corner of the picture.
� Display your name in the upper-left corner of the picture.
� Shift the entire snowman 20 pixels to the right.

PP 2.15 Write an applet that writes your name using the drawString
method. Embed a link to your applet in an HTML document
and view it using a Web browser.

PP 2.16 Write an applet that draws the Big Dipper. Add some extra stars
in the night sky.

PP 2.17 Write an applet that draws some balloons tied to strings. Make
the balloons various colors.

PP 2.18 Write an applet that draws the Olympic logo. The circles in the
logo should be colored, from left to right, blue, yellow, black,
green, and red.

PP 2.19 Write an applet that draws a house with a door (and doorknob),
windows, and a chimney. Add some smoke coming out of the
chimney and some clouds in the sky.

PP 2.20 Write an applet that displays a business card of your own design.
Include both graphics and text.

PP 2.21 Write an applet that displays your name in shadow text by draw-
ing your name in black, then drawing it again slightly offset in a
lighter color.

PP 2.22 Write an applet that shows a pie chart with eight equal slices, all
colored differently.

111

S O F T W A R E F A I L U R E

NASA Mars Climate Orbiter and Polar Lander

What Happened?
As part of a series of missions exploring
Mars, NASA launched the Mars Climate
Orbiter in December, 1998, and the
Mars Polar Lander in January, 1999.
The two-spacecraft mission was designed
to observe the atmospheric conditions
on Mars through each of its seasons.
The orbiter and the lander would have
collected data about temperature, dust,
water vapor, clouds, and the amount
of carbon dioxide (CO2) added and
removed from the Martian pole regions.

After its nine-month journey, the orbiter
arrived at Mars in September, 1999,
and fired its main engines to establish
an orbit. The orbiter passed behind the
planet (from Earth•s perspective) five minutes later as planned, but NASA could
not reestablish contact with it after expecting it to emerge. Review of the data
showed that the altitude of the orbiter when it was entering orbit was only 57
kilometers, whereas the planned altitude was 140 kilometers. The minimum sur-
vivable altitude was between 85 and 100 kilometers. NASA concluded that the
orbiter was destroyed by atmospheric friction.

The polar lander arrived at Mars in December, 1999, and all of the data indicated
it was on target to make a successful soft landing within 10 kilometers of the
target landing site on the Martian south pole. However, NASA lost contact with
the lander just after it entered the atmosphere. Multiple attempts to reestablish
contact with it over the following weeks and months were unsuccessful.

The total project cost for the orbiter and lander was $327.6 million.

What Caused It?
The root cause of the orbiter•s problem was an embarrassing communication
issue. The software that guided the navigation of the spacecraft used imperial
units of measure (pound-force), while the spacecraft itself expected the data in
metric units (newtons). Therefore the desired navigation changes and the actual
effects were off by a factor of 4.45. This mismatch resulted in part because one
team based in Colorado lead the efforts on the spacecraft, while a California-
based team managed issues of navigation.

� Artist•s concep-
tion of the Mars
Climate Orbiter

The cause of the lander•s communication problem is unresolved but is not
believed to be related to the orbiter•s problem. The investigation concluded that
the most likely cause was a software error that mistook the vibration caused by
the deployment of the lander•s legs for the vibration caused by actually landing on
the planet•s surface. That mistake would have caused the lander•s descent engines
to cut off while it was still 40 meters above the ground. Other problem scenarios
are possible, however.

Lessons Learned
The mismatch of units in the Mars Climate Orbiter shows that seemingly obvious
problems can be overlooked in a highly complex system. Mistakes are inevitable,
but processes must be in place to catch them before they become critical. The
investigation concluded that, in this case, the system for tracking and double-
checking interconnected elements between subsystems was not robust enough.
There was also inconsistent training of and communication with new members of
the team, and some communication lines were too informal. In short, the mission
lacked a rigorous total-system view that would have led to the discovery of the
mismatched units problem before it was too late.

It•s difficult to draw strong conclusions from the lander•s problem given that the
cause is not clearly understood. The fact that it remains an open question under-
scores the need for more evaluation, simulation, and testing in situations where
critical resources are at stake.

Source: nasa.gov

112 Software Failure

113

C H A P T E R O B J E C T I V E S
� Discuss the creation of objects and the use of object reference variables.

� Explore the services provided by the String class.

� Describe how the Java standard class library is organized into packages.

� Explore the services provided by the Random and Math classes.

� Discuss ways to format output using the NumberFormat and
DecimalFormat classes.

� Introduce enumerated types.

� Discuss wrapper classes and the concept of autoboxing.

� Introduce components and containers used in graphical user interfaces.

� Describe a label component and the use of images.

This chapter further explores the use of predefined classes and

the objects we can create from them. Using classes and objects for

the services they provide is a fundamental part of object-oriented

software and sets the stage for writing classes of our own. In this

chapter, we use classes and objects to manipulate character strings,

produce random numbers, perform complex calculations, and format

output. This chapter also introduces the concept of an enumerated

type, which is a special kind of class in Java, and discusses the con-

cept of a wrapper class. In the Graphics Track of this chapter, we lay

the foundation for developing graphical user interfaces for our pro-

grams and discuss how to display images.

Using Classes
and Objects 3

3.1 Creating Objects

At the end of Chapter 1 we presented an overview of object-oriented concepts,
including the basic relationship between classes and objects. Then in Chapter 2, in
addition to discussing primitive data, we provided some examples of using objects
for the services they provide. This chapter explores these ideas further.

In previous examples, we•ve used the println method many times. As we men-
tioned in Chapter 2, the println method is a service provided by the System.out
object, which represents the standard output stream. To be more precise, the identi-
fier out is an object variable that is stored in the System class. It has been predefined
and set up for us as part of the Java standard class library. We can simply use it.

In Chapter 2 we also used the Scanner class, which represents an object that
allows us to read input from the keyboard or a file. We created a Scanner object
using the new operator. Once the object was created, we were able to use it for the
various services it provides. That is, we were able to invoke its methods.

Let•s carefully examine the idea of creating an object. In Java, a variable name
represents either a primitive value or an object. Like variables that hold primitive
types, a variable that refers to an object must be declared. The class used to define
an object can be thought of as the type of an object. The declarations of object
variables have a similar structure to the declarations of primitive variables.

Consider the following two declarations:

int num;
String name;

The first declaration creates a variable that holds an integer value, as we•ve seen
many times before. The second declaration creates a String variable that holds
a reference to a String object. An object variable doesn•t hold an object itself, it
holds the address of an object.

Initially, the two variables declared above don•t contain any data. We say they
are uninitialized, which can be depicted as follows:

114 CHAPTER 3 Using Classes and Objects

num

name

…

…

As we pointed out in Chapter 2, it is always important to make sure a variable
is initialized before using it. For an object variable, that means we must make sure
it refers to a valid object prior to using it. In most situations, the compiler will
issue an error if you attempt to use a variable before initializing it.

 An object variable can also be set to null , which is a reserved word in Java.
A null reference specifically indicates that a variable does not refer to an object.

 Note that, although we•ve declared a String reference variable, no String
object actually exists yet. The act of creating an object using the new operator is
called instantiation . An object is said to be an instance of a particular class. To
instantiate an object, we can use the new operator, which returns the address of
the new object. The following two assignment statements give values to the two
variables declared above:

 num = 42;
 name = new String("James Gosling");

 After the new operator creates the object, a constructor is invoked
to help set it up initially. A constructor is a special method that has the
same name as the class. In this example, the parameter to the construc-
tor is a string literal that specifies the characters that the string object
will hold. After these assignments are executed, the variables can be
depicted as:

3.1 Creating Objects 115

num 42

name "James Gosling"

 Since an object reference variable holds the address of the object, it can be
thought of as a pointer to the location in memory where the object is held. We
could show the numeric address, but the actual address value is irrelevant„
what•s important is that the variable refers to a particular object.

 After an object has been instantiated, we use the dot operator to access its
methods. We•ve used the dot operator many times already, such as in calls to
System.out.println . The dot operator is appended directly after the object refer-
ence, followed by the method being invoked. For example, to invoke the length

method defined in the String class, we can use the dot operator on the name

reference variable:

 count = name.length()

 The length method does not take any parameters, but the parentheses are still
necessary to indicate that a method is being invoked. Some methods produce a value
that is returned when the method completes. The purpose of the length method of
the String class is to determine and return the length of the string (the number of
characters it contains). In this example, the returned value is assigned to the vari-
able count . For the string "James Gosling" , the length method returns 13 , which

 KEY CONCEPT
 The new operator returns a reference
to a newly created object.

 Creating objects.

VideoNote

116 CHAPTER 3 Using Classes and Objects

includes the space between the first and last names. Some methods do not return a
value. Other String methods are discussed in the next section.

The act of declaring the object reference variable and creating the object itself
can be combined into one step by initializing the variable in the declaration, just
as we do with primitive types:

String title = new String("Java Software Solutions");

Even though they are not primitive types, character strings are so fundamental
and so often used that Java defines string literals delimited by double quotation
marks, as we•ve seen in various examples. This is a shortcut notation. Whenever
a string literal appears, a String object is created automatically. Therefore the
following declaration is valid:

String city = "London";

That is, for String objects, the explicit use of the new operator and the call to the
constructor can be eliminated. In most cases, we will use this simplified syntax.

Aliases
Because an object reference variable stores an address, a programmer must be
careful when managing objects. First, let•s review the effect of assignment on
primitive values. Suppose we have two integer variables, num1, initialized to 5,
and num2, initialized to 12:

num1 5

num2 12

In the following assignment statement, a copy of the value that is stored in num1
is stored in num2:

num2 = num1;

The original value of 12 in num2 is overwritten by the value 5. The variables num1
and num2 still refer to different locations in memory, and both of those locations
now contain the value 5:

num1 5

num2 5

3.1 Creating Objects 117

 Now consider the following object declarations:

 String name1 = "Ada, Countess of Lovelace";
 String name2 = "Grace Murray Hopper";

 Initially, the references name1 and name2 refer to two different String objects:

name1

name2

"Ada, Countess of Lovelace"

"Grace Murray Hopper"

 Now suppose the following assignment statement is executed, copying the value
in name1 into name2 :

 name2 = name1;

 This assignment works the same as the integer assignment„a copy of the value
of name1 is stored in name2 . But remember, object variables hold the address of
an object, and it is the address that gets copied. Originally, the two references
referred to different objects. After the assignment, both name1 and name2 contain
the same address and therefore refer to the same object:

name1

name2

"Ada, Countess of Lovelace"

 The name1 and name2 reference variables are now aliases of each
other because they are two names that refer to the same object. All
references to the object originally referenced by name2 are now gone;
that object cannot be used again in the program.

 One important implication of aliases is that when we use one reference to change
an object, it is also changed for the other reference because there is really only one
object. Aliases can produce undesirable effects unless they are managed carefully.

 All interaction with an object occurs through a reference variable, so we can
use an object only if we have a reference to it. When all references to an object
are lost (perhaps by reassignment), that object can no longer contribute to the
program. The program can no longer invoke its methods or use its variables. At
this point the object is called garbage because it serves no useful purpose.

 Java performs automatic garbage collection . When the last reference to an
object is lost, the object becomes a candidate for garbage collection. Occasionally,
behind the scenes, the Java environment executes a method that •collectsŽ all the

 KEY CONCEPT
 Multiple reference variables can refer
to the same object.

118 CHAPTER 3 Using Classes and Objects

objects marked for garbage collection and returns their memory to the system for
future use. The programmer does not have to worry about explicitly reclaiming
memory that has become garbage.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 3.1 What is a null reference?

SR 3.2 What does the new operator accomplish?

SR 3.3 Write a declaration for a String variable called author , and
initialize it to the string "Fred Brooks" . Draw a graphic representa-
tion of the variable and its value.

SR 3.4 Write a code statement that sets the value of an integer variable called
size to the length of a String object called name.

SR 3.5 What is an alias? How does it relate to garbage collection?

3.2 The String Class

Let•s examine the String class in more detail. Figure 3.1 lists some of the more
useful methods of the String class.

Once a String object is created, its value cannot be lengthened or shortened,
nor can any of its characters change. Thus we say that a String object is immu-
table. However, several methods in the String class return new String objects
that are the result of modifying the original string•s value.

Note that some of the String methods refer to the index of a particular charac-
ter. A character in a string can be specified by its position, or index, in the string.
The index of the first character in a string is zero, the index of the next character
is one, and so on. Therefore, in the string "Hello" , the index of the character 'H'
is zero and the character at index four is 'o' .

Several String methods are exercised in the program shown in Listing 3.1.

As you examine the StringMutation program, keep in mind that this is not a single
String object that changes its data; this program creates five separate String objects
using various methods of the String class. Originally, the phrase object is set up:

phrase "Change is inevitable"

 3.2 The String Class 119

FIGURE 3.1 Some methods of the String class

String (String str)
Constructor: creates a new string object with the same characters as str .

char charAt (int index)
Returns the character at the specified index .

int compareTo (String str)
Returns an integer indicating if this string is lexically before (a negative return
value), equal to (a zero return value), or lexically after (a positive return value),
the string str .

String concat (String str)
Returns a new string consisting of this string concatenated with str .

boolean equals (String str)
Returns true if this string contains the same characters as str (including
case) and false otherwise.

boolean equalsIgnoreCase (String str)
Returns true if this string contains the same characters as str (without
regard to case) and false otherwise.

int length ()
Returns the number of characters in this string.

String replace (char oldChar, char newChar)
Returns a new string that is identical with this string except that every
occurrence of oldChar is replaced by newChar .

String substring (int offset, int endIndex)
Returns a new string that is a subset of this string starting at index offset
and extending through endIndex-1 .

String toLowerCase ()
Returns a new string identical to this string except all uppercase letters are
converted to their lowercase equivalent.

String toUpperCase ()
Returns a new string identical to this string except all lowercase letters are
converted to their uppercase equivalent.

120 CHAPTER 3 Using Classes and Objects

//**
// StringMutation.java Author: Lewis/Loftus
//
// Demonstrates the use of the String class and its methods.
//**

public class StringMutation
{
 //---
 // Prints a string and various mutations of it.
 //---
 public static void main (String[] args)
 {
 String phrase = "Change is inevitable";
 String mutation1, mutation2, mutation3, mutation4;

 System.out.println ("Original string: \"" + phrase + "\"");
 System.out.println ("Length of string: " + phrase.length());

 mutation1 = phrase.concat (", except from vending machines.");
 mutation2 = mutation1.toUpperCase();
 mutation3 = mutation2.replace ('E', 'X');
 mutation4 = mutation3.substring (3, 30);

 // Print each mutated string
 System.out.println ("Mutation #1: " + mutation1);
 System.out.println ("Mutation #2: " + mutation2);
 System.out.println ("Mutation #3: " + mutation3);
 System.out.println ("Mutation #4: " + mutation4);

 System.out.println ("Mutated length: " + mutation4.length());
 }
}

O U T P U T

Original string: "Change is inevitable"
Length of string: 20
Mutation #1: Change is inevitable, except from vending machines.
Mutation #2: CHANGE IS INEVITABLE, EXCEPT FROM VENDING MACHINES.
Mutation #3: CHANGX IS INXVITABLX, XXCXPT FROM VXNDING MACHINXS.
Mutation #4: NGX IS INXVITABLX, XXCXPT F
Mutated length: 27

L I S T I N G 3 . 1

3.2 The String Class 121

 After printing the original phrase and its length, the concat method is executed
to create a new string object referenced by the variable mutation1:

mutation1 "Change is inevitable, except from vending machines."

 Then the toUpperCase method is executed on the mutation1 object, and the

resulting string is stored in mutation2:

mutation2 "CHANGE IS INEVITABLE, EXCEPT FROM VENDING MACHINES"

 Notice that the length and concat methods are executed on

the phrase object, but the toUpperCase method is executed on
the mutation1 object. Any method of the String class can be
executed on any String object, but for any given invocation, a
method is executed on a particular object. The results of execut-
ing toUpperCase on mutation1 would be very different from the results of
executing toUpperCase on phrase . Remember, each object has its own state,
which often affects the results of method calls.

 Finally, the String object variables mutation3 and mutation4 are initialized by
the calls to mutation2.replace and mutation3.substring , respectively:

mutation3

mutation4

"CHANGX IS INXVITABLX, XXCXPT FROM VXNDING MACHINXS"

"NGX IS INXVITABLX, XXCXPT F"

 SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 3.6 Assume s1 , s2 , and s3 are String variables initialized to "Amanda" ,
"Bobby" , and "Chris" respectively. Which String variable or variables
are changed by each of the following statements?

 a. System.out.println (s1);
 b. s1 = s3.toLowerCase();

 c. System.out.println (s2.replace('B', 'M'));

 d. s3 = s2.concat(s1);

SR 3.7 What output is produced by the following code fragment?

 String s1 = "Foundations";
 String s2;
 System.out.println (s1.charAt(1));
 s2 = s1.substring(0, 5);
 System.out.println (s2);

 KEY CONCEPT
 Usually a method is executed on a
particular object, which affects the
results.

122 CHAPTER 3 Using Classes and Objects

 System.out.println (s1.length());
 System.out.println (s2.length());

SR 3.8 Write a statement that prints the value of a String object called title
in all uppercase letters.

SR 3.9 Write a declaration for a String variable called front , and initialize it to
the first 10 characters of another String object called description .

3.3 Packages

 We mentioned earlier that the Java language is supported by a standard class
library that we can make use of as needed. Let•s examine that idea further.

 A class library is a set of classes that supports the development
of programs. A compiler or development environment often comes
with a class library. Class libraries can also be obtained separately
through third-party vendors. The classes in a class library contain

methods that are often valuable to a programmer because of the special function-
ality they offer. In fact, programmers often become dependent on the methods
in a class library and begin to think of them as part of the language. However,
technically, they are not in the language itself.

 The String class, for instance, is not an inherent part of the Java language. It is
part of the Java standard class library that can be found in any Java development
environment. The classes that make up the library were created by employees at
Sun Microsystems, the people who created the Java language.

 The class library is made up of several clusters of related classes, which are
often referred to as the Java APIs, which stands for application programming
interfaces . For example, we may refer to the Java Database API when we•re
talking about the set of classes that helps us write programs that interact with a
database. Another example of an API is the Java Swing API, which refers to a set
of classes that defines special graphical components used in a graphical user inter-
face. Often the entire standard library is referred to generically as the Java API.

 The classes of the Java standard class library are also grouped
into packages . Each class is part of a particular package. The String

class, for example, is part of the java.lang package. The System

class is part of the java.lang package as well. We mentioned in
 Chapter 2 that the Scanner class is part of the java.util package.

 The package organization is more fundamental and language-based than the API
names. Though there is a general correspondence between package and API names,
the groups of classes that make up a given API might cross packages. In this book, we
primarily refer to classes in terms of their package organization.

 KEY CONCEPT
 A class library provides useful sup-
port when developing programs.

 KEY CONCEPT
 The Java standard class library is
organized into packages.

 3.3 Packages 123

Figure 3.2 describes some of the packages that are part of the Java standard
class library. These packages are available on any platform that supports Java
software development. Some of these packages support highly specific pro-
gramming techniques and will not come into play in the development of basic
programs.

Various classes of the Java API are discussed throughout this book. For conve-
nience we include in the book some documentation (like Figure 3.2) on the classes
we•ll use, but it•s also very important for you to know how to get more information
about the Java API classes. The online Java API documentation is an invaluable
resource for any Java programmer. It is a Web site that contains pages on each class
in the standard Java API, listing and describing the methods in each one.

Figure 3.3 shows one page of this documentation. Links on the side allow you
to examine particular packages and jump to particular classes. Take some time

FIGURE 3.2 Some packages in the Java standard class library

Package Provides support to

java.applet

java.awt

java.beans

java.io

java.lang

java.math

java.net

java.rmi

java.security�

Create programs (applets) that are easily transported across the Web.

Draw graphics and create graphical user interfaces;
AWT stands for Abstract Windowing Toolkit.

Define software components that can be easily combined
into applications.

Perform a wide variety of input and output functions.

General support; it is automatically imported into all Java programs.

Perform calculations with arbitrarily high precision.

Communicate across a network.

Create programs that can be distributed across multiple computers;
RMI stands for Remote Method Invocation.

Enforce security restrictions.

java.sql

java.text

java.util

javax.swing

Interact with databases;
SQL stands for Structured Query Language.

Format text for output.

General utilities.

Create graphical user interfaces with components that extend
the AWT capabilities.

javax.xml.parsers Process XML documents; XML stands for eXtensible Markup Language.

124 CHAPTER 3 Using Classes and Objects

to get comfortable navigating this site and learning how the information is orga-
nized. The entire set of Java API documentation can be downloaded so that you
have a local copy always available, or you can rely on the online version.

The import Declaration
The classes of the java.lang package are automatically available for use when
writing a Java program. To use classes from any other package, however, we
must either fully qualify the reference or use an import declaration. Recall that
the example programs that use the Scanner class include an import declaration.

When you want to use a class from a class library in a program, you could
use its fully qualified name, including the package name, every time it is ref-
erenced. For example, every time you want to refer to the Scanner class that
is defined in the java.util package, you could write java.util.Scanner .
However, completely specifying the package and class name every time it is
needed quickly becomes tiring. Java provides the import declaration to simplify
these references.

FIGURE 3.3 A page from the online Java API documentation

3.3 Packages 125

 The import declaration specifies the packages and classes that will be used in a
program so that the fully qualified name is not necessary with each reference. As
we•ve seen, the following is an example of an import declaration:

 import java.util.Scanner;

 This declaration asserts that the Scanner class of the java.util package may be
used in the program. Once this import declaration is made, it is sufficient to use
the simple name Scanner when referring to that class in the program.

 If two classes from two different packages have the same name, import dec-
larations will not suffice because the compiler won•t be able to figure out which
class is being referenced in the flow of the code. When such situations arise, which
is rare, the fully qualified names should be used in the code.

 Another form of the import declaration uses an asterisk (*) to indicate that any
class inside the package might be used in the program. Therefore, the following
declaration allows all classes in the java.util package to be referenced in the
program without qualifying each reference:

 import java.util.*;

 If only one class of a particular package will be used in a program, it is usually
better to name the class specifically in the import declaration. However, if two or
more will be used, the * notation is usually fine.

 The classes of the java.lang package are automatically imported
because they are fundamental and can be thought of as basic exten-
sions to the language. Therefore, any class in the java.lang package,
such as System and String , can be used without an explicit import

declaration. It•s as if all program files automatically contain the fol-
lowing declaration:

import java.lang.*;

 SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 3.10 What is a Java package?

SR 3.11 What does the java.net package contain? The javax.swing package?

SR 3.12 What package contains the Scanner class? The String class? The
Random class? The Math class?

SR 3.13 Using the online Java API documentation, describe the Point class.

SR 3.14 What does an import statement accomplish?

SR 3.15 Why doesn•t the String class have to be specifically imported into our
programs?

 KEY CONCEPT
 All classes of the java.lang pack-
age are automatically imported for
every program.

126 CHAPTER 3 Using Classes and Objects

3.4 The Random Class

 The need for random numbers occurs frequently when writing software. Games
often use a random number to represent the roll of a die or the shuffle of a deck
of cards. A flight simulator may use random numbers to determine how often
a simulated flight has engine trouble. A program designed to help high school
students prepare for the SATs may use random numbers to choose the next ques-
tion to ask.

 The Random class, which is part of the java.util class, represents a pseu-
dorandom number generator . A random number generator picks a number at
random out of a range of values. A program that serves this role is technically
pseudorandom, because a program has no means to actually pick a number
randomly. A pseudorandom number generator performs a series of complicated
calculations, based on an initial seed value , and produces a number. Though they
are technically not random (because they are calculated), the values produced
by a pseudorandom number generator usually appear random, at least random
enough for most situations.

 Figure 3.4 lists some of the methods of the Random class. The
 nextInt method can be called with no parameters, or we can pass
it a single integer value. The version that takes no parameters gener-
ates a random number across the entire range of int values, includ-
ing negative numbers. Usually, though, we need a random number
within a more specific range. For instance, to simulate the roll of a

die, we might want a random number in the range of 1 to 6. The nextInt method
returns a value that•s in the range from 0 to one less than its parameter. For
example, if we pass in 100, we•ll get a return value that is greater than or equal
to 0 and less than or equal to 99.

 FIGURE 3.4 Some methods of the Random class

Random ()
Constructor: creates a new pseudorandom number generator.

float nextFloat ()
Returns a random number between 0.0 (inclusive) and 1.0 (exclusive).

int nextInt ()
Returns a random number that ranges over all possible int values (positive
and negative).

int nextInt (int num)
 Returns a random number in the range 0 to num-1.

 KEY CONCEPT
 A pseudorandom number generator
performs a complex calculation to
create the illusion of randomness.

 3.4 The Random Class 127

Note that the value that we pass to the nextInt method is also the number of
possible values we can get in return. We can shift the range as needed by adding
or subtracting the proper amount. To get a random number in the range 1 to 6,
we can call nextInt(6) to get a value from 0 to 5, and then add 1.

The nextFloat method of the Random class returns a float value that is greater
than or equal to 0.0 and less than 1.0. If desired, we can use multiplication to
scale the result, cast it into an int value to truncate the fractional part, and then
shift the range as we do with integers.

The program shown in Listing 3.2 produces several random numbers in vari-
ous ranges.

//**
// RandomNumbers.java Author: Lewis/Loftus
//
// Demonstrates the creation of pseudo-random numbers using the
// Random class.
//**

import java.util.Random;

public class RandomNumbers
{
 //---
 // Generates random numbers in various ranges.
 //---
 public static void main (String[] args)
 {
 Random generator = new Random();
 int num1;
 float num2;

 num1 = generator.nextInt();
 System.out.println ("A random integer: " + num1);

 num1 = generator.nextInt(10);
 System.out.println ("From 0 to 9: " + num1);

 num1 = generator.nextInt(10) + 1;
 System.out.println ("From 1 to 10: " + num1);

L I S T I N G 3 . 2

128 CHAPTER 3 Using Classes and Objects

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 3.16 Given a Random object called rand , what does the call rand.nextInt()
return?

SR 3.17 Given a Random object called rand , what does the call
rand.nextInt(20) return?

SR 3.18 Assuming that a Random object has been created called generator ,
what is the range of the result of each of the following expressions?

a. generator.nextInt(50)

b. generator.nextInt(5) + 10

c. generator.nextInt(10) + 5

d. generator.nextInt(50) … 25

 num1 = generator.nextInt(15) + 20;
 System.out.println ("From 20 to 34: " + num1);

 num1 = generator.nextInt(20) - 10;
 System.out.println ("From -10 to 9: " + num1);

 num2 = generator.nextFloat();
 System.out.println ("A random float (between 0-1): " + num2);

 num2 = generator.nextFloat() * 6; // 0.0 to 5.999999
 num1 = (int)num2 + 1;
 System.out.println ("From 1 to 6: " + num1);
 }
}

O U T P U T

A random integer: 1773351873
From 0 to 9: 8
From 1 to 10: 6
From 20 to 34: 20
From -10 to 9: -6
A random float (between 0-1): 0.71058085
From 1 to 6: 3

L I S T I N G 3 . 2 continued

3.5 The Math Class 129

SR 3.19 Assuming that a Random object has been created called generator ,
write expressions that generate each of the following ranges of inte-
gers, including the endpoints. Use the version of the nextInt method
that accepts a single integer parameter.

 a. 0 to 30
 b. 10 to 19
 c. Š5 to 5

3.5 The Math Class

 The Math class provides a large number of basic mathematical functions that are
often helpful in making calculations. The Math class is defined in the java.lang
package of the Java standard class library. Figure 3.5 lists several of its methods.

 All the methods in the Math class are static methods (also called class methods),
which means they can be invoked through the name of the class in which they are
defined, without having to instantiate an object of the class first. Static methods
are discussed further in Chapter 6 .

 The methods of the Math class return values, which can be used
in expressions as needed. For example, the following statement com-
putes the absolute value of the number stored in total , adds it to
the value of count raised to the fourth power, and stores the result
in the variable value :

 value = Math.abs(total) + Math.pow(count, 4);

 Note that you can pass an integer value to a method that accepts a double
parameter. This is a form of assignment conversion, which was discussed in
 Chapter 2 .

 The Quadratic program, shown in Listing 3.3 , uses the Math class to compute
the roots of a quadratic equation. Recall that a quadratic equation has the fol-
lowing general form:

 ax 2 + bx + c

 The Quadratic program reads values that represent the coefficients in a qua-
dratic equation (a, b, and c), and then evaluates the quadratic formula to deter-
mine the roots of the equation. The quadratic formula is:

 …b+_ …4ac
2a

roots = b2

 Example using the Random
and Math classes.

VideoNote

 KEY CONCEPT
 All methods of the Math class are
static, meaning they are invoked
through the class name.

130 CHAPTER 3 Using Classes and Objects

Note that this program assumes that the discriminant (the value under the
square root) is negative. If it•s not negative, the results will not be a valid number,
which Java represents as NAN, which stands for Not A Number. In Chapter 5 we
will see how we can handle this type of situation gracefully.

FIGURE 3.5 Some methods of the Math class

static int abs (int num)
Returns the absolute value of num.

static double acos (double num)

static double asin (double num)

static double atan (double num)
Returns the arc cosine, arc sine, or arc tangent of num.

static double cos (double angle)

static double sin (double angle)

static double tan (double angle)
Returns the angle cosine, sine, or tangent of angle, which is measured in
radians.

static double ceil (double num)
Returns the ceiling of num, which is the smallest whole number greater than or
equal to num.

static double exp (double power)
Returns the value e raised to the specified power.

static double floor (double num)
Returns the floor of num, which is the largest whole number less than or equal
to num.

static double pow (double num, double power)
Returns the value num raised to the specified power.

static double random ()
Returns a random number between 0.0 (inclusive) and 1.0 (exclusive).

static double sqrt (double num)
Returns the square root of num, which must be positive.

 3.5 The Math Class 131

//**
// Quadratic.java Author: Lewis/Loftus
//
// Demonstrates the use of the Math class to perform a calculation
// based on user input.
//**

import java.util.Scanner;

public class Quadratic
{
 //---
 // Determines the roots of a quadratic equation.
 //---
 public static void main (String[] args)
 {
 int a, b, c; // ax^2 + bx + c
 double discriminant, root1, root2;

 Scanner scan = new Scanner (System.in);

 System.out.print ("Enter the coefficient of x squared: ");
 a = scan.nextInt();

 System.out.print ("Enter the coefficient of x: ");
 b = scan.nextInt();

 System.out.print ("Enter the constant: ");
 c = scan.nextInt();

 // Use the quadratic formula to compute the roots.
 // Assumes a positive discriminant.

 discriminant = Math.pow(b, 2) - (4 * a * c);
 root1 = ((-1 * b) + Math.sqrt(discriminant)) / (2 * a);
 root2 = ((-1 * b) - Math.sqrt(discriminant)) / (2 * a);

 System.out.println ("Root #1: " + root1);
 System.out.println ("Root #2: " + root2);
 }
}

L I S T I N G 3 . 3

132 CHAPTER 3 Using Classes and Objects

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 3.20 What is a class method (also called a static method)?

SR 3.21 What is the value of each of the following expressions?

a. Math.abs(10) + Math.abs(-10)

b. Math.pow(2, 4)

c. Math.pow(4, 2)

d. Math.pow(3, 5)

e. Math.pow(5, 3)

f. Math.sqrt(16)

SR 3.22 Write a statement that prints the sine of an angle measuring 1.23 radians.

SR 3.23 Write a declaration for a double variable called result and initialize it
to 5 raised to the power 2.5.

SR 3.24 Using the online Java API documentation, list three methods of the
Math class that are not included in Figure 3.5.

3.6 Formatting Output

The NumberFormat class and the DecimalFormat class are used to format informa-
tion so that it looks appropriate when printed or displayed. They are both part of
the Java standard class library and are defined in the java.text package.

The NumberFormat Class
The NumberFormat class provides generic formatting capabilities for numbers.
You don•t instantiate a NumberFormat object by using the new operator. Instead,
you request an object from one of the static methods that you invoke through the
class name itself. Figure 3.6 lists some of the methods of the NumberFormat class.

O U T P U T

Enter the coefficient of x squared: 3
Enter the coefficient of x: 8
Enter the constant: 4
Root #1: -0.6666666666666666
Root #2: -2.0

L I S T I N G 3 . 3 continued

 3.6 Formatting Output 133

Two of the methods in the NumberFormat class, getCurrencyInstance
and getPercentInstance , return an object that is used to format numbers. The
getCurrencyInstance method returns a formatter for monetary values, and
the getPercentInstance method returns an object that formats a percentage.
The format method is invoked through a formatter object and returns a String
that contains the number formatted in the appropriate manner.

The Purchase program shown in Listing 3.4 uses both types of formatters. It
reads in a sales transaction and computes the final price, including tax.

FIGURE 3.6 Some methods of the NumberFormat class

String format (double number)
Returns a string containing the specified number formatted according to this
object's pattern.

static NumberFormat getCurrencyInstance()
Returns a NumberFormat object that represents a currency format for the
current locale.

static NumberFormat getPercentInstance()
Returns a NumberFormat object that represents a percentage format for the
current locale.

//**
// Purchase.java Author: Lewis/Loftus
//
// Demonstrates the use of the NumberFormat class to format output.
//**

import java.util.Scanner;
import java.text.NumberFormat;

public class Purchase
{
 //---
 // Calculates the final price of a purchased item using values
 // entered by the user.
 //---
 public static void main (String[] args)

L I S T I N G 3 . 4

134 CHAPTER 3 Using Classes and Objects

 {
 final double TAX_RATE = 0.06; // 6% sales tax

 int quantity;
 double subtotal, tax, totalCost, unitPrice;

 Scanner scan = new Scanner (System.in);

 NumberFormat fmt1 = NumberFormat.getCurrencyInstance();
 NumberFormat fmt2 = NumberFormat.getPercentInstance();

 System.out.print ("Enter the quantity: ");
 quantity = scan.nextInt();

 System.out.print ("Enter the unit price: ");
 unitPrice = scan.nextDouble();

 subtotal = quantity * unitPrice;
 tax = subtotal * TAX_RATE;
 totalCost = subtotal + tax;

 // Print output with appropriate formatting
 System.out.println ("Subtotal: " + fmt1.format(subtotal));
 System.out.println ("Tax: " + fmt1.format(tax) + " at "
 + fmt2.format(TAX_RATE));
 System.out.println ("Total: " + fmt1.format(totalCost));
 }
}

O U T P U T

Enter the quantity: 5
Enter the unit price: 3.87
Subtotal: $19.35
Tax: $1.16 at 6%
Total: $20.51

L I S T I N G 3 . 4 continued

The DecimalFormat Class
Unlike the NumberFormat class, the DecimalFormat class is instantiated in
the traditional way using the new operator. Its constructor takes a string that
represents the pattern that will guide the formatting process. We can then use the

 3.6 Formatting Output 135

format method to format a particular value. At a later point, if we want to change
the pattern that the formatter object uses, we can invoke the applyPattern
method. Figure 3.7 describes these methods.

The pattern defined by the string that is passed to the DecimalFormat con-
structor can get fairly elaborate. Various symbols are used to represent particular
formatting guidelines. The pattern defined by the string "0.###" , for example,
indicates that at least one digit should be printed to the left of the decimal point
and should be a zero if the integer portion of the value is zero. It also indicates
that the fractional portion of the value should be rounded to three digits.

This pattern is used in the CircleStats program, shown in Listing 3.5, which
reads the radius of a circle from the user and computes its area and circumference.
Trailing zeros, such as in the circle•s area of 78.540, are not printed.

The printf Method
In addition to print and println , the System class has another output method
called printf , which allows the user to print a formatted string containing
data values. The first parameter to the method represents the format string,
and the remaining parameters specify the values that are inserted into the
format string.

For example, the following line of code prints an ID number and a name:

System.out.printf ("ID: %5d\tName: %s", id, name);

The first parameter specifies the format of the output and includes literal
characters that label the output values as well as escape characters such as \t .
The pattern %5d indicates that the corresponding numeric value (id) should be
printed in a field of five characters. The pattern %s matches the string parameter

FIGURE 3.7 Some methods of the DecimalFormat class

DecimalFormat (String pattern)
Constructor: creates a new DecimalFormat object with the specified pattern.

void applyPattern (String pattern)
Applies the specified pattern to this DecimalFormat object.

String format (double number)
Returns a string containing the specified number formatted according to the
current pattern.

136 CHAPTER 3 Using Classes and Objects

//**
// CircleStats.java Author: Lewis/Loftus
//
// Demonstrates the formatting of decimal values using the
// DecimalFormat class.
//**

import java.util.Scanner;
import java.text.DecimalFormat;

public class CircleStats
{
 //---
 // Calculates the area and circumference of a circle given its
 // radius.
 //---
 public static void main (String[] args)
 {
 int radius;
 double area, circumference;

 Scanner scan = new Scanner (System.in);

 System.out.print ("Enter the circle's radius: ");
 radius = scan.nextInt();

 area = Math.PI * Math.pow(radius, 2);
 circumference = 2 * Math.PI * radius;

 // Round the output to three decimal places
 DecimalFormat fmt = new DecimalFormat ("0.###");

 System.out.println ("The circle's area: " + fmt.format(area));
 System.out.println ("The circle's circumference: "
 + fmt.format(circumference));
 }
}

O U T P U T

Enter the circle's radius: 5
The circle's area: 78.54
The circle's circumference: 31.416

L I S T I N G 3 . 5

3.6 Formatting Output 137

name . The values of id and name are inserted into the string, producing a result
such as:

 ID: 24036 Name: Larry Flagelhopper

 The printf method was added to Java to mirror a similar function used in
programs written in the C programming language. It makes it easier for a pro-
grammer to translate (or migrate) an existing C program into Java.

 Older software that still has value is called a legacy system . Main-
taining a legacy system is often a costly effort because, among other
things, it is based on older technologies. But in many cases, main-
taining a legacy system is still more cost effective than migrating it
to new technology, such as writing it in a newer language. Adding
the printf method is an attempt to make such migrations easier, and therefore
less costly, by providing the same kind of output statement that C programmers
have come to rely on.

 However, using the printf method is not a particularly clean object-oriented
solution to the problem of formatting output, so we avoid its use in this book.

 SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 3.25 Describe how you request a NumberFormat object for use within a pro-
gram.

 SR 3.26 Suppose that in your program you have a double variable named
cost . You want to output the value stored in cost formatted as the
currency of the current locale.

 a. Write a code statement that declares and requests a NumberFormat

object named moneyFormat that can be used to represent currency
in the format of the current locale.

 b. Write a code statement that uses the moneyFormat object and prints
the value of cost , formatted as the currency of the current locale.

 c. What would be the output from the statement you wrote in part
(b) if the value in cost is 54.89 and your computer•s locale is set
to the United States? What if your computer•s locale is set to the
United Kingdom?

SR 3.27 What are the steps to output a floating point value as a percentage
using Java•s formatting classes?

SR 3.28 Write code statements that prompt for and read in a double value from
the user, and then print the result of taking the square root of the abso-
lute value of the input value. Output the result to two decimal places.

 KEY CONCEPT
 The printf method was added to
Java to support the migration of
legacy systems.

138 CHAPTER 3 Using Classes and Objects

3.7 Enumerated Types

 Java provides the ability to define an enumerated type , which can then be used as
the type of a variable when it is declared. An enumerated type establishes all pos-
sible values of a variable of that type by listing, or enumerating, them. The values
are identifiers, and can be anything desired.

 For example, the following declaration defines an enumerated type called
 Season , whose possible values are winter , spring , summer , and fall :

 enum Season {winter, spring, summer, fall}

 There is no limit to the number of values that you can list for an enumerated
type. Once the type is defined, a variable can be declared of that type:

 Season time;

 The variable time is now restricted in the values it can take on.
It can hold one of the four Season values, but nothing else. Java
enumerated types are considered to be type-safe , meaning that any
attempt to use a value other than one of the enumerated values will
result in a compile-time error.

 The values are accessed through the name of the type. For example:

 time = Season.spring;

 Enumerated types can be quite helpful in situations in which you have a rela-
tively small number of distinct values that a variable can assume. For example,
suppose we wanted to represent the various letter grades a student could earn. We
might declare the following enumerated type:

 enum Grade {A, B, C, D, F}

 Any initialized variable that holds a Grade is guaranteed to have one of those valid
grades. That•s better than using a simple character or string variable to represent
the grade, which could take on any value.

 Suppose we also wanted to represent plus and minus grades, such as A… and
B+. We couldn•t use A… or B+ as values, because they are not valid identifiers (the
characters '-' and '+' cannot be part of an identifier in Java). However, the same
values could be represented using the identifiers Aminus , Bplus , etc.

 Internally, each value in an enumerated type is stored as an integer, which is
referred to as its ordinal value . The first value in an enumerated type has an ordi-
nal value of 0, the second one has an ordinal value of 1, the third one 2, and so on.
The ordinal values are used internally only. You cannot assign a numeric value to
an enumerated type, even if it corresponds to a valid ordinal value.

 KEY CONCEPT
 Enumerated types are type-safe,
ensuring that invalid values will not
be used.

 3.7 Enumerated Types 139

An enumerated type is a special kind of class, and the variables of an enumer-
ated type are object variables. As such, there are a few methods associated with
all enumerated types. The ordinal method returns the numeric value associated
with a particular enumerated type value. The name method returns the name of
the value, which is the same as the identifier that defines the value.

Listing 3.6 shows a program called IceCream that declares an enumerated type
and exercises some of its methods. Because enumerated types are special types of
classes, they are not defined within a method. They can be defined either at the
class level (within the class but outside a method), as in this example, or at the
outermost level.

We explore enumerated types further in Chapter 6.

//**
// IceCream.java Author: Lewis/Loftus
//
// Demonstrates the use of enumerated types.
//**

public class IceCream
{
 enum Flavor {vanilla, chocolate, strawberry, fudgeRipple, coffee,
 rockyRoad, mintChocolateChip, cookieDough}

 //---
 // Creates and uses variables of the Flavor type.
 //---
 public static void main (String[] args)
 {
 Flavor cone1, cone2, cone3;

 cone1 = Flavor.rockyRoad;
 cone2 = Flavor.chocolate;

 System.out.println ("cone1 value: " + cone1);
 System.out.println ("cone1 ordinal: " + cone1.ordinal());
 System.out.println ("cone1 name: " + cone1.name());

 System.out.println ();
 System.out.println ("cone2 value: " + cone2);
 System.out.println ("cone2 ordinal: " + cone2.ordinal());
 System.out.println ("cone2 name: " + cone2.name());

L I S T I N G 3 . 6

140 CHAPTER 3 Using Classes and Objects

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 3.29 Write the declaration of an enumerated type that represents movie ratings.

SR 3.30 Suppose that an enumerated type called CardSuit has been defined as
follows:

enum CardSuit {clubs, diamonds, hearts, spades}

 What is the output of the following code sequence?

CardSuit card1, card2;
card1 = CardSuit.clubs;
card2 = CardSuit.hearts;
System.out.println (card1);
System.out.println (card2.name());
System.out.println (card1.ordinal());
System.out.println (card2.ordinal());

SR 3.31 Why use an enumerated type such as CardSuit defined in the previous
question? Why not just use String variables and assign them values
such as •heartsŽ?

 cone3 = cone1;

 System.out.println ();
 System.out.println ("cone3 value: " + cone3);
 System.out.println ("cone3 ordinal: " + cone3.ordinal());
 System.out.println ("cone3 name: " + cone3.name());
 }
}

O U T P U T

cone1 value: rockyRoad
cone1 ordinal: 5
cone1 name: rockyRoad

cone2 value: chocolate
cone2 ordinal: 1
cone2 name: chocolate

cone3 value: rockyRoad
cone3 ordinal: 5
cone3 name: rockyRoad

L I S T I N G 3 . 6 continued

3.8 Wrapper Classes 141

3.8 Wrapper Classes

 As we•ve discussed previously, Java represents data by using primitive types (such
as int , double , char , and boolean) in addition to classes and objects. Having two
categories of data to manage (primitive values and object references) can present
a challenge in some circumstances. For example, we might create an object that
serves as a container to hold various types of other objects. However, in a specific
situation, we may want it to hold a simple integer value. In these cases we need
to •wrapŽ a primitive value into an object.

 A wrapper class represents a particular primitive type. For instance, the
 Integer class represents a simple integer value. An object created from the
 Integer class stores a single int value. The constructors of the wrapper classes
accept the primitive value to store. For example:

 Integer ageObj = new Integer(40);

 Once this declaration and instantiation are performed, the ageObj

object effectively represents the integer 40 as an object. It can be used
wherever an object is needed in a program rather than a primitive
type.

 For each primitive type in Java there exists a corresponding wrapper class in
the Java class library. All wrapper classes are defined in the java.lang package.
 Figure 3.8 shows the wrapper class that corresponds to each primitive type.

 Note that there is even a wrapper class that represents the type void . However,
unlike the other wrapper classes, the Void class cannot be instantiated. It simply
represents the concept of a void reference.

 FIGURE 3.8 Wrapper classes in the Java class library

byte

short

int

long

float

double

char

boolean

void

Byte

Short

Integer

Long

Float

Double

Character

Boolean

Void

Primitive Type Wrapper Class

 KEY CONCEPT
 A wrapper class allows a primitive
value to be managed as an object.

142 CHAPTER 3 Using Classes and Objects

Wrapper classes also provide various methods related to the management of
the associated primitive type. For example, the Integer class contains methods
that return the int value stored in the object and that convert the stored value to
other primitive types. Figure 3.9 lists some of the methods found in the Integer
class. The other wrapper classes have similar methods.

Note that the wrapper classes also contain static methods that can be invoked
independent of any instantiated object. For example, the Integer class contains a
static method called parseInt to convert an integer that is stored in a String to
its corresponding int value. If the String object str holds the string "987" , the
following line of code converts the string into the integer value 987 and stores that
value in the int variable num:

num = Integer.parseInt(str);

The Java wrapper classes often contain static constants that are helpful as
well. For example, the Integer class contains two constants, MIN_VALUE and
MAX_VALUE, that hold the smallest and largest int values, respectively. The other
wrapper classes contain similar constants for their types.

FIGURE 3.9 Some methods of the Integer class

Integer (int value)
 Constructor: creates a new Integer object storing the specified value.

byte byteValue ()
double doubleValue ()
float floatValue ()
int intValue ()
long longValue ()
 Return the value of this Integer as the corresponding primitive type.

static int parseInt (String str)
 Returns the int corresponding to the value stored in the
 specified string.

static String toBinaryString (int num)
static String tohexString (int num)
static String toOctalString (int num)
 Returns a string representation of the specified integer value in the
 corresponding base.

3.9 Components and Containers 143

 Autoboxing
Autoboxing is the automatic conversion between a primitive value and a cor-
responding wrapper object. For example, in the following code, an int value is
assigned to an Integer object reference variable:

 Integer obj1;
int num1 = 69;
 obj1 = num1; // automatically creates an Integer object

 The reverse conversion, called unboxing, also occurs automatically when needed.
For example:

 Integer obj2 = new Integer(69);
 int num2;
 num2 = obj2; // automatically extracts the int value

 Assignments between primitive types and object types
are generally incompatible. The ability to autobox occurs
only between primitive types and corresponding wrapper
classes. In any other case, attempting to assign a primitive
value to an object reference variable, or vice versa, will
cause a compile-time error.

 SELF-REVIEW QUESTIONS (see answers in Appendix N)

 SR 3.32 How can we represent a primitive value as an object?

 SR 3.33 What wrapper classes correspond to each of the following primitive
types: byte, int, double, char , and boolean ?

 SR 3.34 Suppose that an int variable named number has been declared and ini-
tialized and an Integer variable named holdNumber has been declared.
Show two approaches in Java for having holdNumber represent the
value stored in number .

 SR 3.35 Write a statement that prints out the largest possible int value.

 3.9 Components and Containers

 In the Graphics Track sections of Chapter 2 we introduced the Java capabilities
to draw shapes using the Graphics and Color classes from the Java standard
class library. We also defined the concept of an applet, a Java program that is
intended to be embedded in a Web page and executed through a browser. Recall
that, in contrast to applets, Java applications are stand-alone programs that are
not executed through the Web.

 KEY CONCEPT
 Autoboxing provides automatic con-
versions between primitive values
and corresponding wrapper objects.

 Most of the example programs we•ve looked at so far have been Java applica-
tions. More specifically, they have been command-line applications , which inter-
act with the user only through simple text prompts. A Java application can have
graphical components as well. Throughout the rest of the book, in the Graphics
Track sections at the end of each chapter, we will explore the capabilities of Java
to create programs with graphical user interfaces (GUIs). In this chapter we estab-
lish the basic issues regarding graphics-based applications.

 A GUI component is an object that represents a screen element that is used to
display information or to allow the user to interact with the program in a certain
way. GUI components include labels, buttons, text fields, scroll bars, and menus.

 Java components and other GUI-related classes are defined primarily in two
packages: java.awt and javax.swing . (Note the x in javax.swing .) The Abstract
Windowing Toolkit (AWT) was the original Java GUI package. It still contains many
important classes, such as the Color class that we used in Chapter 2 . The Swing pack-
age was added later and provides components that are more versatile than those of
the AWT package. Both packages are needed for GUI development, but we will use
Swing components whenever there is an option.

 A container is a special type of component that is used
to hold and organize other components. Frames and panels
are two examples of Java containers. Let•s explore them in
more detail.

 Frames and Panels
 A frame is a container that is used to display GUI-based Java applications. A
frame is displayed as a separate window with its own title bar. It can be repo-
sitioned on the screen and resized as needed by dragging it with the mouse. It
contains small buttons in the corner of the frame that allow the frame to be mini-
mized, maximized, and closed. A frame is defined by the JFrame class.

 A panel is also a container. However, unlike a frame, it cannot be displayed
on its own. A panel must be added to another container for
it to be displayed. Generally a panel doesn•t move unless you
move the container that it•s in. Its primary role is to help
organize the other components in a GUI. A panel is defined
by the JPanel class.

 We can classify containers as either heavyweight or lightweight. A heavyweight
container is one that is managed by the underlying operating system on which the
program is run, whereas a lightweight container is managed by the Java program
itself. Occasionally this distinction will be important as we explore GUI develop-
ment. A frame is a heavyweight component, and a panel is a lightweight component.

144 CHAPTER 3 Using Classes and Objects

 KEY CONCEPT
 Containers are special GUI compo-
nents that hold and organize other
components.

 KEY CONCEPT
 A frame is displayed as a separate
window, but a panel can be displayed
only as part of another container.

Heavyweight components are more complex than lightweight components in
general. A frame, for example, has multiple panes, which are responsible for vari-
ous characteristics of the frame window. All visible elements of a Java interface
are displayed in a frame•s content pane.

Generally, we can create a Java GUI-based application by creating a frame in
which the program interface is displayed. The interface is often organized onto a
primary panel, which is added to the frame•s content pane. The components in the
primary panel are often organized using other panels as needed.

Containers are generally not useful unless they help us organize and display
other components. Let•s examine another fundamental GUI component. A label
is a component that displays a line of text in a GUI. A label can also display an
image, a topic discussed later in this chapter. Usually, labels are used to display
information or identify other components in the GUI. Labels can be found in
almost every GUI-based program.

Let•s look at an example that uses frames, panels, and labels. When the pro-
gram in Listing 3.7 is executed, a new window appears on the screen displaying
a phrase. The text of the phrase is displayed using two label components. The
labels are organized in a panel, and the panel is displayed in the content pane of
the frame.

The JFrame constructor takes a string as a parameter, which it displays in the
title bar of the frame. The call to the setDefaultCloseOperation method deter-
mines what will happen when the close button (the X) in the corner of the frame
is clicked. In most cases we•ll simply let that button terminate the program, as
indicated by the EXIT_ON_CLOSE constant.

A panel is created by instantiating the JPanel class. The background color of
the panel is set using the setBackground method. The setPreferredSize method
accepts a Dimension object as a parameter, which is used to indicate the width
and height of the component in pixels. The size of many components can be set
this way, and most also have setMinimumSize and setMaximumSize methods to
help control the look of the interface.

The labels are created by instantiating the JLabel class, passing to its con-
structor the text of the label. In this program two separate label components are
created.

Containers have an add method that allows other components to be added
to them. Both labels are added to the primary panel and are from that point on
considered to be part of that panel. The order in which components are added to
a container often matters. In this case, it determines which label appears above
the other.

Finally, the content pane of the frame is obtained using the getContentPane
method, immediately after which the add method of the content pane is called to

 3.9 Components and Containers 145

//**
// Authority.java Author: Lewis/Loftus
//
// Demonstrates the use of frames, panels, and labels.
//**

import java.awt.*;
import javax.swing.*;

public class Authority
{
 //---
 // Displays some words of wisdom.
 //---
 public static void main (String[] args)
 {
 JFrame frame = new JFrame ("Authority");

 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

 JPanel primary = new JPanel();
 primary.setBackground (Color.yellow);
 primary.setPreferredSize (new Dimension(250, 75));

 JLabel label1 = new JLabel ("Question authority,");
 JLabel label2 = new JLabel ("but raise your hand first.");

 primary.add (label1);
 primary.add (label2);

 frame.getContentPane().add(primary);
 frame.pack();
 frame.setVisible(true);
 }
}

D I S P L A Y

L I S T I N G 3 . 7

146 CHAPTER 3 Using Classes and Objects

add the panel. The pack method of the frame sets its size appropriately based on
its contents„in this case the frame is sized to accommodate the size of the panel it
contains. This is a better approach than trying to set the size of the frame explic-
itly, which should change as the components within the frame change. The call to
the setVisible method causes the frame to be displayed on the monitor screen.

 The Authority program is not interactive. In general, labels do not allow the
user to interact with a program. We will examine interactive GUI components in
the next chapter.

 However, you can interact with the frame itself in various ways. You can move
the entire frame to another point on the desktop by grabbing the title bar of the
frame and dragging it with the mouse. You can also resize the frame by dragging
the bottom-right corner of the frame. Note what happens when the frame is made
wider: the second label pops up next to the first label.

 Every container is managed by an object called a layout
manager that determines how the components in the con-
tainer are laid out. The layout manager is consulted when
important things happen to the interface, such as when the
frame is resized.

 Unless you specify otherwise, the components in a panel will try to arrange
themselves next to one another in a row, and a component will move down to the
next row only when the width of the panel won•t accommodate it. Experiment
with this program to see how the layout manager changes the organization of
the labels as the window size is changed. Layout managers are discussed in more
detail in the Graphics Track sections of Chapter 7 .

 SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 3.36 What is the difference between a frame and a panel?

SR 3.37 Select the term from the following list that best matches each of the
following phrases:

 container, content pane, frame, heavyweight, label, layout manager,
lightweight, panel

 a. A component that is used to hold and organize other components.
 b. A container displayed in its own window with a title bar.
 c. Its primary role is to help organize other components in a GUI; it

must be added to another container to be displayed.
 d. This type of component is managed by the underlying operating

system.
 e. This type of component is managed by the Java program itself.
 f. The part of a frame that displays visible elements.

3.9 Components and Containers 147

 KEY CONCEPT
 Every container is managed by a
layout manager.

 g. A component that displays a line of text in a GUI.
 h. Determines how the components in a container are arranged on

the screen.

SR 3.38 Run the Authority program. Describe what happens if you resize the
frame by dragging the bottom-right corner towards the right. Explain.

SR 3.39 Which of the following statements best describes how the GUI of the
Authority program is constructed?

� A frame is added to a panel, which is added to two labels.
� Labels are added to a panel, which is added to the content pane of

a frame.
� Frames, panels, and labels are added to the foreground.
� A panel displays two labels to the user.

SR 3.40 What is the result of separately making each of the following changes
to the Authority program? You may make the change, compile and
run the program, and observe and report the results. Briefly explain
what you observe.

 a. The dimensions passed to the setPreferredSize method are
(300, 300) instead of (250, 75).

 b. The background color is set to black instead of yellow.
 c. The order of the two label instantiation statements is reversed (i.e.,

first you create label2 as a new JLabel , passing it the string "but

raise your hand first." , and then you create label1 as a new
JLabel , passing it the string "Question authority,").

 d. The order of the two primary add statements is reversed (i.e., first
you add label2 to the primary panel, and then you add label1) .

 3.10 Nested Panels

 In the previous section, we saw an example in which two labels were contained
in a panel that was contained in a frame. Such relationships make up the contain-
ment hierarchy of an interface, which can be as intricate as needed to create the
visual effect desired.

 In particular, it is common to have multiple layers of nested
panels to organize and group components in various ways. While
you shouldn•t include unnecessary components in the contain-
ment hierarchy, don•t hesitate to include extra scaffolding in the
creation of an interface to help achieve the effect you want.

148 CHAPTER 3 Using Classes and Objects

 KEY CONCEPT
 Panels can be nested to create an
intricate containment hierarchy of
components.

The program in Listing 3.8, NestedPanels , creates two subpanels, each con-
taining a label. Both subpanels are put onto another panel, which is then added
to the content pane of the frame.

//**
// NestedPanels.java Author: Lewis/Loftus
//
// Demonstrates a basic component hierarchy.
//**

import java.awt.*;
import javax.swing.*;

public class NestedPanels
{
 //---
 // Presents two colored panels nested within a third.
 //---
 public static void main (String[] args)
 {
 JFrame frame = new JFrame ("Nested Panels");
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

 // Set up first subpanel
 JPanel subPanel1 = new JPanel();
 subPanel1.setPreferredSize (new Dimension(150, 100));
 subPanel1.setBackground (Color.green);
 JLabel label1 = new JLabel ("One");
 subPanel1.add (label1);

 // Set up second subpanel
 JPanel subPanel2 = new JPanel();
 subPanel2.setPreferredSize (new Dimension(150, 100));
 subPanel2.setBackground (Color.red);
 JLabel label2 = new JLabel ("Two");
 subPanel2.add (label2);

 // Set up primary panel
 JPanel primary = new JPanel();
 primary.setBackground (Color.blue);
 primary.add (subPanel1);
 primary.add (subPanel2);

L I S T I N G 3 . 8

 3.10 Nested Panels 149

Note that the primary panel in the program was not explicitly sized. It sized
itself as needed to accommodate the two panels contained in it. Also note that
the subpanels have a buffer around them through which the blue of the primary
panel can be seen. Such spacing is a function of the layout manager that is used
to govern the container and the characteristics set for the components themselves.
These issues are explored further in later Graphics Track sections.

As you did with the previous example, execute and experiment with this one.
Resize the frame to see the effect on the components. Note that the size of the
subpanels stays fixed, and that the orientation of the two panels changes depend-
ing on the width of the primary panel (which expands as the frame expands).

After you are comfortable with the way the components are laid out relative
to each other, change the background color of all panels to the same color (say,
green) to see how the distinction between panels can be invisible if the interface
is designed accordingly.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 3.41 What is the containment hierarchy of a Java graphical user interface?

SR 3.42 In the NestedPanels program, how many panels are created? What
are the names of the panel variables?

 frame.getContentPane().add(primary);
 frame.pack();
 frame.setVisible(true);
 }
}

D I S P L A Y

L I S T I N G 3 . 8 continued

150 CHAPTER 3 Using Classes and Objects

Example using
frames and
panels.

VideoNote

SR 3.43 In the NestedPanels program, which panels are added to another
panel? Which panel are they added to? Which panel is explicitly added
to the content pane of the frame?

 3.11 Images

 Images often play an important role in graphics-based software. Java has the abil-
ity to use JPEG and GIF images in various ways. The Graphics class contains a
 drawImage method that allows you to draw the image just as you would draw a
shape or character string. An image can also be incorporated into a label com-
ponent. Let•s explore the relationship between images and labels in more detail.

 As we•ve seen in previous sections, a label defined by the
 JLabel class can be used to provide information to the user
or to describe other components in an interface. A JLabel
can also contain an image. That is, a label can be composed
of text, an image, or both.

 The ImageIcon class is used to represent an image that is included in a label.
The ImageIcon constructor takes the name of the image file and loads it into the
object. ImageIcon objects can be made using either JPEG or GIF images.

 The alignment of the text and image within the label can be set explicitly, using
either the JLabel constructor or specific methods. Similarly, we can set the posi-
tion of the text relative to the image.

 The LabelDemo program shown in Listing 3.9 displays several labels. Each label
shows its text and image in different orientations.

 The third parameter passed to the JLabel constructor defines the horizontal
positioning of the label within the space allowed for the label in the panel. The
 SwingConstants interface contains several constants used by various Swing com-
ponents, making it easier to refer to them.

 The orientation of the label•s text and image is explicitly set using the
 setHorizontalTextPosition and setVerticalTextPosition methods. As
shown in the case of the first label, the default horizontal position for text is on
the right (image on the left), and the default vertical position for text is centered
relative to the image.

 Don•t confuse the horizontal positioning of the label in the container with the set-
ting of the orientation between the text and the image. The third parameter of the
constructor determines the first, and the explicit method calls determine the second.

 By putting an image in a label, it becomes part of a component that gets laid
out with all other components in a container, instead of being drawn in a particu-
lar place. This is an appropriate design decision: whether to draw an image using

3.11 Images 151

 KEY CONCEPT
 A label can contain text, an image,
or both.

//**
// LabelDemo.java Author: Lewis/Loftus
//
// Demonstrates the use of image icons in labels.
//**

import java.awt.*;
import javax.swing.*;

public class LabelDemo
{
 //---
 // Creates and displays the primary application frame.
 //---
 public static void main (String[] args)
 {
 JFrame frame = new JFrame ("Label Demo");
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

 ImageIcon icon = new ImageIcon ("devil.gif");

 JLabel label1, label2, label3;

 label1 = new JLabel ("Devil Left", icon, SwingConstants.CENTER);

 label2 = new JLabel ("Devil Right", icon, SwingConstants.CENTER);
 label2.setHorizontalTextPosition (SwingConstants.LEFT);
 label2.setVerticalTextPosition (SwingConstants.BOTTOM);

 label3 = new JLabel ("Devil Above", icon, SwingConstants.CENTER);
 label3.setHorizontalTextPosition (SwingConstants.CENTER);
 label3.setVerticalTextPosition (SwingConstants.BOTTOM);

 JPanel panel = new JPanel();
 panel.setBackground (Color.cyan);
 panel.setPreferredSize (new Dimension (200, 250));
 panel.add (label1);
 panel.add (label2);
 panel.add (label3);
 frame.getContentPane().add(panel);
 frame.pack();
 frame.setVisible(true);
 }
}

L I S T I N G 3 . 9

152 CHAPTER 3 Using Classes and Objects

the drawImage method of the Graphics class or to use a label to display an image.
Your choice should be based on the particular needs of the program.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 3.44 How many frames, panels, image icons, and labels are declared in the
LabelDemo program?

SR 3.45 Consider one of the label instantiation statements from the LabelDemo
program:

D I S P L A Y

L I S T I N G 3 . 9 continued

 3.11 Images 153

label2 = new JLabel ("Devil Right", icon, SwingConstants.CENTER);

 Explain the role of each of the three parameters passed to the JLabel
constructor.

SR 3.46 What is the result of separately making each of the following changes
to the LabelDemo program? You may make the change, compile and
run the program, and observe and report the results. Briefly explain
what you observe.

a. Change the third parameter of each of the three JLabel construc-
tor calls to SwingConstants.LEFT .

b. Change the horizontal text position of label2 from LEFT to RIGHT.
c. Change the horizontal text position of label2 from LEFT to

BOTTOM.
d. Change the vertical text position of label3 from BOTTOM to

CENTER.

154 CHAPTER 3 Using Classes and Objects

 Summary of Key Concepts 155

Summary of Key Concepts
� The new operator returns a reference to a newly created object.

� Multiple reference variables can refer to the same object.

� Usually a method is executed on a particular object, which affects the results.

� A class library provides useful support when developing programs.

� The Java standard class library is organized into packages.

� All classes of the java.lang package are automatically imported for every
program.

� A pseudorandom number generator performs a complex calculation to
create the illusion of randomness.

� All methods of the Math class are static, meaning they are invoked through
the class name.

� The printf method was added to Java to support the migration of legacy
systems.

� Enumerated types are type-safe, ensuring that invalid values will not be used.

� A wrapper class allows a primitive value to be managed as an object.

� Autoboxing provides automatic conversions between primitive values and
corresponding wrapper objects.

� Containers are special GUI components that hold and organize other
components.

� A frame is displayed as a separate window, but a panel can be displayed
only as part of another container.

� Every container is managed by a layout manager.

� Panels can be nested to create an intricate containment hierarchy of com-
ponents.

� A label can contain text, an image, or both.

Exercises
Visit www.myprogramminglab.com to complete many of these Exercises
online and get instant feedback.

EX 3.1 Write a statement that prints the number of characters in a
String object called overview .

EX 3.2 Write a statement that prints the 8th character of a String
object called introduction .

156 CHAPTER 3 Using Classes and Objects

EX 3.3 Write a declaration for a String variable called change and ini-
tialize it to the characters stored in another String object called
original with all 'e' characters changed to 'j' .

EX 3.4 What output is produced by the following code fragment?

String m1, m2, m3;
m1 = "Quest for the Holy Grail";
m2 = m1.toLowerCase();
m3 = m1 + " " + m2;
System.out.println (m3.replace('h', 'z'));

EX 3.5 What is the effect of the following import statement?

import java.awt.*;

EX 3.6 Assuming that a Random object has been created called
generator , what is the range of the result of each of the follow-
ing expressions?

a. generator.nextInt(20)

b. generator.nextInt(8) + 1

c. generator.nextInt(45) + 10

d. generator.nextInt(100) Š 50

EX 3.7 Write code to declare and instantiate an object of the Random
class (call the object reference variable rand). Then write a list
of expressions using the nextInt method that generates random
numbers in the following specified ranges, including the end-
points. Use the version of the nextInt method that accepts a
single integer parameter.

a. 0 to 10
b. 0 to 500
c. 1 to 10
d. 1 to 500
e. 25 to 50
f. - 10 to 15

EX 3.8 Write an assignment statement that computes the square root of
the sum of num1 and num2 and assigns the result to num3.

EX 3.9 Write a single statement that computes and prints the absolute
value of total .

EX 3.10 Write code statements to create a DecimalFormat object that
will round a formatted value to four decimal places. Then write
a statement that uses that object to print the value of result ,
properly formatted.

 Programming Projects 157

EX 3.11 Write code statements that prompt for and read a double value
from the user, and then print the result of raising that value to
the fourth power. Output the results to three decimal places.

EX 3.12 Write a declaration for an enumerated type that represents the
days of the week.

Programming Projects
Visit www.myprogramminglab.com to complete many of these Programming
Projects online and get instant feedback.

PP 3.1 Write an application that prompts for and reads the user•s first
and last name (separately). Then print a string composed of
the first letter of the user•s first name, followed by the first five
characters of the user•s last name, followed by a random number
in the range 10 to 99. Assume that the last name is at least five
letters long. Similar algorithms are sometimes used to generate
usernames for new computer accounts.

PP 3.2 Write an application that prints the sum of cubes. Prompt for
and read two integer values and print the sum of each value
raised to the third power.

PP 3.3 Write an application that creates and prints a random phone
number of the form XXX…XXX…XXXX. Include the dashes in
the output. Do not let the first three digits contain an 8 or 9
(but don•t be more restrictive than that), and make sure that the
second set of three digits is not greater than 742. Hint: Think
through the easiest way to construct the phone number. Each
digit does not have to be determined separately.

PP 3.4 Write an application that reads the (x,y) coordinates for two
points. Compute the distance between the two points using the
following formula:

Distance = (x2 … x1)2 + (y2 … y1)2

PP 3.5 Write an application that reads the radius of a sphere and prints
its volume and surface area. Use the following formulas. Print
the output to four decimal places. r represents the radius.

 Volume =
4
3

pr3

Surface Area = 4pr2

Developing a solution
of PP 3.5.

VideoNote

158 CHAPTER 3 Using Classes and Objects

PP 3.6 Write an application that reads the lengths of the sides of a trian-
gle from the user. Compute the area of the triangle using Heron•s
formula (below), in which s represents half of the perimeter of
the triangle and a, b, and c represent the lengths of the three
sides. Print the area to three decimal places.

Area = s s a s b s c()(…)(…)…

PP 3.7 Write an application that generates a random integer in the range
20 to 40, inclusive, and displays the sine, cosine, and tangent of
that number.

PP 3.8 Write an application that generates a random integer radius (r)
and height (h) for a cylinder in the range 1 to 10, inclusive, and
then computes the volume and surface area of the cylinder.

Volume = pr2h

 Area = 2prh

PP 3.9 Write an application that displays a frame containing two labels
that display your name, one for your first name and one for your
last. Experiment with the size of the window to see the labels
change their orientation to each other.

PP 3.10 Write an application that displays a frame containing two panels.
Each panel should contain two images (use four unique images„
your choice). Fix the size of the first panel so that both of its
images remain side by side. Allow the other panel to change size
as needed. Experiment with the size of the window to see the
images change orientation. Make sure you understand why the
application behaves as it does.

PP 3.11 Modify the LabelDemo program so that it displays a fourth label,
with the text of the label centered above the image.

159

C H A P T E R O B J E C T I V E S
� Discuss the structure and content of a class definition.

� Establish the concept of object state using instance data.

� Describe the effect of visibility modifiers on methods and data.

� Explore the structure of a method definition, including parameters and
return values.

� Discuss the structure and purpose of a constructor.

� Explore the creation of graphical objects.

� Introduce the concepts needed to create an interactive graphical user
interface.

� Explore some basic GUI components and events.

In Chapter 3, we used classes and objects for the various services

they provide. That is, we used the predefined classes in the Java class

library that are provided to us to make the process of writing pro-

grams easier. In this chapter, we address the heart of object-oriented

programming: writing our own classes to define our own objects.

This chapter explores the basics of class definitions, including the

structure of methods and the scope and encapsulation of data. The

Graphics Track sections of this chapter discuss how to write classes

that have graphical representations and introduce the issues necessary

to create a truly interactive graphical user interface.

Writing Classes 4

4.1 Classes and Objects Revisited

In Chapter 1, we introduced basic object-oriented concepts, including a brief
overview of objects and classes. In Chapter 3, we used several predefined classes
from the Java standard class library to create objects and use them for the par-
ticular functionality they provided.

In this chapter, we turn our attention to writing our own classes. Although
existing class libraries provide many useful classes, the essence of object-oriented
program development is the process of designing and implementing our own
classes to suit our specific needs.

Recall the basic relationship between an object and a class: a class is a blueprint
of an object. The class represents the concept of an object, and any object created
from that class is a realization of that concept.

For example, from Chapter 3 we know that the String class represents a
concept of a character string, and that each String object represents a particular
string that contains specific characters.

Let•s consider another example. Suppose a class called Student represents a
student at a university. An object created from the Student class would repre-
sent a particular student. The Student class represents the general concept of
a student, and every object created from that class represents an actual student
attending the school. In a system that helps manage the business of a university,
we would have one Student class and thousands of Student objects.

Recall that an object has a state, which is defined by the values of the attributes
associated with that object. The attributes of a student may include the student•s
name, address, major, and grade point average. The Student class establishes that
each student has these attributes. Each Student object stores the values of these
attributes for a particular student. In Java, an object•s attributes are defined by
variables declared within a class.

An object also has behaviors, which are defined by the operations associated with
that object. The operations of a student would include the ability to update that stu-
dent•s address and compute that student•s current grade point average. The Student
class defines the operations, such as the details of how a grade point average is com-
puted. These operations can then be executed on (or by) a particular Student object.
Note that the behaviors of an object may modify the state of that object. In Java, an
object•s operations are defined by methods declared within a class.

Figure 4.1 lists some examples of classes, with some attributes and operations
that might be defined for objects of those classes. It•s up to the program designer
to determine what attributes and operations are needed, which depends on the
purpose of the program and the role a particular object plays in that purpose.
Consider other attributes and operations you might include for these examples.

160 CHAPTER 4 Writing Classes

 4.1 Classes and Objects Revisited 161

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 4.1 What is an attribute?

SR 4.2 What is an operation?

SR 4.3 List some attributes and operations that might be defined for a class
called Book that represents a book in a library.

SR 4.4 True or False? Explain.

a. We should use only classes from the Java standard class library
when writing our programs„there is no need to define or use
other classes.

b. An operation on an object can change the state of an object.
c. The current state of an object can affect the result of an operation

on that object.
d. In Java, the state of an object is represented by its methods.

Class Attributes Operations

Student

Length
Width
Color

Rectangle

Material
Length
Width
Height

Aquarium

Airline
Flight number
Origin city
Destination city
Current status

Flight

Name
Department
Title
Salary

Employee

Name
Address
Major
Grade point average

Set length
Set width
Set color

Set material
Set length
Set width
Set height
Compute volume
Compute filled weight

Set airline
Set flight number
Determine status

Set department
Set title
Set salary
Compute wages
Compute bonus
Compute taxes

Set address
Set major
Compute grade point average

FIGURE 4.1 Examples of classes and some possible attributes and operations

162 CHAPTER 4 Writing Classes

4.2 Anatomy of a Class

In all of our previous examples, we•ve written a single class containing a single
main method. These classes represent small but complete programs. These pro-
grams often instantiated objects using predefined classes from the Java class
library and used those objects for the services they provide. Those predefined
classes are part of the program too, but we never really concern ourselves with
them other than to know how to interact with them. We simply trust them to
provide the services they promise.

Let•s look at another, similar example. The RollingDice class shown in
Listing 4.1 contains a main method that instantiates two Die objects (as in the
singular of dice). It then rolls the dice and prints the results. It also calls several
other methods provided by the Die class, such as the ability to explicitly set and
get the current face value of a die.

//**
// RollingDice.java Author: Lewis/Loftus
//
// Demonstrates the creation and use of a user-defined class.
//**

public class RollingDice
{
 //---
 // Creates two Die objects and rolls them several times.
 //---
 public static void main (String[] args)
 {
 Die die1, die2;
 int sum;

 die1 = new Die();
 die2 = new Die();

 die1.roll();
 die2.roll();
 System.out.println ("Die One: " + die1 + ", Die Two: " + die2);

 die1.roll();
 die2.setFaceValue(4);

L I S T I N G 4 . 1

4.2 Anatomy of a Class 163

 The primary difference between this example and previous examples is that the
Die class is not a predefined part of the Java class library. We have to write the
Die class ourselves, defining the services we want Die objects to perform, if this
program is to compile and run.

 Every class can contain data declarations and method declarations, as depicted
in Figure 4.2 . The data declarations represent the data that will be stored in each
object of the class. The method declarations define the services that those objects
will provide. Collectively, the data and methods of a class are called the members
of a class.

 The classes we•ve written in previous examples follow this model as well, but
contain no data at the class level and contain only one method (the main method).
We•ll continue to define classes like this, such as the RollingDice class, to define
the starting point of a program.

 True object-oriented programming, however, comes from defining classes
that represent objects with well-defined state and behavior. For
example, at any given moment a Die object is showing a particular
face value, which we could refer to as the state of the die. A Die
object also has various methods we can invoke on it, such as the
ability to roll the die or get its face value. These methods represent
the behavior of a die.

 System.out.println ("Die One: " + die1 + ", Die Two: " + die2);

 sum = die1.getFaceValue() + die2.getFaceValue();
 System.out.println ("Sum: " + sum);

 sum = die1.roll() + die2.roll();
 System.out.println ("Die One: " + die1 + ", Die Two: " + die2);
 System.out.println ("New sum: " + sum);
 }
 }

 O U T P U T

 Die One: 5, Die Two: 2
 Die One: 1, Die Two: 4
 Sum: 5
 Die One: 4, Die Two: 2
 New sum: 6

 L I S T I N G 4 . 1 continued

 KEY CONCEPT
 The heart of object-oriented pro-
gramming is defining classes that
represent objects with well-defined
state and behavior.

