

Chapter 1 Overview of program, p. 28
Comparison of Java IDEs, p. 41
Examples of various error types, p. 43
Developing a solution of PP 1.2, p. 55

Chapter 2 Example using strings and escape sequences, p. 63
Review of primitive date and expressions, p. 76
Example using the Scanner class, p. 91
Example using drawn shapes, p. 101
Developing a solution of PP 2.8, p. 109

Chapter 3 Creating objects, p. 115
Example using the Random and Math classes, p. 129
Example using frames and panels, p. 150
Developing a solution of PP 3.5, p. 157

Chapter 4 Dissecting the Die class, p. 164
Discussion of the Account class, p. 178
Example using an extended JPanel, p. 182
Overview of GUI development, p. 191
Developing a solution of PP 4.2, p. 202

Chapter 5 Examples using conditionals, p. 221
 Examples using while loops, p. 233

Examples using check boxes and radio buttons, p. 255
Developing a solution of PP 5.4, p. 264

Chapter 6 Examples using for loops, p. 280
Developing a solution of PP 6.2, p. 296

Chapter 7 Exploring the static modifier, p. 305
Examples of method overloading, p. 344
Discussion of layout managers, p. 356
Developing a solution of PP 7.1, p. 374

Chapter 8 Overview of arrays, p. 382
Discussion of the LetterCount example, p. 388
Example using rubberbanding and arrays, p. 423
Developing a solution of PP 8.5, p. 436

Chapter 9 Overview of inheritance, p. 449
Example using a class hierarchy, p. 461
Example using the Timer class, p. 475
Developing a solution of PP 9.8, p. 483

Chapter 10 Exploring the Firm program, p. 490
 Sorting Comparable objects, p. 506

Developing a solution of PP 10.1, p. 534

Chapter 11 Proper exception handling, p. 545
Exploring GUI design details, p. 561
Developing a solution of PP 11.1, p. 580

Chapter 12 Tracing the MazeSearch program, p. 594
Exploring the Towers of Hanoi, p. 597
Developing a solution of PP 12.1, p. 613

Chapter 13 Example using a linked list, p. 620
Implementing a queue, p. 628
Developing a solution of PP 13.3, p. 638

LOCATION OF VIDEONOTES IN THE TEXT

Through the power of practice and immediate personalized

feedback, MyProgrammingLab improves your performance.

Learn more at www.myprogramminglab.com

get with the programming

www.myprogramminglab.com

This page intentionally left blank

 JOHN LEWIS
 Virginia Tech

 WILLIAM LOFTUS

 Accenture

 FOUNDATIONS OF PROGRAM DESIGN

 Addison-Wesley
 Boston Columbus Indianapolis New York San Francisco Upper Saddle River

 Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
 Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

 SOFTWARE SOLUTIONS

 Seventh Edition

TM

Editorial Director: Marcia Horton
Editor-in-Chief: Michael Hirsch
Editorial Assistant: Stephanie Sellinger
Vice President, Marketing: Patrice Jones
Marketing Manager: Yezan Alayan
Marketing Coordinator: Kathryn Ferranti
Vice President, Production: Vince O’Brien
Managing Editor: Jeff Holcomb
Production Project Manager: Heather McNally
Senior Operations Supervisor: Alan Fischer
Manufacturing Buyer: Lisa McDowell
Art Director: Linda Knowles
Cover Designer: Suzanne Harbison

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear below,
or on appropriate page within text.

Photo Credits: Page 11: NASA Earth Observing System. Page 205: Susan Van Etten /PhotoEdit. Page 267: David Joel /Stone/
Getty Images. Page 377 (left and right): National Oceanic and Atmospheric Administration NOAA. Page 441: Matthew McVay/
Stone/Getty Images. Page 485: Mario Fourmy/REA/Redux Pictures.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other countries. Screen
shots and icons reprinted with permission from the Microsoft Corporation. This book is not sponsored or endorsed by or affili-
ated with the Microsoft Corporation.

Copyright © 2012, 2009, 2007, 2005, 2003 Pearson Education, Inc., publishing as Addison-Wesley, 501 Boylston Street,
Suite 900, Boston, Massachusetts 02116. All rights reserved. Manufactured in the United States of America. This publication
is protected by Copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, stor-
age in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. To obtain permission(s) to use material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, Addison-Wesley, 501 Boylston Street, Suite 900, Boston, Massachusetts 02116.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in
initial caps or all caps.

Library of Congress Cataloging-in-Publication Data

10 9 8 7 6 5 4 3 2 1—QWT—15 14 13 12 11

Image Permission Coordinator: Rita Wenning
Cover Photograph: © Creative Crop/Digital
 Vision/Getty Images
Media Editor: Daniel Sandin
Media Project Manager: Wanda Rockwell
Full-Service Project
 Management: Rose Kernan,

 Nesbitt Graphics, Inc.
Composition: Glyph International
Printer/Binder: Quebecor World Book

 Services, Taunton
Cover Printer: Coral Graphics Services,

 Inc.
Text Font: Sabon LT Std

ISBN 10: 0-13-214918-4

 ISBN 13: 978-0-13-214918-1

This book is dedicated to our families.

Sharon, Justin, Kayla, Nathan, and Samantha Lewis

and

Veena, Isaac, and Dévi Loftus

This page intentionally left blank

vii

Welcome to the Seventh Edition of Java Software Solutions: Foundations of
Program Design. We are pleased that this book has served the needs of so many
students and faculty over the years. This edition has been tailored further to
improve the coverage of topics key to introductory computing.

New to This Edition

■ Split Chapter 5 of the 6th edition into two for better coverage and flow.

■ Moved the coverage of the ArrayList class earlier in the book to permit
more interesting projects earlier.

■ Improved the discussion of an array as a programming construct.

■ Improved the discussions of visibility modifiers, especially regarding the
protected modifier.

■ Replaced and updated examples throughout the book.

■ Replaced, updated, and added exercises and programming projects.

■ Available with MyProgrammingLab (see details later in this Preface).

Feedback from both instructors and students continues to make it clear
that we have hit the mark with the overall vision of the book. The emphasis
remains on presenting underlying core concepts in a clear and gradual man-
ner. The Graphics Track sections in each chapter still segregate the coverage
of graphics and graphical user interfaces, giving extreme flexibility in how that
material gets covered. The casual writing style and entertaining examples still
rule the day.

The enhancements in this edition are designed to allow the instructor more
flexibility in topic coverage. In an attempt to cover all issues related to condi-
tionals and loops, Chapter 5 in the previous edition had become very large and
a bit too encyclopedic. In this edition that chapter has been carefully redesigned
into two, giving the coverage of those topics a better flow. The new organization
allows more interesting examples to be explored earlier.

One effect of this reorganization is that it allowed us to bring the coverage of
the ArrayList class earlier in the book. Although arrays are used internally to

Preface

viii PREFACE

implement the ArrayList class, there is no reason to wait for arrays to be covered
to introduce the ArrayList class. Like many other classes in the Java API, the
ArrayList class can be used without needing to know how it works internally. An
ArrayList object can be used for its (very valuable) functionality as soon as loops
are available. The new organization in this edition does exactly that. If the instruc-
tor chooses, coverage of ArrayList can still be deferred as it has been before, but
now the option is there to introduce them earlier.

In addition to these changes, various discussions throughout the book have
been revamped and improved. For example, the explanation of the effects of
the protected visibility modifier has enhanced to clarify its use. Furthermore,
throughout the book older examples have been rejuvenated, and end-of-chapter
exercises and programming projects have been augmented.

Cornerstones of the Text
This text is based on the following basic ideas that we believe make for a sound
introductory text:

■ True object-orientation. A text that really teaches a solid object-oriented
approach must use what we call object-speak. That is, all processing should
be discussed in object-oriented terms. That does not mean, however, that
the first program a student sees must discuss the writing of multiple classes
and methods. A student should learn to use objects before learning to write
them. This text uses a natural progression that culminates in the ability to
design real object-oriented solutions.

■ Sound programming practices. Students should not be taught how to
program; they should be taught how to write good software. There’s a
difference. Writing software is not a set of cookbook actions, and a good
program is more than a collection of statements. This text integrates
practices that serve as the foundation of good programming skills. These
practices are used in all examples and are reinforced in the discussions.
Students learn how to solve problems as well as how to implement solu-
tions. We introduce and integrate basic software engineering techniques
throughout the text. The Software Failure vignettes reiterate these lessons
by demonstrating the perils of not following these sound practices.

■ Examples. Students learn by example. This text is filled with fully imple-
mented examples that demonstrate specific concepts. We have intertwined
small, readily understandable examples with larger, more realistic ones.
There is a balance between graphics and nongraphics programs. The
VideoNotes provide additional examples in a live presentation format.

PREFACE ix

■ Graphics and GUIs. Graphics can be a great motivator for students, and
their use can serve as excellent examples of object-orientation. As such,
we use them throughout the text in a well-defined set of sections that we
call the Graphics Track. This coverage includes the use of event processing
and GUIs. Students learn to build GUIs in the appropriate way by using a
natural progression of topics. The Graphics Track can be avoided entirely
for those who do not choose to use graphics.

Chapter Breakdown
Chapter 1 (Introduction) introduces computer systems in general, including basic
architecture and hardware, networking, programming, and language translation.
Java is introduced in this chapter, and the basics of general program development,
as well as object-oriented programming, are discussed. This chapter contains
broad introductory material that can be covered while students become familiar
with their development environment.

Chapter 2 (Data and Expressions) explores some of the basic types of data used
in a Java program and the use of expressions to perform calculations. It discusses
the conversion of data from one type to another and how to read input interac-
tively from the user with the help of the standard Scanner class.

Chapter 3 (Using Classes and Objects) explores the use of predefined classes
and the objects that can be created from them. Classes and objects are used to
manipulate character strings, produce random numbers, perform complex calcu-
lations, and format output. Enumerated types are also discussed.

Chapter 4 (Writing Classes) explores the basic issues related to writing classes
and methods. Topics include instance data, visibility, scope, method parameters,
and return types. Encapsulation and constructors are covered as well. Some of the
more involved topics are deferred to or revisited in Chapter 6.

Chapter 5 (Conditionals and Loops) covers the use of boolean expressions to
make decisions. Then the if statement and while loop are explored in detail.
Once loops are established, the concept of an iterator is introduced and the
Scanner class is revisited for additional input parsing and the reading of text files.
Finally, the ArrayList class introduced, which provides the option for managing
a large number of objects.

Chapter 6 (More Conditionals and Loops) examines the rest of Java’s condi-
tional (switch) and loop (do, for) statements. All related statements for condi-
tionals and loops are discussed, including the enhanced version of the for loop.
The for-each loop is also used to process iterators and ArrayList objects.

x PREFACE

Chapter 7 (Object-Oriented Design) reinforces and extends the coverage of
issues related to the design of classes. Techniques for identifying the classes and
objects needed for a problem and the relationships among them are discussed.
This chapter also covers static class members, interfaces, and the design of enu-
merated type classes. Method design issues and method overloading are also
discussed.

Chapter 8 (Arrays) contains extensive coverage of arrays and array processing.
The nature of an array as a low-level programming structure is contrasted to the
higher-level object management approach. Additional topics include command-
line arguments, variable length parameter lists, and multidimensional arrays.

Chapter 9 (Inheritance) covers class derivations and associated concepts such
as class hierarchies, overriding, and visibility. Strong emphasis is put on the
proper use of inheritance and its role in software design.

Chapter 10 (Polymorphism) explores the concept of binding and how it relates
to polymorphism. Then we examine how polymorphic references can be accom-
plished using either inheritance or interfaces. Sorting is used as an example of
polymorphism. Design issues related to polymorphism are examined as well.

Chapter 11 (Exceptions) explores the class hierarchy from the Java standard
library used to define exceptions, as well as the ability to define our own excep-
tion objects. We also discuss the use of exceptions when dealing with input and
output and examine an example that writes a text file.

Chapter 12 (Recursion) covers the concept, implementation, and proper use of
recursion. Several examples from various domains are used to demonstrate how
recursive techniques make certain types of processing elegant.

Chapter 13 (Collections) introduces the idea of a collection and its underlying
data structure. Abstraction is revisited in this context and the classic data struc-
tures are explored. Generic types are introduced as well. This chapter serves as an
introduction to a CS2 course.

Supplements

Student Online Resources
These student resources can be accessed at the book’s Companion Website,
www.pearsonhighered.com/lewis:

■ Source Code for all the programs in the text

■ Links to Java development environments

■ VideoNotes: short step-by-step videos demonstrating how to solve prob-
lems from design through coding. VideoNotes allow for self-paced

www.pearsonhighered.com/lewis

PREFACE xi

instruction with easy navigation including the ability to select, play, re-
wind, fast-forward, and stop within each VideoNote exercise. Margin icons
in your textbook let you know when a VideoNote video is available for a
particular concept or homework problem.

Online Practice and Assessment
MyProgrammingLab helps students fully grasp the logic, semantics, and syntax
of programming. Through practice exercises and immediate, personalized feed-
back, MyProgrammingLab improves the programming competence of beginning
students who often struggle with the basic concepts and paradigms of popular
high-level programming languages.

A self-study and homework tool, MyProgrammingLab consists of hundreds
of small practice problems organized around the structure of this textbook. For
students, the system automatically detects errors in the logic and syntax of their
code submissions and offers targeted hints that enable students to figure out what
went wrong—and why. For instructors, a comprehensive gradebook tracks cor-
rect and incorrect answers and stores the code submitted by students for review.

MyProgrammingLab is offered to users of this book in partnership with
Turing’s Craft, the makers of the CodeLab interactive programming exer-
cise system. For a full demonstration, to see feedback from instructors and
students, or to get started using MyProgrammingLab in your course, visit
www.myprogramminglab.com.

Instructor Resources
The following supplements are available to qualified instructors only. Visit the
Pearson Education Instructor Resource Center (www.pearsonhighered.com/irc)
or send an e-mail to computing@pearson.com for information on how to access
them:

■ Presentation Slides—in PowerPoint.

■ Solutions—includes solutions to exercises and programming projects.

■ Test Bank with powerful test generator software—includes a wealth of free
response, multiple-choice, and true/false type questions.

■ Lab Manual—lab exercises are designed to accompany the topic
progression in the text.

www.myprogramminglab.com
www.pearsonhighered.com/irc

xii PREFACE

Java Integrated Development Environment (IDE)
Resource Kits
Instructors can order this text with a kit that includes a disk containing 7 popu-
lar Java IDEs (the most recent JDK from Oracle, Eclipse, NetBeans, jGRASP,
DrJava, BlueJ, and TextPad) and access to a website containing written and video
tutorials for getting started in each IDE. For Instructors, ordering information
can be found at www.pearsonhighered.com/cs, or from your campus Pearson
Education sales representative. For Students, if your instructor didn’t request the
Java IDE Resource Kit, links for downloading the IDEs can be found at the book’s
Companion Website.

Features
Key Concepts. Throughout the text, the Key Concept boxes highlight funda-
mental ideas and important guidelines. These concepts are summarized at the
end of each chapter.

Listings. All programming examples are presented in clearly labeled listings, fol-
lowed by the program output, a sample run, or screen shot display as appropri-
ate. The code is colored to visually distinguish comments and reserved words.

Syntax Diagrams. At appropriate points in the text, syntactic elements of the
Java language are discussed in special highlighted sections with diagrams that
clearly identify the valid forms for a statement or construct. Syntax diagrams for
the entire Java language are presented in Appendix L.

Graphics Track. All processing that involves graphics and graphical user inter-
faces is discussed in one or two sections at the end of each chapter that we col-
lectively refer to as the Graphics Track. This material can be skipped without
loss of continuity, or focused on specifically as desired. The material in any
Graphics Track section relates to the main topics of the chapter in which it is
found. Graphics Track sections are indicated by a brown border on the edge of
the page.

Summary of Key Concepts. The Key Concepts presented throughout a chap-
ter are summarized at the end of the chapter.

Self-Review Questions and Answers. These short-answer questions review
the fundamental ideas and terms established in the preceding section. They are
designed to allow students to assess their own basic grasp of the material. The
answers to these questions can be found at the end of the book in Appendix N.

Exercises. These intermediate problems require computations, the analysis or writ-
ing of code fragments, and a thorough grasp of the chapter content. While the exer-
cises may deal with code, they generally do not require any online activity.

www.pearsonhighered.com/cs

PREFACE xiii

Programming Projects. These problems require the design and implementation
of Java programs. They vary widely in level of difficulty.

MyProgrammingLab. Many of the problems in the book can be done online
in MyProgrammingLab. Through practice exercises and immediate, personal-
ized feedback, MyProgrammingLab improves the programming competence of
beginning students who often struggle with the basic concepts and paradigms of
popular high-level programming languages.

VideoNotes. Presented by the author, VideoNotes explain topics visually
through informal videos in an easy-to-follow format, giving students the extra
help they need to grasp important concepts. Look for this VideoNote icon to see
which in-chapter topics and end-of-chapter Programming Projects are available
as VideoNotes.

Software Failures. These between-chapter vignettes discuss real-world flaws in
software design, encouraging students to adopt sound design practices from the
beginning.

Acknowledgments
I am most grateful to the faculty and students from around the world who have
provided their feedback on previous editions of this book. I am pleased to see
the depth of the faculty’s concern for their students and the students’ thirst for
knowledge. Your comments and questions are always welcome.

I am particularly thankful for the assistance, insight, and attention to detail
of Robert Burton from Brigham Young University. For years, Robert has con-
sistently provided valuable feedback that helps shape and evolve this textbook.
Recently he also performed a revision of the material in Chapter 1 about personal
computing systems that brought it back to a state-of-the-art discussion.

Brian Fraser of Simon Fraser University also has recently provided some excel-
lent feedback that helped clarify some issues in this edition. Such interaction with
computing educators is incredibly valuable.

I also want to thank Dan Joyce from Villanova University, who developed the
Self-Review questions, ensuring that each relevant topic had enough review mate-
rial, as well as developing the answers to each.

I continue to be amazed at the talent and effort demonstrated by the team at
Pearson Addison-Wesley. Michael Hirsch, our editor, has amazing insight and
commitment. His assistant, Stephanie Sellinger, is a source of consistent and helpful
support. Marketing Manager Yez Alayan makes sure that instructors understand
the pedagogical advantages of the text. The cover was designed by the skilled talents
of Suzanne Harbison. Jeff Holcomb and Heather McNally led the production effort.

xiv PREFACE

The Addison-Wesley folks were supported by a phenomenal team at Nesbitt
Graphics, including Jerilyn Bockorick for the interior design, Rose Kernan for
project management, Diane Paluba for production coordination. We thank all of
these people for ensuring that this book meets the highest quality standards.

Special thanks go to the following people who provided valuable advice to us
about this book via their participation in focus groups, interviews, and reviews.
They, as well as many other instructors and friends, have provided valuable feed-
back. They include:

Elizabeth Adams James Madison University
David Atkins University of Oregon
Lewis Barnett University of Richmond
Thomas W. Bennet Mississippi College
Gian Mario Besana DePaul University
Hans-Peter Bischof Rochester Institute of Technology
Robert Burton Brigham Young University
John Chandler Oklahoma State University
Robert Cohen University of Massachusetts, Boston
Dodi Coreson Linn Benton Community College
James H. Cross II Auburn University
Eman El-Sheikh University of West Florida
Christopher Eliot University of Massachusetts, Amherst
Wanda M. Eanes Macon State College
Stephanie Elzer Millersville University
Matt Evett Eastern Michigan University
Marj Feroe Delaware County Community College,

Pennsylvania
John Gauch University of Kansas
Chris Haynes Indiana University
James Heliotis Rochester Institute of Technology
Laurie Hendren McGill University
Mike Higgs Austin College
Stephen Hughes Roanoke College
Saroja Kanchi Kettering University
Karen Kluge Dartmouth College
Jason Levy University of Hawaii
Peter MacKenzie McGill University
Blayne Mayfield Oklahoma State University
Gheorghe Muresan Rutgers University
Laurie Murphy Pacific Lutheran University
Dave Musicant Carleton College
Faye Navabi-Tadayon Arizona State University

PREFACE xv

Lawrence Osborne Lamar University
Barry Pollack City College of San Francisco
B. Ravikumar University of Rhode Island
David Riley University of Wisconsin (La Crosse)
Jerry Ross Lane Community College
Patricia Roth Southeastern Polytechnic State University
Carolyn Schauble Colorado State University
Arjit Sengupta Georgia State University
Bennet Setzer Kennesaw State University
Vijay Srinivasan JavaSoft, Sun Microsystems, Inc.
Stuart Steiner Eastern Washington University
Katherine St. John Lehman College, CUNY
Alexander Stoytchev Iowa State University
Ed Timmerman University of Maryland, University College
Shengru Tu University of New Orleans
Paul Tymann Rochester Institute of Technology
John J. Wegis JavaSoft, Sun Microsystems, Inc.
Linda Wilson Dartmouth College
David Wittenberg Brandeis University
Wang-Chan Wong California State University (Dominguez Hills)

Thanks also go to my friends and former colleagues at Villanova University
who have provided so much wonderful feedback. They include Bob Beck, Cathy
Helwig, Anany Levitin, Najib Nadi, Beth Taddei, and Barbara Zimmerman.

Special thanks go to Pete DePasquale of The College of New Jersey for the
design and evolution of the PaintBox project, as well as the original Java Class
Library appendix.

Many other people have helped in various ways. They include Ken Arnold,
Mike Czepiel, John Loftus, Sebastian Niezgoda, and Saverio Perugini. Our apolo-
gies to anyone we may have omitted.

The ACM Special Interest Group on Computer Science Education (SIGCSE) is
a tremendous resource. Their conferences provide an opportunity for educators
from all levels and all types of schools to share ideas and materials. If you are
an educator in any area of computing and are not involved with SIGCSE, you’re
missing out.

This page intentionally left blank

Contents

Preface vii

Chapter 1 Introduction 1

1.1 Computer Processing 2
Software Categories 3
Digital Computers 4
Binary Numbers 7

1.2 Hardware Components 10
Computer Architecture 11
Input/Output Devices 12
Main Memory and Secondary Memory 13
The Central Processing Unit 17

1.3 Networks 20
Network Connections 20
Local-Area Networks and

Wide-Area Networks 22
The Internet 23
The World Wide Web 24
Uniform Resource Locators 25

1.4 The Java Programming Language 26
A Java Program 27
Comments 29
Identifiers and Reserved Words 31
White Space 33

1.5 Program Development 36
Programming Language Levels 36
Editors, Compilers, and Interpreters 38
Development Environments 40
Syntax and Semantics 41
Errors 42

xvii

xviii CONTENTS

1.6 Object-Oriented Programming 44
Problem Solving 45
Object-Oriented Software Principles 46

Chapter 2 Data and Expressions 57

2.1 Character Strings 58
The print and println Methods 58
String Concatenation 60
Escape Sequences 63

2.2 Variables and Assignment 65
Variables 65
The Assignment Statement 67
Constants 69

2.3 Primitive Data Types 71
Integers and Floating Points 71
Characters 73
Booleans 74

2.4 Expressions 75
Arithmetic Operators 75
Operator Precedence 76
Increment and Decrement Operators 80
Assignment Operators 81

2.5 Data Conversion 83
Conversion Techniques 85

2.6 Interactive Programs 87
The Scanner Class 87

2.7 Graphics 92
Coordinate Systems 92
Representing Color 94

2.8 Applets 95
Executing Applets Using the Web 98

2.9 Drawing Shapes 99
The Graphics Class 99

Software Failure:
NASA Mars Climate Orbiter

and Polar Lander 111

CONTENTS xix

Chapter 3 Using Classes and Objects 113

3.1 Creating Objects 114
Aliases 116

3.2 The String Class 118

3.3 Packages 122
The import Declaration 124

3.4 The Random Class 126

3.5 The Math Class 129

3.6 Formatting Output 132
The NumberFormat Class 132
The DecimalFormat Class 134
The printf Method 135

3.7 Enumerated Types 138

3.8 Wrapper Classes 141
Autoboxing 143

3.9 Components and Containers 143
Frames and Panels 144

3.10 Nested Panels 148

3.11 Images 151

Chapter 4 Writing Classes 159

4.1 Classes and Objects Revisited 160

4.2 Anatomy of a Class 162
Instance Data 167
UML Class Diagrams 167

4.3 Encapsulation 169
Visibility Modifiers 170
Accessors and Mutators 171

4.4 Anatomy of a Method 172
The return Statement 174
Parameters 175

xx CONTENTS

Local Data 175
Bank Account Example 176

4.5 Constructors Revisited 181

4.6 Graphical Objects 182

4.7 Graphical User Interfaces 191

4.8 Buttons 192

4.9 Text Fields 196

Software Failure:
Denver Airport Baggage

Handling System 205

Chapter 5 Conditionals and Loops 207

5.1 Boolean Expressions 208
Equality and Relational Operators 209
Logical Operators 210

5.2 The if Statement 213
The if-else Statement 216
Using Block Statements 219
Nested if Statements 223

5.3 Comparing Data 226
Comparing Floats 226
Comparing Characters 227
Comparing Objects 228

5.4 The while Statement 230
Infinite Loops 234
Nested Loops 236
The break and continue Statements 239

5.5 Iterators 241
Reading Text Files 242

5.6 The ArrayList Class 245

5.7 Determining Event Sources 248

CONTENTS xxi

5.8 Check Boxes and Radio Buttons 251
Check Boxes 251
Radio Buttons 255

Software Failure:
Therac-25 267

Chapter 6 More Conditionals and Loops 269

6.1 The switch Statement 270

6.2 The Conditional Operator 274

6.3 The do Statement 275

6.4 The for Statement 279
The for-each Loop 282
Comparing Loops 284

6.5 Drawing with Loops and Conditionals 285

6.6 Dialog Boxes 291

Chapter 7 Object-Oriented Design 301

7.1 Software Development Activities 302

7.2 Identifying Classes and Objects 303
Assigning Responsibilities 305

7.3 Static Class Members 305
Static Variables 306
Static Methods 306

7.4 Class Relationships 310
Dependency 310
Dependencies Among Objects

of the Same Class 310
Aggregation 316
The this Reference 320

7.5 Interfaces 322
The Comparable Interface 327
The Iterator Interface 328

xxii CONTENTS

7.6 Enumerated Types Revisited 329

7.7 Method Design 332
Method Decomposition 333
Method Parameters Revisited 338

7.8 Method Overloading 343

7.9 Testing 345
Reviews 346
Defect Testing 346

7.10 GUI Design 349

7.11 Layout Managers 350
Flow Layout 352
Border Layout 356
Grid Layout 359
Box Layout 361

7.12 Borders 365

7.13 Containment Hierarchies 369

Software Failure:
2003 Northeast Blackout 377

Chapter 8 Arrays 379

8.1 Array Elements 380

8.2 Declaring and Using Arrays 381
Bounds Checking 384
Alternate Array Syntax 389
Initializer Lists 389
Arrays as Parameters 390

8.3 Arrays of Objects 392

8.4 Command-Line Arguments 402

8.5 Variable Length Parameter Lists 404

8.6 Two-Dimensional Arrays 408
Multidimensional Arrays 412

CONTENTS xxiii

8.7 Polygons and Polylines 413
The Polygon Class 416

8.8 Mouse Events 418

8.9 Key Events 427

Software Failure:
LA Air Traffic Control 441

Chapter 9 Inheritance 443

9.1 Creating Subclasses 444
The protected Modifier 447
The super Reference 450
Multiple Inheritance 453

9.2 Overriding Methods 455
Shadowing Variables 457

9.3 Class Hierarchies 458
The Object Class 460
Abstract Classes 461
Interface Hierarchies 463

9.4 Visibility 463

9.5 Designing for Inheritance 466
Restricting Inheritance 467

9.6 The Component Class Hierarchy 468

9.7 Extending Adapter Classes 471

9.8 The Timer Class 475

Software Failure:
Ariane 5 Flight 501 485

Chapter 10 Polymorphism 487

10.1 Late Binding 488

10.2 Polymorphism via Inheritance 489

xxiv CONTENTS

10.3 Polymorphism via Interfaces 502

10.4 Sorting 504
Selection Sort 505
Insertion Sort 511
Comparing Sorts 512

10.5 Searching 513
Linear Search 513
Binary Search 515
Comparing Searches 519

10.6 Designing for Polymorphism 519

10.7 Event Processing 521

10.8 File Choosers 522

10.9 Color Choosers 525

10.10 Sliders 527

Chapter 11 Exceptions 537

11.1 Exception Handling 538

11.2 Uncaught Exceptions 539

11.3 The try-catch Statement 540
The finally Clause 544

11.4 Exception Propagation 545

11.5 The Exception Class Hierarchy 549
Checked and Unchecked Exceptions 552

11.6 I/O Exceptions 553

11.7 Tool Tips and Mnemonics 557

11.8 Combo Boxes 564

11.9 Scroll Panes 569

11.10 Split Panes 572

CONTENTS xxv

Chapter 12 Recursion 583

12.1 Recursive Thinking 584
Infinite Recursion 584
Recursion in Math 585

12.2 Recursive Programming 586
Recursion vs. Iteration 589
Direct vs. Indirect Recursion 589

12.3 Using Recursion 590
Traversing a Maze 591
The Towers of Hanoi 596

12.4 Recursion in Graphics 601
Tiled Pictures 601
Fractals 604

Chapter 13 Collections 617

13.1 Collections and Data Structures 618
Separating Interface from Implementation 618

13.2 Dynamic Representations 619
Dynamic Structures 619
A Dynamically Linked List 620
Other Dynamic List Representations 625

13.3 Linear Data Structures 627
Queues 627
Stacks 628

13.4 Non-Linear Data Structures 631
Trees 631
Graphs 632

13.5 The Java Collections API 634
Generics 634

xxvi CONTENTS

Appendix A Glossary 641

Appendix B Number Systems 665

Appendix C The Unicode Character Set 673

Appendix D Java Operators 677

Appendix E Java Modifiers 683

Appendix F Java Coding Guidelines 687

Appendix G Java Applets 693

Appendix H Regular Expressions 695

Appendix I Javadoc Documentation Generator 697

Appendix J The PaintBox Project 703

Appendix K GUI Events 715

Appendix L Java Syntax 719

Appendix M The Java Class Library 733

Appendix N Answers to Self-Review Questions 735

Index 789

1

C H A P T E R O B J E C T I V E S
● Describe the relationship between hardware and software.

● Define various types of software and how they are used.

● Identify the core hardware components of a computer and explain their
roles.

● Explain how the hardware components interact to execute programs and
manage data.

● Describe how computers are connected into networks to share information.

● Introduce the Java programming language.

● Describe the steps involved in program compilation and execution.

● Present an overview of object-oriented principles.

This book is about writing well-designed software. To understand

software, we must first have a fundamental understanding of its role

in a computer system. Hardware and software cooperate in a com-

puter system to accomplish complex tasks. The purpose of various

hardware components, and the way those components are connected

into networks, are important prerequisites to the study of software

development. This chapter first discusses basic computer processing

and then begins our exploration of software development by intro-

ducing the Java programming language and the principles of object-

oriented programming.

Introduction 1

1.1 Computer Processing

 We begin our exploration of computer systems with an overview of computer
processing, defining some fundamental terminology and showing how the key
pieces of a computer system interact.

 A computer system is made up of hardware and software. The hardware com-
ponents of a computer system are the physical, tangible pieces that support the
computing effort. They include chips, boxes, wires, keyboards, speakers, disks,
memory cards, USB flash drives (also called jump drives), cables, plugs, printers,
mice, monitors, routers, and so on. If you can physically touch it and it can be
considered part of a computer system, then it is computer hardware.

 The hardware components of a computer are essentially useless
without instructions to tell them what to do. A program is a series of
instructions that the hardware executes one after another. Software
consists of programs and the data those programs use. Software is
the intangible counterpart to the physical hardware components.

Together they form a tool that we can use to help solve problems.

 The key hardware components in a computer system are

■ central processing unit (CPU)

■ input/output (I/O) devices

■ main memory

■ secondary memory devices

 Each of these hardware components is described in detail in the next section. For
now, let’s simply examine their basic roles. The central processing unit (CPU) is
the device that executes the individual commands of a program. Input/output
(I/O) devices , such as the keyboard, mouse, and monitor, allow a human being to
interact with the computer.

 Programs and data are held in storage devices called memory, which fall into
two categories: main memory and secondary memory. Main memory is the storage
device that holds the software while it is being processed by the CPU. Secondary
memory devices store software in a relatively permanent manner. The most impor-
tant secondary memory device of a typical computer system is the hard disk that
resides inside the main computer box. A USB flash drive is also an important sec-
ondary memory device. A typical USB flash drive cannot store nearly as much infor-
mation as a hard disk. USB flash drives have the advantage of portability; they can
be removed temporarily or moved from computer to computer as needed. Another
portable secondary memory device is the compact disc (CD).

 Figure 1.1 shows how information moves among the basic hardware compo-
nents of a computer. Suppose you have an executable program you wish to run.

2 CHAPTER 1 Introduction

 KEY CONCEPT
 A computer system consists of
hardware and software that work in
concert to help us solve problems.

The program is stored on some secondary memory device, such as a hard disk.
When you instruct the computer to execute your program, a copy of the program
is brought in from secondary memory and stored in main memory. The CPU reads
the individual program instructions from main memory. The CPU
then executes the instructions one at a time until the program ends.
The data that the instructions use, such as two numbers that will
be added together, also are stored in main memory. They are either
brought in from secondary memory or read from an input device
such as the keyboard. During execution, the program may display
information to an output device such as a monitor.

 The process of executing a program is fundamental to the operation of a com-
puter. All computer systems basically work in the same way.

 Software Categories
 Software can be classified into many categories using various criteria. At this point
we will simply differentiate between system programs and application programs.

 The operating system is the core software of a computer. It performs two
important functions. First, it provides a user interface that allows the user to inter-
act with the machine. Second, the operating system manages computer resources
such as the CPU and main memory. It determines when programs are allowed
to run, where they are loaded into memory, and how hardware devices commu-
nicate. It is the operating system’s job to make the computer easy to use and to
ensure that it runs efficiently.

 Several popular operating systems are in use today. The Windows
operating system was developed for personal computers by Microsoft,
which has captured an operating system market share of almost
90%. Various versions of the Unix operating system are also quite

1.1 Computer Processing 3

 FIGURE 1.1 A simplified view of a computer system

 KEY CONCEPT
 The CPU reads the program
instructions from main memory,
executing them one at a time until
the program ends.

 KEY CONCEPT
 The operating system provides
a user interface and manages
computer resources.

4 CHAPTER 1 Introduction

popular, especially in larger computer systems. A version of Unix called Linux
was developed as an open source project, which means that many people contrib-
uted to its development and its code is freely available. Because of that, Linux has
become a particular favorite among some users. Mac OS X is an operating system
used for computing systems developed by Apple Computers.

 An application is a generic term for just about any software other than the
operating system. Word processors, missile control systems, database managers,
Web browsers, and games all can be considered application programs. Each appli-
cation program has its own user interface that allows the user to interact with that
particular program.

 The user interface for most modern operating systems and applications is a
graphical user interface (GUI, pronounced “gooey”), which, as the name implies,
make use of graphical screen elements. Among many others, these elements
include

■ windows , which are used to separate the screen into distinct work areas

■ icons , which are small images that represent computer resources, such as a file

■ menus, checkboxes, and radio buttons , which provide the user with select-
able options

■ sliders , which allow the user to select from a range of values

■ buttons , which can be “pushed” with a mouse click to indicate a user selection

 The mouse is the primary input device used with GUIs; thus, GUIs are some-
times called point-and-click interfaces . The screen shot in Figure 1.2 shows an
example of a GUI.

 The interface to an application or operating system is an impor-
tant part of the software because it is the only part of the program
with which the user interacts directly. To the user, the interface is
the program. Throughout this book we discuss the design and imple-

mentation of graphical user interfaces.

 The focus of this book is the development of high-quality application pro-
grams. We explore how to design and write software that will perform calcula-
tions, make decisions, and present results textually or graphically. We use the
Java programming language throughout the text to demonstrate various comput-
ing concepts.

 Digital Computers
 Two fundamental techniques are used to store and manage information: analog
and digital. Analog information is continuous, in direct proportion to the source
of the information. For example, an alcohol thermometer is an analog device

 KEY CONCEPT
 As far as the user is concerned, the
interface is the program.

1.1 Computer Processing 5

for measuring temperature. The alcohol rises in a tube in direct proportion to
the temperature outside the tube. Another example of analog information is an
electronic signal used to represent the vibrations of a sound wave. The signal’s
voltage varies in direct proportion to the original sound wave. A stereo amplifier
sends this kind of electronic signal to its speakers, which vibrate to reproduce
the sound. We use the term analog because the signal is directly analogous to the
information it represents. Figure 1.3 graphically depicts a sound wave captured
by a microphone and represented as an electronic signal.

Digital technology breaks information into discrete pieces and represents those
pieces as numbers. The music on a compact disc is stored digitally, as a series of
numbers. Each number represents the voltage level of one specific
instance of the recording. Many of these measurements are taken in
a short period of time, perhaps 44,000 measurements every second.
The number of measurements per second is called the sampling rate .
If samples are taken often enough, the discrete voltage measurements

 FIGURE 1.2 An example of a graphical user interface (GUI)

 KEY CONCEPT
 Digital computers store information
by breaking it into pieces and repre-
senting each piece as a number.

6 CHAPTER 1 Introduction

can be used to generate a continuous analog signal that is “close enough” to the
original. In most cases, the goal is to create a reproduction of the original signal
that is good enough to satisfy the human senses.

Figure 1.4 shows the sampling of an analog signal. When analog information
is converted to a digital format by breaking it into pieces, we say it has been
digitized. Because the changes that occur in a signal between samples are lost, the
sampling rate must be sufficiently fast.

Sound wave Analog signal of the sound wave

 FIGURE 1.3 A sound wave and an electronic analog signal
that represents the wave

Information can be lost
between samples

Analog signal

Sampling process

Sampled values 12 11 39 40 7 14 47

FIGURE 1.4 Digitizing an analog signal by sampling

1.1 Computer Processing 7

 Sampling is only one way to digitize information. For example, a sentence of
text is stored on a computer as a series of numbers, where each number represents
a single character in the sentence. Every letter, digit, and punctuation symbol has
been assigned a number. Even the space character is assigned a number. Consider
the following sentence:

 Hi, Heather.

 The characters of the sentence are represented as a series of 12 numbers, as
shown in Figure 1.5 . When a character is repeated, such as the uppercase 'H' , the
same representation number is used. Note that the uppercase version of a letter is
stored as a different number from the lowercase version, such as the 'H' and 'h'
in the word Heather. They are considered separate and distinct characters.

 Modern electronic computers are digital. Every kind of information, including
text, images, numbers, audio, video, and even program instructions is broken into
pieces. Each piece is represented as a number. The information is stored by storing
those numbers.

 Binary Numbers
 A digital computer stores information as numbers, but those numbers are not stored
as decimal values. All information in a computer is stored and managed as binary
values. Unlike the decimal system, which has 10 digits (0 through 9), the binary
number system has only two digits (0 and 1). A single b inary dig it is called a bit .

 All number systems work according to the same rules. The base value of a
number system dictates how many digits we have to work with and indicates the
place value of each digit in a number. The decimal number system
is base 10, whereas the binary number system is base 2. Appendix B
contains a detailed discussion of number systems.

 Modern computers use binary numbers because the devices that
store and move information are less expensive and more reliable if
they have to represent only one of two possible values. Other than
this characteristic, there is nothing special about the binary number

72 105 44 32 72 101 97 104 114116 101 46

H i , H e a t h e r .

 FIGURE 1.5 Text is stored by mapping each character to a number

 KEY CONCEPT
 Binary is used to store and move
information in a computer because
the devices that store and manipu-
late binary data are inexpensive and
reliable.

8 CHAPTER 1 Introduction

system. Computers have been created that use other number systems to store and
move information, but they aren’t as convenient.

Some computer memory devices, such as hard drives, are magnetic in nature.
Magnetic material can be polarized easily to one extreme or the other, but intermedi-
ate levels are difficult to distinguish. Therefore, magnetic devices can be used to rep-
resent binary values quite effectively—a magnetized area represents a binary 1 and a
demagnetized area represents a binary 0. Other computer memory devices are made
up of tiny electrical circuits. These devices are easier to create and are less likely to fail
if they have to switch between only two states. We’re better off reproducing millions
of these simple devices than creating fewer, more complicated ones.

Binary values and digital electronic signals go hand in hand. They improve our
ability to transmit information reliably along a wire. As we’ve seen, an analog signal
has continuously varying voltage with infinitely many states, but a digital signal is
discrete, which means the voltage changes dramatically between one extreme (such
as +5 volts) and the other (such as –5 volts). At any point, the voltage of a digital
signal is considered to be either “high,” which represents a binary 1, or “low,”
which represents a binary 0. Figure 1.6 compares these two types of signals.

As a signal moves down a wire, it gets weaker and degrades due to environ-
mental conditions. That is, the voltage levels of the original signal change slightly.
The trouble with an analog signal is that as it fluctuates, it loses its original infor-
mation. Since the information is directly analogous to the signal, any change in
the signal changes the information. The changes in an analog signal cannot be
recovered because the degraded signal is just as valid as the original. A digital
signal degrades just as an analog signal does, but because the digital signal is
originally at one of two extremes, it can be reinforced before any information is
lost. The voltage may change slightly from its original value, but it still can be
interpreted correctly as either high or low.

The number of bits we use in any given situation determines the number of
unique items we can represent. A single bit has two possible values, 0 and 1, and

Analog signal Digital signal

FIGURE 1.6 An analog signal vs. a digital signal

1.1 Computer Processing 9

therefore can represent two possible items or situations. If we want to represent
the state of a light bulb (off or on), one bit will suffice, because we can interpret 0
as the light bulb being off and 1 as the light bulb being on. If we want to represent
more than two things, we need more than one bit.

 Two bits, taken together, can represent four possible items because there are
exactly four permutations of two bits: 00, 01, 10, and 11. Suppose we want to
represent the gear that a car is in (park, drive, reverse, or neutral). We would need
only two bits, and could set up a mapping between the bit permutations and the
gears. For instance, we could say that 00 represents park, 01 represents drive, 10
represents reverse, and 11 represents neutral. In this case, it wouldn’t matter if we
switched that mapping around, though in some cases the relationships between
the bit permutations and what they represent are important.

 Three bits can represent eight unique items, because there are
eight permutations of three bits. Similarly, four bits can represent 16
items, five bits can represent 32 items, and so on. Figure 1.7 shows
the relationship between the number of bits used and the number of
items they can represent. In general, N bits can represent 2 N unique
items. For every bit added, the number of items that can be represented doubles.

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

00000

00001

00010

00011

00100

00101

00110

00111

01000

01001

01010

01011

01100

01101

01110

01111

10000

10001

10010

10011

10100

10101

10110

10111

11000

11001

11010

11011

11100

11101

11110

11111

1 bit 2 bits 3 bits 4 bits
2 items 4 items 8 items 16 items

5 bits
32 items

000

001

010

011

100

101

110

111

00

01

10

11

0

1

FIGURE 1.7 The number of bits used determines the number
of items that can be represented

 KEY CONCEPT
 There are exactly 2 N permutations of
N bits. Therefore, N bits can repre-
sent up to 2 N unique items.

10 CHAPTER 1 Introduction

We’ve seen how a sentence of text is stored on a computer by mapping char-
acters to numeric values. Those numeric values are stored as binary numbers.
Suppose we want to represent character strings in a language that contains 256
characters and symbols. We would need to use eight bits to store each character
because there are 256 unique permutations of eight bits (28 equals 256). Each bit
permutation, or binary value, is mapped to a specific character.

How many bits would be needed to represent 195 countries of the world?
Seven wouldn’t be enough, because 27 equals 128. Eight bits would be enough,
but some of the 256 permutations would not be mapped to a country.

Ultimately, representing information on a computer boils down to the number
of items there are to represent and determining the way those items are mapped
to binary values.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 1.1 What is hardware? What is software?

SR 1.2 What are the two primary functions of an operating system?

SR 1.3 The music on a CD is created using a sampling rate of 44,000 mea-
surements per second. Each measurement is stored as a number that
represents a specific voltage level. How many such numbers are used
to store a three-minute long song? How many such numbers does it
take to represent one hour of music?

SR 1.4 What happens to information when it is stored digitally?

SR 1.5 How many unique items can be represented with the following?

a. 2 bits
b. 4 bits
c. 5 bits
d. 7 bits

SR 1.6 Suppose you want to represent each of the 50 states of the United
States using a unique permutation of bits. How many bits would be
needed to store each state representation? Why?

1.2 Hardware Components

Let’s examine the hardware components of a computer system in more detail.
Consider the computer described in Figure 1.8. What does it all mean? Is the sys-
tem capable of running the software you want it to? How does it compare with
other systems? These terms are explained throughout this section.

 1.2 Hardware Components 11

Computer Architecture
The architecture of a house defines its structure. Similarly, we use the term com-
puter architecture to describe how the hardware components of a computer are put
together. Figure 1.9 illustrates the basic architecture of a generic computer system.
Information travels between components across a group of wires called a bus.

FIGURE 1.8 The hardware specification of a particular computer

FIGURE 1.9 Basic computer architecture

12 CHAPTER 1 Introduction

 The CPU and the main memory make up the core of a computer.
As we mentioned earlier, main memory stores programs and data
that are in active use, and the CPU methodically executes program
instructions one at a time.

 Suppose we have a program that computes the average of a list of
numbers. The program and the numbers must reside in main memory
while the program runs. The CPU reads one program instruction from

main memory and executes it. If an instruction needs data, such as a number in the
list, to perform its task, the CPU reads that information as well. This process repeats
until the program ends. The average, when computed, is stored in main memory to
await further processing or long-term storage in secondary memory.

 Almost all devices in a computer system other than the CPU and main memory
are called peripherals ; they operate at the periphery, or outer edges, of the system
(although they may be in the same box). Users don’t interact directly with the
CPU or main memory. Although they form the essence of the machine, the CPU
and main memory would not be useful without peripheral devices.

Controllers are devices that coordinate the activities of specific peripherals. Every
device has its own particular way of formatting and communicating data, and part
of the controller’s role is to handle these idiosyncrasies and isolate them from the
rest of the computer hardware. Furthermore, the controller often handles much of
the actual transmission of information, allowing the CPU to focus on other activities.

 Input/output (I/O) devices and secondary memory devices are considered periph-
erals. Another category of peripherals consist of data transfer devices , which allow
information to be sent and received between computers. The computer specified in
 Figure 1.8 includes a network card, also called a wireless network interface controller
(WNIC), which connects to a radio-based computer network.

 In some ways, secondary memory devices and data transfer devices can be
thought of as I/O devices because they represent a source of information (input)
and a place to send information (output). For our discussion, however, we define
I/O devices as those devices that allow the user to interact with the computer.

 Input/Output Devices
 Let’s examine some I/O devices in more detail. The most common input devices
are the keyboard and the mouse. Others include

■ bar code readers , such as the ones used at a retail store checkout

■ microphones , used by voice recognition systems that interpret voice commands

■ virtual reality devices , such as handheld devices that interpret the move-
ment of the user’s hand

 KEY CONCEPT
 The core of a computer is made up
of main memory, which stores pro-
grams and data, and the CPU, which
executes program instructions one
at a time.

1.2 Hardware Components 13

■ scanners , which convert text, photographs, and graphics into machine-
readable form

 Monitors and printers are the most common output devices. Others include

■ plotters , which move pens across large sheets of paper (or vice versa)

■ speakers , for audio output

■ goggles , for virtual reality display

 Some devices can provide both input and output capabilities. A touch screen
system can detect the user touching the screen at a particular place. Software can
then use the screen to display text and graphics in response to the user’s touch.
Touch screens have become commonplace for handheld devices.

 The computer described in Figure 1.8 includes a monitor with a 17-inch diago-
nal display area. It is a flat screen, which makes use of liquid crystal display (LCD)
technology, unlike the older cathode ray tube (CRT) monitors that required
substantial voltage and generally were not portable. A picture is represented in a
computer by breaking it up into separate picture elements, or pixels . The monitor
might display a grid of 1280 by 1024 pixels. Representing and managing graphi-
cal data is discussed in more detail in Chapter 2 .

 Main Memory and Secondary Memory
 Main memory is made up of a series of small, consecutive memory
locations , as shown in Figure 1.10 . Associated with each memory
location is a unique number called an address .

Addresses

4802

4803

4804

4805

4806

4807

4808

4809

4810

4811

4812

Data values are stored in
memory locations.

Large values are stored
in consecutive memory
locations.

 FIGURE 1.10 Memory locations

 KEY CONCEPT
 An address is a unique number asso-
ciated with a memory location.

14 CHAPTER 1 Introduction

 When data is stored in a memory location, it overwrites and destroys any
information that was previously stored at that location. However, the process of
reading data from a memory location does not affect it.

 On many computers, each memory location consists of eight bits, or one byte ,
of information. If we need to store a value that cannot be represented in a single
byte, such as a large number, then multiple, consecutive bytes are used to store
the data.

 The storage capacity of a device such as main memory is the total number of
bytes it can hold. Devices can store thousands or millions of bytes, so you should
become familiar with larger units of measure. Because computer memory is based
on the binary number system, all units of storage are powers of two. A kilobyte
(KB) is 1024, or 2 10 , bytes. Some larger units of storage are a megabyte (MB), a
gigabyt e (GB), a terabyte (TB), and a petabyte (PB) as listed in Figure 1.11 . It’s
usually easier to think about these capacities by rounding them off. For example,
most computer users think of a kilobyte as approximately one thousand bytes, a
megabyte as approximately one million bytes, and so forth.

 Many personal computers have four gigabytes of main memory,
or RAM, such as the system described in Figure 1.8 (we discuss
RAM in more detail later in this chapter). A large main memory
allows large programs or multiple programs to run efficiently,
because they don’t have to retrieve information from secondary
memory as often.

 Main memory is usually volatile , meaning that the information stored in it
will be lost if its electric power supply is turned off. When you are working
on a computer, you should often save your work onto a secondary memory
device such as a USB flash drive in case the power goes out. Secondary memory
devices are usually nonvolatile ; the information is retained even if the power
supply is turned off.

byte

kilobyte

megabyte

gigabyte

terabyte

petabyte

KB

MB

GB

TB

PB

20 = 1

210 = 1024

220 = 1,048,576

230 = 1,073,741,824

240 = 1,099,511,627,776

250 = 1,125,899,906,842,624

Unit Symbol Number of Bytes

 FIGURE 1.11 Units of binary storage

 KEY CONCEPT
 Main memory is volatile, meaning
the stored information is maintained
only as long as electric power is
supplied.

 1.2 Hardware Components 15

The cache is used by the central processing unit (CPU) to reduce the average
access time to instructions and data. The cache is a small, fast memory that stores
the contents of the most frequently used main memory locations. Contemporary
CPUs include an instruction cache to speed up the fetching of executable instruc-
tions and a data cache to speed up the fetching and storing of data.

The most common secondary storage devices are hard disks and USB flash
drives. A typical USB flash drive stores between 1 GB and 256 GB of information.
The storage capacities of hard drives vary, but on personal computers, capacities
typically range between 120 GB and 500 GB, such as in the system described in
Figure 1.8. Some hard disks can store 2 TB of data.

A USB flash drive consists of a small printed circuit board carrying the circuit
elements and a USB connector, insulated electrically and protected inside a plastic,
metal, or rubberized case, which can be carried in a pocket or on a key chain, for
example.

A disk is a magnetic medium on which bits are represented as magnetized parti-
cles. A read/write head passes over the spinning disk, reading or writing information
as appropriate. A hard disk drive might actually contain several disks in a vertical
column with several read/write heads, such as the one shown in Figure 1.12.

To get an intuitive feel for how much information these devices can store,
consider that all the information in this book, including pictures and formatting,
requires about 7 MB of storage.

Magnetic tapes also have been used as secondary storage but are considerably
slower than hard disk and USB flash drives because of the way information is
accessed. A hard disk is a direct access device since the read/write head can move, in
general, directly to the information needed. A USB flash drive is also a direct access

Disks

Read/write
head

FIGURE 1.12 A hard disk drive with multiple disks and read/write heads

16 CHAPTER 1 Introduction

device, but nothing moves mechanically. The terms direct access and random access
are often used interchangeably. However, information on a tape can be accessed
only after first getting past the intervening data. A tape must be rewound or fast-for-
warded to get to the appropriate position. A tape is therefore considered a sequential
access device . For these reasons, tapes largely have fallen out of use as a computing
storage device, just as audio cassettes have been supplanted by compact discs.

 Two other terms are used to describe memory devices: random access
memory (RAM) and read-only memory (ROM). It’s important to understand
these terms because they are used often and their names can be misleading. The
terms RAM and main memory are basically interchangeable, describing the
memory where active programs and data are stored. ROM can refer to chips
on the computer motherboard or to portable storage such as a compact disc.
ROM chips typically store software called BIOS (basic input/output system)
that provide the preliminary instructions needed when the computer is turned
on initially. After information is stored on ROM, generally it is not altered (as
the term read-only implies) during typical computer use. Both RAM and ROM
are direct (or random) access devices.

 A CD-ROM is a portable secondary memory device. CD stands
for compact disc. It is called ROM because information is stored
permanently when the CD is created and cannot be changed. Like
its musical CD counterpart, a CD-ROM stores information in binary
format. When the CD is initially created, a microscopic pit is pressed
into the disc to represent a binary 1, and the disc is left smooth to

represent a binary 0. The bits are read by shining a low-intensity laser beam onto
the spinning disc. The laser beam reflects strongly from a smooth area on the
disc but weakly from a pitted area. A sensor receiving the reflection determines
whether each bit is a 1 or a 0 accordingly. A typical CD-ROM’s storage capacity
ranges between 650 and 900 MB.

 Variations on basic CD technology emerged quickly. Most personal computers
are equipped with a CD-Recordable (CD-R) drive. A CD-R can be used to cre-
ate a CD for music or for general computer storage. Once created, you can use a
CD-R disc in a standard CD player, but you can’t change the information on a
CD-R disc once it has been “burned.” Music CDs that you buy are pressed from
a mold, whereas CD-Rs are burned with a laser.

 A CD-Rewritable (CD-RW) disc can be erased and reused. It can be reused because
the pits and flat surfaces of a normal CD are simulated on a CD-RW
by coating the surface of the disc with a material that, when heated
to one temperature becomes amorphous (and therefore nonreflective)
and when heated to a different temperature becomes crystalline (and
therefore reflective). The CD-RW media doesn’t work in all players, but
CD-RW drives can create both CD-R and CD-RW discs.

 KEY CONCEPT
 The surface of a CD has both
smooth areas and small pits. A pit
represents a binary 1 and a smooth
area represents a binary 0.

 KEY CONCEPT
 A rewritable CD simulates the pits
and smooth areas of a regular CD
by using a coating that can be made
amorphous or crystalline as needed.

 1.2 Hardware Components 17

CDs were initially a popular format for music; they later evolved to be used
as a general computer storage device. Similarly, the DVD format was originally
created for video and is now making headway as a general format for computer
data. DVD once stood for digital video disc or digital versatile disc, but now the
acronym generally stands on its own. A DVD has a tighter format (more bits per
square inch) than a CD and can therefore store much more information. DVD-
ROMs eventually may replace CD-ROMs completely because there is a compat-
ible migration path, meaning that a DVD drive can read a CD-ROM. Similar to
CD-R and CD-RW, there are DVD-R and DVD-RW discs. The drive listed in
Figure 1.8 allows the user to read and write CD-RW discs and read DVD-ROMs,
including the ability to play music CDs and watch DVD videos.

The speed of a CD or DVD is expressed in multiples of x, which represents
a data transfer speed of 153,600 bytes of data per second for a CD; nine times
that speed, or about 1.5 megabytes of data per second, for a DVD; and three
times the speed of a DVD, or 4.5 megabytes of data per second, for a Blu-ray
disc. The drive described in Figure 1.8 has a maximum data access speed of
16x, or about 72 MB of data per second. A dual-layer Blu-ray disc has a stor-
age capacity of 50 GB.

The capacity of storage devices changes continually as technology improves.
A general rule in the computer industry suggests that storage capacity approxi-
mately doubles every 18 months. However, this progress eventually will slow
down as capacities approach absolute physical limits.

The Central Processing Unit
The central processing unit (CPU) interacts with main memory to perform all
fundamental processing in a computer. The CPU interprets and executes instruc-
tions, one after another, in a continuous cycle. It is made up of three important
components, as shown in Figure 1.13. The control unit coordinates the processing
steps, the registers provide a small amount of storage space in the CPU itself, and
the arithmetic/logic unit performs calculations and makes decisions. The registers
are the smallest, fastest cache in the system.

The control unit coordinates the transfer of data and instructions between
main memory and the registers in the CPU. It also coordinates the execution of
the circuitry in the arithmetic/logic unit to perform operations on data stored in
particular registers.

In most CPUs, some registers are reserved for special purposes. For example,
the instruction register holds the current instruction being executed. The pro-
gram counter is a register that holds the address of the next instruction to be
executed. In addition to these and other special-purpose registers, the CPU also

18 CHAPTER 1 Introduction

contains a set of general-purpose registers that are used for temporary storage
of values as needed.

 The concept of storing both program instructions and data together in main
memory is the underlying principle of the von Neumann architecture of computer
design, named after John von Neumann, a Hungarian-American mathematician
who first advanced this programming concept in 1945. These computers continu-
ally follow the fetch-decode-execute cycle depicted in Figure 1.14 . An instruction
is fetched from main memory at the address stored in the program counter and is

put into the instruction register. The program counter is incremented
at this point to prepare for the next cycle. Then the instruction is
decoded electronically to determine which operation to carry out.
Finally, the control unit activates the correct circuitry to carry out
the instruction, which may load a data value into a register or add

two values together, for example.

 The CPU is constructed on a chip called a microprocessor, a device that is part
of the main circuit board of the computer. This board also contains ROM chips

Bus

CPU

Registers

Arithmetic/logic
unit

Main
memory

Control unit

 FIGURE 1.13 CPU components and main memory

Fetch an instruction
from main memory

Execute the instruction

Decode the instruction
and increment program

counter

 FIGURE 1.14 The continuous fetch-decode-execute cycle

 KEY CONCEPT
 The fetch-decode-execute cycle
forms the foundation of computer
processing.

 1.2 Hardware Components 19

and communication sockets to which device controllers, such as the controller
that manages the video display, can be connected.

Another crucial component of the main circuit board is the system clock. The
clock generates an electronic pulse at regular intervals, which synchronizes the events
of the CPU. The rate at which the pulses occur is called the clock speed, and it varies
depending on the processor. The computer described in Figure 1.8 includes an Intel
Core i7 processor that runs at a clock speed of 3.07 gigahertz (GHz), or approxi-
mately 3.1 billion pulses per second. The speed of the system clock provides a rough
measure of how fast the CPU executes instructions. Similar to storage capacities, the
speed of processors is constantly increasing with advances in technology.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 1.7 How many bytes are in each of the following?

a. 3 KB
b. 2 MB
c. 4 GB

SR 1.8 How many bits are there in each of the following?

a. 8 bytes
b. 2 KB
c. 4 MB

SR 1.9 The music on a CD is created using a sampling rate of 44,000 mea-
surements per second. Each measurement is stored as a number that
represents a specific voltage level. Suppose each of these numbers
requires two bytes of storage space. How many MB does it take to
represent one hour of music?

SR 1.10 What are the two primary hardware components in a computer? How
do they interact?

SR 1.11 What is a memory address?

SR 1.12 What does volatile mean? Which memory devices are volatile and
which are nonvolatile?

SR 1.13 Select the word from the following list that best matches each of the
following phrases:

 controller, CPU, main, network card, peripheral, RAM, register,
ROM, secondary

a. Almost all devices in a computer system, other than the CPU and
the main memory, are categorized as this.

20 CHAPTER 1 Introduction

 b. A device that coordinates the activities of a peripheral device.
 c. Allows information to be sent and received.
 d. This type of memory is usually volatile.
 e. This type of memory is usually nonvolatile.
 f. This term basically is interchangeable with the term “main memory.”
 g. Where the fundamental processing of a computer takes place.

1.3 Networks

 A single computer can accomplish a great deal, but connecting several computers
together into networks can dramatically increase productivity and facilitate the
sharing of information. A network consists of two or more computers connected
together so they can exchange information. Using networks has become the nor-

mal mode of commercial computer operation. New technologies are
emerging every day to capitalize on the connected environments of
modern computer systems.

 Figure 1.15 shows a simple computer network. One of the devices
on the network is a printer, which allows any computer connected

to the network to print a document on that printer. One of the computers on
the network is designated as a file server, which is dedicated to storing programs
and data that are needed by many network users. A file server usually has a large
amount of secondary memory. When a network has a file server, each individual
computer doesn’t need its own copy of a program.

 Network Connections
 If two computers are directly connected, they can communicate in basically the
same way that information moves across wires inside a single machine. When

Shared printer

File server

FIGURE 1.15 A simple computer network

 KEY CONCEPT
 A network consists of two or more
computers connected together so
that they can exchange information.

1.3 Networks 21

connecting two geographically close computers, this solution works well and
is called a point-to-point connection. However, consider the task of connecting
many computers together across large distances. If point-to-point connections are
used, every computer is directly connected by a wire to every other computer in the
network. A separate wire for each connection is not a workable solution because
every time a new computer is added to the network, a new communication line
will have to be installed for each computer already in the network. Furthermore,
a single computer can handle only a small number of direct connections.

 Figure 1.16 shows multiple point-to-point connections. Consider the number
of communication lines that would be needed if two or three additional comput-
ers were added to the network.

 Compare the diagrams in Figure 1.15 and Figure 1.16 . All of the computers
shown in Figure 1.15 share a single communication line. Each computer on the
network has its own network address, which uniquely identifies it. These addresses
are similar in concept to the addresses in main memory except that they identify
individual computers on a network instead of individual memory locations inside
a single computer. A message is sent across the line from one computer to another
by specifying the network address of the computer for which it is intended.

 Sharing a communication line is cost effective and makes adding
new computers to the network relatively easy. However, a shared line
introduces delays. The computers on the network cannot use the com-
munication line at the same time. They have to take turns sending infor-
mation, which means they have to wait when the line is busy.

 One technique to improve network delays is to divide large mes-
sages into segments, called packets, and then send the individual packets across
the network intermixed with pieces of other messages sent by other users. The
packets are collected at the destination and reassembled into the original message.
This situation is similar to a group of people using a conveyor belt to move a set
of boxes from one place to another. If only one person were allowed to use the
conveyor belt at a time, and that person had a large number of boxes to move,
the others would be waiting a long time before they could use it. By taking turns,

 FIGURE 1.16 Point-to-point connections

 KEY CONCEPT
 Sharing a communication line creates
delays, but it is cost effective and
simplifies adding new computers to
the network.

22 CHAPTER 1 Introduction

each person can put one box on at a time, and they all can get their work done.
It’s not as fast as having a conveyor belt of your own, but it’s not as slow as hav-
ing to wait until everyone else is finished.

 Local-Area Networks and Wide-Area Networks
 A local-area network (LAN) is designed to span short distances and connect a
relatively small number of computers. Usually a LAN connects the machines in
only one building or in a single room. LANs are convenient to install and manage

and are highly reliable. As computers became increasingly small and
versatile, LANs provided an inexpensive way to share information
throughout an organization. However, having a LAN is like having
a telephone system that allows you to call only the people in your
own town. We need to be able to share information across longer
distances.

 A wide-area network (WAN) connects two or more LANs, often across long
distances. Usually one computer on each LAN is dedicated to handling the com-
munication across a WAN. This technique relieves the other computers in a LAN
from having to perform the details of long-distance communication. Figure 1.17
shows several LANs connected into a WAN. The LANs connected by a WAN are
often owned by different companies or organizations and might even be located
in different countries.

LAN

Long-distance
connection

One computer
in a LAN

 FIGURE 1.17 LANs connected into a WAN

 KEY CONCEPT
 A local-area network (LAN) is an
effective way to share information
and resources throughout an
organization.

1.3 Networks 23

 The impact of networks on computer systems has been dramatic. Computing
resources can now be shared among many users, and computer-based commu-
nication across the entire world is common. In fact, the use of networks is now
so pervasive that some computers require network resources in order to operate.

 The Internet
 Throughout the 1970s, an agency in the Department of Defense known as the
Advanced Research Projects Agency (ARPA) funded several projects to explore
network technology. One result of these efforts was the ARPANET, a WAN that
eventually became known as the Internet. The Internet is a network of networks.
The term Internet comes from the WAN concept of internetworking —connecting
many smaller networks together.

 From the late 1980s through the present day, the Internet has
grown incredibly. In 1983, there were fewer than 600 computers
connected to the Internet. At the present time, the Internet serves
billions of users worldwide. As more and more computers con-
nect to the Internet, the task of keeping up with the larger number of users
and heavier traffic has been difficult. New technologies have replaced the
ARPANET several times since the initial development, each time providing more
capacity and faster processing.

 A protocol is a set of rules that governs how two things communicate. The
software that controls the movement of messages across the Internet must con-
form to a set of protocols called TCP/IP (pronounced by spelling out the let-
ters, T-C-P-I-P). TCP stands for Transmission Control Protocol, and IP stands
for Internet Protocol. The IP software defines how information is formatted
and transferred from the source to the destination. The TCP software handles
problems such as pieces of information arriving out of their original order or
information getting lost, which can happen if too much information converges
at one location at the same time.

 Every computer connected to the Internet has an IP address that uniquely iden-
tifies it among all other computers on the Internet. An example of an IP address
is 204.192.116.2. Fortunately, the users of the Internet rarely have
to deal with IP addresses. The Internet allows each computer to be
given a name. Like IP addresses, the names must be unique. The
Internet name of a computer is often referred to as its Internet
address. An example of Internet address is hector.vt.edu.

 The first part of an Internet address is the local name of a specific computer.
The rest of the address is the domain name, which indicates the organization to
which the computer belongs. For example, vt.edu is the domain name for the
network of computers at Virginia Tech, and hector is the name of a particular

 KEY CONCEPT
 The Internet is a wide-area network
(WAN) that spans the globe.

 KEY CONCEPT
 Every computer connected to the
Internet has an IP address that
uniquely identifies it.

24 CHAPTER 1 Introduction

computer on that campus. Because the domain names are unique, many organiza-
tions can have a computer named hector without confusion. Individual depart-
ments might be assigned subdomains that are added to the basic domain name
to uniquely distinguish their set of computers within the larger organization. For
example, the cs.vt.edu subdomain is devoted to the Department of Computer
Science at Virginia Tech.

 The last part of each domain name, called a top-level domain (TLD), usually
indicates the type of organization to which the computer belongs. The TLD edu
typically indicates an educational institution. The TLD com often refers to a com-
mercial business. Another common TLD is org, usually used by nonprofit orga-
nizations. During an international meeting held in Paris in 2008, a process was
started for introducing generic top-level domains (gTLD). The new rules could
result in hundreds of new gTLDs. Many computers, especially those outside of
the United States, use a country-code top-level domain (ccTLD) that denotes the
country of origin, such as uk for the United Kingdom or au for Australia.

 When an Internet address is referenced, it gets translated to its corresponding
IP address, which is used from that point on. The software that does this transla-
tion is called the Domain Name System (DNS). Each organization connected to
the Internet operates a domain server that maintains a list of all computers at
that organization and their IP addresses. It works somewhat like telephone direc-
tory assistance in that you provide the name, and the domain server gives back a
number. If the local domain server does not have the IP address for the name, it
contacts another domain server that does.

 The Internet has revolutionized computer processing. Initially, the primary use
of interconnected computers was to send electronic mail, but Internet capabilities
continue to improve. One of the most significant uses of the Internet is the World
Wide Web.

 The World Wide Web
 The Internet gives us the capability to exchange information. The World Wide
Web (also known as WWW or simply the Web) makes the exchange of infor-

mation easy for humans. Web software provides a common user
interface through which many different types of information can be
accessed with the click of a mouse.

 The Web is based on the concepts of hypertext and hypermedia.
The term hypertext was coined in 1965 by Ted Nelson. It describes

a way to organize information so that the flow of ideas was not constrained to a
linear progression. Paul Otlet (1868–1944), considered by some to be the father of
information science, envisioned that concept as a way to manage large amounts of
information. The underlying idea is that documents can be linked at various points

 KEY CONCEPT
 The World Wide Web is software that
makes sharing information across a
network easy for humans.

1.3 Networks 25

according to natural relationships so that the reader can jump from one document
to another, following the appropriate path for that reader’s needs. When other
media components are incorporated, such as graphics, sound, animations, and
video, the resulting organization is called hypermedia.

 The terms Internet and World Wide Web are sometimes used interchange-
ably, but there are important differences between the two. The Internet makes it
possible to communicate via computers around the world. The Web makes that
communication a straightforward and enjoyable activity. The Web is essentially a
distributed information service and is based on a set of software applications. It is
not a network. Although it is used effectively with the Internet, it is not inherently
bound to it. The Web can be used on a LAN that is not connected to any other
network or even on a single machine to display HTML documents.

 A browser is a software tool that loads and formats Web documents for view-
ing. Mosaic, the first graphical interface browser for the Web, was released in
1993. The designer of a Web document defines to other Web information that
might be anywhere on the Internet. Some of the people who developed Mosaic
went on to found the Netscape Communications Corporation and create the
Netscape Navigator browser. Popular contemporary browsers include Internet
Explorer, Mozilla Firefox, Apple Safari, Google Chrome, and Opera.

 A computer dedicated to providing access to Web documents is called a
 Web server . Browsers load and interpret documents provided by a Web server.
Many such documents are formatted using the HyperText Markup Language
(HTML). The Java programming language has an intimate relationship with
Web processing, because links to Java programs can be embedded in HTML
documents and executed through Web browsers. We explore this relationship
in more detail in Chapter 2 .

 Uniform Resource Locators
 Information on the Web is found by identifying a Uniform Resource Locator
(URL, pronounced by spelling out the letters U-R-L). A URL uniquely specifies
documents and other information for a browser to obtain and display. The fol-
lowing is an example URL:

 http://www.google.com

 The Web site at this particular URL is the home of the well-known
Google search engine , which enables you to search the Web for
information using particular words or phrases.

 A URL contains several pieces of information. The first piece is
a protocol, which determines the way the browser transmits and

 KEY CONCEPT
 A URL uniquely specifies documents
and other information found on the
Web for a browser to obtain and
display.

http://www.google.com

26 CHAPTER 1 Introduction

processes information. The second piece is the Internet address of the machine on
which the document is stored. The third piece of information is the file name or
resource of interest. If no file name is given, as is the case with the Google URL,
the Web server usually provides a default page (such as index.html).

Let’s look at another example URL:

http://www.whitehouse.gov/photos-and-video/photogallery/photo-day

In this URL, the protocol is http, which stands for HyperText Transfer Protocol.
The machine referenced is www (a typical reference to a Web server), found at
domain whitehouse.gov. Finally, photos-and-video/photogallery/photo-day
represents a file (or a reference that generates a file) to be transferred to the browser
for viewing. Many other forms for URLs exist, but this form is the most common.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 1.14 What is a file server?

SR 1.15 What is the total number of communication lines needed for a fully
connected point-to-point network of five computers? Six computers?

SR 1.16 Describe a benefit of having computers on a network share a communica-
tion line. Describe a cost/drawback of sharing a communication line.

SR 1.17 What is the etymology of the word Internet?

SR 1.18 The TCP/IP set of protocols describes communication rules for soft-
ware that uses the Internet. What does TCP stand for? What does IP
stand for?

SR 1.19 Explain the parts of the following URLs:

a. duke.csc.villanova.edu/jss/examples.html
b. java.sun.com/products/index.html

1.4 The Java Programming Language

Let’s now turn our attention to the software that makes a computer system use-
ful. A program is written in a particular programming language that uses specific
words and symbols to express the problem solution. A programming language
defines a set of rules that determines exactly how a programmer can combine the
words and symbols of the language into programming statements, which are the
instructions that are carried out when the program is executed.

Since the inception of computers, many programming languages have been
created. We use the Java language in this book to demonstrate various program-
ming concepts and techniques. Although our main goal is to learn these underlying

http://www.whitehouse.gov/photos-and-video/photogallery/photo-day

1.4 The Java Programming Language 27

software development concepts, an important side effect will be to become pro-
ficient in the development of Java programs.

 Java is a relatively new programming language as compared with many oth-
ers. It was initiated in 1991 by James Gosling at Sun Microsystems as one of his
many set-top box projects. The language initially was called Oak, then Green, and
ultimately Java. Java was introduced to the public in 1995 and has gained tre-
mendous popularity since. In 2010, Sun Microsystems was purchased by Oracle.

 Java has undergone various changes since its creation. There are variations
of the Java Platform, including the Standard Edition, which is the mainstream
version of the language and the associated tools; the Enterprise Edition, which
includes extra libraries to support large-scale system development; and the Micro
Edition, which is specifically for developing software for portable devices such as
cell phones. This book focuses on the Standard Edition.

 Some parts of early Java technologies have been deprecated, which means they
are considered old-fashioned and should not be used. When it is important, we
point out deprecated elements and discuss their preferred alternatives.

 One reason Java attracted some initial attention was because it was the first pro-
gramming language to deliberately embrace the concept of writing programs (called
applets) that can be executed using the Web. Since then, the techniques for creating
a Web page that has dynamic, functional capabilities have expanded dramatically.

 Java is an object-oriented programming language. Objects are
the fundamental elements that make up a program. The principles
of object-oriented software development are the cornerstone of this
book. We explore object-oriented programming concepts later in
this chapter and throughout the rest of the book.

 The Java language is accompanied by a library of extra software that we can use
when developing programs. This software is referred to as the Java API , which stands
for Application Programmer Interface, or simply the standard class library . The Java API
provides the ability to create graphics, communicate over networks, and interact with
databases, among many other features. The Java API is huge and quite versatile. We
won’t be able to cover all aspects of the library, though we will explore several of them.

 Java is used in commercial environments all over the world. It is one of the
fastest growing programming technologies of all time. So not only is it a good
language in which to learn programming concepts, it is also a practical language
that will serve you well in the future.

 A Java Program
 Let’s look at a simple but complete Java program. The program in Listing 1.1
prints two sentences to the screen. This particular program prints a quote by
Abraham Lincoln. The output is shown below the program listing.

 KEY CONCEPT
 This book focuses on the principles
of object-oriented programming.

28 CHAPTER 1 Introduction

 All Java applications have a similar basic structure. Despite its small size and
simple purpose, this program contains several important features. Let’s carefully
dissect it and examine its pieces.

 The first few lines of the program are comments, which start with
the // symbols and continue to the end of the line. Comments don’t
affect what the program does but are included to make the program
easier to understand by humans. Programmers can and should include
comments as needed throughout a program to clearly identify the pur-

pose of the program and describe any special processing. Any written comments or
documents, including a user’s guide and technical references, are called documenta-
tion. Comments included in a program are called inline documentation.

 The rest of the program is a class definition. This class is called Lincoln ,
though we could have named it just about anything we wished. The class defini-
tion runs from the first opening brace ({) to the final closing brace (}) on the last
line of the program. All Java programs are defined using class definitions.

//**
// Lincoln.java Author: Lewis/Loftus
//
// Demonstrates the basic structure of a Java application.
 //**

public class Lincoln
 {
 //---
 // Prints a presidential quote.
 //---
 public static void main (String[] args)
 {
 System.out.println ("A quote by Abraham Lincoln:");

 System.out.println ("Whatever you are, be a good one.");
 }
 }

 O U T P U T

 A quote by Abraham Lincoln:
 Whatever you are, be a good one.

 L I S T I N G 1 . 1

 KEY CONCEPT
 Comments do not affect a program’s
processing; instead, they serve to
facilitate human comprehension.

 Overview of program
elements.

VideoNote

 1.4 The Java Programming Language 29

Inside the class definition are some more comments describing the purpose of
the main method, which is defined directly below the comments. A method is a
group of programming statements that is given a name. In this case, the name of
the method is main and it contains only two programming statements. Like a class
definition, a method is also delimited by braces.

All Java applications have a main method, which is where processing begins.
Each programming statement in the main method is executed, one at a time in
order, until the end of the method is reached. Then the program ends, or termi-
nates. The main method definition in a Java program is always preceded by the
words public, static, and void, which we examine later in the text. The use of
String and args does not come into play in this particular program. We describe
these later also.

The two lines of code in the main method invoke another method called
println (pronounced print line). We invoke, or call, a method when we want
it to execute. The println method prints the specified characters to the screen.
The characters to be printed are represented as a character string, enclosed
in double quote characters ("). When the program is executed, it calls the
println method to print the first statement, calls it again to print the second
statement, and then, because that is the last line in the main method, the pro-
gram terminates.

The code executed when the println method is invoked is not defined in this
program. The println method is part of the System.out object, which is part of
the Java standard class library. It’s not technically part of the Java language, but
is always available for use in any Java program. We explore the println method
in more detail in Chapter 2.

Comments
Let’s examine comments in more detail. Comments are the only language feature
that allows programmers to compose and communicate their thoughts indepen-
dent of the code. Comments should provide insight into the programmer’s origi-
nal intent. A program is often used for many years, and often many modifications
are made to it over time. The original programmer often will not remember the
details of a particular program when, at some point in the future, modifications
are required. Furthermore, the original programmer is not always available to
make the changes; thus, someone completely unfamiliar with the program will
need to understand it. Good documentation is therefore essential.

As far as the Java programming language is concerned, the content of com-
ments can be any text whatsoever. Comments are ignored by the computer; they
do not affect how the program executes.

30 CHAPTER 1 Introduction

The comments in the Lincoln program represent one of two types of com-
ments allowed in Java. The comments in Lincoln take the following form:

// This is a comment.

This type of comment begins with a double slash (//) and continues to the end of the
line. You cannot have any characters between the two slashes. The computer ignores
any text after the double slash to the end of the line. A comment can follow code on
the same line to document that particular line, as in the following example:

System.out.println ("Monthly Report"); // always use this title

The second form a Java comment may have is the following:

/* This is another comment. */

This comment type does not use the end of a line to indicate the end of the com-
ment. Anything between the initiating slash-asterisk (/*) and the terminating
asterisk-slash (*/) is part of the comment, including the invisible newline charac-
ter that represents the end of a line. Therefore, this type of comment can extend
over multiple lines. No space can be between the slash and the asterisk.

If there is a second asterisk following the /* at the beginning of a comment,
the content of the comment can be used to automatically generate external docu-
mentation about your program by using a tool called javadoc. More information
about javadoc is given in Appendix I.

The two basic comment types can be used to create various documentation
styles, such as:

// This is a comment on a single line.

//---
// Some comments such as those above methods or classes
// deserve to be blocked off to focus special attention
// on a particular aspect of your code. Note that each of
// these lines is technically a separate comment.
//---

/*
 This is one comment
 that spans several lines.
*/

Programmers often concentrate so much on writing code that they focus too lit-
tle on documentation. You should develop good commenting practices and follow
them habitually. Comments should be well written, often in complete sentences.

1.4 The Java Programming Language 31

They should not belabor the obvious but should provide appropriate insight into
the intent of the code. The following examples are not good comments:

 System.out.println ("hello"); // prints hello
 System.out.println ("test"); // change this later

 The first comment paraphrases the obvious purpose of the line and
does not add any value to the statement. It is better to have no com-
ment than a useless one. The second comment is ambiguous. What
should be changed later? When is later? Why should it be changed?

 Identifiers and Reserved Words
 The various words used when writing programs are called identifiers. The identi-
fiers in the Lincoln program are class , Lincoln , public , static , void , main ,
 String , args , System , out , and println . These fall into three categories:

 ■ words that we make up when writing a program (Lincoln and args)

 ■ words that another programmer chose (String , System , out , println , and
 main)

 ■ words that are reserved for special purposes in the language (class ,
 public , static , and void)

 While writing the program, we simply chose to name the class Lincoln , but
we could have used one of many other possibilities. For example, we could have
called it Quote , or Abe , or GoodOne . The identifier args (which is short for argu-
ments) is often used in the way we use it in Lincoln , but we could have used just
about any other identifier in its place.

 The identifiers String , System , out , and println were chosen by other pro-
grammers. These words are not part of the Java language. They are part of the
Java standard library of predefined code, a set of classes and methods that some-
one has already written for us. The authors of that code chose the identifiers in
that code—we’re just making use of them.

 Reserved words are identifiers that have a special meaning in a programming
language and can only be used in predefined ways. A reserved word cannot be
used for any other purpose, such as naming a class or method. In the Lincoln pro-
gram, the reserved words used are class , public , static , and void . Throughout
the book, we show Java reserved words in blue type. Figure 1.18 lists all of the
Java reserved words in alphabetical order. The words marked with an asterisk
have been reserved, but currently have no meaning in Java.

 An identifier that we make up for use in a program can be composed of
any combination of letters, digits, the underscore character (_), and the dol-
lar sign ($), but it cannot begin with a digit. Identifiers may be of any length.

 KEY CONCEPT
 Inline documentation should provide
insight into your code. It should not
be ambiguous or belabor the obvious.

32 CHAPTER 1 Introduction

Therefore, total, label7, nextStockItem, NUM_BOXES, and $amount are all
valid identifiers, but 4th_word and coin#value are not valid.

Both uppercase and lowercase letters can be used in an identifier, and the dif-
ference is important. Java is case sensitive, which means that two identifier names
that differ only in the case of their letters are considered to be different identifiers.
Therefore, total, Total, ToTaL, and TOTAL are all different identifiers. As you can
imagine, it is not a good idea to use multiple identifiers that differ only in their
case, because they can be easily confused.

abstract

assert

boolean

break

byte

case

catch

char

class

const*

continue

default

do

double

else

enum

extends

false

final

finally

float

for

goto*

if

implements

import

instanceof

int

interface

long

native

new

null

package

private

protected

public

return

short

static

strictfp

super

switch

synchronized

this

throw

throws

transient

true

try

void

volatile

while

FIGURE 1.18 Java reserved words

Identifier

Java Letter

Java Letter

Java Digit

An identifier is a letter followed by zero or more letters and digits.
A Java Letter includes the 26 English alphabetic characters in both
uppercase and lowercase, the $ and _ (underscore) characters, as well
as alphabetic characters from other languages. A Java Digit includes
the digits 0 through 9.

Examples:

total
MAX_HEIGHT
num1
Keyboard
System

1.4 The Java Programming Language 33

 Although the Java language doesn’t require it, using a consistent
case format for each kind of identifier makes your identifiers easier
to understand. There are various Java conventions regarding identi-
fiers that should be followed, though technically they don’t have to
be. For example, we use title case (uppercase for the first letter of
each word) for class names. Throughout the text, we describe the preferred case
style for each type of identifier when it is first encountered.

 While an identifier can be of any length, you should choose your names care-
fully. They should be descriptive but not verbose. You should avoid meaningless
names such as a or x . An exception to this rule can be made if the short name
is actually descriptive, such as using x and y to represent (x , y) coordinates on a
two-dimensional grid. Likewise, you should not use unnecessarily long names,
such as the identifier theCurrentItemBeingProcessed . The name currentItem
would serve just as well. As you might imagine, the use of identifiers that are
verbose is a much less prevalent problem than the use of names that are not
descriptive.

 You should always strive to make your programs as readable as possible.
Therefore, you should always be careful when abbreviating words. You might
think curStVal is a good name to represent the current stock value,
but another person trying to understand the code may have trouble
figuring out what you meant. It might not even be clear to you two
months after writing it.

 White Space
 All Java programs use white space to separate the words and symbols used in a
program. White space consists of blanks, tabs, and newline characters. The phrase
“white space” refers to the fact that, on a white sheet of paper with black print-
ing, the space between the words and symbols is white. The way a programmer
uses white space is important because it can be used to emphasize parts of the
code and can make a program easier to read.

 Except when it’s used to separate words, the computer ignores
white space. It does not affect the execution of a program. This fact
gives programmers a great deal of flexibility in how they format a
program. The lines of a program should be divided in logical places,
and certain lines should be indented and aligned so that the pro-
gram’s underlying structure is clear.

 Because white space is ignored, we can write a program in many different
ways. For example, taking white space to one extreme, we could put as many
words as possible on each line. The code in Listing 1.2 , the Lincoln2 program, is
formatted quite differently from Lincoln but prints the same message.

 KEY CONCEPT
 Java is case sensitive. The uppercase
and lowercase versions of a letter
are distinct.

 KEY CONCEPT
 Identifier names should be descrip-
tive and readable.

 KEY CONCEPT
 Appropriate use of white space
makes a program easier to read and
understand.

34 CHAPTER 1 Introduction

 Taking white space to the other extreme, we could write almost every word
and symbol on a different line with varying amounts of spaces, such as Lincoln3 ,
shown in Listing 1.3 .

 All three versions of Lincoln are technically valid and will execute
in the same way, but they are radically different from a reader’s
point of view. Both of the latter examples show poor style and make
the program difficult to understand. You may be asked to adhere
to particular guidelines when you write your programs. A software

development company often has a programming style policy that it requires its
programmers to follow. In any case, you should adopt and consistently use a set
of style guidelines that increase the readability of your code.

//**
// Lincoln2.java Author: Lewis/Loftus
//
// Demonstrates a poorly formatted, though valid, program.
//**

 public class Lincoln2{ public static void main(String[]args){
 System.out.println("A quote by Abraham Lincoln:");
 System.out.println("Whatever you are, be a good one.");}}

 O U T P U T

 A quote by Abraham Lincoln:
 Whatever you are, be a good one.

 L I S T I N G 1 . 2

 KEY CONCEPT
 You should adhere to a set of guide-
lines that establish the way you for-
mat and document your programs.

//**
// Lincoln3.java Author: Lewis/Loftus
//
// Demonstrates another valid program that is poorly formatted.
//**
 public class
 Lincoln3
 {
 public
 static
 void
 main

L I S T I N G 1 . 3

 1.4 The Java Programming Language 35

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 1.20 When was the Java programming language developed? By whom?
When was it introduced to the public?

SR 1.21 Where does processing begin in a Java application?

SR 1.22 What do you predict would be the result of the following line in a
Java program?

System.out.println("Hello"); // prints hello

SR 1.23 What do you predict would be the result of the following line in a
Java program?

// prints hello System.out.println("Hello");

SR 1.24 Which of the following are not valid Java identifiers? Why?

a. RESULT
b. result
c. 12345
d. x12345y
e. black&white
f. answer_7

 (
String
 []
 args)
 {
 System.out.println (
"A quote by Abraham Lincoln:")
 ; System.out.println
 (
 "Whatever you are, be a good one."
)
 ;
}
 }

O U T P U T

A quote by Abraham Lincoln:
Whatever you are, be a good one.

L I S T I N G 1 . 3 continued

36 CHAPTER 1 Introduction

SR 1.25 Suppose a program requires an identifier to represent the sum of the
test scores of a class of students. For each of the following names,
state whether or not each is a good name to use for the identifier.
Explain your answers.

a. x
b. scoreSum
c. sumOfTheTestScoresOfTheStudents
d. smTstScr

SR 1.26 What is white space? How does it affect program execution? How
does it affect program readability?

1.5 Program Development

The process of getting a program running involves various activities. The program
has to be written in the appropriate programming language, such as Java. That
program has to be translated into a form that the computer can execute. Errors
can occur at various stages of this process and must be fixed. Various software
tools can be used to help with all parts of the development process as well. Let’s
explore these issues in more detail.

Programming Language Levels
Suppose a particular person is giving travel directions to a friend. That person might
explain those directions in any one of several languages, such as English, Russian, or
Italian. The directions are the same no matter which language is used to explain them,
but the manner in which the directions are expressed is different. The friend must be
able to understand the language being used in order to follow the directions.

Similarly, a problem can be solved by writing a program in one of many pro-
gramming languages, such as Java, Ada, C, C++, C#, Pascal, and Smalltalk. The
purpose of the program is essentially the same no matter which language is used,
but the particular statements used to express the instructions, and the overall
organization of those instructions, vary with each language. A computer must be
able to understand the instructions in order to carry them out.

Programming languages can be categorized into the following four groups.
These groups basically reflect the historical development of computer languages.

■ machine language

■ assembly language

1.5 Program Development 37

■ high-level languages

■ fourth-generation languages

 In order for a program to run on a computer, it must be expressed in that
computer’s machine language. Each type of CPU has its own language. For that
reason, we can’t run a program specifically written for a Sun Workstation, with
its Sparc processor, on a Dell PC, with its Intel processor.

 Each machine language instruction can accomplish only a simple
task. For example, a single machine language instruction might copy
a value into a register or compare a value to zero. It might take four
separate machine language instructions to add two numbers together
and to store the result. However, a computer can do millions of these
instructions in a second, and therefore many simple commands can
be executed quickly to accomplish complex tasks.

 Machine language code is expressed as a series of binary digits and is extremely
difficult for humans to read and write. Originally, programs were entered into the
computer by using switches or some similarly tedious method. Early programmers
found these techniques to be time consuming and error prone.

 These problems gave rise to the use of assembly language, which replaced
binary digits with mnemonics, short English-like words that represent commands
or data. It is much easier for programmers to deal with words than with binary
digits. However, an assembly language program cannot be executed directly on a
computer. It must first be translated into machine language.

 Generally, each assembly language instruction corresponds to an equivalent
machine language instruction. Therefore, similar to machine language, each assembly
language instruction accomplishes only a simple operation. Although assembly
language is an improvement over machine code from a programmer’s perspec-
tive, it is still tedious to use. Both assembly language and machine language are
considered low-level languages.

 Today, most programmers use a high-level language to write soft-
ware. A high-level language is expressed in English-like phrases, and
thus is easier for programmers to read and write. A single high-level
language programming statement can accomplish the equivalent of
many—perhaps hundreds—of machine language instructions. The
term high-level refers to the fact that the programming statements are expressed in
a way that is far removed from the machine language that is ultimately executed.
Java is a high-level language, as are Ada, C++, Smalltalk, and many others.

 Figure 1.19 shows equivalent expressions in a high-level language, assembly
language, and machine language. The expressions add two numbers together. The
assembly language and machine language in this example are specific to a Sparc
processor.

 KEY CONCEPT
 All programs must be translated to a
particular CPU’s machine language in
order to be executed.

 KEY CONCEPT
 High-level languages allow a pro-
grammer to ignore the underlying
details of machine language.

38 CHAPTER 1 Introduction

The high-level language expression in Figure 1.19 is readable and intuitive for
programmers. It is similar to an algebraic expression. The equivalent assembly
language code is somewhat readable, but it is more verbose and less intuitive.
The machine language is basically unreadable and much longer. In fact, only a
small portion of the binary machine code to add two numbers together is shown
in Figure 1.19. The complete machine language code for this particular expression
is over 400 bits long.

A high-level language insulates programmers from needing to know the
underlying machine language for the processor on which they are working. But
high-level language code must be translated into machine language in order to be
executed.

Some programming languages are considered to operate at an even higher
level than high-level languages. They might include special facilities for automatic
report generation or interaction with a database. These languages are called
fourth-generation languages, or simply 4GLs, because they followed the first three
generations of computer programming: machine, assembly, and high-level.

Editors, Compilers, and Interpreters
Several special-purpose programs are needed to help with the process of develop-
ing new programs. They are sometimes called software tools because they are
used to build programs. Examples of basic software tools include an editor, a
compiler, and an interpreter.

Initially, you use an editor as you type a program into a computer and store
it in a file. There are many different editors with many different features. You
should become familiar with the editor you will use regularly because it can dra-
matically affect the speed at which you enter and modify your programs.

High-Level Language Assembly Language Machine Language

a + b 1d [%fp–20], %o0

1d [%fp–24], %o1

add %o0, %o1, %o0

...

1101 0000 0000 0111

1011 1111 1110 1000

1101 0010 0000 0111

1011 1111 1110 1000

1001 0000 0000 0000

...

 FIGURE 1.19 A high-level expression and its assembly language and
machine language equivalent

1.5 Program Development 39

 Figure 1.20 shows a very basic view of the program development process. After
editing and saving your program, you attempt to translate it from high-level code
into a form that can be executed. That translation may result in errors, in which
case you return to the editor to make changes to the code to fix the problems.
Once the translation occurs successfully, you can execute the program and evalu-
ate the results. If the results are not what you want, or if you want to enhance
your existing program, you again return to the editor to make changes.

 The translation of source code into (ultimately) machine language for a par-
ticular type of CPU can occur in a variety of ways. A compiler is a program that
translates code in one language to equivalent code in another language. The origi-
nal code is called source code, and the language into which it is translated is called
the target language. For many traditional compilers, the source code is translated
directly into a particular machine language. In that case, the translation process
occurs once (for a given version of the program), and the resulting executable
program can be run whenever needed.

 An interpreter is similar to a compiler but has an important difference. An
interpreter interweaves the translation and execution activities. A small part of
the source code, such as one statement, is translated and executed. Then another
statement is translated and executed, and so on. One advantage of this technique
is that it eliminates the need for a separate compilation phase. However, the pro-
gram generally runs more slowly because the translation process occurs during
each execution.

 The process generally used to translate and execute Java programs
combines the use of a compiler and an interpreter. This process is
pictured in Figure 1.21 . The Java compiler translates Java source
code into Java bytecode, which is a representation of the program in
a low-level form similar to machine language code. The Java inter-
preter reads Java bytecode and executes it on a specific machine.
Another compiler could translate the bytecode into a particular machine language
for efficient execution on that machine.

 The difference between Java bytecode and true machine language code is that
Java bytecode is not tied to any particular processor type. This approach has the

Edit and
save program

Translate program
into executable form

errors errors

Execute program and
evaluate results

FIGURE 1.20 Editing and running a program

 KEY CONCEPT
 A Java compiler translates Java
source code into Java bytecode, a
low-level, architecture-neutral repre-
sentation of the program.

40 CHAPTER 1 Introduction

distinct advantage of making Java architecture neutral, and therefore easily por-
table from one machine type to another. The only restriction is that there must
be a Java interpreter or a bytecode compiler for each processor type on which the
Java bytecode is to be executed.

Since the compilation process translates the high-level Java source code into
a low-level representation, the interpretation process is more efficient than inter-
preting high-level code directly. Executing a program by interpreting its bytecode
is still slower than executing machine code directly, but it is fast enough for
most applications. Note that for efficiency, Java bytecode could be compiled into
machine code.

Development Environments
A software development environment is the set of tools used to create, test, and
modify a program. Some development environments are available for free while
others, which may have advanced features, must be purchased. Some environ-
ments are referred to as integrated development environments (IDEs) because
they integrate various tools into one software program and provide a convenient
graphical user interface.

Any development environment will contain certain key tools, such as a Java
compiler and interpreter. Some will include a debugger, which helps you find

Java source
code

Java
bytecodeJava compiler

Java
interpreter

Bytecode
compiler

Machine
code

FIGURE 1.21 The Java translation and execution process

1.5 Program Development 41

errors in a program. Other tools that may be included are documentation genera-
tors, archiving tools, and tools that help you visualize your program structure.

 Included in the download of the Java Standard Edition is the Java Software
Development Kit (SDK), which is sometimes referred to simply as the Java
Development Kit (JDK). The Java SDK contains the core development tools
needed to get a Java program up and running, but it is not an integrated envi-
ronment. The commands for compilation and interpretation are executed on the
command line. That is, the SDK does not have a GUI. It also does not include an
editor, although any editor that can save a document as simple text can be used.

 One of the most popular Java IDEs is called Eclipse (see www.eclipse.org).
Eclipse is an open source project, meaning that it is developed by a wide collection
of programmers and is available for free. Other popular Java IDEs include jEdit
(www.jedit.org), DrJava (drjava.sourceforge.net), jGRASP (www.jgrasp.com), and
BlueJ (www.bluej.org).

 Various other Java development environments are available. A
Web search will unveil dozens of them. The choice of which devel-
opment environment to use is important. The more you know about
the capabilities of your environment, the more productive you can
be during program development.

 Syntax and Semantics
 Each programming language has its own unique syntax. The syntax rules of a
language dictate exactly how the vocabulary elements of the language can be
combined to form statements. These rules must be followed in order to create a
program. We’ve already discussed several Java syntax rules. For instance, the fact
that an identifier cannot begin with a digit is a syntax rule. The fact that braces
are used to begin and end classes and methods is also a syntax rule. Appendix L
formally defines the basic syntax rules for the Java programming language, and
specific rules are highlighted throughout the text.

 During compilation, all syntax rules are checked. If a program is not syntacti-
cally correct, the compiler will issue error messages and will not produce byte-
code. Java has a similar syntax to the programming languages C and C++, and
therefore the look and feel of the code is familiar to people with a background in
those languages.

 The semantics of a statement in a programming language define what will
happen when that statement is executed. Programming languages are generally
unambiguous, which means the semantics of a program are well defined. That is,
there is one and only one interpretation for each statement. On the other hand,
the natural languages that humans use to communicate, such as English and

 KEY CONCEPT
 Many different development environ-
ments exist to help you create and
modify Java programs.

 Comparison of Java
IDEs.

VideoNote

www.eclipse.org
www.jgrasp.com
www.jedit.org
www.bluej.org

42 CHAPTER 1 Introduction

Italian, are full of ambiguities. A sentence can often have two or more different
meanings. For example, consider the following sentence:

 Time flies like an arrow.

 The average human is likely to interpret this sentence as a general
observation: that time moves quickly in the same way that an arrow
moves quickly. However, if we interpret the word time as a verb
(as in “run the 50-yard dash and I’ll time you”) and the word flies
as a noun (the plural of fly), the interpretation changes completely.

We know that arrows don’t time things, so we wouldn’t normally interpret the
sentence that way, but it is a valid interpretation of the words in the sentence.
A computer would have a difficult time trying to determine which meaning is
intended. Moreover, this sentence could describe the preferences of an unusual
insect known as a “time fly,” which might be found near an archery range. After
all, fruit flies like a banana.

 The point is that one specific English sentence can have multiple valid mean-
ings. A computer language cannot allow such ambiguities to exist. If a program-
ming language instruction could have two different meanings, a computer would
not be able to determine which one should be carried out.

 Errors
 Several different kinds of problems can occur in software, particularly during
program development. The term computer error is often misused and varies in
meaning depending on the situation. From a user’s point of view, anything that
goes awry when interacting with a machine can be called a computer error. For
example, suppose you charged a $23 item to your credit card, but when you
received the bill, the item was listed at $230. After you have the problem fixed,
the credit card company apologizes for the “computer error.” Did the computer
arbitrarily add a zero to the end of the number, or did it perhaps multiply the

value by 10? Of course not. A computer follows the commands we
give it and operates on the data we provide. If our programs are
wrong or our data inaccurate, then we cannot expect the results to
be correct. A common phrase used to describe this situation is “gar-
bage in, garbage out.”

 You will encounter three kinds of errors as you develop programs:

■ compile-time error

■ run-time error

■ logical error

 KEY CONCEPT
 Syntax rules dictate the form of
a program. Semantics dictate the
meaning of the program statements.

 KEY CONCEPT
 The programmer is responsible for
the accuracy and reliability of a
program.

1.5 Program Development 43

 The compiler checks to make sure you are using the correct syn-
tax. If you have any statements that do not conform to the syntactic
rules of the language, the compiler will produce a syntax error. The
compiler also tries to find other problems, such as the use of incom-
patible types of data. The syntax might be technically correct, but
you may be attempting to do something that the language doesn’t semantically
allow. Any error identified by the compiler is called a compile-time error. If a
compile-time error occurs, an executable version of the program is not created.

 The second kind of problem occurs during program execution. It is called a
run-time error and causes the program to terminate abnormally. For example, if
we attempt to divide by zero, the program will “crash” and halt execution at that
point. Because the requested operation is undefined, the system simply abandons
its attempt to continue processing your program. The best programs are robust ;
that is, they avoid as many run-time errors as possible. For example, the program
code could guard against the possibility of dividing by zero and handle the situa-
tion appropriately if it arises. In Java, many run-time problems are called excep-
tions that can be caught and dealt with accordingly.

 The third kind of software problem is a logical error. In this case, the software
compiles and executes without complaint, but it produces incorrect results. For
example, a logical error occurs when a value is calculated incorrectly or when a
graphical button does not appear in the correct place. A programmer must test the
program thoroughly, comparing the expected results to those that actually occur.
When defects are found, they must be traced back to the source of the problem in
the code and corrected. The process of finding and correcting defects in a program
is called debugging. Logical errors can manifest themselves in many ways, and the
actual root cause might be difficult to discover.

 SELF-REVIEW QUESTIONS (see answers in Appendix N)

 SR 1.27 We all know that computers are used to perform complex jobs. In this
section, you learned that a computer’s instructions can do only simple
tasks. Explain this apparent contradiction.

 SR 1.28 What is the relationship between a high-level language and a machine
language?

 SR 1.29 What is Java bytecode?

 SR 1.30 Select the word from the following list that best matches each of the
following phrases:

 assembly, compiler, high-level, IDE, interpreter, Java, low-level, machine

 a. A program written in this type of language can run directly on a
computer.

 KEY CONCEPT
 A Java program must be syntactically
correct or the compiler will not pro-
duce bytecode.

 Examples of various
error types.

VideoNote

44 CHAPTER 1 Introduction

b. Generally, each language instruction in this type of language
corresponds to an equivalent machine language instruction.

c. Most programmers write their programs using this type of
language.

d. Java is an example of this type of language.
e. This type of program translates code in one language to code in

another language.
f. This type of program interweaves the translation of code and the

execution of the code.

SR 1.31 What do we mean by the syntax and semantics of a programming
language?

SR 1.32 Categorize each of the following situations as a compile-time error,
run-time error, or logical error.

a. Misspelling a Java reserved word.
b. Calculating the average of an empty list of numbers by dividing

the sum of the numbers on the list (which is zero) by the size of
the list (which is also zero).

c. Printing a student’s high test grade when the student’s average test
grade should have been output.

1.6 Object-Oriented Programming

As we stated earlier in this chapter, Java is an object-oriented (OO) language. As
the name implies, an object is a fundamental entity in a Java program. This book
is focused on the idea of developing software by defining objects that interact
with each other.

The principles of object-oriented software development have been around for
many years, essentially as long as high-level programming languages have been
used. The programming language Simula, developed in the 1960s, had many
characteristics that define the modern OO approach to software development.
In the 1980s and 1990s, object-oriented programming became wildly popular,
due in large part to the development of programming languages such as C++ and
Java. It is now the dominant approach used in commercial software development.

One of the most attractive characteristics of the object-oriented approach is the
fact that objects can be used quite effectively to represent real-world entities. We
can use a software object to represent an employee in a company, for instance.
We’d create one object per employee, each with behaviors and characteristics that
we need to represent. In this way, object-oriented programming allows us to map

1.6 Object-Oriented Programming 45

our programs to the real situations that the programs represent. That
is, the object-oriented approach makes it easier to solve problems,
which is the point of writing a program in the first place.

 Let’s discuss the general issues related to problem solving, and then
explore the specific characteristics of the object-oriented approach that
helps us solve those problems.

 Problem Solving
 In general, problem solving consists of multiple steps:

1. Understanding the problem.
2. Designing a solution.
3. Considering alternatives to the solution and refining the solution.
4. Implementing the solution.
5. Testing the solution and fixing any problems that exist.

 Although this approach applies to any kind of problem solving, it works par-
ticularly well when developing software. These steps aren’t purely linear. That
is, some of the activities will overlap others. But at some point, all of these steps
should be carefully addressed.

 The first step, understanding the problem, may sound obvious, but a lack of
attention to this step has been the cause of many misguided software development
efforts. If we attempt to solve a problem we don’t completely understand, we
often end up solving the wrong problem or at least going off on improper tan-
gents. Each problem has a problem domain , the real-world issues that are key to
our solution. For example, if we are going to write a program to score a bowling
match, then the problem domain includes the rules of bowling. To develop a good
solution, we must thoroughly understand the problem domain.

 The key to designing a problem solution is breaking it down
into manageable pieces. A solution to any problem can rarely be
expressed as one big task. Instead, it is a series of small cooperating
tasks that interact to perform a larger task. When developing soft-
ware, we don’t write one big program. We design separate pieces
that are responsible for certain parts of the solution, and then inte-
grate them with the other parts.

 Our first inclination toward a solution may not be the best one. We must
always consider alternatives and refine the solution as necessary. The earlier we
consider alternatives, the easier it is to modify our approach.

 Implementing the solution is the act of taking the design and putting it in a
usable form. When developing a software solution to a problem, the implementation

 KEY CONCEPT
 Object-oriented programming helps
us solve problems, which is the
purpose of writing a program.

 KEY CONCEPT
 Program design involves breaking
a solution down into manageable
pieces.

46 CHAPTER 1 Introduction

stage is the process of actually writing the program. Too often programming is
thought of as writing code. But in most cases, the act of designing the program
should be far more interesting and creative than the process of implementing the
design in a particular programming language.

At many points in the development process, we should test our solution to find
any errors that exist so that we can fix them. Testing cannot guarantee that there
aren’t still problems yet to be discovered, but it can raise our confidence that we
have a viable solution.

Throughout this text we explore techniques that allow us to design and imple-
ment elegant programs. Although we will often get immersed in these details, we
should never forget that our primary goal is to solve problems.

Object-Oriented Software Principles
Object-oriented programming ultimately requires a solid understanding of the
following terms:

■ object

■ attribute

■ method

■ class

■ encapsulation

■ inheritance

■ polymorphism

In addition to these terms, there are many associated concepts that allow us
to tailor our solutions in innumerable ways. This book is designed to help you
evolve your understanding of these concepts gradually and naturally. This section
provides an overview of these ideas at a high level to establish some terminology
and provide the big picture.

We mentioned earlier that an object is a fundamental element in a program. A
software object often represents a real object in our problem domain, such as a
bank account. Every object has a state and a set of behaviors. By “state” we mean
state of being—fundamental characteristics that currently define the object. For
example, part of a bank account’s state is its current balance. The behaviors of
an object are the activities associated with the object. Behaviors associated with
a bank account probably include the ability to make deposits and withdrawals.

In addition to objects, a Java program also manages primitive data. Primitive
data includes fundamental values such as numbers and characters. Objects usually
represent more interesting or complex entities.

1.6 Object-Oriented Programming 47

 An object’s attributes are the values it stores internally, which may
be represented as primitive data or as other objects. For example, a
bank account object may store a floating point number (a primitive
value) that represents the balance of the account. It may contain
other attributes, such as the name of the account owner. Collectively,
the values of an object’s attributes define its current state.

 As mentioned earlier in this chapter, a method is a group of programming
statements that is given a name. When a method is invoked, its statements are
executed. A set of methods is associated with an object. The methods of an object
define its potential behaviors. To define the ability to make a deposit into a bank
account, we define a method containing programming statements that will update
the account balance accordingly.

 An object is defined by a class . A class is the model or blueprint from which
an object is created. Consider the blueprint created by an architect when design-
ing a house. The blueprint defines the important characteristics of the house—its
walls, windows, doors, electrical outlets, and so on. Once the blueprint is created,
several houses can be built using it, as depicted in Figure 1.22 .

 In one sense, the houses built from the blueprint are different. They are in
different locations, have different addresses, contain different furniture, and are
inhabited by different people. Yet in many ways they are the “same” house. The

 FIGURE 1.22 A class is used to create objects just as a house blueprint is
used to create different, but similar, houses

 KEY CONCEPT
 Each object has a state, defined by
its attributes, and a set of behaviors,
defined by its methods.

48 CHAPTER 1 Introduction

layout of the rooms and other crucial characteristics are the same in each. To cre-
ate a different house, we would need a different blueprint.

 A class is a blueprint of an object. It establishes the kind of data an object of
that type will hold and defines the methods that represent the behavior of such
objects. However, a class is not an object any more than a blueprint is a house. In
general, a class contains no space to store data. Each object has space for its own
data, which is why each object can have its own state.

 Once a class has been defined, multiple objects can be created
from that class. For example, once we define a class to represent the
concept of a bank account, we can create multiple objects that rep-
resent specific, individual bank accounts. Each bank account object
would keep track of its own balance.

 An object should be encapsulated , which means it protects and manages its
own information. That is, an object should be self-governing. The only changes
made to the state of the object should be accomplished by that object’s methods.
We should design objects so that other objects cannot “reach in” and change their
states.

 Classes can be created from other classes by using inheritance . That is, the defi-
nition of one class can be based on another class that already exists. Inheritance is
a form of software reuse , capitalizing on the similarities between various kinds of
classes that we may want to create. One class can be used to derive several new
classes. Derived classes can then be used to derive even more classes. This creates
a hierarchy of classes, where the attributes and methods defined in one class are
inherited by its children, which in turn pass them on to their children, and so on.
For example, we might create a hierarchy of classes that represent various types
of accounts. Common characteristics are defined in high-level classes, and specific
differences are defined in derived classes.

Polymorphism is the idea that we can refer to multiple types of related objects
over time in consistent ways. It gives us the ability to design powerful and elegant
solutions to problems that deal with multiple objects.

 Some of the core object-oriented concepts are depicted in Figure 1.23 . We
don’t expect you to understand these ideas fully at this point. Most of this book
is designed to flesh out these ideas. This overview is intended only to set the stage.

 KEY CONCEPT
 A class is a blueprint of an object.
Multiple objects can be created from
one class definition.

 1.6 Object-Oriented Programming 49

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 1.33 List the five general steps required to solve a problem.

SR 1.34 Why is it important to consider more than one approach to solving a
problem? Why is it important to consider alternatives early in the
process of solving a problem?

SR 1.35 What are the primary concepts that support object-oriented
programming?

John's Bank Account
Balance: $5,257

Multiple encapsulated objects
can be created from one class

A class defines
a concept

Classes can be organized
into inheritance hierarchies

Bill's Bank Account
Balance: $1,245,069

Mary's Bank Account
Balance: $16,833

Bank Account

 Account

 Charge Account Bank Account

 Savings Account Checking Account

FIGURE 1.23 Various aspects of object-oriented software

50 CHAPTER 1 Introduction

■ A computer system consists of hardware and software that work in
concert to help us solve problems.

■ The CPU reads the program instructions from main memory, executing
them one at a time until the program ends.

■ The operating system provides a user interface and manages computer
resources.

■ As far as the user is concerned, the interface is the program.

■ Digital computers store information by breaking it into pieces and repre-
senting each piece as a number.

■ Binary is used to store and move information in a computer because the
devices that store and manipulate binary data are inexpensive and reliable.

■ There are exactly 2N permutations of N bits. Therefore, N bits can repre-
sent up to 2N unique items.

■ The core of a computer is made up of main memory, which stores pro-
grams and data, and the CPU, which executes program instructions one at
a time.

■ An address is a unique number associated with a memory location.

■ Main memory is volatile, meaning the stored information is maintained
only as long as electric power is supplied.

■ The surface of a CD has both smooth areas and small pits. A pit repre-
sents a binary 1 and a smooth area represents a binary 0.

■ A rewritable CD simulates the pits and smooth areas of a regular CD by
using a coating that can be made amorphous or crystalline as needed.

■ The fetch-decode-execute cycle forms the foundation of computer
processing.

■ A network consists of two or more computers connected together so that
they can exchange information.

■ Sharing a communication line creates delays, but it is cost effective and
simplifies adding new computers to the network.

■ A local-area network (LAN) is an effective way to share information and
resources throughout an organization.

■ The Internet is a wide-area network (WAN) that spans the globe.

■ Every computer connected to the Internet has an IP address that uniquely
identifies it.

Summary of Key Concepts

 Summary of Key Concepts 51

■ The World Wide Web is software that makes sharing information across a
network easy for humans.

■ A URL uniquely specifies documents and other information found on the
Web for a browser to obtain and display.

■ This book focuses on the principles of object-oriented programming.

■ Comments do not affect a program’s processing; instead, they serve to
facilitate human comprehension.

■ Inline documentation should provide insight into your code. It should not
be ambiguous or belabor the obvious.

■ Java is case sensitive. The uppercase and lowercase versions of a letter are
distinct.

■ Identifier names should be descriptive and readable.

■ Appropriate use of white space makes a program easier to read and
understand.

■ You should adhere to a set of guidelines that establish the way you format
and document your programs.

■ All programs must be translated to a particular CPU’s machine language in
order to be executed.

■ High-level languages allow a programmer to ignore the underlying details
of machine language.

■ A Java compiler translates Java source code into Java bytecode, a low-
level, architecture-neutral representation of the program.

■ Many different development environments exist to help you create and
modify Java programs.

■ Syntax rules dictate the form of a program. Semantics dictate the meaning
of the program statements.

■ The programmer is responsible for the accuracy and reliability of a program.

■ A Java program must be syntactically correct or the compiler will not
produce bytecode.

■ Object-oriented programming helps us solve problems, which is the pur-
pose of writing a program.

■ Program design involves breaking a solution down into manageable pieces.

■ Each object has a state, defined by its attributes, and a set of behaviors,
defined by its methods.

■ A class is a blueprint of an object. Multiple objects can be created from
one class definition.

52 CHAPTER 1 Introduction

Exercises
Visit www.myprogramminglab.com to complete many of these Exercises
online and get instant feedback.

EX 1.1 Describe the hardware components of your personal computer or
of a computer in a lab to which you have access. Include the pro-
cessor type and speed, storage capacities of main and secondary
memory, and types of I/O devices. Explain how you determined
your answers.

EX 1.2 Why do we use the binary number system to store information
on a computer?

EX 1.3 How many unique items can be represented with each of the fol-
lowing?

a. 1 bit

b. 3 bits

c. 6 bits

d. 8 bits

e. 10 bits

f. 16 bits

EX 1.4 If a picture is made up of 128 possible colors, how many bits
would be needed to store each pixel of the picture? Why?

EX 1.5 If a language uses 240 unique letters and symbols, how many bits
would be needed to store each character of a document? Why?

EX 1.6 How many bits are there in each of the following? How many
bytes are there in each?

a. 12 KB

b. 5 MB

c. 3 GB

d. 2 TB

EX 1.7 Explain the difference between random access memory (RAM)
and read-only memory (ROM).

EX 1.8 A disk is a random-access device but it is not RAM (random
access memory). Explain.

EX 1.9 Determine how your computer, or a computer in a lab to which
you have access, is connected to others across a network. Is it
linked to the Internet? Draw a diagram to show the basic
connections in your environment.

www.myprogramminglab.com

 Exercises 53

EX 1.10 Explain the differences between a local-area network (LAN) and a
wide-area network (WAN). What is the relationship between them?

EX 1.11 What is the total number of communication lines needed for a
fully connected point-to-point network of eight computers? Nine
computers? Ten computers? What is a general formula for deter-
mining this result?

EX 1.12 Explain the difference between the Internet and the World Wide
Web.

EX 1.13 List and explain the parts of the URLs for:

a. your school

b. the Computer Science department of your school

c. your instructor’s Web page

EX 1.14 Use a Web browser to access information through the Web about
the following topics. For each one, explain the process you used to
find the information and record the specific URLs you found.

a. the Philadelphia Phillies baseball team

b. wine production in California

c. the subway systems in two major cities

d. vacation opportunities in the Caribbean

EX 1.15 Give examples of the two types of Java comments and explain
the differences between them.

EX 1.16 Which of the following are not valid Java identifiers? Why?

a. Factorial

b. anExtremelyLongIdentifierIfYouAskMe

c. 2ndLevel

d. level2

e. MAX_SIZE

f. highest$

g. hook&ladder

EX 1.17 Why are the following valid Java identifiers not considered good
identifiers?

a. q

b. totVal

c. theNextValueInTheList

54 CHAPTER 1 Introduction

EX 1.18 Java is case sensitive. What does that mean?

EX 1.19 What do we mean when we say that the English language is
ambiguous? Give two examples of English ambiguity (other than
the example used in this chapter) and explain the ambiguity.
Why is ambiguity a problem for programming languages?

EX 1.20 Categorize each of the following situations as a compile-time
error, run-time error, or logical error.

a. multiplying two numbers when you meant to add them

b. dividing by zero

c. forgetting a semicolon at the end of a programming statement

d. spelling a word incorrectly in the output

e. producing inaccurate results

f. typing a { when you should have typed a (

Programming Projects
Visit www.myprogramminglab.com to complete many of these
Programming Projects online and get instant feedback.

PP 1.1 Enter, compile, and run the following application:

public class Test

 {
 public static void main (String[] args)
 {
 System.out.println ("An Emergency Broadcast");
 }
 }

PP 1.2 Introduce the following errors, one at a time, to the program
from PP 1.1. Record any error messages that the compiler pro-
duces. Fix the previous error each time before you introduce a
new one. If no error messages are produced, explain why. Try to
predict what will happen before you make each change.

a. change Test to test

b. change Emergency to emergency

c. remove the first quotation mark in the string

d. remove the last quotation mark in the string

e. change main to man

www.myprogramminglab.com

 Programming Projects 55

f. change println to bogus

g. remove the semicolon at the end of the println statement

h. remove the last brace in the program

PP 1.3 Write an application that prints, on separate lines, your name,
your birthday, your hobbies, your favorite book, and your favorite
movie. Label each piece of information in the output.

PP 1.4 Write an application that prints the phrase Knowledge is Power:

a. on one line

b. on three lines, one word per line, with the words centered relative
to each other

c. inside a box made up of the characters = and |

PP 1.5 Write an application that prints a list of four or five web sites
that you enjoy. Print both the site name and the URL.

PP 1.6 Write an application that prints the first few verses of a song
(your choice). Label the chorus.

PP 1.7 Write an application that prints the outline of a tree using aster-
isk (*) characters.

PP 1.8 Write an application that prints a paragraph from a novel of
your choice.

PP 1.9 Write an application that prints the following diamond shape.
Don’t print any unneeded characters. (That is, don’t make any
character string longer than it has to be.)

 *

 *

Developing a solution
for PP 1.2.

VideoNote

56 CHAPTER 1 Introduction

PP 1.10 Write an application that displays your initials in large block
letters. Make each large letter out of the corresponding regular
character. For example:

JJJJJJJJJJJJJJJ AAAAAAAAA LLLL
JJJJJJJJJJJJJJJ AAAAAAAAAAA LLLL
 JJJJ AAA AAA LLLL
 JJJJ AAA AAA LLLL
 JJJJ AAAAAAAAAAA LLLL
J JJJJ AAAAAAAAAAA LLLL
JJ JJJJ AAA AAA LLLL
 JJJJJJJJJJJ AAA AAA LLLLLLLLLLLLLL
 JJJJJJJJJ AAA AAA LLLLLLLLLLLLLL

57

C H A P T E R O B J E C T I V E S
● Discuss the use of character strings, concatenation, and escape

sequences.

● Explore the declaration and use of variables.

● Describe the Java primitive data types.

● Discuss the syntax and processing of expressions.

● Define the types of data conversions and the mechanisms for
accomplishing them.

● Introduce the Scanner class to create interactive programs.

● Explore basic graphics concepts and the techniques for drawing shapes.

● Introduce the concept of a Java applet.

This chapter explores some of the basic types of data used in a

Java program and the use of expressions to perform calculations. It

discusses the conversion of data from one type to another and how

to read input interactively from the user running a program. This

chapter also begins the Graphics Track for the book, in which we

introduce the concepts of graphical programming, explore the rela-

tionship between Java and the Web, and delve into Java’s abilities to

manipulate color and draw shapes.

Data and
Expressions 2

2.1 Character Strings

In Chapter 1 we discussed the basic structure of a Java program, including the
use of comments, identifiers, and white space, using the Lincoln program as an
example. Chapter 1 also included an overview of the various concepts involved
in object-oriented programming, such as objects, classes, and methods. Take a
moment to review these ideas if necessary.

A character string is an object in Java, defined by the class String. Because
strings are so fundamental to computer programming, Java provides the ability
to use a string literal, delimited by double quotation characters, as we’ve seen in
previous examples. We explore the String class and its methods in more detail in
Chapter 3. For now, let’s explore the use of string literals in more detail.

The following are all examples of valid string literals:

"The quick brown fox jumped over the lazy dog."
"602 Greenbriar Court, Chalfont PA 18914"
"x"
""

A string literal can contain any valid characters, including numeric digits, punc-
tuation, and other special characters. The last example in the list above contains
no characters at all.

The print and println Methods
In the Lincoln program in Chapter 1, we invoked the println method as follows:

System.out.println ("Whatever you are, be a good one.");

This statement demonstrates the use of objects. The System.out object represents
an output device or file, which by default is the monitor screen. To be more pre-
cise, the object’s name is out and it is stored in the System class. We explore that
relationship in more detail at the appropriate point in the text.

The println method is a service that the System.out object performs for us.
Whenever we request it, the object will print a character string to the screen. We
can say that we send the println message to the System.out object to request
that some text be printed.

Each piece of data that we send to a method is called a parameter. In this
case, the println method takes only one parameter: the string of characters to
be printed.

58 CHAPTER 2 Data and Expressions

 The System.out object also provides another service we can use:
the print method. The difference between print and println is
small but important. The println method prints the information
sent to it, then moves to the beginning of the next line. The print
method is similar to println , but does not advance to the next line
when completed.

 The program shown in Listing 2.1 is called Countdown , and it invokes both the
 print and println methods.

 Carefully compare the output of the Countdown program, shown at the bot-
tom of the program listing, to the program code. Note that the word Liftoff is
printed on the same line as the first few words, even though it is printed using the
 println method. Remember that the println method moves to the beginning of
the next line after the information passed to it has been printed.

2.1 Character Strings 59

//**
// Countdown.java Author: Lewis/Loftus
//
// Demonstrates the difference between print and println.
//**
public class Countdown
 {
 //---
 // Prints two lines of output representing a rocket countdown.
 //---
 public static void main (String[] args)
 {
 System.out.print ("Three... ");
 System.out.print ("Two... ");
 System.out.print ("One... ");
 System.out.print ("Zero... ");
 System.out.println ("Liftoff!"); // appears on first output line
 System.out.println ("Houston, we have a problem.");
 }
 }

 O U T P U T

Three... Two... One... Zero... Liftoff!
Houston, we have a problem.

 L I S T I N G 2 . 1

 KEY CONCEPT
 The print and println methods
represent two services provided by
the System.out object.

60 CHAPTER 2 Data and Expressions

String Concatenation
A string literal cannot span multiple lines in a program. The following program
statement is improper syntax and would produce an error when attempting to
compile:

// The following statement will not compile
System.out.println ("The only stupid question is
the one that is not asked.");

When we want to print a string that is too long to fit on one line in a program,
we can rely on string concatenation to append one string to the end of another.
The string concatenation operator is the plus sign (+). The following expression
concatenates one character string to another, producing one long string:

"The only stupid question is " + "the one that is not asked."

The program called Facts shown in Listing 2.2 contains several println
statements. The first one prints a sentence that is somewhat long and will not
fit on one line of the program. Since a character literal cannot span two lines in
a program, we split the string into two and use string concatenation to append
them. Therefore, the string concatenation operation in the first println statement
results in one large string that is passed to the method to be printed.

Note that we don’t have to pass any information to the println method, as
shown in the second line of the Facts program. This call does not print any vis-
ible characters, but it does move to the next line of output. So in this case calling
println with no parameters has the effect of printing a blank line.

The last three calls to println in the Facts program demonstrate another
interesting thing about string concatenation: Strings can be concatenated with
numbers. Note that the numbers in those lines are not enclosed in double quotes
and are therefore not character strings. In these cases, the number is automatically
converted to a string, and then the two strings are concatenated.

Because we are printing particular values, we simply could have included the
numeric value as part of the string literal, such as:

"Speed of ketchup: 40 km per year"

Digits are characters and can be included in strings as needed. We separate them
in the Facts program to demonstrate the ability to concatenate a string and a
number. This technique will be useful in upcoming examples.

As you can imagine, the + operator is also used for arithmetic addition.
Therefore, what the + operator does depends on the types of data on which it

 2.1 Character Strings 61

//**
// Facts.java Author: Lewis/Loftus
//
// Demonstrates the use of the string concatenation operator and the
// automatic conversion of an integer to a string.
//**

public class Facts
{
 //---
 // Prints various facts.
 //---
 public static void main (String[] args)
 {
 // Strings can be concatenated into one long string
 System.out.println ("We present the following facts for your "
 + "extracurricular edification:");

 System.out.println ();

 // A string can contain numeric digits
 System.out.println ("Letters in the Hawaiian alphabet: 12");

 // A numeric value can be concatenated to a string
 System.out.println ("Dialing code for Antarctica: " + 672);

 System.out.println ("Year in which Leonardo da Vinci invented "
 + "the parachute: " + 1515);

 System.out.println ("Speed of ketchup: " + 40 + " km per year");
 }
}

O U T P U T

We present the following facts for your extracurricular edification:

Letters in the Hawaiian alphabet: 12
Dialing code for Antarctica: 672
Year in which Leonardo da Vinci invented the parachute: 1515
Speed of ketchup: 40 km per year

L I S T I N G 2 . 2

62 CHAPTER 2 Data and Expressions

operates. If either or both of the operands of the + operator are strings, then string
concatenation is performed.

The Addition program shown in Listing 2.3 demonstrates the distinction
between string concatenation and arithmetic addition. The Addition program
uses the + operator four times. In the first call to println, both + operations per-
form string concatenation, because the operators are executed left to right. The
first operator concatenates the string with the first number (24), creating a larger
string. Then that string is concatenated with the second number (45), creating an
even larger string, which gets printed.

In the second call to println, we use parentheses to group the + operation
with the two numeric operands. This forces that operation to happen first.
Because both operands are numbers, the numbers are added in the arithmetic

//**
// Addition.java Author: Lewis/Loftus
//
// Demonstrates the difference between the addition and string
// concatenation operators.
//**

public class Addition
{
 //---
 // Concatenates and adds two numbers and prints the results.
 //---
 public static void main (String[] args)
 {
 System.out.println ("24 and 45 concatenated: " + 24 + 45);

 System.out.println ("24 and 45 added: " + (24 + 45));
 }
}

O U T P U T

24 and 45 concatenated: 2445
24 and 45 added: 69

L I S T I N G 2 . 3

2.1 Character Strings 63

sense, producing the result 69 . That number is then concatenated with the string,
producing a larger string that gets printed.

 We revisit this type of situation later in this chapter when we formalize the
precedence rules that define the order in which operators get evaluated.

 Escape Sequences
 Because the double quotation character (") is used in the Java language to
indicate the beginning and end of a string, we must use a special technique to
print the quotation character. If we simply put it in a string ("""), the compiler
gets confused because it thinks the second quotation character is the end of
the string and doesn’t know what to do with the third one. This results in a
compile-time error.

 To overcome this problem, Java defines several escape sequences
to represent special characters. An escape sequence begins with the
backslash character (\), which indicates that the character or char-
acters that follow should be interpreted in a special way. Figure 2.1
lists the Java escape sequences.

 The program in Listing 2.4 , called Roses , prints some text resembling a poem. It
uses only one println statement to do so, despite the fact that the poem is several
lines long. Note the escape sequences used throughout the string. The \n escape
sequence forces the output to a new line, and the \t escape sequence represents a
tab character. The \" escape sequence ensures that the quote character is treated
as part of the string, not the termination of it, which enables it to be printed as
part of the output.

Escape Sequence Meaning

\b

\t

\n

\r

\"

\'

\\

backspace

tab

newline

carriage return

double quote

single quote

backslash

 FIGURE 2.1 Java escape sequences

 KEY CONCEPT
 An escape sequence can be used to
represent a character that would oth-
erwise cause compilation problems.

 Example using strings
and escape sequences.

VideoNote

64 CHAPTER 2 Data and Expressions

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 2.1 What is a string literal?

SR 2.2 What is the difference between the print and println methods?

SR 2.3 What is a parameter?

SR 2.4 What output is produced by the following code fragment?

System.out.println ("One ");
System.out.print ("Two ");
System.out.println ("Three ");

//**
// Roses.java Author: Lewis/Loftus
//
// Demonstrates the use of escape sequences.
//**

public class Roses
{
 //---
 // Prints a poem (of sorts) on multiple lines.
 //---
 public static void main (String[] args)
 {
 System.out.println ("Roses are red,\n\tViolets are blue,\n" +
 "Sugar is sweet,\n\tBut I have \"commitment issues\",\n\t" +
 "So I'd rather just be friends\n\tAt this point in our " +
 "relationship.");
 }
}

O U T P U T

Roses are red,
 Violets are blue,
Sugar is sweet,
 But I have "commitment issues",
 So I'd rather just be friends
 At this point in our relationship.

L I S T I N G 2 . 4

2.2 Variables and Assignment 65

SR 2.5 What output is produced by the following code fragment?

System.out.print ("Ready ");
System.out.println ();
System.out.println ("Set ");
System.out.println ();
System.out.println ("Go ");

SR 2.6 What output is produced by the following statement? What is pro-
duced if the inner parentheses are removed?

 System.out.println ("It is good to be " + (5 + 5));

SR 2.7 What is an escape sequence? Give some examples.

SR 2.8 Write a single println statement that will output the following exactly
as shown (including line breaks and quotation marks).

 “I made this letter longer than usual because I lack the time to
make it short.”
 Blaise Pascal

2.2 Variables and Assignment

 Most of the information we manage in a program is represented by variables.
Let’s examine how we declare and use them in a program.

 Variables
 A variable is a name for a location in memory used to hold a data
value. A variable declaration instructs the compiler to reserve a por-
tion of main memory space large enough to hold a particular type
of value and indicates the name by which we refer to that location.

 Consider the program PianoKeys , shown in Listing 2.5 . The first
line of the main method is the declaration of a variable named keys
that holds an integer (int) value. The declaration also gives keys an initial value
of 88. If an initial value is not specified for a variable, the value is undefined. Most
Java compilers give errors or warnings if you attempt to use a variable before
you’ve explicitly given it a value.

 The keys variable, with its value, could be pictured as follows:

keys 88

 KEY CONCEPT
 A variable is a name for a memory
location used to hold a value of a
particular data type.

66 CHAPTER 2 Data and Expressions

Local Variable Declaration

Variable Declarator

A variable declaration consists of a Type followed by a list of vari-
ables. Each variable can be initialized in the declaration to the value of
the specified Expression. If the final modifier precedes the declaration,
the identifiers are declared as named constants whose values cannot
be changed once set.

Examples:

int total;
double num1, num2 = 4.356, num3;
char letter = 'A', digit = '7';
final int MAX = 45;

Type Variable Declarator

,

;

final

Identifier

= Expression

Array Initializer

//**
// PianoKeys.java Author: Lewis/Loftus
//
// Demonstrates the declaration, initialization, and use of an
// integer variable.
//**

public class PianoKeys
{
 //---
 // Prints the number of keys on a piano.
 //---
 public static void main (String[] args)

L I S T I N G 2 . 5

 2.2 Variables and Assignment 67

In the PianoKeys program, two pieces of information are used in the call
to the println method. The first is a string, and the second is the variable
keys. When a variable is referenced, the value currently stored in it is used.
Therefore, when the call to println is executed, the value of keys, which is
88, is obtained. Because that value is an integer, it is automatically converted
to a string and concatenated with the initial string. The concatenated string is
passed to println and printed.

A variable declaration can have multiple variables of the same type declared on
one line. Each variable on the line can be declared with or without an initializing
value. For example:

int count, minimum = 0, result;

The Assignment Statement
Let’s examine a program that changes the value of a variable. Listing 2.6 shows
a program called Geometry. This program first declares an integer variable called
sides and initializes it to 7. It then prints out the current value of sides.

The next line in main changes the value stored in the variable sides:

sides = 10;

This is called an assignment statement because it assigns a value to a variable.
When executed, the expression on the right-hand side of the assignment opera-
tor (=) is evaluated, and the result is stored in the memory location indicated
by the variable on the left-hand side. In this example, the expression is simply
a number, 10. We discuss expressions that are more involved than this in the
next section.

 {
 int keys = 88;
 System.out.println ("A piano has " + keys + " keys.");
 }
}

O U T P U T

A piano has 88 keys.

L I S T I N G 2 . 5 continued

68 CHAPTER 2 Data and Expressions

 A variable can store only one value of its declared type. A new
value overwrites the old one. In this case, when the value 10 is
assigned to sides , the original value 7 is overwritten and lost for-
ever, as follows:

//**
// Geometry.java Author: Lewis/Loftus
//
// Demonstrates the use of an assignment statement to change the
// value stored in a variable.
//**

 public class Geometry
 {
 //---
 // Prints the number of sides of several geometric shapes.
 //---
 public static void main (String[] args)
 {
 int sides = 7; // declaration with initialization
 System.out.println ("A heptagon has " + sides + " sides.");

 sides = 10; // assignment statement
 System.out.println ("A decagon has " + sides + " sides.");

 sides = 12;
 System.out.println ("A dodecagon has " + sides + " sides.");
 }
 }

 O U T P U T

A heptagon has 7 sides.
A decagon has 10 sides.
A dodecagon has 12 sides.

 L I S T I N G 2 . 6

sidesAfter initialization: 7

After first assignment: 10sides

 KEY CONCEPT
 Accessing data leaves it intact in
memory, but an assignment state-
ment overwrites the old data.

2.2 Variables and Assignment 69

 When a reference is made to a variable, such as when it is printed, the value
of the variable is not changed. This is the nature of computer memory: Accessing
(reading) data leaves the values in memory intact, but writing data replaces the
old data with the new.

 The Java language is strongly typed, meaning that we are not
allowed to assign a value to a variable that is inconsistent with its
declared type. Trying to combine incompatible types will generate
an error when you attempt to compile the program. Therefore, the
expression on the right-hand side of an assignment statement must
evaluate to a value compatible with the type of the variable on the left-hand side.

 Constants
 Sometimes we use data that is constant throughout a program. For instance, we
might write a program that deals with a theater that can hold no more than 427
people. It is often helpful to give a constant value a name, such as MAX_OCCUPANCY ,
instead of using a literal value, such as 427, throughout the code. The purpose
and meaning of literal values such as 427 is often confusing to someone reading
the code. By giving the value a name, you help explain its role in the program.

 Constants are identifiers and are similar to variables except that
they hold a particular value for the duration of their existence.
Constants are, to use the English meaning of the words, not variable.
Their value doesn’t change.

 In Java, if you precede a declaration with the reserved word final , the identi-
fier is made a constant. By convention, uppercase letters are used when naming
constants to distinguish them from regular variables, and individual words are

 Basic Assignment

 The basic assignment statement uses the assignment operator (=) to
store the result of the Expression into the specified Identifier, usually
a variable.

 Examples:

total = 57;
count = count + 1;
value = (min / 2) * lastValue;

ExpressionIdentifier = ;

 KEY CONCEPT
 We cannot assign a value of one type
to a variable of an incompatible type.

 KEY CONCEPT
 Constants hold a particular value for
the duration of their existence.

70 CHAPTER 2 Data and Expressions

separated using the underscore character. For example, the constant describing
the maximum occupancy of a theater could be declared as follows:

final int MAX_OCCUPANCY = 427;

The compiler will produce an error message if you attempt to change the value
of a constant once it has been given its initial value. This is another good reason
to use constants. Constants prevent inadvertent coding errors because the only
valid place to change their value is in the initial assignment.

There is a third good reason to use constants. If a constant is used throughout
a program and its value needs to be modified, then you have to change it in only
one place. For example, if the capacity of the theater changes (because of a reno-
vation) from 427 to 535, then you have to change only one declaration, and all
uses of MAX_OCCUPANCY automatically reflect the change. If the literal 427 had been
used throughout the code, each use would have to be found and changed. If you
were to miss any uses of the literal value, problems would surely arise.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 2.9 What is a variable declaration?

SR 2.10 Given the following variable declarations, answer each question.

int count = 0, value, total;
final int MAX_VALUE = 100;
int myValue = 50;

a. How many variables are declared?
b. What is the type of these declared variables?
c. Which of the variables are given an initial value?
d. Based on the above declarations, is the following assignment state-

ment legal? Explain.

myValue = 100;

e. Based on the above declarations is the following assignment state-
ment legal? Explain.

MAX_VALUE = 50;

SR 2.11 Your program needs a variable of type int to hold the number of CDs
in a music collection. The initial value should be zero. Write a declara-
tion statement for the variable.

SR 2.12 Your program needs a variable of type int to hold the number of feet
in a mile (5,280). Write a declaration statement for the variable.

SR 2.13 Briefly describe three reasons for using a constant in a program instead
of a literal value.

2.3 Primitive Data Types 71

2.3 Primitive Data Types

 There are eight primitive data types in Java: four subsets of integers, two sub-
sets of floating point numbers, a character data type, and a boolean data type.
Everything else is represented using objects. Let’s examine these eight primitive
data types in some detail.

 Integers and Floating Points
 Java has two basic kinds of numeric values: integers, which have no fractional
part, and floating points, which do. There are four integer data types (byte ,
short , int , and long) and two floating point data types (float and double). All
of the numeric types differ by the amount of memory space used
to store a value of that type, which determines the range of values
that can be represented. The size of each data type is the same for
all hardware platforms. All numeric types are signed, meaning that
both positive and negative values can be stored in them. Figure 2.2
summarizes the numeric primitive types.

 Recall from our discussion in Chapter 1 that a bit can be either a 1 or a 0.
Because each bit can represent two different states, a string of N bits can be used
to represent 2 N different values. Appendix B describes number systems and these
kinds of relationships in more detail.

 When designing programs, we sometimes need to be careful about picking
variables of appropriate size so that memory space is not wasted. This occurs in
situations where memory space is particularly restricted, such as a program that
runs on a personal data assistant (PDA). In such cases, we can choose a variable’s
data type accordingly. For example, if the value of a particular variable will not

byte

short

int

long

float

double

8 bits

16 bits

32 bits

64 bits

32 bits

64 bits

–128

–32,768

–2,147,483,648

–9,223,372,036,854,775,808

Approximately –3.4E+38
with 7 significant digits

Approximately –1.7E+308
with 15 significant digits

127

32,767

2,147,483,647

9,223,372,036,854,775,807

Approximately 3.4E+38
with 7 significant digits

Approximately 1.7E+308
with 15 significant digits

Type Storage Min Value Max Value

 FIGURE 2.2 The Java numeric primitive types

 KEY CONCEPT
 Java has two kinds of numeric
values: integer and floating point.
There are four integer data types and
two floating point data types.

72 CHAPTER 2 Data and Expressions

vary outside of a range of 1 to 1000, then a two-byte integer (short) is large
enough to accommodate it. On the other hand, when it’s not clear what the range
of a particular variable will be, we should provide a reasonable, even generous,
amount of space. In most situations memory space is not a serious restriction, and
we can usually afford generous assumptions.

Note that even though a float value supports very large (and very small) num-
bers, it has only seven significant digits. Therefore, if it is important to accurately
maintain a value such as 50341.2077, we need to use a double.

As we’ve already discussed, a literal is an explicit data value used in a pro-
gram. The various numbers used in programs such as Facts and Addition and
PianoKeys are all integer literals. Java assumes all integer literals are of type int,
unless an L or l is appended to the end of the value to indicate that it should be
considered a literal of type long, such as 45L.

Likewise, Java assumes that all floating point literals are of type double. If we
need to treat a floating point literal as a float, we append an F or f to the end
of the value, as in 2.718F or 123.45f. Numeric literals of type double can be fol-
lowed by a D or d if desired.

Decimal Integer Literal

An integer literal is composed of a series of digits followed by
an optional suffix to indicate that it should be considered a integer.
Negation of a literal is considered a separate operation.

Examples:

5
2594

4920328L

0

1 - 9 0 - 9 L

l

The following are examples of numeric variable declarations in Java:

int answer = 42;
byte smallNumber1, smallNumber2;
long countedStars = 86827263927L;
float ratio = 0.2363F;
double delta = 453.523311903;

2.3 Primitive Data Types 73

 Characters
 Characters are another fundamental type of data used and managed on a com-
puter. Individual characters can be treated as separate data items, and, as we’ve
seen in several examples, they can be combined to form character strings.

 A character literal is expressed in a Java program with single quotes, such as
'b' or 'J' or ';' . You will recall that string literals are delineated using double
quotation marks, and that the String type is not a primitive data type in Java; it
is a class name. We discuss the String class in detail in the next chapter.

 Note the difference between a digit as a character (or part of a string) and a
digit as a number (or part of a larger number). The number 602 is a numeric value
that can be used in an arithmetic calculation. But in the string "602 Greenbriar
Court" the 6 , 0 , and 2 are characters, just like the rest of the characters that make
up the string.

 The characters we can manage are defined by a character set , which is simply
a list of characters in a particular order. Each programming language supports a
particular character set that defines the valid values for a character variable in that
language. Several character sets have been proposed, but only a few have been
used regularly over the years. The ASCII character set is a popular choice. ASCII
stands for the American Standard Code for Information Interchange. The basic
ASCII set uses seven bits per character, providing room to support 128 different
characters, including:

 ■ uppercase letters, such as 'A' , 'B' , and 'C'

 ■ lowercase letters, such as 'a', 'b', and 'c'

 ■ punctuation, such as the period ('.'), semicolon (';'), and comma (',')

■ the digits '0' through '9'

■ the space character, ' '

■ special symbols, such as the ampersand ('&'), vertical bar ('|'), and back-
slash ('\')

■ control characters, such as the carriage return, null, and end-of-text marks

 The control characters are sometimes called nonprinting or invisible characters
because they do not have a specific symbol that represents them. Yet they are as
valid as any other character and can be stored and used in the same ways. Many
control characters have special meaning to certain software applications.

 As computing became a worldwide endeavor, users demanded a more flexible
character set containing other language alphabets. ASCII was extended
to use eight bits per character, and the number of characters in the set
doubled to 256. The extended ASCII contains many accented and
diacritical characters used in languages other than English.

 KEY CONCEPT
 Java uses the 16-bit Unicode charac-
ter set to represent character data.

74 CHAPTER 2 Data and Expressions

However, even with 256 characters, the ASCII character set cannot represent
the world’s alphabets, especially given the various Asian alphabets and their
many thousands of ideograms. Therefore, the developers of the Java program-
ming language chose the Unicode character set, which uses 16 bits per character,
supporting 65,536 unique characters (and techniques that allow even more char-
acters to be represented using multiple bytes). The characters and symbols from
many languages are included in the Unicode definition. ASCII is a subset of the
Unicode character set, comprising the first 256 characters. Appendix C discusses
the Unicode character set in more detail.

A character set assigns a particular number to each character, so by definition
the characters are in a particular order. This is referred to as lexicographic order.
In the ASCII and Unicode ordering, the digit characters '0' through '9' are
continuous (no other characters intervene) and in order. Similarly, the lowercase
alphabetic characters 'a' through 'z' are continuous and in order, as are the
uppercase alphabetic characters 'A' through 'Z'. These characteristics make it
relatively easy to keep things in alphabetical order.

In Java, the data type char represents a single character. The following are
some examples of character variable declarations in Java:

char topGrade = 'A';
char symbol1, symbol2, symbol3;
char terminator = ';', separator = ' ';

Booleans
A boolean value, defined in Java using the reserved word boolean, has only
two valid values: true and false. A boolean variable is usually used to indicate
whether a particular condition is true, but it can also be used to represent any
situation that has two states, such as a light bulb being on or off.

A boolean value cannot be converted to any other data type, nor can any other
data type be converted to a boolean value. The words true and false are reserved
in Java as boolean literals and cannot be used outside of this context.

The following are some examples of boolean variable declarations in Java:

boolean flag = true;
boolean tooHigh, tooSmall, tooRough;
boolean done = false;

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 2.14 What is primitive data? How are primitive data types different from
objects?

2.4 Expressions 75

SR 2.15 How many values can be stored in an integer variable?

SR 2.16 What are the four integer data types in Java? How are they different?

SR 2.17 What type does Java automatically assign to an integer literal? How
can you indicate that an integer literal should be considered a different
type?

SR 2.18 What type does Java automatically assign to a floating point literal?
How can you indicate that a floating point literal should be considered
a different type?

SR 2.19 What is a character set?

SR 2.20 How many characters are supported by the ASCII character set, the
extended ASCII character set, and the Unicode character set?

2.4 Expressions

 An expression is a combination of one or more operators and oper-
ands that usually perform a calculation. The value calculated does
not have to be a number, but it often is. The operands used in the
operations might be literals, constants, variables, or other sources
of data. The manner in which expressions are evaluated and used is
fundamental to programming. For now we will focus on arithmetic
expressions that use numeric operands and produce numeric results.

 Arithmetic Operators
 The usual arithmetic operations are defined for both integer and floating point
numeric types, including addition (+), subtraction (–), multiplication (*), and divi-
sion (/). Java also has another arithmetic operation: The remainder operator (%)
returns the remainder after dividing the second operand into the first. The remain-
der operator is sometimes called the modulus operator. The sign of the result of a
remainder operation is the sign of the numerator. Therefore:

Operation Result

1

-2

0

3

% 4

% 3

% -5

% 8

17

-20

10

3

 KEY CONCEPT
 Expressions are combinations of
operators and operands used to
perform a calculation.

76 CHAPTER 2 Data and Expressions

 As you might expect, if either or both operands to any numeric operator
are floating point values, the result is a floating point value. However, the
division operator produces results that are less intuitive, depending on the
types of the operands. If both operands are integers, the / operator performs
integer division , meaning that any fractional part of the result is discarded.
If one or the other or both operands are floating point values, the / operator
performs floating point division , and the fractional part of the result is kept.
For example, the result of 10/4 is 2, but the results of 10.0/4 and 10/4.0 and
 10.0/4.0 are all 2.5.

 A unary operator has only one operand, while a binary operator has two. The
 + and - arithmetic operators can be either unary or binary. The binary versions
accomplish addition and subtraction, and the unary versions represent positive
and negative numbers. For example, -1 is an example of using the unary negation
operator to make the value negative. The unary + operator is rarely used.

 Java does not have a built-in operator for raising a value to an exponent.
However, the Math class provides methods that perform exponentiation and many
other mathematical functions. The Math class is discussed in Chapter 3 .

 Operator Precedence
 Operators can be combined to create more complex expressions. For example,
consider the following assignment statement:

 result = 14 + 8 / 2;

 The entire right-hand side of the assignment is evaluated, and then
the result is stored in the variable. But what is the result? If the addi-
tion is performed first, the result is 11 ; if the division operation is
performed first, the result is 18. The order of operator evaluation
makes a big difference. In this case, the division is performed before
the addition, yielding a result of 18 .

 Note that in this and subsequent examples, we use literal values rather than
variables to simplify the expression. The order of operator evaluation is the same
if the operands are variables or any other source of data.

 All expressions are evaluated according to an operator precedence hierarchy
that establishes the rules that govern the order in which operations are evaluated.
The arithmetic operators generally follow the same rules you learned in algebra.
Multiplication, division, and the remainder operator all have equal precedence
and are performed before (have higher precedence than) addition and subtraction.
Addition and subtraction have equal precedence.

 Review of primitive data
and expressions.

VideoNote

 KEY CONCEPT
 Java follows a well-defined set of
precedence rules that governs the
order in which operators will be
evaluated in an expression.

 2.4 Expressions 77

Any arithmetic operators at the same level of precedence are performed left to
right. Therefore we say the arithmetic operators have a left-to-right association.

Precedence, however, can be forced in an expression by using parentheses. For
instance, if we really wanted the addition to be performed first in the previous
example, we could write the expression as follows:

result = (14 + 8) / 2;

Any expression in parentheses is evaluated first. In complicated expressions, it
is good practice to use parentheses, even when it is not strictly necessary, to make
it clear how the expression is evaluated.

Parentheses can be nested, and the innermost nested expressions are evaluated
first. Consider the following expression:

result = 3 * ((18 – 4) / 2);

In this example, the result is 21. First, the subtraction is performed, forced by
the inner parentheses. Then, even though multiplication and division are at the
same level of precedence and usually would be evaluated left to right, the division
is performed first because of the outer parentheses. Finally, the multiplication is
performed.

After the arithmetic operations are complete, the computed result is stored
in the variable on the left-hand side of the assignment operator (=). In other
words, the assignment operator has a lower precedence than any of the arith-
metic operators.

The evaluation of a particular expression can be shown using an expression
tree, such as the one in Figure 2.3. The operators are executed from the bottom
up, creating values that are used in the rest of the expression. Therefore, the
operations lower in the tree have a higher precedence than those above, or they
are forced to be executed earlier using parentheses.

Evaluating
a + (b – c) / d

+

/a

d–

cb

FIGURE 2.3 An expression tree

78 CHAPTER 2 Data and Expressions

The parentheses used in expressions are actually operators themselves. Parentheses
have a higher precedence than almost any other operator. Figure 2.4 shows a prece-
dence table with the relationships between the arithmetic operators, parentheses, and
the assignment operator. Appendix D includes a full precedence table showing all
Java operators.

For an expression to be syntactically correct, the number of left parentheses
must match the number of right parentheses and they must be properly nested.
The following examples are not valid expressions:

result = ((19 + 8) % 3) – 4); // not valid
result = (19 (+ 8 %) 3 – 4); // not valid

Keep in mind that when a variable is referenced in an expression, its current
value is used to perform the calculation. In the following assignment statement,
the current value of the variable count is added to the current value of the variable
total, and the result is stored in the variable sum:

sum = count + total;

The original value contained in sum before this assignment is overwritten by the
calculated value. The values stored in count and total are not changed.

The same variable can appear on both the left-hand side and the right-hand
side of an assignment statement. Suppose the current value of a variable called
count is 15 when the following assignment statement is executed:

count = count + 1;

1

2

3

4

+

–

*
/

%

+

–

+

=

unary plus

unary minus

multiplication

division

remainder

addition

subtraction

string concatenation

assignment

R to L

L to R

L to R

R to L

Precedence
Level Operator Operation Associates

FIGURE 2.4 Precedence among some of the Java operators

 2.4 Expressions 79

Because the right-hand expression is evaluated first, the original value of count is
obtained and the value 1 is added to it, producing the result 16. That result is then
stored in the variable count, overwriting the original value of 15 with the new value of
16. Therefore, this assignment statement increments, or adds 1 to, the variable count.

Let’s look at another example of expression processing. The program in Listing 2.7,
called TempConverter, converts a particular Celsius temperature value to its equiva-
lent Fahrenheit value using an expression that computes the following formula:

Fahrenheit = Celsius + 329
5

//**
// TempConverter.java Author: Lewis/Loftus
//
// Demonstrates the use of primitive data types and arithmetic
// expressions.
//**

public class TempConverter
{
 //---
 // Computes the Fahrenheit equivalent of a specific Celsius
 // value using the formula F = (9/5)C + 32.
 //---
 public static void main (String[] args)
 {
 final int BASE = 32;
 final double CONVERSION_FACTOR = 9.0 / 5.0;

 double fahrenheitTemp;
 int celsiusTemp = 24; // value to convert

 fahrenheitTemp = celsiusTemp * CONVERSION_FACTOR + BASE;

 System.out.println ("Celsius Temperature: " + celsiusTemp);
 System.out.println ("Fahrenheit Equivalent: " + fahrenheitTemp);
 }
}

O U T P U T

Celsius Temperature: 24
Fahrenheit Equivalent: 75.2

L I S T I N G 2 . 7

80 CHAPTER 2 Data and Expressions

Note that in the temperature conversion program, the operands to the division
operation are floating point literals to ensure that the fractional part of the num-
ber is kept. The precedence rules dictate that the multiplication happens before
the addition in the final conversion computation.

The TempConverter program is not very useful because it converts only one
data value that we included in the program as a constant (24 degrees Celsius).
Every time the program is run it produces the same result. A far more useful ver-
sion of the program would obtain the value to be converted from the user each
time the program is executed. Interactive programs that read user input are dis-
cussed later in this chapter.

Increment and Decrement Operators
There are two other useful arithmetic operators. The increment operator (++)
adds 1 to any integer or floating point value. The two plus signs that make up
the operator cannot be separated by white space. The decrement operator (--) is
similar except that it subtracts 1 from the value. They are both unary operators
because they operate on only one operand. The following statement causes the
value of count to be incremented:

count++;

The result is stored back into the variable count. Therefore it is functionally
equivalent to the following statement, which we discussed in the previous section:

count = count + 1;

The increment and decrement operators can be applied after the variable
(such as count++ or count--), creating what is called the postfix form of the
operator. They can also be applied before the variable (such as ++count or
--count), in what is called the prefix form. When used alone in a statement,
the prefix and postfix forms are functionally equivalent. That is, it doesn’t
matter if you write

count++;

or

++count;

However, when such a form is written as a statement by itself, it is usually written
in its postfix form.

When the increment or decrement operator is used in a larger expression, it can
yield different results depending on the form used. For example, if the variable

 2.4 Expressions 81

count currently contains the value 15, the following statement assigns the value
15 to total and the value 16 to count:

total = count++;

However, the following statement assigns the value 16 to both total and count:

total = ++count;

The value of count is incremented in both situations, but the value used in the
larger expression depends on whether a prefix or postfix form of the increment
operator is used.

Because of the subtle differences between the prefix and postfix forms of the
increment and decrement operators, they should be used with care. As always,
favor the side of readability.

Assignment Operators
As a convenience, several assignment operators have been defined in Java that
combine a basic operation with assignment. For example, the += operator can be
used as follows:

total += 5;

This performs the same operation as the following statement:

total = total + 5;

The right-hand side of the assignment operator can be a full expression. The
expression on the right-hand side of the operator is evaluated, then that result is
added to the current value of the variable on the left-hand side, and that value is
stored in the variable. Therefore, the following statement:

total += (sum - 12) / count;

is equivalent to:

total = total + ((sum - 12) / count);

Many similar assignment operators are defined in Java, including those that
perform subtraction (-=), multiplication (*=), division (/=), and remainder (%=).
The entire set of Java operators is discussed in Appendix D.

All of the assignment operators evaluate the entire expression on the right-
hand side first, then use the result as the right operand of the other operation.
Therefore, the following statement:

result *= count1 + count2;

82 CHAPTER 2 Data and Expressions

is equivalent to:

result = result * (count1 + count2);

Likewise, the following statement:

result %= (highest - 40) / 2;

is equivalent to:

result = result % ((highest - 40) / 2);

Some assignment operators perform particular functions depending on the
types of the operands, just as their corresponding regular operators do. For exam-
ple, if the operands to the += operator are strings, then the assignment operator
performs string concatenation.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 2.21 What is the result of 19%5 when evaluated in a Java expression?
Explain.

SR 2.22 What is the result of 13/4 when evaluated in a Java expression?
Explain.

SR 2.23 If an integer variable diameter currently holds the value 5, what is its
value after the following statement is executed? Explain.

diameter = diameter * 4;

SR 2.24 What is operator precedence?

SR 2.25 What is the value of each of the following expressions?

a. 15 + 7 * 3
b. (15 + 7) * 3
c. 3 * 6 + 10 / 5 + 5
d. 27 % 5 + 7 % 3
e. 100 / 2 / 2 / 2
f. 100 / (2 / 2) / 2

SR 2.26 For each of the following expressions state whether they are valid or
invalid. If invalid, explain why.

a. result = (5 + 2);
b. result = (5 + 2 * (15 - 3);
c. result = (5 + 2 (;
d. result = (5 + 2 (4));

 2.5 Data Conversion 83

SR 2.27 What value is contained in the integer variable result after the
following sequence of statements is executed?

result = 27;
result = result + 3;
result = result / 7;
result = result * 2;

SR 2.28 What value is contained in the integer variable result after the
following sequence of statements is executed?

int base;
int result;
base = 5;
result = base + 3;
base = 7;

SR 2.29 What is an assignment operator?

SR 2.30 If an integer variable weight currently holds the value 100, what is its
value after the following statement is executed? Explain.

weight -= 17;

2.5 Data Conversion

Because Java is a strongly typed language, each data value is associated with a
particular type. It is sometimes helpful or necessary to convert a data value of
one type to another type, but we must be careful that we don’t lose important
information in the process. For example, suppose a short variable that holds the
number 1000 is converted to a byte value. Because a byte does not have enough
bits to represent the value 1000, some bits would be lost in the conversion, and
the number represented in the byte would not keep its original value.

A conversion between one primitive type and another falls into one of two
categories: widening conversions and narrowing conversions. Widening conver-
sions are the safest because they usually do not lose information. They are called
widening conversions because they go from one data type to another type that
uses an equal or greater amount of space to store the value. Figure 2.5 lists the
Java widening conversions.

For example, it is safe to convert from a byte to a short because a byte is stored
in 8 bits and a short is stored in 16 bits. There is no loss of information. All widening
conversions that go from an integer type to another integer type, or from a floating
point type to another floating point type, preserve the numeric value exactly.

84 CHAPTER 2 Data and Expressions

 Although widening conversions do not lose any information
about the magnitude of a value, the widening conversions that result
in a floating point value can lose precision. When converting from
an int or a long to a float , or from a long to a double , some of the
least significant digits may be lost. In this case, the resulting floating

point value will be a rounded version of the integer value, following the rounding
techniques defined in the IEEE 754 floating point standard.

Narrowing conversions are more likely to lose information than widening con-
versions are. They often go from one type to a type that uses less space to store
a value, and therefore some of the information may be compromised. Narrowing
conversions can lose both numeric magnitude and precision. Therefore, in gen-
eral, they should be avoided. Figure 2.6 lists the Java narrowing conversions.

 An exception to the space-shrinking situation in narrowing conversions is when
we convert a byte (8 bits) or short (16 bits) to a char (16 bits). These are still

byte

short

char

int

long

float

short, int, long, float, or double

int, long, float, or double

int, long, float, or double

long, float, or double

float or double

double

From To

 FIGURE 2.5 Java widening conversions

byte

short

char

int

long

char

byte or char

byte or short

byte, short, or char

byte, short, char, or int

float byte, short, char, int, or long

double byte, short, char, int, long, or float

From To

FIGURE 2.6 Java narrowing conversions

 KEY CONCEPT
 Narrowing conversions should be
avoided because they can lose
information.

 2.5 Data Conversion 85

considered narrowing conversions, because the sign bit is incorporated into the
new character value. Since a character value is unsigned, a negative integer will
be converted into a character that has no particular relationship to the numeric
value of the original integer.

Note that boolean values are not mentioned in either widening or narrowing
conversions. A boolean value cannot be converted to any other primitive type
and vice versa.

Conversion Techniques
In Java, conversions can occur in three ways:

■ assignment conversion

■ promotion

■ casting

Assignment conversion occurs when a value of one type is assigned to a vari-
able of another type during which the value is converted to the new type. Only
widening conversions can be accomplished through assignment. For example,
if money is a float variable and dollars is an int variable, then the following
assignment statement automatically converts the value in dollars to a float:

money = dollars;

Therefore, if dollars contains the value 25, after the assignment, money con-
tains the value 25.0. However, if we attempt to assign money to dollars, the
compiler will issue an error message alerting us to the fact that we are attempting
a narrowing conversion that could lose information. If we really want to do this
assignment, we have to make the conversion explicit by using a cast.

Conversion via promotion occurs automatically when certain operators need
to modify their operands in order to perform the operation. For example, when
a floating point value called sum is divided by an integer value called count, the
value of count is promoted to a floating point value automatically, before the
division takes place, producing a floating point result:

result = sum / count;

A similar conversion is taking place when a number is concatenated with a
string. The number is first converted (promoted) to a string, then the two strings
are concatenated.

Casting is the most general form of conversion in Java. If a conversion can be
accomplished at all in a Java program, it can be accomplished using a cast. A cast
is a Java operator that is specified by a type name in parentheses. It is placed in

86 CHAPTER 2 Data and Expressions

front of the value to be converted. For example, to convert money to an integer
value, we could put a cast in front of it:

dollars = (int) money;

The cast returns the value in money, truncating any fractional part. If money
contained the value 84.69, then after the assignment, dollars would contain
the value 84. Note, however, that the cast does not change the value in money.
After the assignment operation is complete, money still contains the value
84.69.

Casts are helpful in many situations where we need to treat a value tem-
porarily as another type. For example, if we want to divide the integer value
total by the integer value count and get a floating point result, we could do
it as follows:

result = (float) total / count;

First, the cast operator returns a floating point version of the value in total.
This operation does not change the value in total. Then, count is treated as a
floating point value via arithmetic promotion. Now the division operator will per-
form floating point division and produce the intended result. If the cast had not
been included, the operation would have performed integer division and truncated
the answer before assigning it to result. Also note that because the cast operator
has a higher precedence than the division operator, the cast operates on the value
of total, not on the result of the division.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 2.31 Why are widening conversions safer than narrowing conversions?

SR 2.32 Identify each of the following conversions as either a widening conver-
sion or a narrowing conversion.

a. int to long
b. int to byte
c. byte to short
d. byte to char
e. short to double

SR 2.33 Assuming result is a float variable and value is an int variable,
what type of variable will value be after the following assignment
statement is executed? Explain.

result = value;

2.6 Interactive Programs 87

SR 2.34 Assuming result is a float variable that contains the value 27.32 and
value is an int variable that contains the value 15, what are the val-
ues of each of the variables after the following assignment statement is
executed? Explain.

value = (int) result;

SR 2.35 Given the following declarations, what result is stored by each of the
following assignment statements.

int iResult, num1 = 17, num2 = 5;
double fResult, val1 = 12.0, val2 = 2.34;

 a. iResult = num1 / num2;
 b. fResult = num1 / num2;
 c. fResult = val1 / num2;
 d. fResult = (double) num1 / num2;
 e. iResult = (int) val1 / num2;

 2.6 Interactive Programs

 It is often useful to design a program to read data from the user interactively dur-
ing execution. That way, new results can be computed each time the program is
run, depending on the data that is entered.

 The Scanner Class
 The Scanner class, which is part of the standard Java class library,
provides convenient methods for reading input values of various
types. The input could come from various sources, including data
typed interactively by the user or data stored in a file. The Scanner
class can also be used to parse a character string into separate pieces.
 Figure 2.7 lists some of the methods provided by the Scanner class.

 We must first create a Scanner object in order to invoke its methods. Objects
in Java are created using the new operator. The following declaration creates a
 Scanner object that reads input from the keyboard:

 Scanner scan = new Scanner (System.in);

 This declaration creates a variable called scan that represents a Scanner object.
The object itself is created by the new operator and a call to a special method

 KEY CONCEPT
 The Scanner class provides methods
for reading input of various types
from various sources.

88 CHAPTER 2 Data and Expressions

Scanner (InputStream source)
Scanner (File source)
Scanner (String source)
 Constructors: sets up the new scanner to scan values from the specified source.

String next()
 Returns the next input token as a character string.

String nextLine()
 Returns all input remaining on the current line as a character string.

boolean nextBoolean()

byte nextByte()
double nextDouble()
float nextFloat()
int nextInt()
long nextLong()

short nextShort()

 Returns the next input token as the indicated type. Throws

 InputMismatchException if the next token is inconsistent with the type.

boolean hasNext()
 Returns true if the scanner has another token in its input.

Scanner useDelimiter (String pattern)

Scanner useDelimiter (Pattern pattern)

 Sets the scanner's delimiting pattern.

Pattern delimiter()

 Returns the pattern the scanner is currently using to match delimiters.

String findInLine (String pattern)

String findInLine (Pattern pattern)

 Attempts to find the next occurrence of the specified pattern, ignoring delimiters.

FIGURE 2.7 Some methods of the Scanner class

 2.6 Interactive Programs 89

called a constructor to set up the object. The Scanner constructor accepts a
parameter that indicates the source of the input. The System.in object represents
the standard input stream, which by default is the keyboard. Creating objects
using the new operator is discussed further in the next chapter.

Unless specified otherwise, a Scanner object assumes that white space charac-
ters (space characters, tabs, and new lines) are used to separate the elements of
the input, called tokens, from each other. These characters are called the input
delimiters. The set of delimiters can be changed if the input tokens are separated
by characters other than white space.

The next method of the Scanner class reads the next input token as a string
and returns it. Therefore, if the input consisted of a series of words separated by
spaces, each call to next would return the next word. The nextLine method reads
all of the input until the end of the line is found, and returns it as one string.

The program Echo, shown in Listing 2.8, simply reads a line of text typed by the
user, stores it in a variable that holds a character string, then echoes it back to the screen.

The import statement above the definition of the Echo class tells the program
that we will be using the Scanner class in this program. The Scanner class is
part of the java.util class library. The use of the import statement is discussed
further in Chapter 3.

Various Scanner methods such as nextInt and nextDouble are provided to
read data of particular types. The GasMileage program, shown in Listing 2.9,
reads the number of miles traveled as an integer, and the number of gallons of
fuel consumed as a double, then computes the gas mileage.

//**
// Echo.java Author: Lewis/Loftus
//
// Demonstrates the use of the nextLine method of the Scanner class
// to read a string from the user.
//**

import java.util.Scanner;

public class Echo
{
 //---
 // Reads a character string from the user and prints it.
 //---
 public static void main (String[] args)

L I S T I N G 2 . 8

90 CHAPTER 2 Data and Expressions

As you can see by the output of the GasMileage program, the calculation pro-
duces a floating point result that is accurate to several decimal places. In the next
chapter we discuss classes that help us format our output in various ways, includ-
ing rounding a floating point value to a particular number of decimal places.

 {
 String message;
 Scanner scan = new Scanner (System.in);

 System.out.println ("Enter a line of text:");

 message = scan.nextLine();

 System.out.println ("You entered: \"" + message + "\"");
 }
}

O U T P U T

Enter a line of text:
Set your laser printer on stun!
You entered: "Set your laser printer on stun!"

L I S T I N G 2 . 8 continued

//**
// GasMileage.java Author: Lewis/Loftus
//
// Demonstrates the use of the Scanner class to read numeric data.
//**

import java.util.Scanner;

public class GasMileage
{
 //---
 // Calculates fuel efficiency based on values entered by the
 // user.
 //---
 public static void main (String[] args)

L I S T I N G 2 . 9

 2.6 Interactive Programs 91

A Scanner object processes the input one token at a time, based on the meth-
ods used to read the data and the delimiters used to separate the input values.
Therefore, multiple values can be put on the same line of input or can be sepa-
rated over multiple lines, as appropriate for the situation.

In Chapter 5 we use the Scanner class to read input from a data file and
modify the delimiters it uses to parse the data. Appendix H explores how to use
the Scanner class to analyze its input using patterns called regular expressions.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 2.36 Identify which line of the GasMileage program does each of the following.

a. Tells the program that we will be using the Scanner class.
b. Creates a Scanner object.
c. Sets up the Scanner object scan to read from the standard input

stream.
d. Reads an integer from the standard input stream.

 {
 int miles;
 double gallons, mpg;

 Scanner scan = new Scanner (System.in);

 System.out.print ("Enter the number of miles: ");
 miles = scan.nextInt();

 System.out.print ("Enter the gallons of fuel used: ");
 gallons = scan.nextDouble();

 mpg = miles / gallons;

 System.out.println ("Miles Per Gallon: " + mpg);
 }
}

O U T P U T

Enter the number of miles: 328
Enter the gallons of fuel used: 11.2
Miles Per Gallon: 29.28571428571429

L I S T I N G 2 . 9 continued

Example using the
Scanner class.

VideoNote

92 CHAPTER 2 Data and Expressions

SR 2.37 Assume you already have instantiated a Scanner object named
myScanner and an int variable named value as follows in your
program:

 Scanner myScanner = new Scanner (System.in);
 int value = 0;

 Write program statements that will ask the user to enter their age, and
store their response in value .

 2.7 Graphics

 Graphics play a crucial role in computer systems. Throughout this book we explore
various aspects of graphics and discuss how they are accomplished. In fact, the last
one or two sections of each chapter are devoted to graphics topics. We refer to this as
the Graphics Track through the book. These sections can be skipped without losing

continuity through the rest of the text, incorporated into the
regular flow of the chapters, or explored as a group.

 A picture, like all other information stored on a computer,
must be digitized by breaking the information into pieces
and representing those pieces as numbers. In the case of pic-
tures, we break the picture into pixels (picture elements). A

pixel is a tiny region that represents a very small piece of the picture. The complete
picture is stored by storing the color of each individual pixel.

 A digitized picture can be reproduced when needed by reassembling its pixels.
The more pixels used to represent a picture, the more realistic it looks when it is
reproduced. The number of pixels used to represent a picture is called the picture
resolution . The number of pixels that can be displayed by a monitor is called the
monitor resolution .

 A black and white picture can be stored by representing each pixel using a
single bit. If the bit is 0, that pixel is white; if the bit is 1, it is black. Figure 2.8
shows a black and white picture that has been stored digitally and an enlargement
of a portion of that picture, which shows the individual pixels.

 Coordinate Systems
 When drawn, each pixel of a picture is mapped to a pixel on the monitor screen.
Each computer system and programming language defines a coordinate system so
that we can refer to particular pixels.

 KEY CONCEPT
 Graphical data is represented by
dividing it into many small pieces
called pixels.

 A traditional two-dimensional Cartesian coordinate system has two axes that
meet at the origin. Values on either axis can be negative or positive. The Java
programming language has a relatively simple coordinate system in which all of
the visible coordinates are positive. Figure 2.9 compares a traditional coordinate
system to the Java coordinate system.

 Each point in the Java coordinate system is represented
using an (x, y) pair of values. The top-left corner of any Java
drawing area has coordinates (0, 0). The x -axis coordinates
get larger as you move to the right, and the y -axis coordi-
nates get larger as you move down.

 FIGURE 2.8 A digitized picture with a small portion magnified

Y Axis

X Axis

Y Axis

(0,0)

(0,0)

x

y

X Axis

(x,y)

 FIGURE 2.9 A traditional coordinate system and the Java coordinate system

2.7 Graphics 93

 KEY CONCEPT
 Java’s coordinate system has the
origin in the upper-left corner and all
visible coordinates are positive.

 As we’ve seen in previous examples, a Java program does not have to be graph-
ical in nature. However, if it is, each graphical component in the program has its
own coordinate system, with the origin (0, 0) in the top-left corner. This consis-
tent approach makes it relatively easy to manage various graphical elements.

 Representing Color
 Color pictures are divided into pixels, just as black and white pictures are.
However, because each pixel can be one of many possible colors, it is not suffi-
cient to represent each pixel using only one bit. There are various ways to repre-
sent the color of a pixel. Let’s briefly discuss one popular technique.

 Every color can be represented as a mix of three primary
colors : red, green, and blue. In Java, as in many other com-
puter languages, colors are specified by three numbers that
are collectively referred to as an RGB value. RGB stands for
Red-Green-Blue. Each number represents the contribution
of a primary color. Using one byte (eight bits) to store each

of the three numbers, the numbers can range from 0 to 255. The level of each
primary color determines the overall color. For example, high values of red and green
combined with a low level of blue results in a shade of yellow.

black

blue

cyan

gray

dark gray

light gray

green

magenta

orange

pink

red

white

yellow

Color.black

Color.blue

Color.cyan

Color.gray

Color.darkGray

Color.lightGray

Color.green

Color.magenta

Color.orange

Color.pink

Color.red

Color.white

Color.yellow

0, 0, 0

0, 0, 255

0, 255, 255

128, 128, 128

64, 64, 64

192, 192, 192

0, 255, 0

255, 0, 255

255, 200, 0

255, 175, 175

255, 0, 0

255, 255, 255

255, 255, 0

Color Object RGB Value

 FIGURE 2.10 Predefined colors in the Color class

94 CHAPTER 2 Data and Expressions

 KEY CONCEPT
 Colors are represented in Java using
an RGB value—three values that rep-
resent the contributions of the pri-
mary colors red, green, and blue.

 2.8 Applets

 There are two kinds of Java programs: Java applets and Java
applications. A Java applet is a Java program that is intended
to be embedded into an HTML document, transported
across a network, and executed using a Web browser. A Java
 application is a stand-alone program that can be executed
using a Java interpreter. All programs presented thus far in
this book have been Java applications.

 The Web enables users to send and receive various types of media, such as text,
graphics, and sound, using a point-and-click interface that is extremely convenient
and easy to use. A Java applet was the first kind of executable program that could
be retrieved using Web software. Java applets are considered just another type of
media that can be exchanged across the Web.

 Though Java applets are generally intended to be transported across a network,
they don’t have to be. They can be viewed locally using a Web browser. For that
matter, they don’t even have to be executed through a Web browser at all. A tool
in Sun’s Java Software Development Kit called appletviewer can be used to interpret
and execute an applet. We use appletviewer to display applets in this book. However,

 In Java, a programmer uses the Color class, which is part
of the java.awt package, to define and manage colors. Each
object of the Color class represents a single color. The class
contains several instances of itself to provide a basic set of
predefined colors. Figure 2.10 lists the predefined colors of
the Color class. It also contains methods to define and man-
age many other colors.

 SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 2.38 How can a black and white picture be represented using 1s and 0s?

SR 2.39 Three corners of a rectangle drawn using the Java coordinate system
have coordinates (3, 4), (3, 7), and (8, 7). What are the coordinates of
the fourth corner?

SR 2.40 Two corners of a square drawn using the Java coordinate system have
coordinates (5, 10) and (8, 10). What are the coordinates of the other
two corners?

SR 2.41 How many bits are needed to store a color picture that is 300 pixels wide
and 200 pixels high? Assume color is represented using the RGB technique
described in this chapter and that no special compression technique is used.

 KEY CONCEPT
 The Color class contains several
predefined colors that are commonly
used, and can be used to define
many others.

 KEY CONCEPT
 Applets are Java programs that are
usually transported across a network
and executed using a Web browser.

2.8 Applets 95

usually the point of making a Java applet is to provide a link to it on a Web page and
allow it to be retrieved and executed by Web users anywhere in the world.

Java bytecode (not Java source code) is linked to an HTML document and sent
across the Web. A version of the Java interpreter embedded in a Web browser is
used to execute the applet once it reaches its destination. A Java applet must be
compiled into bytecode format before it can be used with the Web.

There are some important differences between the structure of a Java applet
and the structure of a Java application. Because the Web browser that executes
an applet is already running, applets can be thought of as a part of a larger pro-
gram. As such they do not have a main method where execution starts. The paint
method in an applet is automatically invoked by the applet. Consider the program
in Listing 2.10, in which the paint method is used to draw a few shapes and write
a quotation by Albert Einstein to the screen.

The two import statements at the beginning of the program explicitly indicate
the packages that are used in the program. In this example, we need the JApplet

//**
// Einstein.java Author: Lewis/Loftus
//
// Demonstrates a basic applet.
//**

import javax.swing.JApplet;
import java.awt.*;

public class Einstein extends JApplet
{
 //---
 // Draws a quotation by Albert Einstein among some shapes.
 //---
 public void paint (Graphics page)
 {
 page.drawRect (50, 50, 40, 40); // square
 page.drawRect (60, 80, 225, 30); // rectangle
 page.drawOval (75, 65, 20, 20); // circle
 page.drawLine (35, 60, 100, 120); // line

 page.drawString ("Out of clutter, find simplicity.", 110, 70);
 page.drawString ("-- Albert Einstein", 130, 100);
 }
}

L I S T I N G 2 . 1 0

96 CHAPTER 2 Data and Expressions

class, which is part of the javax.swing package, and various graphics capabilities
defined in the java.awt package. Chapter 3 explores import statements further.

A class that defines an applet extends the JApplet class, as indicated in the
header line of the class declaration. This process is making use of the object-
oriented concept of inheritance, which we discussed in Chapter 1 and explore
in more detail later in the book. Applet classes must also be declared as public.

The paint method is one of several applet methods that have particular sig-
nificance. It is invoked automatically whenever the graphic elements of the applet
need to be painted to the screen, such as when the applet is first run or when
another window that was covering it is moved.

Note that the paint method accepts a Graphics object as a parameter. A
Graphics object defines a particular graphics context with which we can interact.
The graphics context passed into an applet’s paint method represents the entire
applet window. Each graphics context has its own coordinate system. In later
examples, we will have multiple components, each with its own graphics context.

A Graphics object allows us to draw various shapes using methods such as
drawRect, drawOval, drawLine, and drawString. The parameters passed to the
drawing methods specify the coordinates and sizes of the shapes to be drawn. We
explore these and other methods that draw shapes in the next section.

D I S P L A Y

L I S T I N G 2 . 1 0 continued

 2.8 Applets 97

Executing Applets Using the Web
In order for the applet to be transmitted over the Web and executed by a browser,
it must be referenced in a HyperText Markup Language (HTML) document. An
HTML document contains tags that specify formatting instructions and identify
the special types of media that are to be included in a document. A Java program
is considered a specific media type, just as text, graphics, and sound are.

An HTML tag is enclosed in angle brackets. The following is an example of
an applet tag:

<applet code="Einstein.class" width="350" height="175">
</applet>

This tag dictates that the bytecode stored in the file Einstein.class should be trans-
ported over the network and executed on the machine that wants to view this particu-
lar HTML document. The applet tag also indicates the width and height of the applet.

There are other tags that can be used to reference an applet in an HTML file,
including the <object> tag and the <embed> tag. The <object> tag is actually the
tag that should be used, according to the World Wide Web Consortium (W3C).
However, browser support for the <object> tag is not consistent. For now, the most
reliable solution is to use the <applet> tag.

Note that the applet tag refers to the bytecode file of the Einstein applet, not to the
source code file. Before an applet can be transported using the Web, it must be compiled
into its bytecode format. Then, as shown in Figure 2.11, the document can be loaded
using a Web browser, which will automatically interpret and execute the applet.

Across the
Internet

using HTML

Local computer
Remote computer

Java source
code

Java
bytecodeJava compiler

Java
interpreter

Bytecode
compiler

Machine
code

Web browser

Java
interpreter

FIGURE 2.11 The Java translation and execution process, including applets

98 CHAPTER 2 Data and Expressions

 SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 2.42 What is the difference between a Java application and a Java applet?

SR 2.43 When is an applet’s paint method invoked?

SR 2.44 What is wrong with the following HTML applet tag? Explain.

<applet code="DrawHouse.java" width="400" height="300">
</applet>

 2.9 Drawing Shapes

 The Java standard class library provides many classes that let us present and
manipulate graphical information. The Graphics class is fundamental to all such
processing.

 The Graphics Class
 The Graphics class is defined in the java.awt package. It
contains various methods that allow us to draw shapes,
including lines, rectangles, and ovals. Figure 2.12 lists some
of the fundamental drawing methods of the Graphics class.
Note that these methods also let us draw circles and squares, which are just spe-
cific types of ovals and rectangles, respectively. We discuss additional drawing
methods of the Graphics class later in the book at appropriate points.

 The methods of the Graphics class allow us to specify whether we want a
shape filled or unfilled. An unfilled shape shows only the outline of the shape and
is otherwise transparent (you can see any underlying graphics). A filled shape is
solid between its boundaries and covers any underlying graphics.

 All of these methods rely on the Java coordinate system,
which we discussed earlier in this chapter. Recall that point
 (0,0) is in the upper-left corner, such that x values get larger as
we move to the right, and y values get larger as we move down.
Any shapes drawn at coordinates that are outside the visible
area will not be seen.

 Many of the Graphics drawing methods are self-explanatory, but some require
a little more discussion. Note, for instance, that an oval drawn by the drawOval
method is defined by the coordinate of the upper-left corner and dimensions that
specify the width and height of a bounding rectangle . Shapes with curves, such

2.9 Drawing Shapes 99

 KEY CONCEPT
 Most shapes can be drawn filled
(opaque) or unfilled (as an outline).

 KEY CONCEPT
 A bounding rectangle is used to
define the position and size of
curved shapes such as ovals.

void drawLine (int x1, int y1, int x2, int y2)
Paints a line from point (x1, y1) to point (x2, y2).

void drawRect (int x, int y, int width, int height)
Paints a rectangle with upper left corner (x, y) and dimensions width and
height.

void drawOval (int x, int y, int width, int height)
Paints an oval bounded by the rectangle with an upper left corner of (x, y) and
dimensions width and height.

void drawString (String str, int x, int y)
Paints the character string str at point (x, y), extending to the right.

void drawArc (int x, int y, int width, int height, int
startAngle, int arcAngle)

Paints an arc along the oval bounded by the rectangle defined by x, y, width,
and height. The arc starts at startAngle and extends for a distance defined by
arcAngle.

void fillRect (int x, int y, int width, int height)
Same as their draw counterparts, but filled with the current foreground color.

void fillOval (int x, int y, int width, int height)

void fillArc (int x, int y, int width, int height,
int startAngle, int arcAngle)

Color getColor ()
Returns this graphics context's foreground color.

void setColor (Color color)
Sets this graphics context's foreground color to the specified color.

 FIGURE 2.12 Some methods of the Graphics class

as ovals, are often defined by a rectangle that encompasses
their perimeters. Figure 2.13 depicts a bounding rectangle
for an oval.

 An arc can be thought of as a segment of an oval. To draw
an arc, we specify the oval of which the arc is a part and the
portion of the oval in which we’re interested. The starting point

100 CHAPTER 2 Data and Expressions

 KEY CONCEPT
 An arc is a segment of an oval begin-
ning at a specific start angle and
extending for a distance specified by
the arc angle.

of the arc is defined by the start angle and the ending point of the arc is defined by
the arc angle. The arc angle does not indicate where the arc ends, but rather its range.
The start angle and the arc angle are measured in degrees. The origin for the start
angle is an imaginary horizontal line passing through the center of the oval and can
be referred to as 0°, as shown in Figure 2.14.

Every graphics context has a current foreground color that is used whenever
shapes or strings are drawn. Every surface that can be drawn on has a background
color. The foreground color is set using the setColor method of the Graphics
class, and the background color is set using the setBackground method of the
component on which we are drawing, such as the applet.

Listing 2.11 shows an applet called Snowman. It uses various drawing and color
methods to draw a winter scene featuring a snowman. Review the code carefully
to note how each shape is drawn to create the overall picture.

Note that the snowman figure is based on two constant values called MID and
TOP, which define the midpoint of the snowman (left to right) and the top of the

height

width

FIGURE 2.13 An oval and its bounding rectangle

drawArc (10, 10, 60, 30, 20, 90)

height
30

width 60

90°

90°

20°
0°

20°

110°

<10, 10>

FIGURE 2.14 An arc defined by an oval, a start angle, and an arc angle

 2.9 Drawing Shapes 101

Example using
drawn shapes.

VideoNote

//**
// Snowman.java Author: Lewis/Loftus
//
// Demonstrates basic drawing methods and the use of color.
//**

import javax.swing.JApplet;
import java.awt.*;

public class Snowman extends JApplet
{
 //---
 // Draws a snowman.
 //---
 public void paint (Graphics page)
 {
 final int MID = 150;
 final int TOP = 50;

 setBackground (Color.cyan);

 page.setColor (Color.blue);
 page.fillRect (0, 175, 300, 50); // ground

 page.setColor (Color.yellow);
 page.fillOval (-40, -40, 80, 80); // sun

 page.setColor (Color.white);
 page.fillOval (MID-20, TOP, 40, 40); // head
 page.fillOval (MID-35, TOP+35, 70, 50); // upper torso
 page.fillOval (MID-50, TOP+80, 100, 60); // lower torso

 page.setColor (Color.black);
 page.fillOval (MID-10, TOP+10, 5, 5); // left eye
 page.fillOval (MID+5, TOP+10, 5, 5); // right eye

 page.drawArc (MID-10, TOP+20, 20, 10, 190, 160); // smile

 page.drawLine (MID-25, TOP+60, MID-50, TOP+40); // left arm
 page.drawLine (MID+25, TOP+60, MID+55, TOP+60); // right arm

 page.drawLine (MID-20, TOP+5, MID+20, TOP+5); // brim of hat
 page.fillRect (MID-15, TOP-20, 30, 25); // top of hat
 }
}

L I S T I N G 2 . 1 1

102 CHAPTER 2 Data and Expressions

snowman’s head. The entire snowman figure is drawn relative to these values.
Using constants like these makes it easier to create the snowman and to make
modifications later. For example, to shift the snowman to the right or left in our
picture, only one constant declaration would have to change.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 2.45 What is a bounding rectangle?

SR 2.46 Assuming you have a Graphics object called page, write a statement
that will draw a square with a side length of 50, such that its upper-
left corner is at point (16, 12).

SR 2.47 Assuming you have a Graphics object called page, write a sequence of
statements that will draw a blue rectangle with a height of 20 and a
width of 40, such that its upper-left corner is at point (30, 35).

D I S P L A Y

L I S T I N G 2 . 1 1 continued

 2.9 Drawing Shapes 103

SR 2.48 What would be the result of making each of the following changes
separately to the Snowman program? You may make the change, com-
pile and run the program, and observe and report the results. Briefly
explain what you observe.

a. The value of MID is set to 120 instead of 150.
b. The value of TOP is set to 25 instead of 50.
c. Just before the last two statements of the program (the statements

that draw the hat) we include the statement

page.setColor (Color.blue);

d. In the statement that creates the smile, the 190 is changed to a 10.
e. Just before the statement that creates the upper torso, the fore-

ground color is set to cyan. It is set back to white immediately
after the upper torso is created.

104 CHAPTER 2 Data and Expressions

 Summary of Key Concepts 105

Summary of Key Concepts

■ The print and println methods represent two services provided by the
System.out object.

■ An escape sequence can be used to represent a character that would other-
wise cause compilation problems.

■ A variable is a name for a memory location used to hold a value of a par-
ticular data type.

■ Accessing data leaves it intact in memory, but an assignment statement
overwrites the old data.

■ We cannot assign a value of one type to a variable of an incompatible type.

■ Constants hold a particular value for the duration of their existence.

■ Java has two kinds of numeric values: integer and floating point. There are
four integer data types and two floating point data types.

■ Java uses the 16-bit Unicode character set to represent character data.

■ Expressions are combinations of operators and operands used to perform
a calculation.

■ Java follows a well-defined set of precedence rules that governs the order
in which operators will be evaluated in an expression.

■ Narrowing conversions should be avoided because they can lose information.

■ The Scanner class provides methods for reading input of various types
from various sources.

■ Graphical data is represented by dividing it into many small pieces called pixels.

■ Java’s coordinate system has the origin in the upper-left corner and all
visible coordinates are positive.

■ Colors are represented in Java using an RGB value—three values that
represent the contributions of the primary colors red, green, and blue.

■ The Color class contains several predefined colors that are commonly
used, and can be used to define many others.

■ Applets are Java programs that are usually transported across a network
and executed using a Web browser.

■ Most shapes can be drawn filled (opaque) or unfilled (as an outline).

■ A bounding rectangle is used to define the position and size of curved
shapes such as ovals.

■ An arc is a segment of an oval beginning at a specific start angle and
extending for a distance specified by the arc angle.

106 CHAPTER 2 Data and Expressions

Exercises
Visit www.myprogramminglab.com to complete many of these Exercises
online and get instant feedback.

EX 2.1 Explain the following programming statement in terms of objects
and the services they provide:

System.out.println ("I gotta be me!");

EX 2.2 What output is produced by the following code fragment?
Explain.

System.out.print ("Here we go!");
System.out.println ("12345");
System.out.print ("Test this if you are not sure.");
System.out.print ("Another.");
System.out.println ();
System.out.println ("All done.");

EX 2.3 What is wrong with the following program statement? How can
it be fixed?

System.out.println ("To be or not to be, that
is the question.");

EX 2.4 What output is produced by the following statement? Explain.

System.out.println ("50 plus 25 is " + 50 + 25);

EX 2.5 What is the output produced by the following statement?
Explain.

System.out.println ("He thrusts his fists\n\tagainst" +
"the post\nand still insists\n\the sees the \"ghost\"");

EX 2.6 What value is contained in the integer variable size after the fol-
lowing statements are executed?

size = 18;
size = size + 12;
size = size * 2;
size = size / 4;

EX 2.7 What value is contained in the floating point variable depth after
the following statements are executed?

depth = 2.4;
depth = 20 – depth * 4;
depth = depth / 5;

www.myprogramminglab.com

 Exercises 107

EX 2.8 What value is contained in the integer variable length after the
following statements are executed?

length = 5;
length *= 2;
length *= length;
length /= 100;

EX 2.9 Write four different program statements that increment the value
of an integer variable total.

EX 2.10 Given the following declarations, what result is stored in each of
the listed assignment statements?

int iResult, num1 = 25, num2 = 40, num3 = 17, num4 = 5;
double fResult, val1 = 17.0, val2 = 12.78;

a. iResult = num1 / num4;
b. fResult = num1 / num4;
c. iResult = num3 / num4;
d. fResult = num3 / num4;
e. fResult = val1 / num4;
f. fResult = val1 / val2;
g. iResult = num1 / num2;
h. fResult = (double) num1 / num2;
i. fResult = num1 / (double) num2;
j. fResult = (double) (num1 / num2);
k. iResult = (int) (val1 / num4);
l. fResult = (int) (val1 / num4);
m. fResult = (int) ((double) num1 / num2);
n. iResult = num3 % num4;
o. iResult = num2 % num3;
p. iResult = num3 % num2;
q. iResult = num2 % num4;

EX 2.11 For each of the following expressions, indicate the order in
which the operators will be evaluated by writing a number
beneath each operator.

a. a – b – c – d
b. a – b + c – d
c. a + b / c / d
d. a + b / c * d
e. a / b * c * d
f. a % b / c * d
g. a % b % c % d

108 CHAPTER 2 Data and Expressions

h. a – (b – c) – d
i. (a – (b – c)) – d
j. a – ((b – c) – d)
k. a % (b % c) * d * e
l. a + (b – c) * d – e
m. (a + b) * c + d * e
n. (a + b) * (c / d) % e

EX 2.12 Explain the role played by the Web in the translation and execu-
tion of some Java programs.

EX 2.13 Compare and contrast a traditional coordinate system and the
coordinate system used by Java graphical components.

EX 2.14 How many bits are needed to store a color picture that is 400
pixels wide and 250 pixels high? Assume color is represented
using the RGB technique described in this chapter and that no
special compression is done.

EX 2.15 Assuming you have a Graphics object called page, write a state-
ment that will draw a line from point (20, 30) to point (50, 60).

EX 2.16 Assuming you have a Graphics object called page, write a state-
ment that will draw a rectangle with height 70 and width 35,
such that its upper-left corner is at point (10, 15).

EX 2.17 Assuming you have a Graphics object called page, write a state-
ment that will draw a circle centered on point (50, 50) with a
radius of 20 pixels.

EX 2.18 The following lines of code draw the eyes of the snowman in the
Snowman applet. The eyes seem centered on the face when drawn,
but the first parameters of each call are not equally offset from
the midpoint. Explain.

page.fillOval (MID-10, TOP+10, 5, 5);
page.fillOval (MID+5, TOP+10, 5, 5);

Programming Projects
Visit www.myprogramminglab.com to complete many of these
Programming Projects online and get instant feedback.

PP 2.1 Create a revised version of the Lincoln application from Chapter
1 such that quotes appear around the quotation.

PP 2.2 Write an application that reads three integers and prints their
average.

www.myprogramminglab.com

 Programming Projects 109

PP 2.3 Write an application that prompts for and reads a person’s name,
age, college, and pet’s name. Then print the following paragraph,
inserting the appropriate data:

Hello, my name is name and I am age years
old. I’m enjoying my time at college, though
I miss my pet petname very much!

PP 2.4 Write an application that reads two floating point numbers and
prints their sum, difference, and product.

PP 2.5 Create a version of the TempConverter application to convert
from Fahrenheit to Celsius. Read the Fahrenheit temperature
from the user.

PP 2.6 Write an application that converts miles to kilometers. (One mile
equals 1.60935 kilometers.) Read the miles value from the user
as a floating point value.

PP 2.7 Write an application that prompts for and reads integer values
for speed and distance traveled, then prints the time required for
the trip as a floating point result.

PP 2.8 Write an application that reads values representing a time dura-
tion in hours, minutes, and seconds and then prints the equiva-
lent total number of seconds. (For example, 1 hour, 28 minutes,
and 42 seconds is equivalent to 5322 seconds.)

PP 2.9 Create a version of the previous project that reverses the
computation. That is, read a value representing a number of sec-
onds, then print the equivalent amount of time as a combination
of hours, minutes, and seconds. (For example, 9999 seconds is
equivalent to 2 hours, 46 minutes, and 39 seconds.)

PP 2.10 Write an application that determines the value of the coins in a jar
and prints the total in dollars and cents. Read integer values that
represent the number of quarters, dimes, nickels, and pennies.

PP 2.11 Write an application that prompts for and reads a double value
representing a monetary amount. Then determine the fewest
number of each bill and coin needed to represent that amount,
starting with the highest (assume that a ten-dollar bill is the max-
imum size needed). For example, if the value entered is 47.63
(forty-seven dollars and sixty-three cents), then the program
should print the equivalent amount as:

4 ten dollar bills
1 five dollar bills
2 one dollar bills

Developing a solution of
PP 2.10.

VideoNote

110 CHAPTER 2 Data and Expressions

2 quarters
1 dimes
0 nickles
3 pennies

PP 2.12 Write an application that prompts for and reads an integer rep-
resenting the length of a square’s side, then prints the square’s
perimeter and area.

PP 2.13 Write an application that prompts for and reads the numerator
and denominator of a fraction as integers, then prints the deci-
mal equivalent of the fraction.

PP 2.14 Create a revised version of the Snowman applet with the following
modifications:

■ Add two red buttons to the upper torso.
■ Make the snowman frown instead of smile.
■ Move the sun to the upper-right corner of the picture.
■ Display your name in the upper-left corner of the picture.
■ Shift the entire snowman 20 pixels to the right.

PP 2.15 Write an applet that writes your name using the drawString
method. Embed a link to your applet in an HTML document
and view it using a Web browser.

PP 2.16 Write an applet that draws the Big Dipper. Add some extra stars
in the night sky.

PP 2.17 Write an applet that draws some balloons tied to strings. Make
the balloons various colors.

PP 2.18 Write an applet that draws the Olympic logo. The circles in the
logo should be colored, from left to right, blue, yellow, black,
green, and red.

PP 2.19 Write an applet that draws a house with a door (and doorknob),
windows, and a chimney. Add some smoke coming out of the
chimney and some clouds in the sky.

PP 2.20 Write an applet that displays a business card of your own design.
Include both graphics and text.

PP 2.21 Write an applet that displays your name in shadow text by draw-
ing your name in black, then drawing it again slightly offset in a
lighter color.

PP 2.22 Write an applet that shows a pie chart with eight equal slices, all
colored differently.

111

S O F T W A R E F A I L U R E

NASA Mars Climate Orbiter and Polar Lander

What Happened?
As part of a series of missions exploring
Mars, NASA launched the Mars Climate
Orbiter in December, 1998, and the
Mars Polar Lander in January, 1999.
The two-spacecraft mission was designed
to observe the atmospheric conditions
on Mars through each of its seasons.
The orbiter and the lander would have
collected data about temperature, dust,
water vapor, clouds, and the amount
of carbon dioxide (CO2) added and
removed from the Martian pole regions.

After its nine-month journey, the orbiter
arrived at Mars in September, 1999,
and fired its main engines to establish
an orbit. The orbiter passed behind the
planet (from Earth’s perspective) five minutes later as planned, but NASA could
not reestablish contact with it after expecting it to emerge. Review of the data
showed that the altitude of the orbiter when it was entering orbit was only 57
kilometers, whereas the planned altitude was 140 kilometers. The minimum sur-
vivable altitude was between 85 and 100 kilometers. NASA concluded that the
orbiter was destroyed by atmospheric friction.

The polar lander arrived at Mars in December, 1999, and all of the data indicated
it was on target to make a successful soft landing within 10 kilometers of the
target landing site on the Martian south pole. However, NASA lost contact with
the lander just after it entered the atmosphere. Multiple attempts to reestablish
contact with it over the following weeks and months were unsuccessful.

The total project cost for the orbiter and lander was $327.6 million.

What Caused It?
The root cause of the orbiter’s problem was an embarrassing communication
issue. The software that guided the navigation of the spacecraft used imperial
units of measure (pound-force), while the spacecraft itself expected the data in
metric units (newtons). Therefore the desired navigation changes and the actual
effects were off by a factor of 4.45. This mismatch resulted in part because one
team based in Colorado lead the efforts on the spacecraft, while a California-
based team managed issues of navigation.

■ Artist’s concep-
tion of the Mars
Climate Orbiter

The cause of the lander’s communication problem is unresolved but is not
believed to be related to the orbiter’s problem. The investigation concluded that
the most likely cause was a software error that mistook the vibration caused by
the deployment of the lander’s legs for the vibration caused by actually landing on
the planet’s surface. That mistake would have caused the lander’s descent engines
to cut off while it was still 40 meters above the ground. Other problem scenarios
are possible, however.

Lessons Learned
The mismatch of units in the Mars Climate Orbiter shows that seemingly obvious
problems can be overlooked in a highly complex system. Mistakes are inevitable,
but processes must be in place to catch them before they become critical. The
investigation concluded that, in this case, the system for tracking and double-
checking interconnected elements between subsystems was not robust enough.
There was also inconsistent training of and communication with new members of
the team, and some communication lines were too informal. In short, the mission
lacked a rigorous total-system view that would have led to the discovery of the
mismatched units problem before it was too late.

It’s difficult to draw strong conclusions from the lander’s problem given that the
cause is not clearly understood. The fact that it remains an open question under-
scores the need for more evaluation, simulation, and testing in situations where
critical resources are at stake.

Source: nasa.gov

112 Software Failure

113

C H A P T E R O B J E C T I V E S
● Discuss the creation of objects and the use of object reference variables.

● Explore the services provided by the String class.

● Describe how the Java standard class library is organized into packages.

● Explore the services provided by the Random and Math classes.

● Discuss ways to format output using the NumberFormat and
DecimalFormat classes.

● Introduce enumerated types.

● Discuss wrapper classes and the concept of autoboxing.

● Introduce components and containers used in graphical user interfaces.

● Describe a label component and the use of images.

This chapter further explores the use of predefined classes and

the objects we can create from them. Using classes and objects for

the services they provide is a fundamental part of object-oriented

software and sets the stage for writing classes of our own. In this

chapter, we use classes and objects to manipulate character strings,

produce random numbers, perform complex calculations, and format

output. This chapter also introduces the concept of an enumerated

type, which is a special kind of class in Java, and discusses the con-

cept of a wrapper class. In the Graphics Track of this chapter, we lay

the foundation for developing graphical user interfaces for our pro-

grams and discuss how to display images.

Using Classes
and Objects 3

3.1 Creating Objects

At the end of Chapter 1 we presented an overview of object-oriented concepts,
including the basic relationship between classes and objects. Then in Chapter 2, in
addition to discussing primitive data, we provided some examples of using objects
for the services they provide. This chapter explores these ideas further.

In previous examples, we’ve used the println method many times. As we men-
tioned in Chapter 2, the println method is a service provided by the System.out
object, which represents the standard output stream. To be more precise, the identi-
fier out is an object variable that is stored in the System class. It has been predefined
and set up for us as part of the Java standard class library. We can simply use it.

In Chapter 2 we also used the Scanner class, which represents an object that
allows us to read input from the keyboard or a file. We created a Scanner object
using the new operator. Once the object was created, we were able to use it for the
various services it provides. That is, we were able to invoke its methods.

Let’s carefully examine the idea of creating an object. In Java, a variable name
represents either a primitive value or an object. Like variables that hold primitive
types, a variable that refers to an object must be declared. The class used to define
an object can be thought of as the type of an object. The declarations of object
variables have a similar structure to the declarations of primitive variables.

Consider the following two declarations:

int num;
String name;

The first declaration creates a variable that holds an integer value, as we’ve seen
many times before. The second declaration creates a String variable that holds
a reference to a String object. An object variable doesn’t hold an object itself, it
holds the address of an object.

Initially, the two variables declared above don’t contain any data. We say they
are uninitialized, which can be depicted as follows:

114 CHAPTER 3 Using Classes and Objects

num

name

–

–

As we pointed out in Chapter 2, it is always important to make sure a variable
is initialized before using it. For an object variable, that means we must make sure
it refers to a valid object prior to using it. In most situations, the compiler will
issue an error if you attempt to use a variable before initializing it.

 An object variable can also be set to null , which is a reserved word in Java.
A null reference specifically indicates that a variable does not refer to an object.

 Note that, although we’ve declared a String reference variable, no String
object actually exists yet. The act of creating an object using the new operator is
called instantiation . An object is said to be an instance of a particular class. To
instantiate an object, we can use the new operator, which returns the address of
the new object. The following two assignment statements give values to the two
variables declared above:

 num = 42;
 name = new String("James Gosling");

 After the new operator creates the object, a constructor is invoked
to help set it up initially. A constructor is a special method that has the
same name as the class. In this example, the parameter to the construc-
tor is a string literal that specifies the characters that the string object
will hold. After these assignments are executed, the variables can be
depicted as:

3.1 Creating Objects 115

num 42

name "James Gosling"

 Since an object reference variable holds the address of the object, it can be
thought of as a pointer to the location in memory where the object is held. We
could show the numeric address, but the actual address value is irrelevant—
what’s important is that the variable refers to a particular object.

 After an object has been instantiated, we use the dot operator to access its
methods. We’ve used the dot operator many times already, such as in calls to
System.out.println . The dot operator is appended directly after the object refer-
ence, followed by the method being invoked. For example, to invoke the length
method defined in the String class, we can use the dot operator on the name
reference variable:

 count = name.length()

 The length method does not take any parameters, but the parentheses are still
necessary to indicate that a method is being invoked. Some methods produce a value
that is returned when the method completes. The purpose of the length method of
the String class is to determine and return the length of the string (the number of
characters it contains). In this example, the returned value is assigned to the vari-
able count . For the string "James Gosling" , the length method returns 13 , which

 KEY CONCEPT
 The new operator returns a reference
to a newly created object.

 Creating objects.

VideoNote

116 CHAPTER 3 Using Classes and Objects

includes the space between the first and last names. Some methods do not return a
value. Other String methods are discussed in the next section.

The act of declaring the object reference variable and creating the object itself
can be combined into one step by initializing the variable in the declaration, just
as we do with primitive types:

String title = new String("Java Software Solutions");

Even though they are not primitive types, character strings are so fundamental
and so often used that Java defines string literals delimited by double quotation
marks, as we’ve seen in various examples. This is a shortcut notation. Whenever
a string literal appears, a String object is created automatically. Therefore the
following declaration is valid:

String city = "London";

That is, for String objects, the explicit use of the new operator and the call to the
constructor can be eliminated. In most cases, we will use this simplified syntax.

Aliases
Because an object reference variable stores an address, a programmer must be
careful when managing objects. First, let’s review the effect of assignment on
primitive values. Suppose we have two integer variables, num1, initialized to 5,
and num2, initialized to 12:

num1 5

num2 12

In the following assignment statement, a copy of the value that is stored in num1
is stored in num2:

num2 = num1;

The original value of 12 in num2 is overwritten by the value 5. The variables num1
and num2 still refer to different locations in memory, and both of those locations
now contain the value 5:

num1 5

num2 5

3.1 Creating Objects 117

 Now consider the following object declarations:

 String name1 = "Ada, Countess of Lovelace";
 String name2 = "Grace Murray Hopper";

 Initially, the references name1 and name2 refer to two different String objects:

name1

name2

"Ada, Countess of Lovelace"

"Grace Murray Hopper"

 Now suppose the following assignment statement is executed, copying the value
in name1 into name2 :

 name2 = name1;

 This assignment works the same as the integer assignment—a copy of the value
of name1 is stored in name2 . But remember, object variables hold the address of
an object, and it is the address that gets copied. Originally, the two references
referred to different objects. After the assignment, both name1 and name2 contain
the same address and therefore refer to the same object:

name1

name2

"Ada, Countess of Lovelace"

 The name1 and name2 reference variables are now aliases of each
other because they are two names that refer to the same object. All
references to the object originally referenced by name2 are now gone;
that object cannot be used again in the program.

 One important implication of aliases is that when we use one reference to change
an object, it is also changed for the other reference because there is really only one
object. Aliases can produce undesirable effects unless they are managed carefully.

 All interaction with an object occurs through a reference variable, so we can
use an object only if we have a reference to it. When all references to an object
are lost (perhaps by reassignment), that object can no longer contribute to the
program. The program can no longer invoke its methods or use its variables. At
this point the object is called garbage because it serves no useful purpose.

 Java performs automatic garbage collection . When the last reference to an
object is lost, the object becomes a candidate for garbage collection. Occasionally,
behind the scenes, the Java environment executes a method that “collects” all the

 KEY CONCEPT
 Multiple reference variables can refer
to the same object.

118 CHAPTER 3 Using Classes and Objects

objects marked for garbage collection and returns their memory to the system for
future use. The programmer does not have to worry about explicitly reclaiming
memory that has become garbage.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 3.1 What is a null reference?

SR 3.2 What does the new operator accomplish?

SR 3.3 Write a declaration for a String variable called author, and
initialize it to the string "Fred Brooks". Draw a graphic representa-
tion of the variable and its value.

SR 3.4 Write a code statement that sets the value of an integer variable called
size to the length of a String object called name.

SR 3.5 What is an alias? How does it relate to garbage collection?

3.2 The String Class

Let’s examine the String class in more detail. Figure 3.1 lists some of the more
useful methods of the String class.

Once a String object is created, its value cannot be lengthened or shortened,
nor can any of its characters change. Thus we say that a String object is immu-
table. However, several methods in the String class return new String objects
that are the result of modifying the original string’s value.

Note that some of the String methods refer to the index of a particular charac-
ter. A character in a string can be specified by its position, or index, in the string.
The index of the first character in a string is zero, the index of the next character
is one, and so on. Therefore, in the string "Hello", the index of the character 'H'
is zero and the character at index four is 'o'.

Several String methods are exercised in the program shown in Listing 3.1.

As you examine the StringMutation program, keep in mind that this is not a single
String object that changes its data; this program creates five separate String objects
using various methods of the String class. Originally, the phrase object is set up:

phrase "Change is inevitable"

 3.2 The String Class 119

FIGURE 3.1 Some methods of the String class

String (String str)
Constructor: creates a new string object with the same characters as str.

char charAt (int index)
Returns the character at the specified index.

int compareTo (String str)
Returns an integer indicating if this string is lexically before (a negative return
value), equal to (a zero return value), or lexically after (a positive return value),
the string str.

String concat (String str)
Returns a new string consisting of this string concatenated with str.

boolean equals (String str)
Returns true if this string contains the same characters as str (including
case) and false otherwise.

boolean equalsIgnoreCase (String str)
Returns true if this string contains the same characters as str (without
regard to case) and false otherwise.

int length ()
Returns the number of characters in this string.

String replace (char oldChar, char newChar)
Returns a new string that is identical with this string except that every
occurrence of oldChar is replaced by newChar.

String substring (int offset, int endIndex)
Returns a new string that is a subset of this string starting at index offset
and extending through endIndex-1.

String toLowerCase ()
Returns a new string identical to this string except all uppercase letters are
converted to their lowercase equivalent.

String toUpperCase ()
Returns a new string identical to this string except all lowercase letters are
converted to their uppercase equivalent.

120 CHAPTER 3 Using Classes and Objects

//**
// StringMutation.java Author: Lewis/Loftus
//
// Demonstrates the use of the String class and its methods.
//**

public class StringMutation
{
 //---
 // Prints a string and various mutations of it.
 //---
 public static void main (String[] args)
 {
 String phrase = "Change is inevitable";
 String mutation1, mutation2, mutation3, mutation4;

 System.out.println ("Original string: \"" + phrase + "\"");
 System.out.println ("Length of string: " + phrase.length());

 mutation1 = phrase.concat (", except from vending machines.");
 mutation2 = mutation1.toUpperCase();
 mutation3 = mutation2.replace ('E', 'X');
 mutation4 = mutation3.substring (3, 30);

 // Print each mutated string
 System.out.println ("Mutation #1: " + mutation1);
 System.out.println ("Mutation #2: " + mutation2);
 System.out.println ("Mutation #3: " + mutation3);
 System.out.println ("Mutation #4: " + mutation4);

 System.out.println ("Mutated length: " + mutation4.length());
 }
}

O U T P U T

Original string: "Change is inevitable"
Length of string: 20
Mutation #1: Change is inevitable, except from vending machines.
Mutation #2: CHANGE IS INEVITABLE, EXCEPT FROM VENDING MACHINES.
Mutation #3: CHANGX IS INXVITABLX, XXCXPT FROM VXNDING MACHINXS.
Mutation #4: NGX IS INXVITABLX, XXCXPT F
Mutated length: 27

L I S T I N G 3 . 1

3.2 The String Class 121

 After printing the original phrase and its length, the concat method is executed
to create a new string object referenced by the variable mutation1:

mutation1 "Change is inevitable, except from vending machines."

 Then the toUpperCase method is executed on the mutation1 object, and the

resulting string is stored in mutation2:

mutation2 "CHANGE IS INEVITABLE, EXCEPT FROM VENDING MACHINES"

 Notice that the length and concat methods are executed on

the phrase object, but the toUpperCase method is executed on
the mutation1 object. Any method of the String class can be
executed on any String object, but for any given invocation, a
method is executed on a particular object. The results of execut-
ing toUpperCase on mutation1 would be very different from the results of
executing toUpperCase on phrase . Remember, each object has its own state,
which often affects the results of method calls.

 Finally, the String object variables mutation3 and mutation4 are initialized by
the calls to mutation2.replace and mutation3.substring , respectively:

mutation3

mutation4

"CHANGX IS INXVITABLX, XXCXPT FROM VXNDING MACHINXS"

"NGX IS INXVITABLX, XXCXPT F"

 SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 3.6 Assume s1 , s2 , and s3 are String variables initialized to "Amanda",
"Bobby", and "Chris" respectively. Which String variable or variables
are changed by each of the following statements?

 a. System.out.println (s1);
 b. s1 = s3.toLowerCase();
 c. System.out.println (s2.replace('B', 'M'));
 d. s3 = s2.concat(s1);

SR 3.7 What output is produced by the following code fragment?

 String s1 = "Foundations";
 String s2;
 System.out.println (s1.charAt(1));
 s2 = s1.substring(0, 5);
 System.out.println (s2);

 KEY CONCEPT
 Usually a method is executed on a
particular object, which affects the
results.

122 CHAPTER 3 Using Classes and Objects

 System.out.println (s1.length());
 System.out.println (s2.length());

SR 3.8 Write a statement that prints the value of a String object called title
in all uppercase letters.

SR 3.9 Write a declaration for a String variable called front , and initialize it to
the first 10 characters of another String object called description .

3.3 Packages

 We mentioned earlier that the Java language is supported by a standard class
library that we can make use of as needed. Let’s examine that idea further.

 A class library is a set of classes that supports the development
of programs. A compiler or development environment often comes
with a class library. Class libraries can also be obtained separately
through third-party vendors. The classes in a class library contain

methods that are often valuable to a programmer because of the special function-
ality they offer. In fact, programmers often become dependent on the methods
in a class library and begin to think of them as part of the language. However,
technically, they are not in the language itself.

 The String class, for instance, is not an inherent part of the Java language. It is
part of the Java standard class library that can be found in any Java development
environment. The classes that make up the library were created by employees at
Sun Microsystems, the people who created the Java language.

 The class library is made up of several clusters of related classes, which are
often referred to as the Java APIs, which stands for application programming
interfaces . For example, we may refer to the Java Database API when we’re
talking about the set of classes that helps us write programs that interact with a
database. Another example of an API is the Java Swing API, which refers to a set
of classes that defines special graphical components used in a graphical user inter-
face. Often the entire standard library is referred to generically as the Java API.

 The classes of the Java standard class library are also grouped
into packages . Each class is part of a particular package. The String
class, for example, is part of the java.lang package. The System
class is part of the java.lang package as well. We mentioned in
 Chapter 2 that the Scanner class is part of the java.util package.

 The package organization is more fundamental and language-based than the API
names. Though there is a general correspondence between package and API names,
the groups of classes that make up a given API might cross packages. In this book, we
primarily refer to classes in terms of their package organization.

 KEY CONCEPT
 A class library provides useful sup-
port when developing programs.

 KEY CONCEPT
 The Java standard class library is
organized into packages.

 3.3 Packages 123

Figure 3.2 describes some of the packages that are part of the Java standard
class library. These packages are available on any platform that supports Java
software development. Some of these packages support highly specific pro-
gramming techniques and will not come into play in the development of basic
programs.

Various classes of the Java API are discussed throughout this book. For conve-
nience we include in the book some documentation (like Figure 3.2) on the classes
we’ll use, but it’s also very important for you to know how to get more information
about the Java API classes. The online Java API documentation is an invaluable
resource for any Java programmer. It is a Web site that contains pages on each class
in the standard Java API, listing and describing the methods in each one.

Figure 3.3 shows one page of this documentation. Links on the side allow you
to examine particular packages and jump to particular classes. Take some time

FIGURE 3.2 Some packages in the Java standard class library

Package Provides support to

java.applet

java.awt

java.beans

java.io

java.lang

java.math

java.net

java.rmi

java.security

Create programs (applets) that are easily transported across the Web.

Draw graphics and create graphical user interfaces;
AWT stands for Abstract Windowing Toolkit.

Define software components that can be easily combined
into applications.

Perform a wide variety of input and output functions.

General support; it is automatically imported into all Java programs.

Perform calculations with arbitrarily high precision.

Communicate across a network.

Create programs that can be distributed across multiple computers;
RMI stands for Remote Method Invocation.

Enforce security restrictions.

java.sql

java.text

java.util

javax.swing

Interact with databases;
SQL stands for Structured Query Language.

Format text for output.

General utilities.

Create graphical user interfaces with components that extend
the AWT capabilities.

javax.xml.parsers Process XML documents; XML stands for eXtensible Markup Language.

124 CHAPTER 3 Using Classes and Objects

to get comfortable navigating this site and learning how the information is orga-
nized. The entire set of Java API documentation can be downloaded so that you
have a local copy always available, or you can rely on the online version.

The import Declaration
The classes of the java.lang package are automatically available for use when
writing a Java program. To use classes from any other package, however, we
must either fully qualify the reference or use an import declaration. Recall that
the example programs that use the Scanner class include an import declaration.

When you want to use a class from a class library in a program, you could
use its fully qualified name, including the package name, every time it is ref-
erenced. For example, every time you want to refer to the Scanner class that
is defined in the java.util package, you could write java.util.Scanner.
However, completely specifying the package and class name every time it is
needed quickly becomes tiring. Java provides the import declaration to simplify
these references.

FIGURE 3.3 A page from the online Java API documentation

3.3 Packages 125

 The import declaration specifies the packages and classes that will be used in a
program so that the fully qualified name is not necessary with each reference. As
we’ve seen, the following is an example of an import declaration:

 import java.util.Scanner;

 This declaration asserts that the Scanner class of the java.util package may be
used in the program. Once this import declaration is made, it is sufficient to use
the simple name Scanner when referring to that class in the program.

 If two classes from two different packages have the same name, import dec-
larations will not suffice because the compiler won’t be able to figure out which
class is being referenced in the flow of the code. When such situations arise, which
is rare, the fully qualified names should be used in the code.

 Another form of the import declaration uses an asterisk (*) to indicate that any
class inside the package might be used in the program. Therefore, the following
declaration allows all classes in the java.util package to be referenced in the
program without qualifying each reference:

 import java.util.*;

 If only one class of a particular package will be used in a program, it is usually
better to name the class specifically in the import declaration. However, if two or
more will be used, the * notation is usually fine.

 The classes of the java.lang package are automatically imported
because they are fundamental and can be thought of as basic exten-
sions to the language. Therefore, any class in the java.lang package,
such as System and String , can be used without an explicit import
declaration. It’s as if all program files automatically contain the fol-
lowing declaration:

import java.lang.*;

 SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 3.10 What is a Java package?

SR 3.11 What does the java.net package contain? The javax.swing package?

SR 3.12 What package contains the Scanner class? The String class? The
Random class? The Math class?

SR 3.13 Using the online Java API documentation, describe the Point class.

SR 3.14 What does an import statement accomplish?

SR 3.15 Why doesn’t the String class have to be specifically imported into our
programs?

 KEY CONCEPT
 All classes of the java.lang pack-
age are automatically imported for
every program.

126 CHAPTER 3 Using Classes and Objects

3.4 The Random Class

 The need for random numbers occurs frequently when writing software. Games
often use a random number to represent the roll of a die or the shuffle of a deck
of cards. A flight simulator may use random numbers to determine how often
a simulated flight has engine trouble. A program designed to help high school
students prepare for the SATs may use random numbers to choose the next ques-
tion to ask.

 The Random class, which is part of the java.util class, represents a pseu-
dorandom number generator . A random number generator picks a number at
random out of a range of values. A program that serves this role is technically
pseudorandom, because a program has no means to actually pick a number
randomly. A pseudorandom number generator performs a series of complicated
calculations, based on an initial seed value , and produces a number. Though they
are technically not random (because they are calculated), the values produced
by a pseudorandom number generator usually appear random, at least random
enough for most situations.

 Figure 3.4 lists some of the methods of the Random class. The
 nextInt method can be called with no parameters, or we can pass
it a single integer value. The version that takes no parameters gener-
ates a random number across the entire range of int values, includ-
ing negative numbers. Usually, though, we need a random number
within a more specific range. For instance, to simulate the roll of a

die, we might want a random number in the range of 1 to 6. The nextInt method
returns a value that’s in the range from 0 to one less than its parameter. For
example, if we pass in 100, we’ll get a return value that is greater than or equal
to 0 and less than or equal to 99.

 FIGURE 3.4 Some methods of the Random class

Random ()
Constructor: creates a new pseudorandom number generator.

float nextFloat ()
Returns a random number between 0.0 (inclusive) and 1.0 (exclusive).

int nextInt ()
Returns a random number that ranges over all possible int values (positive
and negative).

int nextInt (int num)
 Returns a random number in the range 0 to num-1.

 KEY CONCEPT
 A pseudorandom number generator
performs a complex calculation to
create the illusion of randomness.

 3.4 The Random Class 127

Note that the value that we pass to the nextInt method is also the number of
possible values we can get in return. We can shift the range as needed by adding
or subtracting the proper amount. To get a random number in the range 1 to 6,
we can call nextInt(6) to get a value from 0 to 5, and then add 1.

The nextFloat method of the Random class returns a float value that is greater
than or equal to 0.0 and less than 1.0. If desired, we can use multiplication to
scale the result, cast it into an int value to truncate the fractional part, and then
shift the range as we do with integers.

The program shown in Listing 3.2 produces several random numbers in vari-
ous ranges.

//**
// RandomNumbers.java Author: Lewis/Loftus
//
// Demonstrates the creation of pseudo-random numbers using the
// Random class.
//**

import java.util.Random;

public class RandomNumbers
{
 //---
 // Generates random numbers in various ranges.
 //---
 public static void main (String[] args)
 {
 Random generator = new Random();
 int num1;
 float num2;

 num1 = generator.nextInt();
 System.out.println ("A random integer: " + num1);

 num1 = generator.nextInt(10);
 System.out.println ("From 0 to 9: " + num1);

 num1 = generator.nextInt(10) + 1;
 System.out.println ("From 1 to 10: " + num1);

L I S T I N G 3 . 2

128 CHAPTER 3 Using Classes and Objects

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 3.16 Given a Random object called rand, what does the call rand.nextInt()
return?

SR 3.17 Given a Random object called rand, what does the call
rand.nextInt(20) return?

SR 3.18 Assuming that a Random object has been created called generator,
what is the range of the result of each of the following expressions?

a. generator.nextInt(50)
b. generator.nextInt(5) + 10
c. generator.nextInt(10) + 5
d. generator.nextInt(50) – 25

 num1 = generator.nextInt(15) + 20;
 System.out.println ("From 20 to 34: " + num1);

 num1 = generator.nextInt(20) - 10;
 System.out.println ("From -10 to 9: " + num1);

 num2 = generator.nextFloat();
 System.out.println ("A random float (between 0-1): " + num2);

 num2 = generator.nextFloat() * 6; // 0.0 to 5.999999
 num1 = (int)num2 + 1;
 System.out.println ("From 1 to 6: " + num1);
 }
}

O U T P U T

A random integer: 1773351873
From 0 to 9: 8
From 1 to 10: 6
From 20 to 34: 20
From -10 to 9: -6
A random float (between 0-1): 0.71058085
From 1 to 6: 3

L I S T I N G 3 . 2 continued

3.5 The Math Class 129

SR 3.19 Assuming that a Random object has been created called generator ,
write expressions that generate each of the following ranges of inte-
gers, including the endpoints. Use the version of the nextInt method
that accepts a single integer parameter.

 a. 0 to 30
 b. 10 to 19
 c. −5 to 5

3.5 The Math Class

 The Math class provides a large number of basic mathematical functions that are
often helpful in making calculations. The Math class is defined in the java.lang
package of the Java standard class library. Figure 3.5 lists several of its methods.

 All the methods in the Math class are static methods (also called class methods),
which means they can be invoked through the name of the class in which they are
defined, without having to instantiate an object of the class first. Static methods
are discussed further in Chapter 6 .

 The methods of the Math class return values, which can be used
in expressions as needed. For example, the following statement com-
putes the absolute value of the number stored in total , adds it to
the value of count raised to the fourth power, and stores the result
in the variable value :

 value = Math.abs(total) + Math.pow(count, 4);

 Note that you can pass an integer value to a method that accepts a double
parameter. This is a form of assignment conversion, which was discussed in
 Chapter 2 .

 The Quadratic program, shown in Listing 3.3 , uses the Math class to compute
the roots of a quadratic equation. Recall that a quadratic equation has the fol-
lowing general form:

 ax 2 + bx + c

 The Quadratic program reads values that represent the coefficients in a qua-
dratic equation (a, b, and c), and then evaluates the quadratic formula to deter-
mine the roots of the equation. The quadratic formula is:

 –b+_ –4ac
2a

roots = b2

 Example using the Random
and Math classes.

VideoNote

 KEY CONCEPT
 All methods of the Math class are
static, meaning they are invoked
through the class name.

130 CHAPTER 3 Using Classes and Objects

Note that this program assumes that the discriminant (the value under the
square root) is negative. If it’s not negative, the results will not be a valid number,
which Java represents as NAN, which stands for Not A Number. In Chapter 5 we
will see how we can handle this type of situation gracefully.

FIGURE 3.5 Some methods of the Math class

static int abs (int num)
Returns the absolute value of num.

static double acos (double num)

static double asin (double num)

static double atan (double num)
Returns the arc cosine, arc sine, or arc tangent of num.

static double cos (double angle)

static double sin (double angle)

static double tan (double angle)
Returns the angle cosine, sine, or tangent of angle, which is measured in
radians.

static double ceil (double num)
Returns the ceiling of num, which is the smallest whole number greater than or
equal to num.

static double exp (double power)
Returns the value e raised to the specified power.

static double floor (double num)
Returns the floor of num, which is the largest whole number less than or equal
to num.

static double pow (double num, double power)
Returns the value num raised to the specified power.

static double random ()
Returns a random number between 0.0 (inclusive) and 1.0 (exclusive).

static double sqrt (double num)
Returns the square root of num, which must be positive.

 3.5 The Math Class 131

//**
// Quadratic.java Author: Lewis/Loftus
//
// Demonstrates the use of the Math class to perform a calculation
// based on user input.
//**

import java.util.Scanner;

public class Quadratic
{
 //---
 // Determines the roots of a quadratic equation.
 //---
 public static void main (String[] args)
 {
 int a, b, c; // ax^2 + bx + c
 double discriminant, root1, root2;

 Scanner scan = new Scanner (System.in);

 System.out.print ("Enter the coefficient of x squared: ");
 a = scan.nextInt();

 System.out.print ("Enter the coefficient of x: ");
 b = scan.nextInt();

 System.out.print ("Enter the constant: ");
 c = scan.nextInt();

 // Use the quadratic formula to compute the roots.
 // Assumes a positive discriminant.

 discriminant = Math.pow(b, 2) - (4 * a * c);
 root1 = ((-1 * b) + Math.sqrt(discriminant)) / (2 * a);
 root2 = ((-1 * b) - Math.sqrt(discriminant)) / (2 * a);

 System.out.println ("Root #1: " + root1);
 System.out.println ("Root #2: " + root2);
 }
}

L I S T I N G 3 . 3

132 CHAPTER 3 Using Classes and Objects

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 3.20 What is a class method (also called a static method)?

SR 3.21 What is the value of each of the following expressions?

a. Math.abs(10) + Math.abs(-10)
b. Math.pow(2, 4)
c. Math.pow(4, 2)
d. Math.pow(3, 5)
e. Math.pow(5, 3)
f. Math.sqrt(16)

SR 3.22 Write a statement that prints the sine of an angle measuring 1.23 radians.

SR 3.23 Write a declaration for a double variable called result and initialize it
to 5 raised to the power 2.5.

SR 3.24 Using the online Java API documentation, list three methods of the
Math class that are not included in Figure 3.5.

3.6 Formatting Output

The NumberFormat class and the DecimalFormat class are used to format informa-
tion so that it looks appropriate when printed or displayed. They are both part of
the Java standard class library and are defined in the java.text package.

The NumberFormat Class
The NumberFormat class provides generic formatting capabilities for numbers.
You don’t instantiate a NumberFormat object by using the new operator. Instead,
you request an object from one of the static methods that you invoke through the
class name itself. Figure 3.6 lists some of the methods of the NumberFormat class.

O U T P U T

Enter the coefficient of x squared: 3
Enter the coefficient of x: 8
Enter the constant: 4
Root #1: -0.6666666666666666
Root #2: -2.0

L I S T I N G 3 . 3 continued

 3.6 Formatting Output 133

Two of the methods in the NumberFormat class, getCurrencyInstance
and getPercentInstance, return an object that is used to format numbers. The
getCurrencyInstance method returns a formatter for monetary values, and
the getPercentInstance method returns an object that formats a percentage.
The format method is invoked through a formatter object and returns a String
that contains the number formatted in the appropriate manner.

The Purchase program shown in Listing 3.4 uses both types of formatters. It
reads in a sales transaction and computes the final price, including tax.

FIGURE 3.6 Some methods of the NumberFormat class

String format (double number)
Returns a string containing the specified number formatted according to this
object's pattern.

static NumberFormat getCurrencyInstance()
Returns a NumberFormat object that represents a currency format for the
current locale.

static NumberFormat getPercentInstance()
Returns a NumberFormat object that represents a percentage format for the
current locale.

//**
// Purchase.java Author: Lewis/Loftus
//
// Demonstrates the use of the NumberFormat class to format output.
//**

import java.util.Scanner;
import java.text.NumberFormat;

public class Purchase
{
 //---
 // Calculates the final price of a purchased item using values
 // entered by the user.
 //---
 public static void main (String[] args)

L I S T I N G 3 . 4

134 CHAPTER 3 Using Classes and Objects

 {
 final double TAX_RATE = 0.06; // 6% sales tax

 int quantity;
 double subtotal, tax, totalCost, unitPrice;

 Scanner scan = new Scanner (System.in);

 NumberFormat fmt1 = NumberFormat.getCurrencyInstance();
 NumberFormat fmt2 = NumberFormat.getPercentInstance();

 System.out.print ("Enter the quantity: ");
 quantity = scan.nextInt();

 System.out.print ("Enter the unit price: ");
 unitPrice = scan.nextDouble();

 subtotal = quantity * unitPrice;
 tax = subtotal * TAX_RATE;
 totalCost = subtotal + tax;

 // Print output with appropriate formatting
 System.out.println ("Subtotal: " + fmt1.format(subtotal));
 System.out.println ("Tax: " + fmt1.format(tax) + " at "
 + fmt2.format(TAX_RATE));
 System.out.println ("Total: " + fmt1.format(totalCost));
 }
}

O U T P U T

Enter the quantity: 5
Enter the unit price: 3.87
Subtotal: $19.35
Tax: $1.16 at 6%
Total: $20.51

L I S T I N G 3 . 4 continued

The DecimalFormat Class
Unlike the NumberFormat class, the DecimalFormat class is instantiated in
the traditional way using the new operator. Its constructor takes a string that
represents the pattern that will guide the formatting process. We can then use the

 3.6 Formatting Output 135

format method to format a particular value. At a later point, if we want to change
the pattern that the formatter object uses, we can invoke the applyPattern
method. Figure 3.7 describes these methods.

The pattern defined by the string that is passed to the DecimalFormat con-
structor can get fairly elaborate. Various symbols are used to represent particular
formatting guidelines. The pattern defined by the string "0.###", for example,
indicates that at least one digit should be printed to the left of the decimal point
and should be a zero if the integer portion of the value is zero. It also indicates
that the fractional portion of the value should be rounded to three digits.

This pattern is used in the CircleStats program, shown in Listing 3.5, which
reads the radius of a circle from the user and computes its area and circumference.
Trailing zeros, such as in the circle’s area of 78.540, are not printed.

The printf Method
In addition to print and println, the System class has another output method
called printf, which allows the user to print a formatted string containing
data values. The first parameter to the method represents the format string,
and the remaining parameters specify the values that are inserted into the
format string.

For example, the following line of code prints an ID number and a name:

System.out.printf ("ID: %5d\tName: %s", id, name);

The first parameter specifies the format of the output and includes literal
characters that label the output values as well as escape characters such as \t.
The pattern %5d indicates that the corresponding numeric value (id) should be
printed in a field of five characters. The pattern %s matches the string parameter

FIGURE 3.7 Some methods of the DecimalFormat class

DecimalFormat (String pattern)
Constructor: creates a new DecimalFormat object with the specified pattern.

void applyPattern (String pattern)
Applies the specified pattern to this DecimalFormat object.

String format (double number)
Returns a string containing the specified number formatted according to the
current pattern.

136 CHAPTER 3 Using Classes and Objects

//**
// CircleStats.java Author: Lewis/Loftus
//
// Demonstrates the formatting of decimal values using the
// DecimalFormat class.
//**

import java.util.Scanner;
import java.text.DecimalFormat;

public class CircleStats
{
 //---
 // Calculates the area and circumference of a circle given its
 // radius.
 //---
 public static void main (String[] args)
 {
 int radius;
 double area, circumference;

 Scanner scan = new Scanner (System.in);

 System.out.print ("Enter the circle's radius: ");
 radius = scan.nextInt();

 area = Math.PI * Math.pow(radius, 2);
 circumference = 2 * Math.PI * radius;

 // Round the output to three decimal places
 DecimalFormat fmt = new DecimalFormat ("0.###");

 System.out.println ("The circle's area: " + fmt.format(area));
 System.out.println ("The circle's circumference: "
 + fmt.format(circumference));
 }
}

O U T P U T

Enter the circle's radius: 5
The circle's area: 78.54
The circle's circumference: 31.416

L I S T I N G 3 . 5

3.6 Formatting Output 137

name . The values of id and name are inserted into the string, producing a result
such as:

 ID: 24036 Name: Larry Flagelhopper

 The printf method was added to Java to mirror a similar function used in
programs written in the C programming language. It makes it easier for a pro-
grammer to translate (or migrate) an existing C program into Java.

 Older software that still has value is called a legacy system . Main-
taining a legacy system is often a costly effort because, among other
things, it is based on older technologies. But in many cases, main-
taining a legacy system is still more cost effective than migrating it
to new technology, such as writing it in a newer language. Adding
the printf method is an attempt to make such migrations easier, and therefore
less costly, by providing the same kind of output statement that C programmers
have come to rely on.

 However, using the printf method is not a particularly clean object-oriented
solution to the problem of formatting output, so we avoid its use in this book.

 SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 3.25 Describe how you request a NumberFormat object for use within a pro-
gram.

 SR 3.26 Suppose that in your program you have a double variable named
cost . You want to output the value stored in cost formatted as the
currency of the current locale.

 a. Write a code statement that declares and requests a NumberFormat
object named moneyFormat that can be used to represent currency
in the format of the current locale.

 b. Write a code statement that uses the moneyFormat object and prints
the value of cost , formatted as the currency of the current locale.

 c. What would be the output from the statement you wrote in part
(b) if the value in cost is 54.89 and your computer’s locale is set
to the United States? What if your computer’s locale is set to the
United Kingdom?

SR 3.27 What are the steps to output a floating point value as a percentage
using Java’s formatting classes?

SR 3.28 Write code statements that prompt for and read in a double value from
the user, and then print the result of taking the square root of the abso-
lute value of the input value. Output the result to two decimal places.

 KEY CONCEPT
 The printf method was added to
Java to support the migration of
legacy systems.

138 CHAPTER 3 Using Classes and Objects

3.7 Enumerated Types

 Java provides the ability to define an enumerated type , which can then be used as
the type of a variable when it is declared. An enumerated type establishes all pos-
sible values of a variable of that type by listing, or enumerating, them. The values
are identifiers, and can be anything desired.

 For example, the following declaration defines an enumerated type called
 Season , whose possible values are winter , spring , summer , and fall :

 enum Season {winter, spring, summer, fall}

 There is no limit to the number of values that you can list for an enumerated
type. Once the type is defined, a variable can be declared of that type:

 Season time;

 The variable time is now restricted in the values it can take on.
It can hold one of the four Season values, but nothing else. Java
enumerated types are considered to be type-safe , meaning that any
attempt to use a value other than one of the enumerated values will
result in a compile-time error.

 The values are accessed through the name of the type. For example:

 time = Season.spring;

 Enumerated types can be quite helpful in situations in which you have a rela-
tively small number of distinct values that a variable can assume. For example,
suppose we wanted to represent the various letter grades a student could earn. We
might declare the following enumerated type:

 enum Grade {A, B, C, D, F}

 Any initialized variable that holds a Grade is guaranteed to have one of those valid
grades. That’s better than using a simple character or string variable to represent
the grade, which could take on any value.

 Suppose we also wanted to represent plus and minus grades, such as A– and
B+. We couldn’t use A– or B+ as values, because they are not valid identifiers (the
characters '-' and '+' cannot be part of an identifier in Java). However, the same
values could be represented using the identifiers Aminus , Bplus , etc.

 Internally, each value in an enumerated type is stored as an integer, which is
referred to as its ordinal value . The first value in an enumerated type has an ordi-
nal value of 0, the second one has an ordinal value of 1, the third one 2, and so on.
The ordinal values are used internally only. You cannot assign a numeric value to
an enumerated type, even if it corresponds to a valid ordinal value.

 KEY CONCEPT
 Enumerated types are type-safe,
ensuring that invalid values will not
be used.

 3.7 Enumerated Types 139

An enumerated type is a special kind of class, and the variables of an enumer-
ated type are object variables. As such, there are a few methods associated with
all enumerated types. The ordinal method returns the numeric value associated
with a particular enumerated type value. The name method returns the name of
the value, which is the same as the identifier that defines the value.

Listing 3.6 shows a program called IceCream that declares an enumerated type
and exercises some of its methods. Because enumerated types are special types of
classes, they are not defined within a method. They can be defined either at the
class level (within the class but outside a method), as in this example, or at the
outermost level.

We explore enumerated types further in Chapter 6.

//**
// IceCream.java Author: Lewis/Loftus
//
// Demonstrates the use of enumerated types.
//**

public class IceCream
{
 enum Flavor {vanilla, chocolate, strawberry, fudgeRipple, coffee,
 rockyRoad, mintChocolateChip, cookieDough}

 //---
 // Creates and uses variables of the Flavor type.
 //---
 public static void main (String[] args)
 {
 Flavor cone1, cone2, cone3;

 cone1 = Flavor.rockyRoad;
 cone2 = Flavor.chocolate;

 System.out.println ("cone1 value: " + cone1);
 System.out.println ("cone1 ordinal: " + cone1.ordinal());
 System.out.println ("cone1 name: " + cone1.name());

 System.out.println ();
 System.out.println ("cone2 value: " + cone2);
 System.out.println ("cone2 ordinal: " + cone2.ordinal());
 System.out.println ("cone2 name: " + cone2.name());

L I S T I N G 3 . 6

140 CHAPTER 3 Using Classes and Objects

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 3.29 Write the declaration of an enumerated type that represents movie ratings.

SR 3.30 Suppose that an enumerated type called CardSuit has been defined as
follows:

enum CardSuit {clubs, diamonds, hearts, spades}

 What is the output of the following code sequence?

CardSuit card1, card2;
card1 = CardSuit.clubs;
card2 = CardSuit.hearts;
System.out.println (card1);
System.out.println (card2.name());
System.out.println (card1.ordinal());
System.out.println (card2.ordinal());

SR 3.31 Why use an enumerated type such as CardSuit defined in the previous
question? Why not just use String variables and assign them values
such as “hearts”?

 cone3 = cone1;

 System.out.println ();
 System.out.println ("cone3 value: " + cone3);
 System.out.println ("cone3 ordinal: " + cone3.ordinal());
 System.out.println ("cone3 name: " + cone3.name());
 }
}

O U T P U T

cone1 value: rockyRoad
cone1 ordinal: 5
cone1 name: rockyRoad

cone2 value: chocolate
cone2 ordinal: 1
cone2 name: chocolate

cone3 value: rockyRoad
cone3 ordinal: 5
cone3 name: rockyRoad

L I S T I N G 3 . 6 continued

3.8 Wrapper Classes 141

3.8 Wrapper Classes

 As we’ve discussed previously, Java represents data by using primitive types (such
as int , double , char , and boolean) in addition to classes and objects. Having two
categories of data to manage (primitive values and object references) can present
a challenge in some circumstances. For example, we might create an object that
serves as a container to hold various types of other objects. However, in a specific
situation, we may want it to hold a simple integer value. In these cases we need
to “wrap” a primitive value into an object.

 A wrapper class represents a particular primitive type. For instance, the
 Integer class represents a simple integer value. An object created from the
 Integer class stores a single int value. The constructors of the wrapper classes
accept the primitive value to store. For example:

 Integer ageObj = new Integer(40);

 Once this declaration and instantiation are performed, the ageObj
object effectively represents the integer 40 as an object. It can be used
wherever an object is needed in a program rather than a primitive
type.

 For each primitive type in Java there exists a corresponding wrapper class in
the Java class library. All wrapper classes are defined in the java.lang package.
 Figure 3.8 shows the wrapper class that corresponds to each primitive type.

 Note that there is even a wrapper class that represents the type void . However,
unlike the other wrapper classes, the Void class cannot be instantiated. It simply
represents the concept of a void reference.

 FIGURE 3.8 Wrapper classes in the Java class library

byte

short

int

long

float

double

char

boolean

void

Byte

Short

Integer

Long

Float

Double

Character

Boolean

Void

Primitive Type Wrapper Class

 KEY CONCEPT
 A wrapper class allows a primitive
value to be managed as an object.

142 CHAPTER 3 Using Classes and Objects

Wrapper classes also provide various methods related to the management of
the associated primitive type. For example, the Integer class contains methods
that return the int value stored in the object and that convert the stored value to
other primitive types. Figure 3.9 lists some of the methods found in the Integer
class. The other wrapper classes have similar methods.

Note that the wrapper classes also contain static methods that can be invoked
independent of any instantiated object. For example, the Integer class contains a
static method called parseInt to convert an integer that is stored in a String to
its corresponding int value. If the String object str holds the string "987", the
following line of code converts the string into the integer value 987 and stores that
value in the int variable num:

num = Integer.parseInt(str);

The Java wrapper classes often contain static constants that are helpful as
well. For example, the Integer class contains two constants, MIN_VALUE and
MAX_VALUE, that hold the smallest and largest int values, respectively. The other
wrapper classes contain similar constants for their types.

FIGURE 3.9 Some methods of the Integer class

Integer (int value)
 Constructor: creates a new Integer object storing the specified value.

byte byteValue ()
double doubleValue ()
float floatValue ()
int intValue ()
long longValue ()
 Return the value of this Integer as the corresponding primitive type.

static int parseInt (String str)
 Returns the int corresponding to the value stored in the
 specified string.

static String toBinaryString (int num)
static String tohexString (int num)
static String toOctalString (int num)
 Returns a string representation of the specified integer value in the
 corresponding base.

3.9 Components and Containers 143

 Autoboxing
Autoboxing is the automatic conversion between a primitive value and a cor-
responding wrapper object. For example, in the following code, an int value is
assigned to an Integer object reference variable:

 Integer obj1;
int num1 = 69;
 obj1 = num1; // automatically creates an Integer object

 The reverse conversion, called unboxing, also occurs automatically when needed.
For example:

 Integer obj2 = new Integer(69);
 int num2;
 num2 = obj2; // automatically extracts the int value

 Assignments between primitive types and object types
are generally incompatible. The ability to autobox occurs
only between primitive types and corresponding wrapper
classes. In any other case, attempting to assign a primitive
value to an object reference variable, or vice versa, will
cause a compile-time error.

 SELF-REVIEW QUESTIONS (see answers in Appendix N)

 SR 3.32 How can we represent a primitive value as an object?

 SR 3.33 What wrapper classes correspond to each of the following primitive
types: byte, int, double, char, and boolean ?

 SR 3.34 Suppose that an int variable named number has been declared and ini-
tialized and an Integer variable named holdNumber has been declared.
Show two approaches in Java for having holdNumber represent the
value stored in number .

 SR 3.35 Write a statement that prints out the largest possible int value.

 3.9 Components and Containers

 In the Graphics Track sections of Chapter 2 we introduced the Java capabilities
to draw shapes using the Graphics and Color classes from the Java standard
class library. We also defined the concept of an applet, a Java program that is
intended to be embedded in a Web page and executed through a browser. Recall
that, in contrast to applets, Java applications are stand-alone programs that are
not executed through the Web.

 KEY CONCEPT
 Autoboxing provides automatic con-
versions between primitive values
and corresponding wrapper objects.

 Most of the example programs we’ve looked at so far have been Java applica-
tions. More specifically, they have been command-line applications , which inter-
act with the user only through simple text prompts. A Java application can have
graphical components as well. Throughout the rest of the book, in the Graphics
Track sections at the end of each chapter, we will explore the capabilities of Java
to create programs with graphical user interfaces (GUIs). In this chapter we estab-
lish the basic issues regarding graphics-based applications.

 A GUI component is an object that represents a screen element that is used to
display information or to allow the user to interact with the program in a certain
way. GUI components include labels, buttons, text fields, scroll bars, and menus.

 Java components and other GUI-related classes are defined primarily in two
packages: java.awt and javax.swing . (Note the x in javax.swing .) The Abstract
Windowing Toolkit (AWT) was the original Java GUI package. It still contains many
important classes, such as the Color class that we used in Chapter 2 . The Swing pack-
age was added later and provides components that are more versatile than those of
the AWT package. Both packages are needed for GUI development, but we will use
Swing components whenever there is an option.

 A container is a special type of component that is used
to hold and organize other components. Frames and panels
are two examples of Java containers. Let’s explore them in
more detail.

 Frames and Panels
 A frame is a container that is used to display GUI-based Java applications. A
frame is displayed as a separate window with its own title bar. It can be repo-
sitioned on the screen and resized as needed by dragging it with the mouse. It
contains small buttons in the corner of the frame that allow the frame to be mini-
mized, maximized, and closed. A frame is defined by the JFrame class.

 A panel is also a container. However, unlike a frame, it cannot be displayed
on its own. A panel must be added to another container for
it to be displayed. Generally a panel doesn’t move unless you
move the container that it’s in. Its primary role is to help
organize the other components in a GUI. A panel is defined
by the JPanel class.

 We can classify containers as either heavyweight or lightweight. A heavyweight
container is one that is managed by the underlying operating system on which the
program is run, whereas a lightweight container is managed by the Java program
itself. Occasionally this distinction will be important as we explore GUI develop-
ment. A frame is a heavyweight component, and a panel is a lightweight component.

144 CHAPTER 3 Using Classes and Objects

 KEY CONCEPT
 Containers are special GUI compo-
nents that hold and organize other
components.

 KEY CONCEPT
 A frame is displayed as a separate
window, but a panel can be displayed
only as part of another container.

Heavyweight components are more complex than lightweight components in
general. A frame, for example, has multiple panes, which are responsible for vari-
ous characteristics of the frame window. All visible elements of a Java interface
are displayed in a frame’s content pane.

Generally, we can create a Java GUI-based application by creating a frame in
which the program interface is displayed. The interface is often organized onto a
primary panel, which is added to the frame’s content pane. The components in the
primary panel are often organized using other panels as needed.

Containers are generally not useful unless they help us organize and display
other components. Let’s examine another fundamental GUI component. A label
is a component that displays a line of text in a GUI. A label can also display an
image, a topic discussed later in this chapter. Usually, labels are used to display
information or identify other components in the GUI. Labels can be found in
almost every GUI-based program.

Let’s look at an example that uses frames, panels, and labels. When the pro-
gram in Listing 3.7 is executed, a new window appears on the screen displaying
a phrase. The text of the phrase is displayed using two label components. The
labels are organized in a panel, and the panel is displayed in the content pane of
the frame.

The JFrame constructor takes a string as a parameter, which it displays in the
title bar of the frame. The call to the setDefaultCloseOperation method deter-
mines what will happen when the close button (the X) in the corner of the frame
is clicked. In most cases we’ll simply let that button terminate the program, as
indicated by the EXIT_ON_CLOSE constant.

A panel is created by instantiating the JPanel class. The background color of
the panel is set using the setBackground method. The setPreferredSize method
accepts a Dimension object as a parameter, which is used to indicate the width
and height of the component in pixels. The size of many components can be set
this way, and most also have setMinimumSize and setMaximumSize methods to
help control the look of the interface.

The labels are created by instantiating the JLabel class, passing to its con-
structor the text of the label. In this program two separate label components are
created.

Containers have an add method that allows other components to be added
to them. Both labels are added to the primary panel and are from that point on
considered to be part of that panel. The order in which components are added to
a container often matters. In this case, it determines which label appears above
the other.

Finally, the content pane of the frame is obtained using the getContentPane
method, immediately after which the add method of the content pane is called to

 3.9 Components and Containers 145

//**
// Authority.java Author: Lewis/Loftus
//
// Demonstrates the use of frames, panels, and labels.
//**

import java.awt.*;
import javax.swing.*;

public class Authority
{
 //---
 // Displays some words of wisdom.
 //---
 public static void main (String[] args)
 {
 JFrame frame = new JFrame ("Authority");

 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

 JPanel primary = new JPanel();
 primary.setBackground (Color.yellow);
 primary.setPreferredSize (new Dimension(250, 75));

 JLabel label1 = new JLabel ("Question authority,");
 JLabel label2 = new JLabel ("but raise your hand first.");

 primary.add (label1);
 primary.add (label2);

 frame.getContentPane().add(primary);
 frame.pack();
 frame.setVisible(true);
 }
}

D I S P L A Y

L I S T I N G 3 . 7

146 CHAPTER 3 Using Classes and Objects

add the panel. The pack method of the frame sets its size appropriately based on
its contents—in this case the frame is sized to accommodate the size of the panel it
contains. This is a better approach than trying to set the size of the frame explic-
itly, which should change as the components within the frame change. The call to
the setVisible method causes the frame to be displayed on the monitor screen.

 The Authority program is not interactive. In general, labels do not allow the
user to interact with a program. We will examine interactive GUI components in
the next chapter.

 However, you can interact with the frame itself in various ways. You can move
the entire frame to another point on the desktop by grabbing the title bar of the
frame and dragging it with the mouse. You can also resize the frame by dragging
the bottom-right corner of the frame. Note what happens when the frame is made
wider: the second label pops up next to the first label.

 Every container is managed by an object called a layout
manager that determines how the components in the con-
tainer are laid out. The layout manager is consulted when
important things happen to the interface, such as when the
frame is resized.

 Unless you specify otherwise, the components in a panel will try to arrange
themselves next to one another in a row, and a component will move down to the
next row only when the width of the panel won’t accommodate it. Experiment
with this program to see how the layout manager changes the organization of
the labels as the window size is changed. Layout managers are discussed in more
detail in the Graphics Track sections of Chapter 7 .

 SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 3.36 What is the difference between a frame and a panel?

SR 3.37 Select the term from the following list that best matches each of the
following phrases:

 container, content pane, frame, heavyweight, label, layout manager,
lightweight, panel

 a. A component that is used to hold and organize other components.
 b. A container displayed in its own window with a title bar.
 c. Its primary role is to help organize other components in a GUI; it

must be added to another container to be displayed.
 d. This type of component is managed by the underlying operating

system.
 e. This type of component is managed by the Java program itself.
 f. The part of a frame that displays visible elements.

3.9 Components and Containers 147

 KEY CONCEPT
 Every container is managed by a
layout manager.

 g. A component that displays a line of text in a GUI.
 h. Determines how the components in a container are arranged on

the screen.

SR 3.38 Run the Authority program. Describe what happens if you resize the
frame by dragging the bottom-right corner towards the right. Explain.

SR 3.39 Which of the following statements best describes how the GUI of the
Authority program is constructed?

■ A frame is added to a panel, which is added to two labels.
■ Labels are added to a panel, which is added to the content pane of

a frame.
■ Frames, panels, and labels are added to the foreground.
■ A panel displays two labels to the user.

SR 3.40 What is the result of separately making each of the following changes
to the Authority program? You may make the change, compile and
run the program, and observe and report the results. Briefly explain
what you observe.

 a. The dimensions passed to the setPreferredSize method are
(300, 300) instead of (250, 75).

 b. The background color is set to black instead of yellow.
 c. The order of the two label instantiation statements is reversed (i.e.,

first you create label2 as a new JLabel , passing it the string "but
raise your hand first." , and then you create label1 as a new
JLabel , passing it the string "Question authority,").

 d. The order of the two primary add statements is reversed (i.e., first
you add label2 to the primary panel, and then you add label1) .

 3.10 Nested Panels

 In the previous section, we saw an example in which two labels were contained
in a panel that was contained in a frame. Such relationships make up the contain-
ment hierarchy of an interface, which can be as intricate as needed to create the
visual effect desired.

 In particular, it is common to have multiple layers of nested
panels to organize and group components in various ways. While
you shouldn’t include unnecessary components in the contain-
ment hierarchy, don’t hesitate to include extra scaffolding in the
creation of an interface to help achieve the effect you want.

148 CHAPTER 3 Using Classes and Objects

 KEY CONCEPT
 Panels can be nested to create an
intricate containment hierarchy of
components.

The program in Listing 3.8, NestedPanels, creates two subpanels, each con-
taining a label. Both subpanels are put onto another panel, which is then added
to the content pane of the frame.

//**
// NestedPanels.java Author: Lewis/Loftus
//
// Demonstrates a basic component hierarchy.
//**

import java.awt.*;
import javax.swing.*;

public class NestedPanels
{
 //---
 // Presents two colored panels nested within a third.
 //---
 public static void main (String[] args)
 {
 JFrame frame = new JFrame ("Nested Panels");
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

 // Set up first subpanel
 JPanel subPanel1 = new JPanel();
 subPanel1.setPreferredSize (new Dimension(150, 100));
 subPanel1.setBackground (Color.green);
 JLabel label1 = new JLabel ("One");
 subPanel1.add (label1);

 // Set up second subpanel
 JPanel subPanel2 = new JPanel();
 subPanel2.setPreferredSize (new Dimension(150, 100));
 subPanel2.setBackground (Color.red);
 JLabel label2 = new JLabel ("Two");
 subPanel2.add (label2);

 // Set up primary panel
 JPanel primary = new JPanel();
 primary.setBackground (Color.blue);
 primary.add (subPanel1);
 primary.add (subPanel2);

L I S T I N G 3 . 8

 3.10 Nested Panels 149

Note that the primary panel in the program was not explicitly sized. It sized
itself as needed to accommodate the two panels contained in it. Also note that
the subpanels have a buffer around them through which the blue of the primary
panel can be seen. Such spacing is a function of the layout manager that is used
to govern the container and the characteristics set for the components themselves.
These issues are explored further in later Graphics Track sections.

As you did with the previous example, execute and experiment with this one.
Resize the frame to see the effect on the components. Note that the size of the
subpanels stays fixed, and that the orientation of the two panels changes depend-
ing on the width of the primary panel (which expands as the frame expands).

After you are comfortable with the way the components are laid out relative
to each other, change the background color of all panels to the same color (say,
green) to see how the distinction between panels can be invisible if the interface
is designed accordingly.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 3.41 What is the containment hierarchy of a Java graphical user interface?

SR 3.42 In the NestedPanels program, how many panels are created? What
are the names of the panel variables?

 frame.getContentPane().add(primary);
 frame.pack();
 frame.setVisible(true);
 }
}

D I S P L A Y

L I S T I N G 3 . 8 continued

150 CHAPTER 3 Using Classes and Objects

Example using
frames and
panels.

VideoNote

SR 3.43 In the NestedPanels program, which panels are added to another
panel? Which panel are they added to? Which panel is explicitly added
to the content pane of the frame?

 3.11 Images

 Images often play an important role in graphics-based software. Java has the abil-
ity to use JPEG and GIF images in various ways. The Graphics class contains a
 drawImage method that allows you to draw the image just as you would draw a
shape or character string. An image can also be incorporated into a label com-
ponent. Let’s explore the relationship between images and labels in more detail.

 As we’ve seen in previous sections, a label defined by the
 JLabel class can be used to provide information to the user
or to describe other components in an interface. A JLabel
can also contain an image. That is, a label can be composed
of text, an image, or both.

 The ImageIcon class is used to represent an image that is included in a label.
The ImageIcon constructor takes the name of the image file and loads it into the
object. ImageIcon objects can be made using either JPEG or GIF images.

 The alignment of the text and image within the label can be set explicitly, using
either the JLabel constructor or specific methods. Similarly, we can set the posi-
tion of the text relative to the image.

 The LabelDemo program shown in Listing 3.9 displays several labels. Each label
shows its text and image in different orientations.

 The third parameter passed to the JLabel constructor defines the horizontal
positioning of the label within the space allowed for the label in the panel. The
 SwingConstants interface contains several constants used by various Swing com-
ponents, making it easier to refer to them.

 The orientation of the label’s text and image is explicitly set using the
 setHorizontalTextPosition and setVerticalTextPosition methods. As
shown in the case of the first label, the default horizontal position for text is on
the right (image on the left), and the default vertical position for text is centered
relative to the image.

 Don’t confuse the horizontal positioning of the label in the container with the set-
ting of the orientation between the text and the image. The third parameter of the
constructor determines the first, and the explicit method calls determine the second.

 By putting an image in a label, it becomes part of a component that gets laid
out with all other components in a container, instead of being drawn in a particu-
lar place. This is an appropriate design decision: whether to draw an image using

3.11 Images 151

 KEY CONCEPT
 A label can contain text, an image,
or both.

//**
// LabelDemo.java Author: Lewis/Loftus
//
// Demonstrates the use of image icons in labels.
//**

import java.awt.*;
import javax.swing.*;

public class LabelDemo
{
 //---
 // Creates and displays the primary application frame.
 //---
 public static void main (String[] args)
 {
 JFrame frame = new JFrame ("Label Demo");
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

 ImageIcon icon = new ImageIcon ("devil.gif");

 JLabel label1, label2, label3;

 label1 = new JLabel ("Devil Left", icon, SwingConstants.CENTER);

 label2 = new JLabel ("Devil Right", icon, SwingConstants.CENTER);
 label2.setHorizontalTextPosition (SwingConstants.LEFT);
 label2.setVerticalTextPosition (SwingConstants.BOTTOM);

 label3 = new JLabel ("Devil Above", icon, SwingConstants.CENTER);
 label3.setHorizontalTextPosition (SwingConstants.CENTER);
 label3.setVerticalTextPosition (SwingConstants.BOTTOM);

 JPanel panel = new JPanel();
 panel.setBackground (Color.cyan);
 panel.setPreferredSize (new Dimension (200, 250));
 panel.add (label1);
 panel.add (label2);
 panel.add (label3);
 frame.getContentPane().add(panel);
 frame.pack();
 frame.setVisible(true);
 }
}

L I S T I N G 3 . 9

152 CHAPTER 3 Using Classes and Objects

the drawImage method of the Graphics class or to use a label to display an image.
Your choice should be based on the particular needs of the program.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 3.44 How many frames, panels, image icons, and labels are declared in the
LabelDemo program?

SR 3.45 Consider one of the label instantiation statements from the LabelDemo
program:

D I S P L A Y

L I S T I N G 3 . 9 continued

 3.11 Images 153

label2 = new JLabel ("Devil Right", icon, SwingConstants.CENTER);

 Explain the role of each of the three parameters passed to the JLabel
constructor.

SR 3.46 What is the result of separately making each of the following changes
to the LabelDemo program? You may make the change, compile and
run the program, and observe and report the results. Briefly explain
what you observe.

a. Change the third parameter of each of the three JLabel construc-
tor calls to SwingConstants.LEFT.

b. Change the horizontal text position of label2 from LEFT to RIGHT.
c. Change the horizontal text position of label2 from LEFT to

BOTTOM.
d. Change the vertical text position of label3 from BOTTOM to

CENTER.

154 CHAPTER 3 Using Classes and Objects

 Summary of Key Concepts 155

Summary of Key Concepts
■ The new operator returns a reference to a newly created object.

■ Multiple reference variables can refer to the same object.

■ Usually a method is executed on a particular object, which affects the results.

■ A class library provides useful support when developing programs.

■ The Java standard class library is organized into packages.

■ All classes of the java.lang package are automatically imported for every
program.

■ A pseudorandom number generator performs a complex calculation to
create the illusion of randomness.

■ All methods of the Math class are static, meaning they are invoked through
the class name.

■ The printf method was added to Java to support the migration of legacy
systems.

■ Enumerated types are type-safe, ensuring that invalid values will not be used.

■ A wrapper class allows a primitive value to be managed as an object.

■ Autoboxing provides automatic conversions between primitive values and
corresponding wrapper objects.

■ Containers are special GUI components that hold and organize other
components.

■ A frame is displayed as a separate window, but a panel can be displayed
only as part of another container.

■ Every container is managed by a layout manager.

■ Panels can be nested to create an intricate containment hierarchy of com-
ponents.

■ A label can contain text, an image, or both.

Exercises
Visit www.myprogramminglab.com to complete many of these Exercises
online and get instant feedback.

EX 3.1 Write a statement that prints the number of characters in a
String object called overview.

EX 3.2 Write a statement that prints the 8th character of a String
object called introduction.

www.myprogramminglab.com

156 CHAPTER 3 Using Classes and Objects

EX 3.3 Write a declaration for a String variable called change and ini-
tialize it to the characters stored in another String object called
original with all 'e' characters changed to 'j'.

EX 3.4 What output is produced by the following code fragment?

String m1, m2, m3;
m1 = "Quest for the Holy Grail";
m2 = m1.toLowerCase();
m3 = m1 + " " + m2;
System.out.println (m3.replace('h', 'z'));

EX 3.5 What is the effect of the following import statement?

import java.awt.*;

EX 3.6 Assuming that a Random object has been created called
generator, what is the range of the result of each of the follow-
ing expressions?

a. generator.nextInt(20)
b. generator.nextInt(8) + 1
c. generator.nextInt(45) + 10
d. generator.nextInt(100) − 50

EX 3.7 Write code to declare and instantiate an object of the Random
class (call the object reference variable rand). Then write a list
of expressions using the nextInt method that generates random
numbers in the following specified ranges, including the end-
points. Use the version of the nextInt method that accepts a
single integer parameter.

a. 0 to 10
b. 0 to 500
c. 1 to 10
d. 1 to 500
e. 25 to 50
f. -10 to 15

EX 3.8 Write an assignment statement that computes the square root of
the sum of num1 and num2 and assigns the result to num3.

EX 3.9 Write a single statement that computes and prints the absolute
value of total.

EX 3.10 Write code statements to create a DecimalFormat object that
will round a formatted value to four decimal places. Then write
a statement that uses that object to print the value of result,
properly formatted.

 Programming Projects 157

EX 3.11 Write code statements that prompt for and read a double value
from the user, and then print the result of raising that value to
the fourth power. Output the results to three decimal places.

EX 3.12 Write a declaration for an enumerated type that represents the
days of the week.

Programming Projects
Visit www.myprogramminglab.com to complete many of these Programming
Projects online and get instant feedback.

PP 3.1 Write an application that prompts for and reads the user’s first
and last name (separately). Then print a string composed of
the first letter of the user’s first name, followed by the first five
characters of the user’s last name, followed by a random number
in the range 10 to 99. Assume that the last name is at least five
letters long. Similar algorithms are sometimes used to generate
usernames for new computer accounts.

PP 3.2 Write an application that prints the sum of cubes. Prompt for
and read two integer values and print the sum of each value
raised to the third power.

PP 3.3 Write an application that creates and prints a random phone
number of the form XXX–XXX–XXXX. Include the dashes in
the output. Do not let the first three digits contain an 8 or 9
(but don’t be more restrictive than that), and make sure that the
second set of three digits is not greater than 742. Hint: Think
through the easiest way to construct the phone number. Each
digit does not have to be determined separately.

PP 3.4 Write an application that reads the (x,y) coordinates for two
points. Compute the distance between the two points using the
following formula:

Distance = (x2 – x1)2 + (y2 – y1)2

PP 3.5 Write an application that reads the radius of a sphere and prints
its volume and surface area. Use the following formulas. Print
the output to four decimal places. r represents the radius.

 Volume =
4
3

pr3

Surface Area = 4pr2

Developing a solution
of PP 3.5.

VideoNote

www.myprogramminglab.com

158 CHAPTER 3 Using Classes and Objects

PP 3.6 Write an application that reads the lengths of the sides of a trian-
gle from the user. Compute the area of the triangle using Heron’s
formula (below), in which s represents half of the perimeter of
the triangle and a, b, and c represent the lengths of the three
sides. Print the area to three decimal places.

Area = s s a s b s c()(–)(–)–

PP 3.7 Write an application that generates a random integer in the range
20 to 40, inclusive, and displays the sine, cosine, and tangent of
that number.

PP 3.8 Write an application that generates a random integer radius (r)
and height (h) for a cylinder in the range 1 to 10, inclusive, and
then computes the volume and surface area of the cylinder.

Volume = pr2h

 Area = 2prh

PP 3.9 Write an application that displays a frame containing two labels
that display your name, one for your first name and one for your
last. Experiment with the size of the window to see the labels
change their orientation to each other.

PP 3.10 Write an application that displays a frame containing two panels.
Each panel should contain two images (use four unique images—
your choice). Fix the size of the first panel so that both of its
images remain side by side. Allow the other panel to change size
as needed. Experiment with the size of the window to see the
images change orientation. Make sure you understand why the
application behaves as it does.

PP 3.11 Modify the LabelDemo program so that it displays a fourth label,
with the text of the label centered above the image.

159

C H A P T E R O B J E C T I V E S
● Discuss the structure and content of a class definition.

● Establish the concept of object state using instance data.

● Describe the effect of visibility modifiers on methods and data.

● Explore the structure of a method definition, including parameters and
return values.

● Discuss the structure and purpose of a constructor.

● Explore the creation of graphical objects.

● Introduce the concepts needed to create an interactive graphical user
interface.

● Explore some basic GUI components and events.

In Chapter 3, we used classes and objects for the various services

they provide. That is, we used the predefined classes in the Java class

library that are provided to us to make the process of writing pro-

grams easier. In this chapter, we address the heart of object-oriented

programming: writing our own classes to define our own objects.

This chapter explores the basics of class definitions, including the

structure of methods and the scope and encapsulation of data. The

Graphics Track sections of this chapter discuss how to write classes

that have graphical representations and introduce the issues necessary

to create a truly interactive graphical user interface.

Writing Classes 4

4.1 Classes and Objects Revisited

In Chapter 1, we introduced basic object-oriented concepts, including a brief
overview of objects and classes. In Chapter 3, we used several predefined classes
from the Java standard class library to create objects and use them for the par-
ticular functionality they provided.

In this chapter, we turn our attention to writing our own classes. Although
existing class libraries provide many useful classes, the essence of object-oriented
program development is the process of designing and implementing our own
classes to suit our specific needs.

Recall the basic relationship between an object and a class: a class is a blueprint
of an object. The class represents the concept of an object, and any object created
from that class is a realization of that concept.

For example, from Chapter 3 we know that the String class represents a
concept of a character string, and that each String object represents a particular
string that contains specific characters.

Let’s consider another example. Suppose a class called Student represents a
student at a university. An object created from the Student class would repre-
sent a particular student. The Student class represents the general concept of
a student, and every object created from that class represents an actual student
attending the school. In a system that helps manage the business of a university,
we would have one Student class and thousands of Student objects.

Recall that an object has a state, which is defined by the values of the attributes
associated with that object. The attributes of a student may include the student’s
name, address, major, and grade point average. The Student class establishes that
each student has these attributes. Each Student object stores the values of these
attributes for a particular student. In Java, an object’s attributes are defined by
variables declared within a class.

An object also has behaviors, which are defined by the operations associated with
that object. The operations of a student would include the ability to update that stu-
dent’s address and compute that student’s current grade point average. The Student
class defines the operations, such as the details of how a grade point average is com-
puted. These operations can then be executed on (or by) a particular Student object.
Note that the behaviors of an object may modify the state of that object. In Java, an
object’s operations are defined by methods declared within a class.

Figure 4.1 lists some examples of classes, with some attributes and operations
that might be defined for objects of those classes. It’s up to the program designer
to determine what attributes and operations are needed, which depends on the
purpose of the program and the role a particular object plays in that purpose.
Consider other attributes and operations you might include for these examples.

160 CHAPTER 4 Writing Classes

 4.1 Classes and Objects Revisited 161

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 4.1 What is an attribute?

SR 4.2 What is an operation?

SR 4.3 List some attributes and operations that might be defined for a class
called Book that represents a book in a library.

SR 4.4 True or False? Explain.

a. We should use only classes from the Java standard class library
when writing our programs—there is no need to define or use
other classes.

b. An operation on an object can change the state of an object.
c. The current state of an object can affect the result of an operation

on that object.
d. In Java, the state of an object is represented by its methods.

Class Attributes Operations

Student

Length
Width
Color

Rectangle

Material
Length
Width
Height

Aquarium

Airline
Flight number
Origin city
Destination city
Current status

Flight

Name
Department
Title
Salary

Employee

Name
Address
Major
Grade point average

Set length
Set width
Set color

Set material
Set length
Set width
Set height
Compute volume
Compute filled weight

Set airline
Set flight number
Determine status

Set department
Set title
Set salary
Compute wages
Compute bonus
Compute taxes

Set address
Set major
Compute grade point average

FIGURE 4.1 Examples of classes and some possible attributes and operations

162 CHAPTER 4 Writing Classes

4.2 Anatomy of a Class

In all of our previous examples, we’ve written a single class containing a single
main method. These classes represent small but complete programs. These pro-
grams often instantiated objects using predefined classes from the Java class
library and used those objects for the services they provide. Those predefined
classes are part of the program too, but we never really concern ourselves with
them other than to know how to interact with them. We simply trust them to
provide the services they promise.

Let’s look at another, similar example. The RollingDice class shown in
Listing 4.1 contains a main method that instantiates two Die objects (as in the
singular of dice). It then rolls the dice and prints the results. It also calls several
other methods provided by the Die class, such as the ability to explicitly set and
get the current face value of a die.

//**
// RollingDice.java Author: Lewis/Loftus
//
// Demonstrates the creation and use of a user-defined class.
//**

public class RollingDice
{
 //---
 // Creates two Die objects and rolls them several times.
 //---
 public static void main (String[] args)
 {
 Die die1, die2;
 int sum;

 die1 = new Die();
 die2 = new Die();

 die1.roll();
 die2.roll();
 System.out.println ("Die One: " + die1 + ", Die Two: " + die2);

 die1.roll();
 die2.setFaceValue(4);

L I S T I N G 4 . 1

4.2 Anatomy of a Class 163

 The primary difference between this example and previous examples is that the
Die class is not a predefined part of the Java class library. We have to write the
Die class ourselves, defining the services we want Die objects to perform, if this
program is to compile and run.

 Every class can contain data declarations and method declarations, as depicted
in Figure 4.2 . The data declarations represent the data that will be stored in each
object of the class. The method declarations define the services that those objects
will provide. Collectively, the data and methods of a class are called the members
of a class.

 The classes we’ve written in previous examples follow this model as well, but
contain no data at the class level and contain only one method (the main method).
We’ll continue to define classes like this, such as the RollingDice class, to define
the starting point of a program.

 True object-oriented programming, however, comes from defining classes
that represent objects with well-defined state and behavior. For
example, at any given moment a Die object is showing a particular
face value, which we could refer to as the state of the die. A Die
object also has various methods we can invoke on it, such as the
ability to roll the die or get its face value. These methods represent
the behavior of a die.

 System.out.println ("Die One: " + die1 + ", Die Two: " + die2);

 sum = die1.getFaceValue() + die2.getFaceValue();
 System.out.println ("Sum: " + sum);

 sum = die1.roll() + die2.roll();
 System.out.println ("Die One: " + die1 + ", Die Two: " + die2);
 System.out.println ("New sum: " + sum);
 }
 }

 O U T P U T

 Die One: 5, Die Two: 2
 Die One: 1, Die Two: 4
 Sum: 5
 Die One: 4, Die Two: 2
 New sum: 6

 L I S T I N G 4 . 1 continued

 KEY CONCEPT
 The heart of object-oriented pro-
gramming is defining classes that
represent objects with well-defined
state and behavior.

164 CHAPTER 4 Writing Classes

The Die class is shown in Listing 4.2. It contains two data values: an integer
constant (MAX) that represents the maximum face value of the die, and an inte-
ger variable (faceValue) that represents the current face value of the die. It also
contains a constructor called Die and four regular methods: roll, setFaceValue,
getFaceValue, and toString.

You will recall from Chapters 2 and 3 that constructors are special methods
that have the same name as the class. The Die constructor gets called when the
new operator is used to create a new instance of the Die class. The rest of the
methods in the Die class define the various services provided by Die objects.

We use a header block of documentation to explain the purpose of each
method in the class. This practice is not only crucial for anyone trying to under-
stand the software, it also separates the code visually so that it’s easy for the eye
to jump from one method to the next while reading the code.

Figure 4.3 lists the methods of the Die class. From this point of view, it looks
no different from any other class that we’ve used in previous examples. The only
important difference is that the Die class was not provided for us by the Java
standard class library. We wrote it ourselves.

The methods of the Die class include the ability to roll the die, producing a
new random face value. The roll method returns the new face value to the call-
ing method, but you can also get the current face value at any time using the
getFaceValue method. The setFaceValue method sets the face value explicitly,
as if you had reached over and turned the die to whatever face you wanted. The
toString method of any object gets called automatically whenever you pass the
object to a print or println method to obtain a string description of the object

Data
declarations

Method
declarations

int size, weight;
char category;
double value, cost;

FIGURE 4.2 The members of a class: data and method declarations

Dissecting the Die
class.

VideoNote

 4.2 Anatomy of a Class 165

//**
// Die.java Author: Lewis/Loftus
//
// Represents one die (singular of dice) with faces showing values
// between 1 and 6.
//**

public class Die
{
 private final int MAX = 6; // maximum face value

 private int faceValue; // current value showing on the die

 //---
 // Constructor: Sets the initial face value.
 //---
 public Die()
 {
 faceValue = 1;
 }

 //---
 // Rolls the die and returns the result.
 //---
 public int roll()
 {
 faceValue = (int)(Math.random() * MAX) + 1;

 return faceValue;
 }

 //---
 // Face value mutator.
 //---
 public void setFaceValue (int value)
 {
 faceValue = value;
 }

 //---
 // Face value accessor.
 //---
 public int getFaceValue()

L I S T I N G 4 . 2

166 CHAPTER 4 Writing Classes

to print. Therefore it’s usually a good idea to define a toString method for most
classes. The definitions of these methods have various parts, and we’ll dissect
them as we proceed through this chapter.

For the examples in this book, we usually store each class in its own file.
Java allows multiple classes to be stored in one file. If a file contains multiple
classes, only one of those classes can be declared using the reserved word public.
Furthermore, the name of the public class must correspond to the name of the file.
For instance, class Die is stored in a file called Die.java.

 {
 return faceValue;
 }

 //---
 // Returns a string representation of this die.
 //---
 public String toString()
 {
 String result = Integer.toString(faceValue);

 return result;
 }
}

L I S T I N G 4 . 2 continued

Die()
 Constructor: Sets the initial face value of the die to 1.

int roll()
 Rolls the die by setting the face value to a random number in the appropriate range.

void setFaceValue (int value)
 Sets the face value of the die to the specified value.

String toString()
 Returns a string representation of the die indicating its current face value.

int getFaceValue()
 Returns the current face value of the die.

FIGURE 4.3 Some methods of the Die class

4.2 Anatomy of a Class 167

 Instance Data
 Note that in the Die class, the constant MAX and the variable faceValue are declared
inside the class but not inside any method. The location at which a variable is
declared defines its scope , which is the area within a program in which that vari-
able can be referenced. By being declared at the class level (not within a method),
these variables and constants can be referenced in any method of the class.

 Attributes such as the variable faceValue are called instance
data because new memory space is reserved for that variable every
time an instance of the class that is created. Each Die object has its
own faceValue variable with its own data space. That’s how each
 Die object can have its own state. We see that in the output of the
 RollingDice program: one die has a face value of 5 and the other has a face value
of 2. That’s possible only because the memory space for the faceValue variable
is created for each Die object.

 We can depict this situation as follows:

die1 faceValue 5

die2 faceValue 2

 The die1 and die2 reference variables point to (that is, contain the address
of) their respective Die objects. Each object contains a faceValue variable
with its own memory space. Thus each object can store different values for its
instance data.

 Java automatically initializes any variables declared at the class level. For
example, all variables of numeric types such as int and double are initialized to
zero. However, despite the fact that the language performs this automatic initial-
ization, it is good practice to initialize variables explicitly (usually in a construc-
tor) so that anyone reading the code will clearly understand the intent.

 UML Class Diagrams
 Throughout this book we use UML diagrams to visualize relationships among
classes and objects. UML stands for the Unified Modeling Language , which
has become the most popular notation for representing the design of an object-
oriented program.

 Several types of UML diagrams exist, each designed to show specific aspects
of object-oriented programs. We focus primarily on UML class diagrams in this
book to show the contents of classes and the relationships among them.

 KEY CONCEPT
 The scope of a variable, which deter-
mines where it can be referenced,
depends on where it is declared.

168 CHAPTER 4 Writing Classes

 In a UML diagram, each class is represented as a rectangle, pos-
sibly containing three sections to show the class name, its attributes
(data), and its operations (methods). Figure 4.4 shows a class dia-
gram containing the classes of the RollingDice program.

 The arrow connecting the RollingDice and Die classes in
 Figure 4.4 indicates that a relationship exists between the classes. A

dotted arrow indicates that one class uses the methods of the other class. Other
types of object-oriented relationships between classes are shown with different types
of connecting lines and arrows. We’ll discuss these other relationships as we explore
the appropriate topics in the book.

 Keep in mind that UML is not designed specifically for Java programmers.
It is intended to be language independent. Therefore the syntax used in a UML
diagram is not necessarily the same as Java. For example, the type of a variable
is shown after the variable name, separated by a colon. Return types of methods
are shown the same way.

 UML diagrams are versatile. We can include whatever appropriate information
is desired, depending on the goal of a particular diagram. We might leave out the
data and method sections of a class, for instance, if those details aren’t relevant
for a particular diagram.

 UML diagrams allow you to visualize a program’s design. As our programs get
larger, made up of more and more classes, these visualizations become increasingly
helpful. We will explore new aspects of UML diagrams as the situation dictates.

 SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 4.5 What is the difference between an object and a class?

SR 4.6 Describe the instance data of the Die class.

SR 4.7 Which of the methods defined for the Die class can change the state
of a Die object—that is, which of the methods assign values to the
instance data?

RollingDice

main (args: String []) : void

Die

faceValue : int

roll() : int
setFaceValue (int value) : void
getFaceValue() : int
toString() : String

 FIGURE 4.4 A UML class diagram showing the classes involved in the
 RollingDice program

 KEY CONCEPT
 A UML class diagram helps us visual-
ize the contents of and relationships
among the classes of a program.

4.3 Encapsulation 169

SR 4.8 What happens when you pass an object to a print or println
method?

SR 4.9 What is the scope of a variable?

SR 4.10 What are UML diagrams designed to do?

4.3 Encapsulation

 We mentioned in our overview of object-oriented concepts in Chapter 1 that an
object should be self-governing . That is, the instance data of an object should be
modified only by that object. For example, the methods of the Die class should
be solely responsible for changing the value of the faceValue variable. We should
make it difficult, if not impossible, for code outside of a class to “reach in” and
change the value of a variable that is declared inside that class. This characteristic
is called encapsulation .

 An object should be encapsulated from the rest of the system.
It should interact with other parts of a program only through the
specific set of methods that define the services that that object pro-
vides. These methods define the interface between that object and the
program that uses it.

 Encapsulation is depicted graphically in Figure 4.5 . The code that uses an
object, sometimes called the client of an object, should not be allowed to access
variables directly. The client should call an object’s methods, and those methods
then interact with the data encapsulated within the object. For example, the main
method in the RollingDice program calls the roll method of the Die objects.
The main method should not (and in fact cannot) access the faceValue variable
directly.

Object

Client

Interface

Data

Methods

 FIGURE 4.5 A client interacting with the methods of an object

 KEY CONCEPT
 An object should be encapsulated,
guarding its data from inappropriate
access.

170 CHAPTER 4 Writing Classes

 In Java, we accomplish object encapsulation using modifiers . A modifier is a
Java reserved word that is used to specify particular characteristics of a program-
ming language construct. In Chapter 2 we discussed the final modifier, which is
used to declare a constant. Java has several modifiers that can be used in various
ways. Some modifiers can be used together, but some combinations are invalid.
We discuss various Java modifiers at appropriate points throughout this book,
and all of them are summarized in Appendix E.

 Visibility Modifiers
 Some of the Java modifiers are called visibility modifiers because they control
access to the members of a class. The reserved words public and private are vis-
ibility modifiers that can be applied to the variables and methods of a class. If a
member of a class has public visibility , it can be directly referenced from outside
of the object. If a member of a class has private visibility , it can be used anywhere
inside the class definition but cannot be referenced externally. A third visibility
modifier, protected , is relevant only in the context of inheritance. We discuss it
in Chapter 9 .

 Public variables violate encapsulation. They allow code external
to the class in which the data is defined to reach in and access or
modify the value of the data. Therefore, instance data should be
defined with private visibility. Data that is declared as private can
be accessed only by the methods of the class.

 The visibility we apply to a method depends on the purpose of that method.
Methods that provide services to the client must be declared with public visibility
so that they can be invoked by the client. These methods are sometimes referred
to as service methods . A private method cannot be invoked from outside the
class. The only purpose of a private method is to help the other methods of the
class do their job. Therefore they are sometimes referred to as support methods .

 The table in Figure 4.6 summarizes the effects of public and private visibility
on both variables and methods.

 Giving constants public visibility is generally considered acceptable because,
although their values can be accessed directly, they cannot be changed because
they were declared using the final modifier. Keep in mind that encapsulation
means that data values should not be able to be changed directly by another part
of the code. Because constants, by definition, cannot be changed, the encapsula-
tion issue is largely moot.

 UML class diagrams can show the visibility of a class member by preceding it
with a particular character. A member with public visibility is preceded by a plus
sign (+), and a member with private visibility is preceded by a minus sign (-).

 KEY CONCEPT
 Instance variables should be
declared with private visibility to
promote encapsulation.

4.3 Encapsulation 171

 Accessors and Mutators
 Because instance data is generally declared with private visibility, a
class usually provides services to access and modify data values. A
method such as getFaceValue is called an accessor method because
it provides read-only access to a particular value. Likewise, a method
such as setFaceValue is called a mutator method because it changes
a particular value.

 Generally, accessor method names have the form getX , where X is the value to
which it provides access. Likewise, mutator method names have the form setX ,
where X is the value they are setting. Therefore these types of methods are some-
times referred to as “getters” and “setters.”

 For example, if a class contains the instance variable height , it should also prob-
ably contain the methods getHeight and setHeight . Note that this naming conven-
tion capitalizes the first letter of the variable when used in the method names, which
is consistent with how method names are written in general.

 Some methods may provide accessor and/or mutator capabilities as a side effect
of their primary purpose. For example, the roll method of the Die class changes
the faceValue of the die and returns that new value as well. Note that the code
of the roll method is careful to keep the face value of the die in the valid range
(1 to MAX). Service methods must be carefully designed to permit only appropriate
access and valid changes.

 This points out a flaw in the design of the Die class. Note that there is no restric-
tion on the setFaceValue method—a client could use it to set the die value to a
number such as 20, which is outside the valid range. The code of the setFaceValue

Violate
encapsulation

Provide services
to clients

Support other
methods in the

class

Enforce
encapsulationVariables

Methods

public private

 FIGURE 4.6 The effects of public and private visibility

 KEY CONCEPT
 Most objects contain accessor
and mutator methods to allow the
client to manage data in a controlled
manner.

172 CHAPTER 4 Writing Classes

method should allow only valid modifications to the face value of a die. We explore
how that kind of control can be accomplished in the next chapter.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 4.11 Objects should be self-governing. Explain.

SR 4.12 What is the interface to an object?

SR 4.13 What is a modifier?

SR 4.14 Why might a constant be given public visibility?

SR 4.15 Describe each of the following:

a. public method
b. private method
c. public variable
d. private variable

4.4 Anatomy of a Method

We’ve seen that a class is composed of data declarations and method declarations.
Let’s examine method declarations in more detail.

As we stated in Chapter 1, a method is a group of programming language
statements that is given a name. A method declaration specifies the code that is
executed when the method is invoked. Every method in a Java program is part of
a particular class.

When a method is called, the flow of control transfers to that method. One
by one, the statements of that method are executed. When that method is done,
control returns to the location where the call was made and execution continues.

The called method (the one that is invoked) might be part of the same class as
the calling method that invoked it. If the called method is part of the same class,
only the method name is needed to invoke it. If it is part of a different class, it is
invoked through the name of an object of that other class, as we’ve seen many
times. Figure 4.7 shows the flow of execution as methods are called.

We’ve defined the main method of a program many times in previous examples.
Its definition follows the same syntax as all methods. The header of a method
includes the type of the return value, the method name, and a list of parameters
that the method accepts. The statements that make up the body of the method
are defined in a block delimited by braces. The rest of this section discusses issues
related to method declarations in more detail.

 4.4 Anatomy of a Method 173

obj.doThis();

helpMe();

main

doThis helpMe

FIGURE 4.7 The flow of control following method invocations

Method Declaration

Parameters

A method is defined by optional modifiers, followed by a return Type, followed
by an Identifier that determines the method name, followed by a list of Parameters,
followed by the Method Body. The return Type indicates the type of value that
will be returned by the method, which may be void. The Method Body is a block
of statements that executes when the method is invoked. The Throws Clause is
optional and indicates the exceptions that may be thrown by this method.

Example:

public void instructions (int count)
{
 System.out.println ("Follow all instructions.");
 System.out.println ("Use no more than " + count +
 " turns.");
}

Modifier

Parameters

void

Type Identifier Throws Clause Method Body

()

IdentifierType

,

174 CHAPTER 4 Writing Classes

 The return Statement
 The return type specified in the method header can be a primitive type, class
name, or the reserved word void . When a method does not return any value, void
is used as the return type, as is always done with the main method. The setFaceValue
method of the Die class also has a return type of void .

 A method that returns a value must have a return statement . When a return
statement is executed, control is immediately returned to the statement in the
calling method, and processing continues there. A return statement consists of
the reserved word return followed by an expression that dictates the value to be
returned. The expression must be consistent with the return type in the method
header.

 The getFaceValue method of the Die class returns an int value that represents
the current value of the die. The roll method does the same, returning the new
value to which faceValue was just randomly set. The toString method returns
a String object.

 A method that does not return a value does not usually contain a
 return statement. The method automatically returns to the calling
method when the end of the method is reached. Such methods may
contain a return statement without an expression.

 It is usually not good practice to use more than one return state-
ment in a method, even though it is possible to do so. In general, a method should
have one return statement as the last line of the method body, unless that makes
the method overly complex.

 The value that is returned from a method can be ignored in the calling method.
For example, in the main method of the RollingDice class, the value that is returned

 Return Statement

 A return statement consists of the return reserved word fol-
lowed by an optional Expression. When executed, control is immedi-
ately returned to the calling method, returning the value defined by
Expression.

 Examples:

 return ;
 return distance * 4;

return

Expression

;

 KEY CONCEPT
 The value returned from a method
must be consistent with the return
type specified in the method header.

4.4 Anatomy of a Method 175

from the roll method is ignored in several calls, while in others the return value
is used in a calculation.

 Constructors do not have a return type (not even void) and therefore cannot
return a value. We discuss constructors in more detail later in this chapter.

 Parameters
 As we defined in Chapter 2 , a parameter is a value that is passed into a method
when it is invoked. The parameter list in the header of a method specifies the types
of the values that are passed and the names by which the called method will refer
to those values.

 The names of the parameters in the header of the method declaration are called
 formal parameters . In an invocation, the values passed into a method are called
 actual parameters . The actual parameters are also called the arguments to the
method.

 A method invocation and definition always give the parameter list in parenthe-
ses after the method name. If there are no parameters, an empty set of parentheses
is used, as is the case in the roll and getFaceValue methods. The Die constructor
also takes no parameters, although constructors often do.

 The formal parameters are identifiers that serve as variables inside
the method and whose initial values come from the actual parameters
in the invocation. When a method is called, the value in each actual
parameter is copied and stored in the corresponding formal param-
eter. Actual parameters can be literals, variables, or full expressions. If
an expression is used as an actual parameter, it is fully evaluated before the method
call and the result is passed as the parameter.

 The only method in the Die class that accepts any parameters is the setFaceValue
method, which accepts a single int parameter. The formal parameter name is value .
In the main method, the value of 4 is passed into it as the actual parameter.

 The parameter lists in the invocation and the method declaration must match
up. That is, the value of the first actual parameter is copied into the first formal
parameter, the second actual parameter into the second formal parameter, and so
on, as shown in Figure 4.8 . The types of the actual parameters must be consistent
with the specified types of the formal parameters.

 Other details regarding parameter passing are discussed in Chapter 7 .

 Local Data
 As we described earlier in this chapter, the scope of a variable or constant is the part
of a program in which a valid reference to that variable can be made. A variable

 KEY CONCEPT
 When a method is called, the actual
parameters are copied into the
formal parameters.

176 CHAPTER 4 Writing Classes

can be declared inside a method, making it local data as opposed to instance data.
Recall that instance data is declared in a class but not inside any particular method.

 Local data has scope limited to only the method in which it is
declared. The variable result declared in the toString method
of the Die class is local data. Any reference to result in any other
method of the Die class would have caused the compiler to issue an
error message. A local variable simply does not exist outside of the

method in which it is declared. On the other hand, instance data, declared at the
class level, has a scope of the entire class; any method of the class can refer to it.

 Because local data and instance data operate at different levels of scope, it’s
possible to declare a local variable inside a method with the same name as an
instance variable declared at the class level. Referring to that name in the method
will reference the local version of the variable. This naming practice obviously has
the potential to confuse anyone reading the code, so it should be avoided.

 The formal parameter names in a method header serve as local data for that
method. They don’t exist until the method is called, and they cease to exist when
the method is exited. For example, the formal parameter value in the setFaceValue
method comes into existence when the method is called and goes out of existence
when the method finishes executing.

 Bank Account Example
 Let’s look at another example of a class and its use. The Transactions class
shown in Listing 4.3 contains a main method that creates a few Account objects
and invokes their services.

M
et

ho
d

In
vo

ca
tio

n
M

et
ho

d
D

ec
la

ra
tio

n

ch = obj.calc (25, count, "Hello");

char calc (int numl, int num2, String message)
{
 int sum = numl + num2;
 char result = message.charAt (sum);
 return result;
}

 FIGURE 4.8 Passing parameters from the method invocation to the declaration

 KEY CONCEPT
 A variable declared in a method is
local to that method and cannot be
used outside of it.

 4.4 Anatomy of a Method 177

//**
// Transactions.java Author: Lewis/Loftus
//
// Demonstrates the creation and use of multiple Account objects.
//**

public class Transactions
{
 //---
 // Creates some bank accounts and requests various services.
 //---
 public static void main (String[] args)
 {
 Account acct1 = new Account ("Ted Murphy", 72354, 102.56);
 Account acct2 = new Account ("Jane Smith", 69713, 40.00);
 Account acct3 = new Account ("Edward Demsey", 93757, 759.32);

 acct1.deposit (25.85);

 double smithBalance = acct2.deposit (500.00);
 System.out.println ("Smith balance after deposit: " +
 smithBalance);

 System.out.println ("Smith balance after withdrawal: " +
 acct2.withdraw (430.75, 1.50));

 acct1.addInterest();
 acct2.addInterest();
 acct3.addInterest();

 System.out.println ();
 System.out.println (acct1);
 System.out.println (acct2);
 System.out.println (acct3);
 }
}

O U T P U T

Smith balance after deposit: 540.0
Smith balance after withdrawal: 107.75

72354 Ted Murphy $132.90
69713 Jane Smith $111.52
93757 Edward Demsey $785.90

L I S T I N G 4 . 3

178 CHAPTER 4 Writing Classes

The Account class, shown in Listing 4.4, represents a basic bank account. It
contains instance data representing the account number, the account’s current
balance, and the name of the account’s owner. Note that instance data can be an
object reference variable (not just a primitive type), such as the account owner’s
name, which is a reference to a String object. The interest rate for the account is
stored as a constant.

The constructor of the Account class accepts three parameters that are used to
initialize the instance data. The deposit and withdraw methods perform the basic

//**
// Account.java Author: Lewis/Loftus
//
// Represents a bank account with basic services such as deposit
// and withdraw.
//**

import java.text.NumberFormat;

public class Account
{
 private final double RATE = 0.035; // interest rate of 3.5%

 private long acctNumber;
 private double balance;
 private String name;

 //---
 // Sets up the account by defining its owner, account number,
 // and initial balance.
 //---
 public Account (String owner, long account, double initial)
 {
 name = owner;
 acctNumber = account;
 balance = initial;
 }

 //---
 // Deposits the specified amount into the account. Returns the
 // new balance.
 //---
 public double deposit (double amount)

L I S T I N G 4 . 4

Discussion of the
Account class.

VideoNote

 4.4 Anatomy of a Method 179

 {
 balance = balance + amount;
 return balance;
 }

 //---
 // Withdraws the specified amount from the account and applies
 // the fee. Returns the new balance.
 //---
 public double withdraw (double amount, double fee)
 {
 balance = balance - amount - fee;

 return balance;
 }

 //---
 // Adds interest to the account and returns the new balance.
 //---
 public double addInterest ()
 {
 balance += (balance * RATE);
 return balance;
 }

 //---
 // Returns the current balance of the account.
 //---
 public double getBalance ()
 {
 return balance;
 }

 //---
 // Returns a one-line description of the account as a string.
 //---
 public String toString ()
 {
 NumberFormat fmt = NumberFormat.getCurrencyInstance();
 return acctNumber + "\t" + name + "\t" + fmt.format(balance);
 }
}

L I S T I N G 4 . 4 continued

180 CHAPTER 4 Writing Classes

transactions on the account, adjusting the balance based on the parameters. There
is also an addInterest method that updates the balance by adding in the interest
earned. These methods represent valid ways to change the balance, so a classic
mutator such as setBalance is not provided.

The status of the three Account objects just after they were created in the
Transactions program could be depicted as follows:

acct1

acctNumber

balance

name

72354

102.56

"Ted Murphy"

acct2

acctNumber

balance

name

69713

40.00

"Jane Smith"

acct3

acctNumber

balance

name

93757

759.32

"Edward Demsey"

The various methods that update the balance of the account could be more
rigorously designed. Checks should be made to ensure that the parameter values
are valid, such as preventing the withdrawal of a negative amount (which would
essentially be a deposit). This processing is discussed in the next chapter.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 4.16 Why is a method invoked through (or on) a particular object? What is
the exception to that rule?

SR 4.17 What does it mean for a method to return a value?

SR 4.18 What does the return statement do?

SR 4.19 Is a return statement required?

4.5 Constructors Revisited 181

SR 4.20 Explain the difference between an actual parameter and a formal
parameter.

SR 4.21 Write a method called getFaceDown for the Die class that returns the
current “face down” value of the die. Hint: On a standard die, the
sum of any two opposite faces is seven.

 SR 4.22 In the Transactions program:

 a. How many Account objects are created?
 b. How many arguments (actual parameters) are passed to the

 withdraw method when it is invoked on the acct2 object?
 c. How many arguments (actual parameters) are passed to the

addInterest method when it is invoked on the acct3 object?

SR 4.23 Which of the Account class methods would you classify as accessor
methods? As mutator methods? As service methods?

4.5 Constructors Revisited

 As we stated in Chapter 2 , a constructor is similar to a method that is invoked
when an object is instantiated. When we define a class, we usually define a con-
structor to help us set up the class. In particular, we often use a constructor to
initialize the variables associated with each object.

 A constructor differs from a regular method in two ways. First, the name of a
constructor is the same name as the class. Therefore the name of the constructor
in the Die class is Die , and the name of the constructor in the Account class is
Account . Second, a constructor cannot return a value and does not have a return
type specified in the method header.

 A common mistake made by programmers is to put a void return
type on a constructor. As far as the compiler is concerned, putting
any return type on a constructor, even void , turns it into a regular
method that happens to have the same name as the class. As such, it cannot be
invoked as a constructor. This leads to error messages that are sometimes difficult
to decipher.

 Generally, a constructor is used to initialize the newly instantiated object. For
instance, the constructor of the Die class sets the face value of the die to 1 initially.
The constructor of the Account class sets the values of the instance variables to
the values passed in as parameters to the constructor.

 We don’t have to define a constructor for every class. Each class has a default
constructor that takes no parameters. The default constructor is used if we don’t

 KEY CONCEPT
 A constructor cannot have any return
type, even void .

182 CHAPTER 4 Writing Classes

Example using an
extended JPanel.

VideoNote

provide our own. This default constructor generally has no effect on the newly
created object.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 4.24 What are constructors used for?

SR 4.25 How are constructors defined?

4.6 Graphical Objects

Some objects have a graphical representation, meaning that their state and behav-
iors include information about what the object looks like visually. A graphical
object might contain data about its size and color, for instance, and it may contain
methods to draw it.

In Chapter 3 we instantiated and used graphical components such as frames,
panels, labels, and images. Certainly these components can be considered graphi-
cal objects. This section examines some of them in more detail and explores how
to define our own objects that have graphical characteristics.

The program in Listing 4.5 displays a smiling face and a text caption. The main
method in the SmilingFace class does not deal with all of those details, however.
Instead, the main method sets up the frame for the program and uses it to display
an instantiation of the SmilingFacePanel class.

The SmilingFacePanel class is shown in Listing 4.6. It defines two constants
on which the drawing is based (BASEX and BASEY), a constructor that sets up the
key aspects of the panel, and a method called paintComponent that draws the face
that we see when the program is executed. In this case, instead of adding GUI
components to this panel, we are simply drawing on it.

Note that the SmilingFacePanel class extends the JPanel class. As we men-
tioned in Chapter 2 in our discussion of applets, the extends clause establishes
an inheritance relationship. The SmilingFacePanel class inherits the characteris-
tics of the JPanel class. That is, a SmilingFacePanel is a JPanel. At this point,
that’s all you really need to know about inheritance, which is discussed in detail
in Chapter 9.

The constructor of the SmilingFacePanel class sets the background color
and preferred size of the panel, as well as setting the panel’s default font. Note
that these calls are not made to some other object, as we did in Chapter 3 when
we created a separate JPanel object. When a method is called without being
invoked through a particular object, you can think of it as the object “talking
to itself.” The calls in the constructor are made to the object represented by the
SmilingFacePanel class.

//**
// SmilingFace.java Author: Lewis/Loftus
//
// Demonstrates the use of a separate panel class.
//**

import javax.swing.JFrame;

public class SmilingFace
{
 //---
 // Creates the main frame of the program.
 //---
 public static void main (String[] args)
 {
 JFrame frame = new JFrame ("Smiling Face");
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

 SmilingFacePanel panel = new SmilingFacePanel();

 frame.getContentPane().add(panel);

 frame.pack();
 frame.setVisible(true);
 }
}

D I S P L A Y

L I S T I N G 4 . 5

 4.6 Graphical Objects 183

//**
// SmilingFacePanel.java Author: Lewis/Loftus
//
// Demonstrates the use of a separate panel class.
//**

import javax.swing.JPanel;
import java.awt.*;

public class SmilingFacePanel extends JPanel
{
 private final int BASEX = 120, BASEY = 60; // base point for head

 //---
 // Constructor: Sets up the main characteristics of this panel.
 //---
 public SmilingFacePanel ()
 {
 setBackground (Color.blue);
 setPreferredSize (new Dimension(320, 200));
 setFont (new Font("Arial", Font.BOLD, 16));
 }

 //---
 // Draws a face.
 //---
 public void paintComponent (Graphics page)
 {
 super.paintComponent (page);

 page.setColor (Color.yellow);
 page.fillOval (BASEX, BASEY, 80, 80); // head
 page.fillOval (BASEX-5, BASEY+20, 90, 40); // ears

 page.setColor (Color.black);
 page.drawOval (BASEX+20, BASEY+30, 15, 7); // eyes
 page.drawOval (BASEX+45, BASEY+30, 15, 7);

 page.fillOval (BASEX+25, BASEY+31, 5, 5); // pupils
 page.fillOval (BASEX+50, BASEY+31, 5, 5);

 page.drawArc (BASEX+20, BASEY+25, 15, 7, 0, 180); // eyebrows
 page.drawArc (BASEX+45, BASEY+25, 15, 7, 0, 180);

L I S T I N G 4 . 6

184 CHAPTER 4 Writing Classes

The paintComponent method accepts a Graphics object as a parameter, which,
as we discussed in Chapter 2, represents the graphics context for a component.
Graphics are drawn on the panel by making method calls to the panel’s graphics
context (the page parameter).

Every JPanel object has a paintComponent method that automatically
gets called to draw the panel. In this case we are adding to the definition of
paintComponent—telling it that in addition to drawing the background of the
panel, it should also draw the face and words as defined by the various calls made
in the paintComponent method. The first line of the paintComponent method is
a call to super.paintComponent, which represents the regular JPanel version of
the paintComponent method, which handles the painting of the background. We
will almost always use this as the first line of code in a paintComponent method.

Let’s look at another example. The Splat class shown in Listing 4.7 contains
a main method that creates and displays the frame for the program. Visually, this

 page.drawArc (BASEX+35, BASEY+40, 15, 10, 180, 180); // nose
 page.drawArc (BASEX+20, BASEY+50, 40, 15, 180, 180); // mouth

 page.setColor (Color.white);
 page.drawString ("Always remember that you are unique!",
 BASEX-105, BASEY-15);
 page.drawString ("Just like everyone else.", BASEX-45, BASEY+105);
 }
}

L I S T I N G 4 . 6 continued

//**
// Splat.java Author: Lewis/Loftus
//
// Demonstrates the use of graphical objects.
//**

import javax.swing.*;
import java.awt.*;

public class Splat
{

L I S T I N G 4 . 7

 4.6 Graphical Objects 185

program simply draws a few filled circles. The interesting thing about this pro-
gram is not what it does, but how it does it—each circle drawn in this program is
represented by its own object.

The main method instantiates a SplatPanel object and adds it to the frame.
The SplatPanel class is shown in Listing 4.8. Like the SmilingFacePanel class
in the previous example, the SplatPanel class is derived from JPanel. It holds as
instance data five Circle objects, which are instantiated in the constructor.

 //---
 // Presents a collection of circles.
 //---
 public static void main (String[] args)
 {
 JFrame frame = new JFrame ("Splat");
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

 frame.getContentPane().add(new SplatPanel());

 frame.pack();
 frame.setVisible(true);
 }
}

D I S P L A Y

L I S T I N G 4 . 7 continued

186 CHAPTER 4 Writing Classes

//**
// SplatPanel.java Author: Lewis/Loftus
//
// Demonstrates the use of graphical objects.
//**

import javax.swing.*;
import java.awt.*;

public class SplatPanel extends JPanel
{
 private Circle circle1, circle2, circle3, circle4, circle5;

 //---
 // Constructor: Creates five Circle objects.
 //---
 public SplatPanel()
 {
 circle1 = new Circle (30, Color.red, 70, 35);
 circle2 = new Circle (50, Color.green, 30, 20);
 circle3 = new Circle (100, Color.cyan, 60, 85);
 circle4 = new Circle (45, Color.yellow, 170, 30);
 circle5 = new Circle (60, Color.blue, 200, 60);

 setPreferredSize (new Dimension(300, 200));
 setBackground (Color.black);
 }

 //---
 // Draws this panel by requesting that each circle draw itself.
 //---
 public void paintComponent (Graphics page)
 {
 super.paintComponent(page);

 circle1.draw(page);
 circle2.draw(page);
 circle3.draw(page);
 circle4.draw(page);
 circle5.draw(page);
 }
}

L I S T I N G 4 . 8

 4.6 Graphical Objects 187

The paintComponent method in the SplatPanel class draws the panel by call-
ing the draw method of each circle. Essentially, the SplatPanel class asks each
circle to draw itself.

The Circle class is shown in Listing 4.9. It defines instance data to store the
size of the circle, its (x, y) location, and its color. These values are set using the
constructor, and the class contains all the appropriate accessor and mutator meth-
ods. The draw method of the Circle class simply draws the circle based on the
values of its instance data (its current state).

//**
// Circle.java Author: Lewis/Loftus
//
// Represents a circle with a particular position, size, and color.
//**

import java.awt.*;

public class Circle
{
 private int diameter, x, y;
 private Color color;

 //---
 // Constructor: Sets up this circle with the specified values.
 //---
 public Circle (int size, Color shade, int upperX, int upperY)
 {
 diameter = size;
 color = shade;
 x = upperX;
 y = upperY;
 }

 //---
 // Draws this circle in the specified graphics context.
 //---
 public void draw (Graphics page)
 {
 page.setColor (color);
 page.fillOval (x, y, diameter, diameter);
 }

L I S T I N G 4 . 9

188 CHAPTER 4 Writing Classes

 //---
 // Diameter mutator.
 //---
 public void setDiameter (int size)
 {
 diameter = size;
 }

 //---
 // Color mutator.
 //---
 public void setColor (Color shade)
 {
 color = shade;
 }

 //---
 // X mutator.
 //---
 public void setX (int upperX)
 {
 x = upperX;
 }

 //---
 // Y mutator.
 //---
 public void setY (int upperY)
 {
 y = upperY;
 }

 //---
 // Diameter accessor.
 //---
 public int getDiameter ()
 {
 return diameter;
 }

L I S T I N G 4 . 9 continued

 4.6 Graphical Objects 189

The Splat program embodies fundamental object-oriented thinking. Each
circle manages itself and will draw itself in whatever graphics context you pass it.
Each Circle object maintains its own state. The Circle class is defined in a way
that can be used in other situations and programs.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 4.26 Where is the “content” of the panel created in the SmilingFace
program defined?

SR 4.27 In the SmilingFace program, when and how is the paintComponent
method of the panel object invoked?

SR 4.28 Write code that will add a pair of eyeglasses to the smiling face.

SR 4.29 Rewrite the constructor for the Circle class so that it generates a
circle with a random diameter that is between 20 and 200 inclusive for
the Circle object it sets up. The other attributes of the circle should
be provided as parameters to the constructor.

 //---
 // Color accessor.
 //---
 public Color getColor ()
 {
 return color;
 }

 //---
 // X accessor.
 //---
 public int getX ()
 {
 return x;
 }

 //---
 // Y accessor.
 //---
 public int getY ()
 {
 return y;
 }
}

L I S T I N G 4 . 9 continued

190 CHAPTER 4 Writing Classes

 Overview of GUI
development.

VideoNote

4.7 Graphical User Interfaces

 In Chapters 2 and 3 we introduced a few key components that are helpful in the
design of graphics-based programs. What we need now is true user interaction,
which is the heart of a graphical user interface (GUI). This section introduces the
concepts needed to create interactive GUI-based programs. It lays the groundwork
for all GUI discussions throughout the book.

 At least three kinds of objects are needed to create a graphical user interface
in Java:

■ components

■ events

■ listeners

 As we mentioned in Chapter 3 , a GUI component is an object that defines a
screen element to display information or allow the user to interact with a program
in a certain way. Examples of GUI components include push buttons, text fields,
labels, scroll bars, and menus. A container is a special type of component that is
used to hold and organize other components. We’ve already used containers such
as frames and panels and explored the use of labels as well.

 An event is an object that represents some occurrence in which we may be inter-
ested. Often, events correspond to user actions, such as pressing a mouse button or
typing a key on the keyboard. Most GUI components generate events to indicate a
user action related to that component. For example, a button component will gener-
ate an event to indicate that the button has been pushed. A program that is oriented
around a GUI, responding to events from the user, is called event-driven .

 A listener is an object that “waits” for an event to occur
and responds in some way when it does. We must carefully
establish the relationships among the listener, the event it
listens for, and the component that will generate the event.

 For the most part, we will use components and events that are
predefined by classes in the Java class library. We will tailor the
behavior of the components, but their basic roles have been established. We will, how-
ever, write listener classes to perform whatever actions we desire when events occur.

 Specifically, to create a Java program that uses a GUI, we must:

■ instantiate and set up the necessary components,

■ implement listener classes that define what happens when particular events
occur, and

■ establish the relationship between the listeners and the components that
generate the events of interest.

 KEY CONCEPT
 A GUI is made up of components,
events that represent user actions,
and listeners that respond to those
events.

4.7 Graphical User Interfaces 191

In some respects, once you have a basic understanding of event-driven pro-
gramming, the rest is just detail. There are many types of components you can
use that produce many types of events that you may want to acknowledge. But
they all work in the same basic way. They all have the same core relationships to
one another.

The following sections introduce some more components and present examples
of GUI-based programs that allow true user interaction.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 4.30 What is the relationship between an event and a listener?

SR 4.31 Can we add any kind of listener to any component? Explain.

4.8 Buttons

The PushCounter program shown in Listing 4.10 presents the user with a single
push button (labeled “Push Me!”). Each time the button is pushed, a counter is
updated and displayed.

//**
// PushCounter.java Author: Lewis/Loftus
//
// Demonstrates a graphical user interface and an event listener.
//**

import javax.swing.JFrame;

public class PushCounter
{
 //---
 // Creates the main program frame.
 //---
 public static void main (String[] args)
 {
 JFrame frame = new JFrame ("Push Counter");
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

L I S T I N G 4 . 1 0

192 CHAPTER 4 Writing Classes

The components used in this program include a button, a label to display the
count, a panel to organize the GUI, and a frame to display the panel. The panel is
defined by the PushCounterPanel class, shown in Listing 4.11.

A push button is a component that allows the user to initiate an action with a
press of the mouse. There are other types of button components that we explore
in later chapters. A push button is defined by the JButton class.

 frame.getContentPane().add(new PushCounterPanel());
 frame.pack();
 frame.setVisible(true);
 }
}

D I S P L A Y

L I S T I N G 4 . 1 0 continued

//**
// PushCounterPanel.java Author: Lewis/Loftus
//
// Demonstrates a graphical user interface and an event listener.
//**

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class PushCounterPanel extends JPanel
{
 private int count;
 private JButton push;
 private JLabel label;

L I S T I N G 4 . 1 1

 4.8 Buttons 193

The PushCounterPanel constructor sets up the GUI. The call to the JButton
constructor takes a String parameter that specifies the text shown on the button.
The button and the label are added to the panel.

The only event of interest in this program occurs when the button is pushed. To
respond to the event, we must create a listener object for that event, so we must
write a class that represents the listener.

 //---
 // Constructor: Sets up the GUI.
 //---
 public PushCounterPanel ()
 {
 count = 0;

 push = new JButton ("Push Me!");
 push.addActionListener (new ButtonListener());

 label = new JLabel ("Pushes: " + count);

 add (push);
 add (label);

 setPreferredSize (new Dimension(300, 40));
 setBackground (Color.cyan);
 }

 //***
 // Represents a listener for button push (action) events.
 //***
 private class ButtonListener implements ActionListener
 {
 //--
 // Updates the counter and label when the button is pushed.
 //--
 public void actionPerformed (ActionEvent event)
 {
 count++;
 label.setText("Pushes: " + count);
 }
 }
}

L I S T I N G 4 . 1 1 continued

194 CHAPTER 4 Writing Classes

 A JButton generates an action event when it is pushed. Therefore the listener
class we write will be an action event listener. In this program, we define a class
called ButtonListener to represent the listener for this event.

 We could write the ButtonListener class in its own file,
or even in the same file but outside of the PushCounterPanel
class. However, then we would have to set up a way to
communicate between the listener and the components of
the GUI that the listener updates. Instead, we define the
ButtonListener class as an inner class , which is a class
defined within another class. As such, it automatically has access to the members
of the class that contains it. You should create inner classes only in situations in
which there is an intimate relationship between the two classes and in which the
inner class is not accessed by any other class. The relationship between a listener
and its GUI is one of the few situations in which an inner class is appropriate.

 Listener classes are written by implementing an interface , which is a list
of methods that the implementing class must define. The Java standard class
library contains interfaces for many types of events. An action listener is cre-
ated by implementing the ActionListener interface; therefore, we include the
 implements clause in the ButtonListener class. Interfaces are discussed in
more detail in Chapter 7 .

 The only method listed in the ActionListener interface is the
actionPerformed method, so that’s the only method that the ButtonListener
class must implement. The component that generates the action event (in this case
the button) will call the actionPerformed method when the event occurs, pass-
ing in an ActionEvent object that represents the event. Sometimes we will use the
event object, and other times it is simply sufficient to know that the event
occurred. In this case, we have no need to interact with the event object. When
the event occurs, the listener increments the count and resets the text of the label
by using the setText method.

 Remember, we not only have to create a listener for an event, we must also set
up the relationship between the listener and the component that will generate the
event. To do so, we add the listener to the component by calling the appropriate
method. In the PushCounterPanel constructor, we call the addActionListener
method, passing in a newly instantiated ButtonListener object.

 Review this example carefully, noting how it accomplishes the three key
steps to creating an interactive GUI-based program. It creates and sets up the
GUI components, creates the appropriate listener for the event of interest,
and sets up the relationship between the listener and the component that will
generate the event.

 KEY CONCEPT
 Listeners are often defined as inner
classes because of the intimate rela-
tionship between the listener and the
GUI components.

4.8 Buttons 195

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 4.32 What type of event does a push button (a JButton object) generate?

SR 4.33 How would you change the PushCounterPanel class so that instead of
displaying a count of how many times the button was pushed, it displays
a count “trail”? After one push, it displays “01”; after two pushes, it dis-
plays “012”; after five pushes, it displays “012345”; and so on.

4.9 Text Fields

Let’s look at another example that uses another component: a text field. The
Fahrenheit program shown in Listing 4.12 presents a GUI that includes a text
field into which the user can type a Fahrenheit temperature. When the user presses
the Enter (or Return) key, the equivalent Celsius temperature is displayed.

The interface for the Fahrenheit program is set up in the FahrenheitPanel
class. The text field is an object of the JTextField class. The JTextField con-
structor takes an integer parameter that specifies the size of the field in number of
characters based on the current default font.

The text field and various labels are added to the panel to be displayed.
Remember that a panel is governed by a layout manager called flow layout, which
puts as many components on a line as it can fit. So if you resize the frame, the
orientation of the labels and text field may change. We examine layout managers
in detail in Chapter 7, providing more options for controlling the layout of the
components.

If the cursor is currently in the text field, the text field component generates
an action event when the Enter or Return key is pressed. Therefore we need to
set up a listener object to respond to action events. As we did in the PushCounter
program in the previous section, we define the listener as an inner class that imple-
ments the ActionListener interface.

The text field component calls the actionPerformed method when the user
presses the Enter key. The method first retrieves the text from the text field by
calling its getText method, which returns a character string. The text is converted
to an integer using the parseInt method of the Integer wrapper class. Then the
method performs the calculation to determine the equivalent Celsius temperature
and sets the text of the appropriate label with the result.

Note that a push button and a text field generate the same kind of event: an
action event. So an alternative to the Fahrenheit program design is to add a
JButton object to the GUI that causes the conversion to occur when the user uses
the mouse to press the button. For that matter, the same listener object can be

196 CHAPTER 4 Writing Classes

 4.9 Text Fields 197

//**
// Fahrenheit.java Author: Lewis/Loftus
//
// Demonstrates the use of text fields.
//**

import javax.swing.JFrame;

public class Fahrenheit
{
 //---
 // Creates and displays the temperature converter GUI.
 //---
 public static void main (String[] args)
 {
 JFrame frame = new JFrame ("Fahrenheit");
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

 FahrenheitPanel panel = new FahrenheitPanel();

 frame.getContentPane().add(panel);
 frame.pack();
 frame.setVisible(true);
 }
}

D I S P L A Y

L I S T I N G 4 . 1 2

198 CHAPTER 4 Writing Classes

//**
// FahrenheitPanel.java Author: Lewis/Loftus
//
// Demonstrates the use of text fields.
//**

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class FahrenheitPanel extends JPanel
{
 private JLabel inputLabel, outputLabel, resultLabel;
 private JTextField fahrenheit;

 //---
 // Constructor: Sets up the main GUI components.
 //---
 public FahrenheitPanel()
 {
 inputLabel = new JLabel ("Enter Fahrenheit temperature:");
 outputLabel = new JLabel ("Temperature in Celsius: ");
 resultLabel = new JLabel ("---");

 fahrenheit = new JTextField (5);
 fahrenheit.addActionListener (new TempListener());

 add (inputLabel);
 add (fahrenheit);
 add (outputLabel);
 add (resultLabel);

 setPreferredSize (new Dimension(300, 75));
 setBackground (Color.yellow);
 }

 //***
 // Represents an action listener for the temperature input field.
 //***
 private class TempListener implements ActionListener

L I S T I N G 4 . 1 3

used to listen to multiple components at the same time. So the listener could be
added to both the text field and the button, giving the user the option. Pressing
either the button or the Enter key will cause the conversion to be performed.
These variations are left as programming projects.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 4.34 Describe what happens within the Fahrenheit program when a user
types a number into the text box of the interface and presses the Enter
(or Return) key.

SR 4.35 Change the FahrenheitPanel class so that when the user enters a
number in the text field a statement appears in the form “X degrees
Fahrenheit = Y degrees Celsius” below the text field. For example,
if the user enters 223, the statement “223 degrees Fahrenheit = 106
degrees Celsius” appears instead of “Temperature in Celsius: 106”.

 {
 //--
 // Performs the conversion when the enter key is pressed in
 // the text field.
 //--
 public void actionPerformed (ActionEvent event)
 {
 int fahrenheitTemp, celsiusTemp;

 String text = fahrenheit.getText();

 fahrenheitTemp = Integer.parseInt (text);
 celsiusTemp = (fahrenheitTemp-32) * 5/9;

 resultLabel.setText (Integer.toString (celsiusTemp));
 }
 }
}

L I S T I N G 4 . 1 3 continued

 4.9 Text Fields 199

200 CHAPTER 4 Writing Classes

Summary of Key Concepts
■ The heart of object-oriented programming is defining classes that represent

objects with well-defined state and behavior.

■ The scope of a variable, which determines where it can be referenced,
depends on where it is declared.

■ A UML class diagram helps us visualize the contents of and relationships
among the classes of a program.

■ An object should be encapsulated, guarding its data from inappropriate
access.

■ Instance variables should be declared with private visibility to promote
encapsulation.

■ Most objects contain accessor and mutator methods to allow the client to
manage data in a controlled manner.

■ The value returned from a method must be consistent with the return type
specified in the method header.

■ When a method is called, the actual parameters are copied into the formal
parameters.

■ A variable declared in a method is local to that method and cannot be
used outside of it.

■ A constructor cannot have any return type, even void.

■ A GUI is made up of components, events that represent user actions, and
listeners that respond to those events.

■ Listeners are often defined as inner classes because of the intimate relation-
ship between the listener and the GUI components.

Exercises
Visit www.myprogramminglab.com to complete many of these Exercises
online and get instant feedback.

EX 4.1 For each of the following pairs, which represents a class and
which represents an object of that class?

a. Superhero, Superman
b. Justin, Person
c. Rover, Pet
d. Magazine, Time
e. Christmas, Holiday

www.myprogramminglab.com

 Programming Projects 201

EX 4.2 List some attributes and operations that might be defined for a
class called PictureFrame that represents a picture frame.

EX 4.3 List some attributes and operations that might be defined for a
class called Meeting that represents a business meeting.

EX 4.4 List some attributes and operations that might be defined for a
class called Course that represents a college course (not a par-
ticular offering of a course, just the course in general).

EX 4.5 Write a method called lyrics that prints the lyrics of a song
when invoked. The method should accept no parameters and
return no value.

EX 4.6 Write a method called cube that accepts one integer parameter
and returns that value raised to the third power.

EX 4.7 Write a method called random100 that returns a random integer
in the range of 1 to 100 (inclusive).

EX 4.8 Write a method called randomInRange that accepts two integer
parameters representing a range. The method should return a
random integer in the specified range (inclusive). Assume that the
first parameter is greater than the second.

EX 4.9 Write a method called randomColor that creates and returns a
Color object that represents a random color. Recall that a Color
object can be defined by three integer values between 0 and 255,
representing the contributions of red, green, and blue (its RGB
value).

EX 4.10 Draw a UML class diagram that shows the relationships among
the classes used in the Transactions program.

EX 4.11 Draw a UML class diagram that shows the relationships among
the classes used in the PushCounter program.

EX 4.12 Draw a UML class diagram that shows the relationships among
the classes used in the Fahrenheit program.

Programming Projects
Visit www.myprogramminglab.com to complete many of these
Programming Projects online and get instant feedback.

PP 4.1 Design and implement a class called Sphere that contains
instance data that represents the sphere’s diameter. Define the
Sphere constructor to accept and initialize the diameter, and
include getter and setter methods for the diameter. Include

www.myprogramminglab.com

202 CHAPTER 4 Writing Classes

methods that calculate and return the volume and surface area
of the sphere (see PP 3.5 for the formulas). Include a toString
method that returns a one-line description of the sphere. Create a
driver class called MultiSphere, whose main method instantiates
and updates several Sphere objects.

PP 4.2 Design and implement a class called Dog that contains instance
data that represents the dog’s name and age. Define the Dog con-
structor to accept and initialize instance data. Include getter and
setter methods for the name and age. Include a method to com-
pute and return the age of the dog in “person years” (seven times
the dogs age). Include a toString method that returns a one-line
description of the dog. Create a driver class called Kennel, whose
main method instantiates and updates several Dog objects.

PP 4.3 Design and implement a class called Car that contains instance
data that represents the make, model, and year of the car. Define
the Car constructor to initialize these values. Include getter and
setter methods for all instance data, and a toString method that
returns a one-line description of the car. Create a driver class
called CarTest, whose main method instantiates and updates sev-
eral Car objects.

PP 4.4 Design and implement a class called Box that contains instance
data that represents the height, width, and depth of the box. Also
include a boolean variable called full as instance data that rep-
resents whether the box is full or not. Define the Box construc-
tor to accept and initialize the height, width, and depth of the
box. Each newly created Box is empty (the constructor should
initialize full to false). Include getter and setter methods for all
instance data. Include a toString method that returns a one-
line description of the box. Create a driver class called BoxTest,
whose main method instantiates and updates several Box objects.

PP 4.5 Design and implement a class called Book that contains instance
data for the title, author, publisher, and copyright date. Define
the Book constructor to accept and initialize this data. Include
setter and getter methods for all instance data. Include a
toString method that returns a nicely formatted, multi-line
description of the book. Create a driver class called Bookshelf,
whose main method instantiates and updates several Book
objects.

PP 4.6 Design and implement a class called Flight that represents an
airline flight. It should contain instance data that represents the

Developing a solution
of PP 4.2.

VideoNote

 Programming Projects 203

airline name, flight number, and the flight’s origin and destination
cities. Define the Flight constructor to accept and initialize all
instance data. Include getter and setter methods for all instance data.
Include a toString method that returns a one-line description of
the flight. Create a driver class called FlightTest, whose main
method instantiates and updates several Flight objects.

PP 4.7 Design and implement a class called Bulb that represents a light
bulb that can be turned on and off. Create a driver class called
Lights whose main method instantiates and turns on some Bulb
objects.

PP 4.8 Using the Die class defined in this chapter, design and implement
a class called PairOfDice, composed of two Die objects. Include
methods to set and get the individual die values, a method to roll
the dice, and a method that returns the current sum of the two
die values. Create a driver class called RollingDice2 to instanti-
ate and use a PairOfDice object.

PP 4.9 Design and implement a class called Building that represents
a graphical depiction of a building. Allow the parameters to
the constructor to specify the building’s width and height. Each
building should be colored black and should contain a few ran-
dom windows of yellow. Create a program that draws a random
skyline of buildings.

PP 4.10 Write a program that displays a graphical seating chart for a
dinner party. Create a class called Diner (as in one who dines)
that stores the person’s name, gender, and location at the dinner
table. A diner is graphically represented as a circle, color-coded
by gender, with the person’s name printed in the circle.

PP 4.11 Create a class called Crayon that represents one crayon of a
particular color and length (height). Design and implement a
program that draws a box of crayons.

PP 4.12 Create a class called Star that represents a five-pointed star. Let
the constructor accept the width of the star and the coordinates
of the star’s top point. Write a program that draws a sky con-
taining stars of various sizes.

PP 4.13 Modify the Fahrenheit program from this chapter so that it
displays a button that, when pressed, also causes the conversion
calculation to take place. That is, the user will now have the
option of either pressing Enter in the text field or pressing the
button. Have the listener that is already defined for the text field
also listen for the button push.

204 CHAPTER 4 Writing Classes

PP 4.14 Design and implement an application that displays a button and
a label. Every time the button is pushed, the label should display
a random number between 1 and 100, inclusive.

PP 4.15 Design and implement an application that presents two but-
tons and a label to the user. Label the buttons Increment and
Decrement, respectively. Display a numeric value (initially 50)
using the label. Each time the increment button is pushed, incre-
ment the value displayed. Likewise, each time the decrement but-
ton is pressed, decrement the value displayed.

PP 4.16 Design and implement an application that draws a traffic light
and uses a push button to change the state of the light. Derive
the drawing surface from the JPanel class and use another panel
to organize the drawing surface and the button.

PP 4.17 Develop an application that implements a prototype user
interface for composing an email message. The application
should have text fields for the To, CC, and Bcc address lists and
subject line, and one for the message body. Include a button
labeled Send. When the Send button is pushed, the program
should print the contents of all fields to standard output using
println statements.

205

S O F T W A R E F A I L U R E

Denver Airport Baggage Handling System

■ The automated
baggage-handling
system in Denver
resulted in lost lug-
gage and mangled
packages.

What Happened?
The designers of the Denver
International Airport had big plans
to automate the handling of luggage.
With as much as a mile to cover
between the airport gates and termi-
nals, the hope was to develop a sys-
tem that whisked your luggage from
the check-in counter to the departing
plane and from an arriving plane
to baggage collection with minimal
human intervention. They thought
the system would result in fewer
flight delays, less waiting at luggage
carousels, and reduced labor costs.

The system was designed and cre-
ated in the late 1980s and early
1990s. Approximately 26 miles of
track were constructed to move
bags up and down inclines in gray carts under the control of a central computer.

However, the planned March 1994 opening of the airport was delayed continu-
ously due to failures in the baggage system. During tests, bags were misloaded
and misrouted. They fell out of carts when making turns. The system loaded bags
into carts that already were full and unloaded them onto belts already jammed
with luggage. Bags were damaged by being wedged under carts and dropped onto
concrete floors.

The airport finally opened for business in February of 1995. At that point, only
one airline—United—agreed to use the automated system. This was a stripped-
down version of the system, used only for outgoing flights. No other airline used
the system at all. They opted for humans driving luggage carts, just as most air-
ports do today. United finally gave up using the system in 2005.

The original cost of the system was $186 million. The delays cost $1 million a
day, surpassing the original costs. When United opted to abandon the system in
2005, it did so despite having a lease on the system through 2025 at $60 million
per year.

What Caused It?
The fiasco this project represents is considered to be one of the greatest software
engineering and overall system-design failures in history. There were many indi-
vidual issues that contributed to the problems, but in general, the designers simply
had too much faith in the technology they were using. They didn’t factor in errors
and inefficiencies that always occur in a complex system.

The individual problems included the fact that the software misinterpreted data
from photoelectric eyes and, therefore, did not detect a pile of existing bags. When
the system was restarted after it crashed, it lost information about the status of
carts and didn’t know which ones were full or not. Sharp corners were not fac-
tored in correctly regarding the speed of the conveyors, resulting in spilled carts.
A telescoping belt loader called the lizard tongue—designed to reach into a planes
cargo hold and pick up bags without human assistance—failed completely.

Lessons Learned
A project of this scope should not be attempted without many localized tests
on the technologies in use. The failures were often a result of multiple variables
caused by the system as a whole in operation.

When the system was designed in the late 1980s, it relied on a centralized main-
frame to control the system. Such an approach seems ridiculous in today’s world
of distributed processing, but it is a good example of how a large system can be
obsolete by the time it is developed. Today, human baggage handlers with hand-
held scanners result in a far more fast and accurate delivery system than the best
goals of the planned automated system.

Source: The International Herald Tribune

206 Software Failure

207

C H A P T E R O B J E C T I V E S
● Define the flow of control through a method.

● Explore boolean expressions that can be used to make decisions.

● Perform basic decision making using if statements.

● Discuss issues pertaining to the comparison of certain types of data.

● Execute statements repetitively using while loops.

● Discuss the concept of an iterator object and use one to read a text file.

● Draw with the aid of conditionals and loops.

● Explore more GUI components and events.

All programming languages have statements that allow you to

make decisions to determine what to do next. Some of those state-

ments allow you to repeat a certain activity multiple times. This

chapter discusses key Java statements of this type and explores issues

related to the comparison of data and objects. It begins with a dis-

cussion of boolean expressions, which form the basis of any decision.

The Graphics Track sections of this chapter explore new drawing

options and some new components and events.

Conditionals
and Loops 5

208 CHAPTER 5 Conditionals and Loops

5.1 Boolean Expressions

 The order in which statements are executed in a running program is called the
flow of control . Unless otherwise specified, the execution of a program proceeds
in a linear fashion. That is, a running program starts at the first programming
statement and moves down one statement at a time until the program is complete.
A Java application begins executing with the first line of the main method and
proceeds step by step until it gets to the end of the main method.

 Invoking a method alters the flow of control. When a method is called, control
jumps to the code defined for that method. When the method completes, control
returns to the place in the calling method where the invocation was made, and
processing continues from there.

 Within a given method, we can alter the flow of control through
the code by using certain types of programming statements.
Statements that control the flow of execution through a method fall
into two categories: conditionals and loops.

 A conditional statement is sometimes called a selection statement ,
because it allows us to choose which statement will be executed next. The con-
ditional statements in Java are the if statement, the if-else statement, and the
 switch statement. We explore the if statement and the if-else statement in this
chapter and cover the switch statement in Chapter 6 .

 Each decision is based on a boolean expression (also called a condition), which
is an expression that evaluates to either true or false. The result of the expression
determines which statement is executed next. The following is an example of an
 if statement:

 if (count > 20)
 System.out.println ("Count exceeded");

 The condition in this statement is count > 20 . That expression
evaluates to a boolean (true or false) result. Either the value stored in
 count is greater than 20 or it’s not. If it is, the println statement is
executed. If it’s not, the println statement is skipped and processing
continues with whatever code follows it.

 The need to make decisions like this comes up all the time in programming
situations. For example, the cost of life insurance might be dependent on whether
the insured person is a smoker. If the person smokes, we calculate the cost using a
particular formula; if not, we calculate it using another. The role of a conditional
statement is to evaluate a boolean condition (whether the person smokes) and
then to execute the proper calculation accordingly.

 KEY CONCEPT
 Conditionals and loops allow us
to control the flow of execution
through a method.

 KEY CONCEPT
 An if statement allows a program
to choose whether to execute a
particular statement.

5.1 Boolean Expressions 209

 A loop , or repetition statement , allows us to execute a program-
ming statement over and over again. Like a conditional, a loop is
based on a boolean expression that determines how many times the
statement is executed.

 For example, suppose we wanted to calculate the grade point average of every
student in a class. The calculation is the same for each student; it is just performed
on different data. We would set up a loop that repeats the calculation for each
student until there are no more students to process.

 Java has three types of loop statements: the while statement, the do statement,
and the for statement. Each type of loop statement has unique characteristics that
distinguish it from the others. We cover the while statement in this chapter and
explore do loops and for loops in Chapter 6 .

 The boolean expressions on which conditionals and loops are based use
equality operators, relational operators, and logical operators to make decisions.
Before we discuss the conditional and loop statements in detail, let’s explore
these operators.

 Equality and Relational Operators
 The == and != operators are called equality operators. They test whether two val-
ues are equal or not equal, respectively. Note that the equality operator consists
of two equal signs side by side and should not be mistaken for the assignment
operator that uses only one equal sign.

 The following if statement prints a sentence only if the variables total and
sum contain the same value:

if (total == sum)
 System.out.println ("total equals sum");

 Likewise, the following if statement prints a sentence only if the variables
total and sum do not contain the same value:

if (total != sum)
 System.out.println ("total does NOT equal sum");

 Java also has several relational operators that let us decide relative ordering
between values. Earlier in this section we used the greater than operator (>) to
decide if one value was greater than another. We can ask similar questions using
various operators. In Java, relational operators are greater than (>), less than (<),
greater than or equal to (>=), and less than or equal to (<=). Figure 5.1 lists the
Java equality and relational operators.

 KEY CONCEPT
 A loop allows a program to execute
a statement multiple times.

210 CHAPTER 5 Conditionals and Loops

The equality and relational operators have precedence lower than the arith-
metic operators. Therefore, arithmetic operations are evaluated first, followed by
equality and relational operations. As always, parentheses can be used to explic-
itly specify the order of evaluation.

We’ll see more examples of relational operators as we examine conditional and
loop statements throughout this chapter.

Logical Operators
In addition to the equality and relational operators, Java has three logical opera-
tors that produce boolean results. They also take boolean operands. Figure 5.2
lists and describes the logical operators.

The ! operator is used to perform the logical NOT operation, which is also
called the logical complement. The logical complement of a boolean value yields
its opposite value. That is, if a boolean variable called found has the value false,
then !found is true. Likewise, if found is true, then !found is false. The logical
NOT operation does not change the value stored in found.

A logical operation can be described by a truth table that lists all possible com-
binations of values for the variables involved in an expression. Because the logical

FIGURE 5.1 Java equality and relational operators

==

!=

<

<=

>

>=

equal to

not equal to

less than

less than or equal to

greater than

greater than or equal to

Operator Meaning

FIGURE 5.2 Java logical operators

!

&&

||

logical NOT

logical AND

logical OR

true if a is false and false if a is true

true if a and b are both true and false otherwise

true if a or b or both are true and false otherwise

! a

a && b

a || b

Operator Description Example Result

5.1 Boolean Expressions 211

NOT operator is unary, there are only two possible values for its one operand:
true or false. Figure 5.3 shows a truth table that describes the ! operator.

 The && operator performs a logical AND operation. The result is true if both
operands are true, but false otherwise. Compare that to the result of the logical
OR operator (||), which is true if one or the other or both operands are true, but
false otherwise.

 The AND and OR operators are both binary operators since each uses two oper-
ands. Therefore, there are four possible combinations to consider: both operands
are true, both are false, one is true and the other false, and vice versa. Figure 5.4
depicts a truth table that shows both the && and || operators.

 The logical NOT has the highest precedence of the three logical operators, fol-
lowed by logical AND, then logical OR.

 Consider the following if statement:

 if (!done && (count > MAX))
 System.out.println ("Completed.");

 Under what conditions would the println statement be executed? The value of
the boolean variable done is either true or false, and the NOT operator reverses
that value. The value of count is either greater than MAX or it isn’t. The truth table
in Figure 5.5 breaks down all of the possibilities.

 An important characteristic of the && and || operators is that
they are “short-circuited.” That is, if their left operand is sufficient
to decide the boolean result of the operation, the right operand is
not evaluated. This situation can occur with both operators, but for

 FIGURE 5.3 Truth table describing the logical NOT operator

 KEY CONCEPT
 Logical operators are often used to
construct sophisticated conditions.

 FIGURE 5.4 Truth table describing the logical AND and OR operators

a !a

false

true

true

false

false

false

false

true

false

false

false

true

true

true

true

true

false

true

false

true

a b a && b a || b

212 CHAPTER 5 Conditionals and Loops

FIGURE 5.5 A truth table for a specific condition

false

false

true

true

false

true

false

true

true

true

false

false

false

true

false

false

done !donecount > MAX !done && (count > MAX)

different reasons. If the left operand of the && operator is false, then the result
of the operation will be false no matter what the value of the right operand is.
Likewise, if the left operand of the || is true, then the result of the operation is
true no matter what the value of the right operand is.

Sometimes you can capitalize on the fact that the operation is short-circuited.
For example, the condition in the following if statement will not attempt to
divide by zero if the left operand is false. If count has the value zero, the left side
of the && operation is false; therefore. the whole expression is false and the right
side is not evaluated.

if (count != 0 && total/count > MAX)
 System.out.println ("Testing.");

You should consider carefully whether or not to rely on these kinds of subtle
programming language characteristics. Not all programming languages work the
same way. As we have stressed before, you should favor readability over clever
programming tricks. Always strive to make it clear to any reader of the code how
the logic of your program works.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 5.1 What is meant by the flow of control through a program?

SR 5.2 What type of conditions are conditionals and loops based on?

SR 5.3 What are the equality operators? The relational operators? The logical
operators?

SR 5.4 Given the following declarations, what is the value of each of the
listed boolean expressions?

int value1 = 5, value2 = 10;
boolean done = true;

5.2 The if Statement 213

 a. value1 <= value2
 b. (value1 + 5) >= value2
 c. value1 < value2 / 2
 d. value2 != value1
 e. !(value1 == value2)
 f. (value1 < value2) || done
 g. (value1 > value2) || done
 h. (value1 < value2) && !done
 i. done || !done
 j. ((value1 > value2) || done) && (!done || (value2 >

value1))

 SR 5.5 What is a truth table?

 SR 5.6 Assuming done is a boolean variable and value is an int variable, cre-
ate a truth table for the expression:

(value > 0) || !done

SR 5.7 Assuming c1 and c2 are boolean variables, create a truth table for the
expression:

 (c1 && !c2) || (!c1 && c2)

5.2 The if Statement

 We’ve used a basic if statement in earlier examples in this chapter. Let’s now
explore it in detail.

 An if statement consists of the reserved word if followed by
a boolean expression, followed by a statement. The condition is
enclosed in parentheses and must evaluate to true or false. If the
condition is true, the statement is executed and processing continues
with the next statement. If the condition is false, the statement is
skipped and processing continues immediately with the next state-
ment. Figure 5.6 shows this processing.

 Consider the following example of an if statement:

 if (total > amount)
 total = total + (amount + 1);

 In this example, if the value in total is greater than the value in amount , the
assignment statement is executed; otherwise the assignment statement is skipped.

 Note that the assignment statement in this example is indented under the
header line of the if statement. This communicates that the assignment statement

 KEY CONCEPT
 Proper indentation is important for
human readability; it shows the rela-
tionship between one statement and
another.

214 CHAPTER 5 Conditionals and Loops

is part of the if statement; it implies that the if statement governs whether the
assignment statement will be executed. Although this indentation is extremely
important for the human reader, it is ignored by the compiler.

The example in Listing 5.1 reads the age of the user and then makes a decision
as to whether to print a particular sentence based on the age that is entered.The
Age program echoes the age value that is entered in all cases. If the age is less than the
value of the constant MINOR, the statement about youth is printed. If the age is equal
to or greater than the value of MINOR, the println statement is skipped. In either case,
the final sentence about age being a state of mind is printed.

FIGURE 5.6 The logic of an if statement

true

statement

condition
evaluated

false

//**
// Age.java Author: Lewis/Loftus
//
// Demonstrates the use of an if statement.
//**

import java.util.Scanner;

public class Age
{
 //---
 // Reads the user's age and prints comments accordingly.
 //---
 public static void main (String[] args)
 {
 final int MINOR = 21;

 Scanner scan = new Scanner (System.in);

L I S T I N G 5 . 1

 5.2 The if Statement 215

Let’s look at a few more examples of basic if statements. The following if
statement causes the variable size to be set to zero if its current value is greater
than or equal to the value in the constant MAX:

if (size >= MAX)
 size = 0;

The condition of the following if statement first adds three values together,
then compares the result to the value stored in numBooks:

if (numBooks < stackCount + inventoryCount + duplicateCount)
 reorder = true;

If numBooks is less than the other three values combined, the boolean variable
reorder is set to true. The addition operations are performed before the less
than operator, because the arithmetic operators have a higher precedence than
the relational operators.

Assuming generator refers to an object of the Random class, the following if
statement examines the value returned from a call to nextInt to determine a
random winner:

if (generator.nextInt(CHANCE) == 0)
 System.out.println ("You are a randomly selected winner!");

 System.out.print ("Enter your age: ");
 int age = scan.nextInt();

 System.out.println ("You entered: " + age);

 if (age < MINOR)
 System.out.println ("Youth is a wonderful thing. Enjoy.");

 System.out.println ("Age is a state of mind.");
 }
}

O U T P U T

Enter your age: 40
You entered: 40
Age is a state of mind.

L I S T I N G 5 . 1 continued

216 CHAPTER 5 Conditionals and Loops

 The odds of this code picking a winner are based on the value of the CHANCE con-
stant. That is, if CHANCE contains 20, the odds of winning are 1 in 20. The fact that
the condition is looking for a return value of 0 is arbitrary; any value between 0
and CHANCE-1 would have worked.

 The if-else Statement
 Sometimes we want to do one thing if a condition is true and another thing if
that condition is false. We can add an else clause to an if statement, making it
an if-else statement , to handle this kind of situation. The following is an example
of an if-else statement:

if (height <= MAX)
 adjustment = 0;
else
 adjustment = MAX - height;

 If the condition is true, the first assignment statement is executed;
if the condition is false, the second assignment statement is executed.
Only one or the other will be executed, because a boolean condition
evaluates to either true or false. Note that proper indentation is used
again to communicate that the statements are part of the governing
 if statement.

 KEY CONCEPT
 An if-else statement allows a pro-
gram to do one thing if a condition
is true and another thing if the con-
dition is false.

 If Statement

 An if statement tests the boolean Expression and, if true, executes
the first Statement. The optional else clause identifies the Statement
that should be executed if the Expression is false.

 Examples:

 if (tal < 7)
 System.out.println ("Total is less than 7.");

 if (firstCh != 'a')
 count++;
 else
 count = count / 2;

if () Statement

else Statement

Expression

 5.2 The if Statement 217

The Wages program shown in Listing 5.2 uses an if-else statement to com-
pute the proper payment amount for an employee.

In the Wages program, if an employee works over 40 hours in a week, the
payment amount takes into account the overtime hours. An if-else statement is
used to determine whether the number of hours entered by the user is greater than
40. If it is, the extra hours are paid at a rate one and a half times the normal rate.
If there are no overtime hours, the total payment is based simply on the number
of hours worked and the standard rate.

Let’s look at another example of an if-else statement:

if (roster.getSize() == FULL)
 roster.expand();
else
 roster.addName (name);

//**
// Wages.java Author: Lewis/Loftus
//
// Demonstrates the use of an if-else statement.
//**

import java.text.NumberFormat;
import java.util.Scanner;

public class Wages
{
 //---
 // Reads the number of hours worked and calculates wages.
 //---
 public static void main (String[] args)
 {
 final double RATE = 8.25; // regular pay rate
 final int STANDARD = 40; // standard hours in a work week

 Scanner scan = new Scanner (System.in);

 double pay = 0.0;

 System.out.print ("Enter the number of hours worked: ");
 int hours = scan.nextInt();

L I S T I N G 5 . 2

218 CHAPTER 5 Conditionals and Loops

This example makes use of an object called roster. Even without knowing
what roster represents, or from what class it was created, we can see that it
has at least three methods: getSize, expand, and addName. The condition of the
if statement calls getSize and compares the result to the constant FULL. If the
condition is true, the expand method is invoked (apparently to expand the size of
the roster). If the roster is not yet full, the variable name is passed as a parameter
to the addName method.

The program in Listing 5.3 instantiates a Coin object, flips the coin by call-
ing the flip method, then uses an if-else statement to determine which of two
sentences gets printed based on the result.

 System.out.println ();

 // Pay overtime at "time and a half"
 if (hours > STANDARD)
 pay = STANDARD * RATE + (hours-STANDARD) * (RATE * 1.5);
 else
 pay = hours * RATE;

 NumberFormat fmt = NumberFormat.getCurrencyInstance();
 System.out.println ("Gross earnings: " + fmt.format(pay));
 }
}

O U T P U T

Enter the number of hours worked: 46

Gross earnings: $404.25

L I S T I N G 5 . 2 continued

//**
// CoinFlip.java Author: Lewis/Loftus
//
// Demonstrates the use of an if-else statement.
//**

L I S T I N G 5 . 3

 5.2 The if Statement 219

The Coin class is shown in Listing 5.4. It stores two integer constants (HEADS
and TAILS) that represent the two possible states of the coin, and an instance vari-
able called face that represents the current state of the coin. The Coin construc-
tor initially flips the coin by calling the flip method, which determines the new
state of the coin by randomly choosing a number (either 0 or 1). The isHeads
method returns a boolean value based on the current face value of the coin. The
toString method uses an if-else statement to determine which character string
to return to describe the coin. The toString method is automatically called when
the myCoin object is passed to println in the main method.

Using Block Statements
We may want to do more than one thing as the result of evaluating a boolean
condition. In Java, we can replace any single statement with a block statement.

public class CoinFlip
{
 //---
 // Creates a Coin object, flips it, and prints the results.
 //---
 public static void main (String[] args)
 {
 Coin myCoin = new Coin();

 myCoin.flip();

 System.out.println (myCoin);

 if (myCoin.isHeads())
 System.out.println ("You win.");
 else
 System.out.println ("Better luck next time.");
 }
}

O U T P U T

Tails
Better luck next time.

L I S T I N G 5 . 3 continued

220 CHAPTER 5 Conditionals and Loops

//**
// Coin.java Author: Lewis/Loftus
//
// Represents a coin with two sides that can be flipped.
//**

public class Coin
{
 private final int HEADS = 0;
 private final int TAILS = 1;

 private int face;

 //---
 // Sets up the coin by flipping it initially.
 //---
 public Coin ()
 {
 flip();
 }

 //---
 // Flips the coin by randomly choosing a face value.
 //---
 public void flip ()
 {
 face = (int) (Math.random() * 2);
 }

 //---
 // Returns true if the current face of the coin is heads.
 //---
 public boolean isHeads ()
 {
 return (face == HEADS);
 }

 //---
 // Returns the current face of the coin as a string.
 //---
 public String toString()
 {
 String faceName;

L I S T I N G 5 . 4

 5.2 The if Statement 221

A block statement is a collection of statements enclosed in braces. We’ve used these
braces many times in previous examples to enclose method and class definitions.

The program called Guessing, shown in Listing 5.5, uses an if-else statement
in which the statement of the else clause is a block statement.

If the guess entered by the user equals the randomly chosen answer, an appro-
priate acknowledgment is printed. However, if the answer is incorrect, two state-
ments are printed, one that states that the guess is wrong and one that prints the
actual answer. A programming project at the end of this chapter expands the
concept of this example into the Hi-Lo game.

Note that if the block braces were not used, the sentence stating that the
answer is incorrect would be printed if the answer was wrong, but the sentence
revealing the correct answer would be printed in all cases. That is, only the first
statement would be considered part of the else clause.

Remember that indentation means nothing except to the human reader. Statements
that are not blocked properly can lead to the programmer making improper assump-
tions about how the code will execute. For example, the following code is misleading:

if (depth >= UPPER_LIMIT)
 delta = 100;
else
 System.out.println ("WARNING: Delta is being reset to ZERO");
 delta = 0; // not part of the else clause!

The indentation (not to mention the logic of the code) implies that the variable
delta is reset to zero only when depth is less than UPPER_LIMIT. However,
without using a block, the assignment statement that resets delta to zero is not
governed by the if-else statement at all. It is executed in either case, which is
clearly not what is intended.

 if (face == HEADS)
 faceName = "Heads";
 else
 faceName = "Tails";

 return faceName;
 }
}

L I S T I N G 5 . 4 continued

Examples using
conditionals.

VideoNote

222 CHAPTER 5 Conditionals and Loops

//**
// Guessing.java Author: Lewis/Loftus
//
// Demonstrates the use of a block statement in an if-else.
//**

import java.util.*;

public class Guessing
{
 //---
 // Plays a simple guessing game with the user.
 //---
 public static void main (String[] args)
 {
 final int MAX = 10;
 int answer, guess;

 Scanner scan = new Scanner (System.in);
 Random generator = new Random();

 answer = generator.nextInt(MAX) + 1;

 System.out.print ("I'm thinking of a number between 1 and "
 + MAX + ". Guess what it is: ");

 guess = scan.nextInt();

 if (guess == answer)
 System.out.println ("You got it! Good guessing!");
 else
 {
 System.out.println ("That is not correct, sorry.");
 System.out.println ("The number was " + answer);
 }
 }
}

O U T P U T

I'm thinking of a number between 1 and 10. Guess what it is: 7
That is not correct, sorry.
The number was 5

L I S T I N G 5 . 5

 5.2 The if Statement 223

A block statement can be used anywhere a single statement is called for in Java
syntax. For example, the if portion of an if-else statement could be a block, or
the else portion could be a block (as we saw in the Guessing program), or both
parts could be block statements. For example:

if (boxes != warehouse.getCount())
{
 System.out.println ("Inventory and warehouse do NOT match.");
 System.out.println ("Beginning inventory process again!");
 boxes = 0;
}
else
{
 System.out.println ("Inventory and warehouse MATCH.");
 warehouse.ship();
}

In this if-else statement, the value of boxes is compared to a value obtained by
calling the getCount method of the warehouse object (whatever that is). If they
do not match exactly, two println statements and an assignment statement are
executed. If they do match, a different message is printed and the ship method of
warehouse is invoked.

Nested if Statements
The statement executed as the result of an if statement could be another if state-
ment. This situation is called a nested if. It allows us to make another decision
after determining the results of a previous decision. The program in Listing 5.6,
called MinOfThree, uses nested if statements to determine the smallest of three
integer values entered by the user.

Carefully trace the logic of the MinOfThree program, using various input sets with
the minimum value in all three positions, to see how it determines the lowest value.

An important situation arises with nested if statements. It may seem that an
else clause after a nested if could apply to either if statement. For example:

if (code == 'R')
 if (height <= 20)
 System.out.println ("Situation Normal");
 else
 System.out.println ("Bravo!");

224 CHAPTER 5 Conditionals and Loops

//**
// MinOfThree.java Author: Lewis/Loftus
//
// Demonstrates the use of nested if statements.
//**

import java.util.Scanner;

public class MinOfThree
{
 //---
 // Reads three integers from the user and determines the smallest
 // value.
 //---
 public static void main (String[] args)
 {
 int num1, num2, num3, min = 0;

 Scanner scan = new Scanner (System.in);

 System.out.println ("Enter three integers: ");
 num1 = scan.nextInt();
 num2 = scan.nextInt();
 num3 = scan.nextInt();

 if (num1 < num2)
 if (num1 < num3)
 min = num1;
 else
 min = num3;
 else
 if (num2 < num3)
 min = num2;
 else
 min = num3;

 System.out.println ("Minimum value: " + min);
 }
}

O U T P U T

Enter three integers:
45 22 69
Minimum value: 22

L I S T I N G 5 . 6

5.2 The if Statement 225

 Is the else clause matched to the inner if statement or the outer if
statement? The indentation in this example implies that it is part of
the inner if statement, and that is correct. An else clause is always
matched to the closest unmatched if that preceded it. However, if
we’re not careful, we can easily mismatch it in our mind and mis-
align the indentation. This is another reason why accurate, consistent indentation
is crucial.

 Braces can be used to specify the if statement to which an else clause belongs.
For example, if the previous example should have been structured so that the
string "Bravo!" is printed if code is not equal to 'R' , we could force that relation-
ship (and properly indent) as follows:

 if (code == 'R')
 {
 if (height <= 20)
 System.out.println ("Situation Normal");
 }
 else
 System.out.println ("Bravo!");

 By using the block statement in the first if statement, we establish that the else
clause belongs to it.

 SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 5.8 What output is produced by the following code fragment given the
assumptions below?

if (num1 < num2)
 System.out.print (" red ");
if ((num1 + 5) < num2)
 System.out.print (" white ");
else
 System.out.print (" blue ");
 System.out.println (" yellow ");

 a. Assuming the value of num1 is 2 and the value of num2 is 10?
 b. Assuming the value of num1 is 10 and the value of num2 is 2?
 c. Assuming the value of num1 is 2 and the value of num2 is 2?

SR 5.9 How do block statements help us in the construction of conditionals?

SR 5.10 What is a nested if statement?

SR 5.11 For each assumption, what output is produced by the following code
fragment?

 KEY CONCEPT
 In a nested if statement, an else
clause is matched to the closest
unmatched if .

226 CHAPTER 5 Conditionals and Loops

if (num1 >= num2)
{
 System.out.print (" red ");
 System.out.print (" orange ");
}
if ((num1 + 5) >= num2)
 System.out.print (" white ");

else

 if ((num1 + 10) >= num2)
 {
 System.out.print (" black ");
 System.out.print (" blue ");
 }

 else

 System.out.print (" yellow ");
System.out.println(" green ");

a. Assuming the value of num1 is 5 and the value of num2 is 4?
b. Assuming the value of num1 is 5 and the value of num2 is 12?
c. Assuming the value of num1 is 5 and the value of num2 is 27?

SR 5.12 Write an expression that will print a message based on the value of
the int variable named temperature. If temperature is equal to or less
than 50, it prints “It is cool.” on one line and “Dress warmly.” on the
next. If temperature is greater than 80, it prints “It is warm.” on one
line and “Dress coolly.” on the next. If temperature is in between 50
and 80, it prints “It is pleasant.” on one line and “Dress pleasantly.”
on the next.

5.3 Comparing Data

When comparing data using boolean expressions, it’s important to understand
some nuances that arise depending on the type of data being examined. Let’s look
at a few key situations.

Comparing Floats
An interesting situation occurs when comparing floating point data. Two floating
point values are equal, according to the == operator, only if all the binary digits of
their underlying representations match. If the compared values are the results of

5.3 Comparing Data 227

computation, it may be unlikely that they are exactly equal even if they are close
enough for the specific situation. Therefore, you should rarely use the equality
operator (==) when comparing floating point values.

 A better way to check for floating point equality is to compute the absolute
value of the difference between the two values and compare the result to some
tolerance level. For example, we may choose a tolerance level of 0.00001 . If the
two floating point values are so close that their difference is less than the toler-
ance, then we are willing to consider them equal. Comparing two floating point
values, f1 and f2 , could be accomplished as follows:

if (Math.abs(f1 - f2) < TOLERANCE)
 System.out.println ("Essentially equal.");

 The value of the constant TOLERANCE should be appropriate for the situation.

 Comparing Characters
 We know what it means when we say that one number is less than another, but what
does it mean to say one character is less than another? As we discussed in Chapter 2 ,
characters in Java are based on the Unicode character set, which defines an ordering
of all possible characters that can be used. Because the character 'a' comes before the
character 'b' in the character set, we can say that 'a' is less than 'b' .

 We can use the equality and relational operators on character
data. For example, if two character variables ch1 and ch2 hold two
characters, we might determine their relative ordering in the Unicode
character set with an if statement as follows:

 if (ch1 > ch2)
 System.out.println (ch1 + " is greater than " + ch2);
 else
 System.out.println (ch1 + " is NOT greater than " + ch2);

 The Unicode character set is structured so that all lowercase alphabetic characters
('a' through 'z') are contiguous and in alphabetical order. The same is true of
uppercase alphabetic characters ('A' through 'Z') and characters that represent
digits ('0' through '9'). The digits precede the uppercase alphabetic characters,
which precede the lowercase alphabetic characters. Before, after, and in between
these groups are other characters. See the chart in Appendix C for details.

 Remember that a character and a character string are two different types of
information. A char is a primitive value that represents one character. A character
string is represented as an object in Java, defined by the String class. While com-
paring strings is based on comparing the characters in the strings, the comparison
is governed by the rules for comparing objects.

 KEY CONCEPT
 The relative order of characters in
Java is defined by the Unicode char-
acter set.

228 CHAPTER 5 Conditionals and Loops

 Comparing Objects
 The Unicode relationships among characters make it easy to sort characters and
strings of characters. If you have a list of names, for instance, you can put them
in alphabetical order based on the inherent relationships among characters in the
character set.

 However, you should not use the equality or relational operators to compare
String objects. The String class contains a method called equals that returns a
boolean value that is true if the two strings being compared contain exactly the
same characters and is false otherwise. For example:

if (name1.equals(name2))
 System.out.println ("The names are the same.");
else
 System.out.println ("The names are not the same.");

 Assuming that name1 and name2 are String objects, this condition
determines whether the characters they contain are an exact match.
Because both objects were created from the String class, they both
respond to the equals message. Therefore, the condition could have
been written as name2.equals(name1), and the same result would
occur.

 It is valid to test the condition (name1 == name2) , but that actually tests to
see whether both reference variables refer to the same String object. For any
object, the == operator tests whether both reference variables are aliases of each
other (whether they contain the same address). That’s different from testing to see
whether two different String objects contain the same characters.

 Keep in mind that a string literal (such as "Nathan") is a convenience and is
actually a shorthand technique for creating a String object. An interesting issue
related to string comparisons is the fact that Java creates a unique object for string
literals only when needed. That is, if the string literal "Hi" is used multiple times
in a method, only one String object is created to represent it. Therefore, the con-
ditions of both if statements in the following code are true:

 String str = "software";
if (str == "software")
 System.out.println ("References are the same");
if (str.equals("software"))
 System.out.println ("Characters are the same");

 The first time the string literal "software" is used, a String object is created
to represent it and the reference variable str is set to its address. Each subsequent
time the literal is used, the original object is referenced.

 KEY CONCEPT
 The compareTo method can be used
to determine the relative order of
strings.

 5.3 Comparing Data 229

To determine the relative ordering of two strings, use the compareTo method
of the String class. The compareTo method is more versatile than the equals
method. Instead of returning a boolean value, the compareTo method returns
an integer. The return value is negative if the String object through which the
method is invoked precedes (is less than) the string that is passed in as a param-
eter. The return value is zero if the two strings contain the same characters.
The return value is positive if the String object through which the method is
invoked follows (is greater than) the string that is passed in as a parameter. For
example:

int result = name1.compareTo(name2);
if (result < 0)
 System.out.println (name1 + " comes before " + name2);
else
 if (result == 0)
 System.out.println ("The names are equal.");
 else
 System.out.println (name1 + " follows " + name2);

Keep in mind that comparing characters and strings is based on the Unicode
character set (see Appendix C). This is called a lexicographic ordering. If all alpha-
betic characters are in the same case (upper or lower), the lexicographic ordering
will be alphabetic ordering as well. However, when comparing two strings, such
as "able" and "Baker", the compareTo method will conclude that "Baker" comes
first because all of the uppercase letters come before all of the lowercase letters
in the Unicode character set. A string that is the prefix of another, longer string
is considered to precede the longer string. For example, when comparing the
two strings "horse" and "horsefly", the compareTo method will conclude that
"horse" comes first.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 5.13 Why must we be careful when comparing floating point values for
equality?

SR 5.14 How do we compare strings for equality?

SR 5.15 Write an equals method for the Die class of Section 4.2. The method
should return true if the Die object it is invoked on has the same
facevalue as the Die object passed as a parameter, otherwise it should
return false.

SR 5.16 Assume the String variables s1 and s2 have been initialized. Write an
expression that prints out the two strings on separate lines in lexico-
graphic order.

230 CHAPTER 5 Conditionals and Loops

5.4 The while Statement

As we discussed in the introduction of this chapter, a repetition statement (or
loop) allows us to execute another statement multiple times. A while statement is
a loop that evaluates a boolean condition just as an if statement does and exe-
cutes a statement (called the body of the loop) if the condition is true. However,
unlike the if statement, after the body is executed, the condition is evaluated
again. If it is still true, the body is executed again. This repetition continues until
the condition becomes false; then processing continues with the statement after
the body of the while loop. Figure 5.7 shows this processing.

While Statement

The while loop repeatedly executes the specified Statement as long
as the boolean Expression is true. The Expression is evaluated first;
therefore the Statement might not be executed at all. The Expression is
evaluated again after each execution of Statement until the Expression
becomes false.

Example:

while (total > max)
{
 total = total / 2;
 System.out.println ("Current total: " + total);
}

switch ()
Switch Case

Expression { }

FIGURE 5.7 The logic of a while loop

true

statement

condition
evaluated

false

5.4 The while Statement 231

 The following loop prints the values from 1 to 5. Each iteration
through the loop prints one value, then increments the counter.

int count = 1;
while (count <= 5)
 {
 System.out.println (count);
 count++;
 }

 Note that the body of the while loop is a block containing two statements. The
entire block is repeated on each iteration of the loop.

 Let’s look at another program that uses a while loop. The Average program
shown in Listing 5.7 reads a series of integer values from the user, sums them up,
and computes their average.

 We don’t know how many values the user may enter, so we need to have a way
to indicate that the user has finished entering numbers. In this program, we desig-
nate zero to be a sentinel value that indicates the end of the input. The while loop
continues to process input values until the user enters zero. This assumes that zero

//**
// Average.java Author: Lewis/Loftus
//
// Demonstrates the use of a while loop, a sentinel value, and a
// running sum.
//**

import java.text.DecimalFormat;
import java.util.Scanner;

public class Average
 {
 //---
 // Computes the average of a set of values entered by the user.
 // The running sum is printed as the numbers are entered.
 //---
 public static void main (String[] args)
 {
 int sum = 0, value, count = 0;
 double average;

 Scanner scan = new Scanner (System.in);

 L I S T I N G 5 . 7

 KEY CONCEPT
 A while statement executes the
same statement until its condition
becomes false.

232 CHAPTER 5 Conditionals and Loops

 System.out.print ("Enter an integer (0 to quit): ");
 value = scan.nextInt();

 while (value != 0) // sentinel value of 0 to terminate loop
 {
 count++;

 sum += value;
 System.out.println ("The sum so far is " + sum);

 System.out.print ("Enter an integer (0 to quit): ");
 value = scan.nextInt();
 }

 System.out.println ();

 if (count == 0)
 System.out.println ("No values were entered.");
 else
 {
 average = (double)sum / count;

 DecimalFormat fmt = new DecimalFormat ("0.###");
 System.out.println ("The average is " + fmt.format(average));
 }
 }
}

O U T P U T

Enter an integer (0 to quit): 25
The sum so far is 25
Enter an integer (0 to quit): 164
The sum so far is 189
Enter an integer (0 to quit): -14
The sum so far is 175
Enter an integer (0 to quit): 84
The sum so far is 259
Enter an integer (0 to quit): 12
The sum so far is 271
Enter an integer (0 to quit): -35
The sum so far is 236
Enter an integer (0 to quit): 0

The average is 39.333

L I S T I N G 5 . 7 continued

 5.4 The while Statement 233

is not one of the valid numbers that should contribute to the average. A sentinel
value must always be outside the normal range of values entered.

Note that in the Average program, a variable called sum is used to maintain a
running sum, which means it is the sum of the values entered thus far. The variable
sum is initialized to zero, and each value read is added to and stored back into sum.

We also have to count the number of values that are entered so that after the
loop concludes we can divide by the appropriate value to compute the average.
Note that the sentinel value is not counted. Consider the unusual situation in
which the user immediately enters the sentinel value before entering any valid
values. The if statement at the end of the program avoids a divide-by-zero error.

Let’s examine yet another program that uses a while loop. The WinPercentage
program shown in Listing 5.8 computes the winning percentage of a sports team
based on the number of games won.

We use a while loop in the WinPercentage program to validate the input,
meaning we guarantee that the user enters a value that we consider to be valid.
In this example, that means that the number of games won must be greater than
or equal to zero and less than or equal to the total number of games played. The
while loop continues to execute, repeatedly prompting the user for valid input,
until the entered number is indeed valid.

//**
// WinPercentage.java Author: Lewis/Loftus
//
// Demonstrates the use of a while loop for input validation.
//**

import java.text.NumberFormat;
import java.util.Scanner;

public class WinPercentage
{
 //---
 // Computes the percentage of games won by a team.
 //---
 public static void main (String[] args)
 {
 final int NUM_GAMES = 12;
 int won;
 double ratio;

L I S T I N G 5 . 8

VideoNote

Examples using while
loops.

234 CHAPTER 5 Conditionals and Loops

 Scanner scan = new Scanner (System.in);

 System.out.print ("Enter the number of games won (0 to "
 + NUM_GAMES + "): ");
 won = scan.nextInt();

 while (won < 0 || won > NUM_GAMES)
 {
 System.out.print ("Invalid input. Please reenter: ");
 won = scan.nextInt();
 }

 ratio = (double)won / NUM_GAMES;

 NumberFormat fmt = NumberFormat.getPercentInstance();

 System.out.println ();
 System.out.println ("Winning percentage: " + fmt.format(ratio));
 }
}

O U T P U T

Enter the number of games won (0 to 12): -5
Invalid input. Please reenter: 13
Invalid input. Please reenter: 7

Winning percentage: 58%

L I S T I N G 5 . 8 continued

We generally want our programs to be robust, which means that they handle
potential problems as elegantly as possible. Validating input data and avoiding
errors such as dividing by zero are situations that we should consciously address
when designing a program. Loops and conditionals help us recognize and deal
with such situations.

Infinite Loops
It is the programmer’s responsibility to ensure that the condition of a loop will
eventually become false. If it doesn’t, the loop body will execute forever, or at
least until the program is interrupted. This situation, referred to as an infinite
loop, is a common mistake.

5.4 The while Statement 235

 The following is an example of an infinite loop:

int count = 1;
while (count <= 25) // Warning: this is an infinite loop!
 {
 System.out.println (count);
 count = count - 1;
 }

 If you execute this loop, you should be prepared to interrupt it. On most systems,
pressing the Control-C keyboard combination (hold down the Control key and
press C) terminates a running program.

 In this example, the initial value of count is 1, and it is decremented in the
loop body. The while loop will continue as long as count is less than or equal to
 25 . Because count gets smaller with each iteration, the condition will
always be true, or at least until the value of count gets so small that
an underflow error occurs. The point is that the logic of the code is
clearly wrong.

 Let’s look at some other examples of infinite loops:

 int count = 1;
 while (count != 50) // infinite loop
 count += 2;

 In this code fragment, the variable count is initialized to 1 and is moving in a
positive direction. However, note that it is being incremented by 2 each time. This
loop will never terminate because count will never equal 50. It begins at 1 and
then changes to 3, then 5, and so on. Eventually it reaches 49, then changes to 51,
then 53, and continues forever.

 Now consider the following situation:

double num = 1.0;
while (num != 0.0) // infinite loop
 num = num - 0.1;

 Once again, the value of the loop control variable seems to be moving in the
correct direction. And, in fact, it seems like num will eventually take on the
value 0.0 . However, this loop is infinite (at least on most systems), because
num will never have a value exactly equal to 0.0 . This situation is similar to
one we discussed earlier in this chapter when we explored the idea of compar-
ing floating point values in the condition of an if statement. Because of the
way the values are represented in binary, minute computational errors occur
internally, making it problematic to compare two floating point values for
equality.

 KEY CONCEPT
 We must design our programs care-
fully to avoid infinite loops.

236 CHAPTER 5 Conditionals and Loops

Nested Loops
The body of a loop can contain another loop. This situation is called a nested
loop. Keep in mind that for each iteration of the outer loop, the inner loop exe-
cutes completely. Consider the following code fragment. How many times does
the string "Here again" get printed?

int count1, count2;
count1 = 1;
while (count1 <= 10)
{
 count2 = 1;
 while (count2 <= 50)
 {
 System.out.println ("Here again");
 count2++;
 }
 count1++;
}

The println statement is inside the inner loop. The outer loop executes 10 times,
as count1 iterates between 1 and 10. The inner loop executes 50 times, as count2
iterates between 1 and 50. For each iteration of the outer loop, the inner loop
executes completely. Therefore the println statement is executed 500 times.

As with any loop situation, we must be careful to scrutinize the conditions of
the loops and the initializations of variables. Let’s consider some small changes to
this code. What if the condition of the outer loop were (count1 < 10) instead of
(count1 <= 10)? How would that change the total number of lines printed? Well,
the outer loop would execute 9 times instead of 10, so the println statement
would be executed 450 times. What if the outer loop were left as it was originally
defined, but count2 were initialized to 11 instead of 1 before the inner loop? The
inner loop would then execute 40 times instead of 50, so the total number of lines
printed would be 400.

Let’s look at another example that uses a nested loop. A palindrome is a string
of characters that reads the same forward or backward. For example, the follow-
ing strings are palindromes:

■ radar

■ drab bard

■ ab cde xxxx edc ba

■ kayak

■ deified

■ able was I ere I saw elba

 5.4 The while Statement 237

Note that some palindromes have an even number of characters, whereas oth-
ers have an odd number of characters. The PalindromeTester program shown
in Listing 5.9 tests to see whether a string is a palindrome. The user may test as
many strings as desired.

The code for PalindromeTester contains two loops, one inside the other.
The outer loop controls how many strings are tested, and the inner loop scans

//**
// PalindromeTester.java Author: Lewis/Loftus
//
// Demonstrates the use of nested while loops.
//**

import java.util.Scanner;

public class PalindromeTester
{
 //---
 // Tests strings to see if they are palindromes.
 //---
 public static void main (String[] args)
 {
 String str, another = "y";
 int left, right;

 Scanner scan = new Scanner (System.in);

 while (another.equalsIgnoreCase("y")) // allows y or Y
 {
 System.out.println ("Enter a potential palindrome:");
 str = scan.nextLine();

 left = 0;
 right = str.length() - 1;

 while (str.charAt(left) == str.charAt(right) && left < right)
 {
 left++;
 right--;
 }

 System.out.println();

L I S T I N G 5 . 9

238 CHAPTER 5 Conditionals and Loops

 if (left < right)
 System.out.println ("That string is NOT a palindrome.");
 else
 System.out.println ("That string IS a palindrome.");

 System.out.println();
 System.out.print ("Test another palindrome (y/n)? ");
 another = scan.nextLine();
 }
 }
}

O U T P U T

Enter a potential palindrome:
radar

That string IS a palindrome.

Test another palindrome (y/n)? y
Enter a potential palindrome:
able was I ere I saw elba

That string IS a palindrome.

Test another palindrome (y/n)? y
Enter a potential palindrome:
abcddcba

That string IS a palindrome.

Test another palindrome (y/n)? y
Enter a potential palindrome:
abracadabra

That string is NOT a palindrome.

Test another palindrome (y/n)? n

L I S T I N G 5 . 9 continued

 5.4 The while Statement 239

through each string, character by character, until it determines whether the string
is a palindrome.

The variables left and right store the indexes of two characters. They initially
indicate the characters on either end of the string. Each iteration of the inner loop
compares the two characters indicated by left and right. We fall out of the
inner loop when either the characters don’t match, meaning the string is not a
palindrome, or when the value of left becomes equal to or greater than the value
of right, which means the entire string has been tested and it is a palindrome.

Note that the following phrases would not be considered palindromes by the
current version of the program:

■ A man, a plan, a canal, Panama.

■ Dennis and Edna sinned.

■ Rise to vote, sir.

■ Doom an evil deed, liven a mood.

■ Go hang a salami; I’m a lasagna hog.

These strings fail our current criteria for a palindrome because of the spaces,
punctuation marks, and changes in uppercase and lowercase. However, if these
characteristics were removed or ignored, these strings read the same forward and
backward. Consider how the program could be changed to handle these situa-
tions. These modifications are included as a programming project at the end of
the chapter.

The break and continue Statements
Java includes two statements that affect the processing of conditionals and loops.
When a break statement is executed, the flow of execution transfers immediately
to the statement after the one governing the current flow. For example, if a break
statement is executed within the body of a loop, the execution of the loop is stopped
and the statement following the loop is executed. It “breaks” out of the loop.

In Chapter 6 we’ll see that using the break statement is usually necessary when
writing switch statements. However, it is never necessary to use a break state-
ment in a loop. An equivalent loop can always be written without it. Because the
break statement causes program flow to jump from one place to another, using a
break in a loop is not good practice. You can and should avoid using the break
statement in a loop.

A continue statement has a related effect on loop processing. The continue
statement is similar to a break, but the loop condition is evaluated again, and the
loop body is executed again if it is still true. Like the break statement, the continue
statement can always be avoided in a loop, and for the same reasons, it should be.

240 CHAPTER 5 Conditionals and Loops

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 5.17 What is an infinite loop? Specifically, what causes it?

SR 5.18 What output is produced by the following code fragment?

int low = 0, high = 10;
while (low < high)
{
 System.out.println (low);
 low++;
}

SR 5.19 What output is produced by the following code fragment?

int low = 10, high = 0;
while (low <= high)
{
 System.out.println (low);
 low++;
}

SR 5.20 What output is produced by the following code fragment?

int low = 0, high = 10;
while (low <= high)
{
 System.out.println (low);
 high = high − low;
}

SR 5.21 What output is produced by the following code fragment?

int low = 0, high = 10, mid;
while (low <= high)
{
 mid = low;
 while (mid <= high)
 {
 System.out.print (mid + " ");
 mid++;
 }
 System.out.println ();
 low++;
}

SR 5.22 Assume the int variable value has been initialized to a positive inte-
ger. Write a while loop that prints all of the positive divisors of value.
For example, if value is 28, it prints divisors of 28: 1 2 4 7 14 28

5.5 Iterators 241

SR 5.23 Assume the int variable value has been initialized to a positive inte-
ger. Write a while loop that prints all of the positive divisors of each
number from one to value . For example, if value is 4, it prints

 divisors of 1: 1

 divisors of 2: 1 2

 divisors of 3: 1 3

 divisors of 4: 1 2 4

5.5 Iterators

 An iterator is an object that has methods that allow you to process
a collection of items one at a time. That is, an iterator lets you step
through each item and interact with it as needed. For example, your
goal may be to compute the dues for each member of a club or print
the distinct parts of a URL. The key is that an iterator provides a con-
sistent and simple mechanism for systematically processing a group of items. Since it
is inherently a repetitive process, it is closely related to the idea of loops.

 Technically an iterator object in Java is defined using the Iterator interface,
which is discussed in Chapter 7 . For now it is simply helpful to know that such
objects exist and that they can make the processing of a collection of items easier.

 Every iterator object has a method called hasNext that returns a boolean value
indicating if there is at least one more item to process. Therefore the hasNext
method can be used as a condition of a loop to control the processing of each
item. An iterator also has a method called next to retrieve the next item in the
collection to process.

 There are several classes in the Java standard class library that define itera-
tor objects. One of these is Scanner , a class we’ve used several times in previous
examples to help us read data from the user. The hasNext method of the Scanner
class returns true if there is another input token to process. And, as we’ve seen
previously, it has a next method that returns the next input token as a string.

 The Scanner class also has specific variations of the hasNext method, such as
the hasNextInt and hasNextDouble methods, which allow you to determine if the
next input token is a particular type. Likewise, as we’ve seen, there are variations
of the next method, such as nextInt and nextDouble , which retrieve values of
specific types.

 When reading input interactively from the standard input stream, the hasNext
method of the Scanner class will wait until there is input available, then return
true. That is, interactive input read from the keyboard is always thought to have

 KEY CONCEPT
 An iterator is an object that helps
you process a group of related
items.

242 CHAPTER 5 Conditionals and Loops

more data to process—it just hasn’t arrived yet until the user types it in. That’s
why in previous examples we’ve used special sentinel values to determine the end
of interactive input.

However, the fact that a Scanner object is an iterator is particularly helpful
when the scanner is being used to process input from a source that has a specific
end point, such as processing the lines of a data file or processing the parts of a
character string. Let’s examine an example of this type of processing.

Reading Text Files
Suppose we have an input file called urls.inp that contains a list of URLs that
we want to process in some way:

www.google.com

www.linux.org/info/gnu.html

thelyric.com/calendar/

www.cs.vt.edu/undergraduate/about

youtube.com/watch?v=EHCRimwRGLs

The program shown in Listing 5.10 reads the URLs from this file and dissects
them to show the various parts of the path. It uses a Scanner object to process the
input. In fact, it uses multiple Scanner objects—one to read the lines of the data
file and another to process each URL string.

//**
// URLDissector.java Author: Lewis/Loftus
//
// Demonstrates the use of Scanner to read file input and parse it
// using alternative delimiters.
//**

import java.util.Scanner;
import java.io.*;

public class URLDissector
{
 //---
 // Reads urls from a file and prints their path components.
 //---
 public static void main (String[] args) throws IOException
 {

L I S T I N G 5 . 1 0

www.google.com
www.linux.org/info/gnu.html
www.cs.vt.edu/undergraduate/about

 5.5 Iterators 243

 String url;
 Scanner fileScan, urlScan;

 fileScan = new Scanner (new File("urls.inp"));

 // Read and process each line of the file
 while (fileScan.hasNext())
 {
 url = fileScan.nextLine();
 System.out.println ("URL: " + url);

 urlScan = new Scanner (url);
 urlScan.useDelimiter("/");

 // Print each part of the url
 while (urlScan.hasNext())
 System.out.println (" " + urlScan.next());

 System.out.println();
 }
 }
}

O U T P U T

URL: www.google.com
 www.google.com

URL: www.linux.org/info/gnu.html
 www.linux.org
 info
 gnu.html

URL: thelyric.com/calendar/
 thelyric.com
 calendar

URL: www.cs.vt.edu/undergraduate/about
 www.cs.vt.edu
 undergraduate
 about

URL: youtube.com/watch?v=EHCRimwRGLs
 youtube.com
 watch?v=EHCRimwRGLs

L I S T I N G 5 . 1 0 continued

www.google.com
www.google.com
www.linux.org/info/gnu.html
www.linux.org
www.cs.vt.edu/undergraduate/about
www.cs.vt.edu

244 CHAPTER 5 Conditionals and Loops

 There are two while loops in this program, one nested within the other. The
outer loop processes each line in the file, and the inner loop processes each token
in the current line.

 The variable fileScan is created as a scanner that operates on the input file
named urls.inp . Instead of passing System.in into the Scanner constructor, we
instantiate a File object that represents the input file and pass it into the Scanner
constructor. At that point, the fileScan object is ready to read and process input
from the input file.

 If for some reason there is a problem finding or opening the input file, the
attempt to create a File object will throw an IOException , which is why we’ve
added the throws IOException clause to the main method header. (Processing I/O
exceptions is discussed further in Chapter 11 .)

 The body of the outer while loop will be executed as long as the hasNext
method of the input file scanner returns true—that is, as long as there is more
input in the data file to process. Each iteration through the loop reads one line
(one URL) from the input file and prints it out.

 For each URL, a new Scanner object is set up to parse the pieces of the URL
string, which is passed into the Scanner constructor when instantiating the urlScan
object. The inner while loop prints each token of the URL on a separate line.

 Recall that, by default, a Scanner object assumes that white space
(spaces, tabs, and new lines) is used as the delimiters separating the
input tokens. That works in this example for the scanner that is reading
each line of the input file. However, if the default delimiters do not suf-
fice, as in the processing of a URL in this example, they can be changed.

 In this case, we are interested in each part of the path separated by the slash (/)
character. A call to the useDelimiter method of the scanner sets the delimiter to
a slash prior to processing the URL string.

 If you want to use more than one alternate delimiter character, or if you want
to parse the input in more complex ways, the Scanner class can process patterns
called regular expressions , which are discussed in Appendix H.

 SELF-REVIEW QUESTIONS (see answers in Appendix N)

 SR 5.24 Devise statements that create each of the following Scanner objects.

 a. One for interactive input, which reads from System.in .
 b. One that reads from the file “info.dat”.
 c. One that reads from the String variable infoString .

 SR 5.25 Assume the Scanner object fileScan has been initialized to read from
a file. Write a while loop that calculates the average number of char-
acters per line of the file.

 KEY CONCEPT
 The delimiters used to separate
tokens in a Scanner object can be
explicitly set as needed.

5.6 The ArrayList Class 245

5.6 The ArrayList Class

 Now that we have a loop in our arsenal of programming statements, let’s introduce a
very useful class for managing a set of objects. The ArrayList class is part of the java.
util package of the Java standard class library. An ArrayList object stores a list of
objects and allows you to refer to each one by an integer index value. We will often use
loops to scan through the objects in the list and deal with them in one way or another.

 Internally, the ArrayList class manages the list using a program-
ming construct called an array (hence the name). Arrays are discussed
in detail in Chapter 8 , but we don’t have to know the details of arrays
to make use of an ArrayList object. The ArrayList class is part of
the Java Collections API, a group of classes that serve to organize and
manage other objects. We discuss collection classes further in Chapter 13 .

 Figure 5.8 lists several methods of the ArrayList class. You can add and
remove elements in various ways, determine if the list is empty, and obtain the
number of elements currently in the list, among several other operations.

 Note that the ArrayList class refers to having elements of type E . That is a generic
type (the E stands for element), which is determined when an ArrayList object is cre-
ated. So you don’t just create an ArrayList object, you create an ArrayList object that
will store a particular type of object. The type parameter for a given object is written
in angle brackets after the class name. So we can talk about an ArrayList<String>
object that manages a list of String objects, or an ArrayList<Book> that manages a
list of Book objects.

 You can create an ArrayList without specifying the type of ele-
ment, in which case the ArrayList stores Object references, which
means that you can put any type of object in the list. This is usually not
a good idea. The point of being able to commit to storing a particular
type in a given ArrayList object lets the compiler help you check that
only the appropriate types of objects are being stored in the object.

 The index values of an ArrayList begin at 0, not 1. So conceptually, for
example, an ArrayList of String objects might be managing the following list:

 0 "Bashful"
 1 "Sleepy"
 2 "Happy"
 3 "Dopey"
 4 "Doc"

 Also note that an ArrayList stores references to objects. You cannot cre-
ate an ArrayList that stores primitive values such as an int . But that’s where
wrapper classes come to the rescue again. For example, you can create an
ArrayList<Integer> or an ArrayList<Double> as appropriate.

 KEY CONCEPT
 An ArrayList object stores a list
of objects and lets you access them
using an integer index.

 KEY CONCEPT
 When an ArrayList object is cre-
ated, you specify the type of element
that will be stored in the list.

246 CHAPTER 5 Conditionals and Loops

//**
// Beatles.java Author: Lewis/Loftus
//
// Demonstrates the use of a ArrayList object.
//**

L I S T I N G 5 . 1 1

The program shown in Listing 5.11 instantiates an ArrayList<String> called
band. The method add is used to add several String objects to the end of the
ArrayList in a specific order. Then one particular string is deleted and another
is inserted at a particular index. As with any other object, the toString method
of the ArrayList class is automatically called whenever it is sent to the println
method, which prints all of the elements surrounded by square brackets. The while
loop at the end of the program explicitly prints each element on a separate line.

FIGURE 5.8 Some methods of the ArrayList<E> class.

ArrayList<E>()
Constructor: creates an initially empty list.

boolean add (E obj)
Inserts the specified object to the end of this list.

void add (int index, E obj)
Inserts the specified object into this list at the specified index.

void clear()
Removes all elements from this list.

E remove (int index)
Removes the element at the specified index in this list and returns it.

E get (int index)
Returns the object at the specified index in this list without removing it.

int indexOf (Object obj)
Returns the index of the first occurrence of the specified object.

boolean contains (Object obj)
Returns true if this list contains the specified object.

boolean isEmpty()
Returns true if this list contains no elements.

int size()
Returns the number of elements in this list.

 5.6 The ArrayList Class 247

import java.util.ArrayList;

public class Beatles
{
 //---
 // Stores and modifies a list of band members.
 //---
 public static void main (String[] args)
 {
 ArrayList<String> band = new ArrayList<String>();

 band.add ("Paul");
 band.add ("Pete");
 band.add ("John");
 band.add ("George");

 System.out.println (band);
 int location = band.indexOf ("Pete");
 band.remove (location);

 System.out.println (band);
 System.out.println ("At index 1: " + band.get(1));
 band.add (2, "Ringo");

 System.out.println ("Size of the band: " + band.size());
 int index = 0;
 while (index < band.size())
 {
 System.out.println (band.get(index));
 index++;
 }
 }
}

O U T P U T

[Paul, Pete, John, George]
[Paul, John, George]
At index 1: John
Size of the band: 4
Paul
John
Ringo
George

L I S T I N G 5 . 1 1 continued

248 CHAPTER 5 Conditionals and Loops

SELF-REVIEW QUESTIONS

SR 5.26 What are the advantages of using an ArrayList object?

SR 5.27 What type of elements does an ArrayList hold?

SR 5.28 Write a declaration for a variable named dice that is an ArrayList of
Die objects.

SR 5.29 What output is produced by the following code fragment?

ArrayList<String> names = new ArrayList<String>();
names.add ("Andy");
names.add ("Betty");
names.add (1, "Chet");
names.add (1, "Don");
names.remove (2);
System.out.println (names);

5.7 Determining Event Sources

In Chapter 4 we began our exploration of creating programs with a truly interac-
tive graphical user interface (GUI). You’ll recall that interactive GUIs require that
we create listener objects and set up the relationship between listeners and the
components that generate the events of interest.

Let’s look at an example in which one listener object is used to listen to two
different components. The program represented by the LeftRight class, shown
in Listing 5.12 displays a label and two buttons. When the left button is pressed,
the label displays the word Left, and when the right button is pressed, the label
displays the word Right.

The LeftRightPanel class, shown in Listing 5.13, creates one instance of the
ButtonListener object, then adds that listener to both buttons. Therefore, when
either button is pressed, the actionPerformed method of the ButtonListener
class is invoked.

On each invocation, the actionPerformed method uses an if-else statement
to determine which button generated the event. The getSource method is called
on the ActionEvent object that the button passes into the actionPerformed
method. The getSource method returns a reference to the component that gener-
ated the event. The condition of the if statement compares the event source to
the reference to the left button. If they don’t match, then the event must have been
generated by the right button.

 5.7 Determining Event Sources 249

//**
// LeftRight.java Author: Lewis/Loftus
//
// Demonstrates the use of one listener for multiple buttons.
//**

import javax.swing.JFrame;

public class LeftRight
{
 //---
 // Creates the main program frame.
 //---
 public static void main (String[] args)
 {
 JFrame frame = new JFrame ("Left Right");
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

 frame.getContentPane().add(new LeftRightPanel());

 frame.pack();
 frame.setVisible(true);
 }
}

D I S P L A Y

L I S T I N G 5 . 1 2

250 CHAPTER 5 Conditionals and Loops

//**
// LeftRightPanel.java Author: Lewis/Loftus
//
// Demonstrates the use of one listener for multiple buttons.
//**

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class LeftRightPanel extends JPanel
{
 private JButton left, right;
 private JLabel label;
 private JPanel buttonPanel;

 //---
 // Constructor: Sets up the GUI.
 //---
 public LeftRightPanel ()
 {
 left = new JButton ("Left");
 right = new JButton ("Right");

 ButtonListener listener = new ButtonListener();
 left.addActionListener (listener);
 right.addActionListener (listener);

 label = new JLabel ("Push a button");

 buttonPanel = new JPanel();
 buttonPanel.setPreferredSize (new Dimension(200, 40));
 buttonPanel.setBackground (Color.blue);
 buttonPanel.add (left);
 buttonPanel.add (right);

 setPreferredSize (new Dimension(200, 80));
 setBackground (Color.cyan);
 add (label);
 add (buttonPanel);
 }

L I S T I N G 5 . 1 3

We could have created two separate listener classes, one to listen to the left but-
ton and another to listen to the right. In that case, the actionPerformed method
would not have to determine the source of the event. Whether to have multiple
listeners or determine the event source when it occurs is a design decision that
should be made depending on the situation.

Note that the two buttons are put on the same panel called buttonPanel,
which is separate from the panel represented by the LeftRightPanel class. By
putting both buttons on one panel, we can guarantee their visual relationship to
each other even when the frame is resized in various ways. For buttons labeled
Left and Right, that may be important.

 //***
 // Represents a listener for both buttons.
 //***
 private class ButtonListener implements ActionListener
 {
 //--
 // Determines which button was pressed and sets the label
 // text accordingly.
 //--
 public void actionPerformed (ActionEvent event)
 {
 if (event.getSource() == left)
 label.setText("Left");
 else
 label.setText("Right");
 }
 }
}

L I S T I N G 5 . 1 3 continued

 5.8 Check Boxes and Radio Buttons 251

5.8 Check Boxes and Radio Buttons

A push button, as defined by the JButton class, is only one kind of button that
we can use in a Java GUI. Two other kinds are check boxes and radio buttons.
Let’s look at these in detail.

Check Boxes
A check box is a button that can be toggled on or off using the mouse, indicat-
ing that a particular boolean condition is set or unset. For example, a check box

labeled Collate might be used to indicate whether the output of a print job
should be collated. Although you might have a group of check boxes indicating a
set of options, each check box operates independently. That is, each can be set to
on or off and the status of one does not influence the others.

The program in Listing 5.14 displays two check boxes and a label. The check
boxes determine whether the text of the label is displayed in bold, italic, both,
or neither. Any combination of bold and italic is valid. For example, both check
boxes could be checked (on), in which case the text is displayed in both bold and
italic. If neither is checked, the text of the label is displayed in a plain style.

The GUI for the StyleOptions program is embodied in the StyleOptionsPanel
class shown in Listing 5.15. A check box is represented by the JCheckBox class.
When a check box changes state from selected (checked) to deselected (unchecked),
or vice versa, it generates an item event. The ItemListener interface contains a
single method called itemStateChanged. In this example, we use the same listener
object to handle both check boxes.

252 CHAPTER 5 Conditionals and Loops

//**
// StyleOptions.java Author: Lewis/Loftus
//
// Demonstrates the use of check boxes.
//**

import javax.swing.JFrame;

public class StyleOptions
{
 //---
 // Creates and presents the program frame.
 //---
 public static void main (String[] args)
 {
 JFrame frame = new JFrame ("Style Options");
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

 StyleOptionsPanel panel = new StyleOptionsPanel();
 frame.getContentPane().add (panel);

 frame.pack();
 frame.setVisible(true);
 }
}

L I S T I N G 5 . 1 4

//**
// StyleOptionsPanel.java Author: Lewis/Loftus
//
// Demonstrates the use of check boxes.
//**

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class StyleOptionsPanel extends JPanel
{
 private JLabel saying;
 private JCheckBox bold, italic;

 //---
 // Sets up a panel with a label and some check boxes that
 // control the style of the label's font.
 //---
 public StyleOptionsPanel()
 {
 saying = new JLabel ("Say it with style!");
 saying.setFont (new Font ("Helvetica", Font.PLAIN, 36));

 bold = new JCheckBox ("Bold");
 bold.setBackground (Color.cyan);

L I S T I N G 5 . 1 5

 5.8 Check Boxes and Radio Buttons 253

D I S P L A Y

L I S T I N G 5 . 1 4 continued

This program also uses the Font class, which represents a particular character
font. A Font object is defined by the font name, the font style, and the font size.
The font name establishes the general visual characteristics of the characters. We
are using the Helvetica font in this program. The style of a Java font can be plain,

254 CHAPTER 5 Conditionals and Loops

 italic = new JCheckBox ("Italic");
 italic.setBackground (Color.cyan);

 StyleListener listener = new StyleListener();
 bold.addItemListener (listener);
 italic.addItemListener (listener);

 add (saying);
 add (bold);
 add (italic);

 setBackground (Color.cyan);
 setPreferredSize (new Dimension(300, 100));
 }

 //***
 // Represents the listener for both check boxes.
 //***
 private class StyleListener implements ItemListener
 {
 //--
 // Updates the style of the label font style.
 //--
 public void itemStateChanged (ItemEvent event)
 {
 int style = Font.PLAIN;

 if (bold.isSelected())
 style = Font.BOLD;

 if (italic.isSelected())
 style += Font.ITALIC;

 saying.setFont (new Font ("Helvetica", style, 36));
 }
 }
}

L I S T I N G 5 . 1 5 continued

bold, italic, or bold and italic combined. The check boxes in our GUI are set up
to change the characteristics of our font style.

 The style of a font is represented as an integer, and integer constants defined in
the Font class are used to represent the various aspects of the style. The constant
PLAIN is used to represent a plain style. The constants BOLD and ITALIC are used to
represent bold and italic, respectively. The sum of the BOLD and ITALIC constants
indicates a style that is both bold and italic.

 The itemStateChanged method of the listener determines what the revised
style should be now that one of the check boxes has changed state. It initially
sets the style to be plain. Then each check box is consulted in turn using the
 isSelected method, which returns a boolean value. First, if the bold check box
is selected (checked), then the style is set to bold. Then, if the italic check box is
selected, the ITALIC constant is added to the style variable. Finally, the font of
the label is set to a new font with its revised style.

 Note that, given the way the listener is written in this program, it doesn’t
matter which check box was clicked to generate the event. Both check boxes are
processed by the same listener. It also doesn’t matter whether the changed check
box was toggled from selected to unselected or vice versa. The state of both check
boxes is examined if either is changed.

 Radio Buttons
 A radio button is used with other radio buttons to provide a set of mutually
exclusive options. Unlike a check box, a radio button is not particularly useful by
itself. It has meaning only when it is used with one or more other radio buttons.
Only one option out of the group is valid. At any point in
time, one and only one button of the group of radio buttons is
selected (on). When a radio button from the group is pushed,
the other button in the group that is currently on is automati-
cally toggled off.

 The term “radio buttons” comes from the way the buttons
worked on an old-fashioned car radio. At any point, one but-
ton was pushed to specify the current choice of station; when another was pushed,
the current one automatically popped out.

 The QuoteOptions program, shown in Listing 5.16 , displays a label and a
group of radio buttons. The radio buttons determine which quote is displayed in
the label. Because only one of the quotes can be displayed at a time, the use of
radio buttons is appropriate. For example, if the Comedy radio button is selected,
the comedy quote is displayed in the label. If the Philosophy button is then
pressed, the Comedy radio button is automatically toggled off and the comedy
quote is replaced by a philosophical one.

5.8 Check Boxes and Radio Buttons 255

 KEY CONCEPT
 Radio buttons operate as a group,
providing a set of mutually exclusive
options.

 Examples using
check boxes and
radio buttons.

VideoNote

256 CHAPTER 5 Conditionals and Loops

//**
// QuoteOptions.java Author: Lewis/Loftus
//
// Demonstrates the use of radio buttons.
//**

import javax.swing.JFrame;

public class QuoteOptions
{
 //---
 // Creates and presents the program frame.
 //---
 public static void main (String[] args)
 {
 JFrame frame = new JFrame ("Quote Options");
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

 QuoteOptionsPanel panel = new QuoteOptionsPanel();
 frame.getContentPane().add (panel);

 frame.pack();
 frame.setVisible(true);
 }
}

D I S P L A Y

L I S T I N G 5 . 1 6

The QuoteOptionsPanel class, shown in Listing 5.17, sets up and displays
the GUI components. A radio button is represented by the JRadioButton class.
Because the radio buttons in a set work together, the ButtonGroup class is used to
define a set of related radio buttons.

Note that each button is added to the button group, and also that each button
is added individually to the panel. A ButtonGroup object is not a container to
organize and display components; it is simply a way to define the group of radio
buttons that work together to form a set of dependent options. The ButtonGroup
object ensures that the currently selected radio button is turned off when another
in the group is selected.

A radio button produces an action event when it is selected. The actionPer-
formed method of the listener first retrieves the source of the event using the
getSource method and then compares it to each of the three radio buttons in
turn. Depending on which button was selected, the text of the label is set to the
appropriate quote.

 5.8 Check Boxes and Radio Buttons 257

//**
// QuoteOptionsPanel.java Author: Lewis/Loftus
//
// Demonstrates the use of radio buttons.
//**

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class QuoteOptionsPanel extends JPanel
{
 private JLabel quote;
 private JRadioButton comedy, philosophy, carpentry;
 private String comedyQuote, philosophyQuote, carpentryQuote;

 //---
 // Sets up a panel with a label and a set of radio buttons
 // that control its text.
 //---
 public QuoteOptionsPanel()
 {
 comedyQuote = "Take my wife, please.";
 philosophyQuote = "I think, therefore I am.";
 carpentryQuote = "Measure twice. Cut once.";

L I S T I N G 5 . 1 7

258 CHAPTER 5 Conditionals and Loops

 quote = new JLabel (comedyQuote);
 quote.setFont (new Font ("Helvetica", Font.BOLD, 24));

 comedy = new JRadioButton ("Comedy", true);
 comedy.setBackground (Color.green);
 philosophy = new JRadioButton ("Philosophy");
 philosophy.setBackground (Color.green);
 carpentry = new JRadioButton ("Carpentry");
 carpentry.setBackground (Color.green);

 ButtonGroup group = new ButtonGroup();
 group.add (comedy);
 group.add (philosophy);
 group.add (carpentry);

 QuoteListener listener = new QuoteListener();
 comedy.addActionListener (listener);
 philosophy.addActionListener (listener);
 carpentry.addActionListener (listener);

 add (quote);
 add (comedy);
 add (philosophy);
 add (carpentry);

 setBackground (Color.green);
 setPreferredSize (new Dimension(300, 100));
 }

 //***
 // Represents the listener for all radio buttons.
 //***
 private class QuoteListener implements ActionListener
 {
 //--
 // Sets the text of the label depending on which radio
 // button was pressed.
 //--
 public void actionPerformed (ActionEvent event)
 {
 Object source = event.getSource();

L I S T I N G 5 . 1 7 continued

Note that unlike push buttons, both check boxes and radio buttons are toggle
buttons, meaning that at any time they are either on or off. The difference is in
how they are used. Independent options (choose any combination) are controlled
with check boxes. Dependent options (choose one of a set) are controlled with
radio buttons. If there is only one option to be managed, a check box can be used
by itself. As we mentioned earlier, a radio button, on the other hand, makes sense
only in conjunction with one or more other radio buttons.

Also note that check boxes and radio buttons produce different types of events.
A check box produces an item event, and a radio button produces an action event.
The use of different event types is related to the differences in button function-
ality. A check box produces an event when it is selected or deselected, and the
listener could make the distinction if desired. A radio button, on the other hand,
produces an event only when it is selected (the currently selected button from the
group is deselected automatically).

 if (source == comedy)
 quote.setText (comedyQuote);
 else
 if (source == philosophy)
 quote.setText (philosophyQuote);
 else
 quote.setText (carpentryQuote);
 }
 }
}

L I S T I N G 5 . 1 7 continued

 5.8 Check Boxes and Radio Buttons 259

260 CHAPTER 5 Conditionals and Loops

Summary of Key Concepts

■ Conditionals and loops allow us to control the flow of execution through
a method.

■ An if statement allows a program to choose whether to execute a particu-
lar statement.

■ A loop allows a program to execute a statement multiple times.

■ Logical operators are often used to construct sophisticated conditions.

■ Proper indentation is important for human readability; it shows the rela-
tionship between one statement and another.

■ An if-else statement allows a program to do one thing if a condition is
true and another thing if the condition is false.

■ In a nested if statement, an else clause is matched to the closest
unmatched if.

■ The relative order of characters in Java is defined by the Unicode character
set.

■ The compareTo method can be used to determine the relative order of strings.

■ A while statement executes the same statement until its condition becomes
false.

■ We must design our programs carefully to avoid infinite loops.

■ An iterator is an object that helps you process a group of related items.

■ The delimiters used to separate tokens in a Scanner object can be explic-
itly set as needed.

■ An ArrayList object stores a list of objects and lets you access them using
an integer index.

■ When an ArrayList object is created, you specify the type of element that
will be stored in the list.

■ Radio buttons operate as a group, providing a set of mutually exclusive
options.

Exercises
Visit www.myprogramminglab.com to complete many of these Exercises
online and get instant feedback.

EX 5.1 What happens in the MinOfThree program if two or more of the
values are equal? If exactly two of the values are equal, does it mat-
ter whether the equal values are lower or higher than the third?

www.myprogramminglab.com

 Exercises 261

EX 5.2 What is wrong with the following code fragment? Rewrite it so
that it produces correct output.

if (total == MAX)
 if (total < sum)
 System.out.println ("total == MAX and < sum.");
else
 System.out.println ("total is not equal to MAX");

EX 5.3 What is wrong with the following code fragment? Will this code
compile if it is part of an otherwise valid program? Explain.

if (length = MIN_LENGTH)
 System.out.println ("The length is minimal.");

EX 5.4 What output is produced by the following code fragment?

int num = 87, max = 25;
if (num >= max*2)
 System.out.println ("apple");
 System.out.println ("orange");
System.out.println ("pear");

EX 5.5 What output is produced by the following code fragment?

int limit = 100, num1 = 15, num2 = 40;
if (limit <= limit)
{
 if (num1 == num2)
 System.out.println ("lemon");
 System.out.println ("lime");
}
System.out.println ("grape");

EX 5.6 Put the following list of strings in lexicographic order as if deter-
mined by the compareTo method of the String class. Consult the
Unicode chart in Appendix C.

"fred"
"Ethel"
"?-?-?-?"
"{([])}"
"Lucy"
"ricky"
"book"
"******"
"12345"
" "

262 CHAPTER 5 Conditionals and Loops

"HEPHALUMP"
"bookkeeper"
"6789"
";+<?"
"^^^^^^^^^^"
"hephalump"

EX 5.7 What output is produced by the following code fragment?

int num = 0, max = 20;
while (num < max)
{
 System.out.println (num);
 num += 4;
}

EX 5.8 What output is produced by the following code fragment?

int num = 1, max = 20;
while (num < max)
{
 if (num%2 == 0)
 System.out.println (num);
 num++;
}

EX 5.9 What is wrong with the following code fragment? What are three
distinct ways it could be changed to remove the flaw?

count = 50;
while (count >= 0)
{
 System.out.println (count);
 count = count + 1;
}

EX 5.10 Write a while loop that verifies that the user enters a positive
integer value.

EX 5.11 Write a code fragment that reads and prints integer values
entered by a user until a particular sentinel value (stored in
SENTINEL) is entered. Do not print the sentinel value.

EX 5.12 Write a method called maxOfTwo that accepts two integer param-
eters and returns the larger of the two.

EX 5.13 Write a method called larger that accepts two floating point
parameters (of type double) and returns true if the first param-
eter is greater than the second, and false otherwise.

 Programming Projects 263

EX 5.14 Write a method called evenlyDivisible that accepts two integer
parameters and returns true if the first parameter is evenly divisi-
ble by the second, or vice versa, and false otherwise. Return false
if either parameter is zero.

EX 5.15 Write a method called isAlpha that accepts a character param-
eter and returns true if that character is either an uppercase or
lowercase alphabetic letter.

EX 5.16 Write a method called floatEquals that accepts three floating
point values as parameters. The method should return true if the
first two parameters are equal within the tolerance of the third
parameter.

EX 5.17 Write a method called isIsosceles that accepts three integer
parameters that represent the lengths of the sides of a triangle.
The method returns true if the triangle is isosceles but not equi-
lateral (meaning that exactly two of the sides have an equal
length), and false otherwise.

EX 5.18 Explain what would happen if the radio buttons used in the
QuoteOptions program were not organized into a ButtonGroup
object. Modify the program to test your answer.

Programming Projects
Visit www.myprogramminglab.com to complete many of these Programming
Projects online and get instant feedback.

PP 5.1 Design and implement an application that reads an integer value
from the user representing a year. The purpose of the program is
to determine if the year is a leap year (and therefore has 29 days
in February) in the Gregorian calendar. A year is a leap year if
it is divisible by 4, unless it is also divisible by 100 but not 400.
For example, the year 2003 is not a leap year, but 2004 is. The
year 1900 is not a leap year because it is divisible by 100, but
the year 2000 is a leap year because even though it is divisible by
100, it is also divisible by 400. Produce an error message for any
input value less than 1582 (the year the Gregorian calendar was
adopted).

PP 5.2 Modify the solution to the previous project so that the user can
evaluate multiple years. Allow the user to terminate the program
using an appropriate sentinel value. Validate each input value to
ensure it is greater than or equal to 1582.

www.myprogramminglab.com

264 CHAPTER 5 Conditionals and Loops

PP 5.3 Design and implement an application that determines and prints
the number of odd, even, and zero digits in an integer value read
from the keyboard.

PP 5.4 Design and implement an application that plays the Hi-Lo guess-
ing game with numbers. The program should pick a random
number between 1 and 100 (inclusive), then repeatedly prompt
the user to guess the number. On each guess, report to the
user that he or she is correct or that the guess is high or low.
Continue accepting guesses until the user guesses correctly or
chooses to quit. Use a sentinel value to determine whether the
user wants to quit. Count the number of guesses and report that
value when the user guesses correctly. At the end of each game
(by quitting or a correct guess), prompt to determine whether the
user wants to play again. Continue playing games until the user
chooses to stop.

PP 5.5 Create a modified version of the PalindromeTester program so
that the spaces, punctuation, and changes in uppercase and low-
ercase are not considered when determining whether a string is a
palindrome. Hint: These issues can be handled in several ways.
Think carefully about your design.

PP 5.6 Using the Coin class defined in this chapter, design and imple-
ment a driver class called FlipRace whose main method creates
two Coin objects, then continually flips them both to see which
coin first comes up heads three flips in a row. Continue flipping
the coins until one of the coins wins the race, and consider the
possibility that they might tie. Print the results of each turn, and
at the end print the winner and total number of flips that were
required.

PP 5.7 Design and implement an application that plays the Rock-Paper-
Scissors game against the computer. When played between two
people, each person picks one of three options (usually shown by
a hand gesture) at the same time, and a winner is determined. In
the game, Rock beats Scissors, Scissors beats Paper, and Paper
beats Rock. The program should randomly choose one of the
three options (without revealing it), then prompt for the user’s
selection. At that point, the program reveals both choices and
prints a statement indicating if the user won, the computer won,
or if it was a tie. Continue playing until the user chooses to stop,
then print the number of user wins, losses, and ties.

Developing a solution of
PP 5.4.

VideoNote

 Programming Projects 265

PP 5.8 Design and implement an application that simulates a simple slot
machine in which three numbers between 0 and 9 are randomly
selected and printed side by side. Print an appropriate statement
if all three of the numbers are the same, or if any two of the
numbers are the same. Continue playing until the user chooses to
stop.

PP 5.9 Design and implement a program that counts the number of inte-
ger values in a text input file. Produce a table listing the values
you identify as integers from the input file.

PP 5.10 Modify the Die class from Chapter 4 so that the setFaceValue
method does nothing if the parameter is outside of the valid
range of values.

PP 5.11 Modify the Account class from Chapter 4 so that it performs
validity checks on the deposit and withdraw operations.
Specifically, don’t allow the deposit of a negative number or a
withdrawal that exceeds the current balance. Print appropriate
error messages if these problems occur.

PP 5.12 Modify the StyleOptions program in this chapter to allow the
user to specify the size of the font. Use a text field to obtain the
size.

PP 5.13 Design and implement a program to process golf scores. The
scores of four golfers are stored in a text file. Each line represents
one hole, and the file contains 18 lines. Each line contains five
values: par for the hole followed by the number of strokes each
golfer used on that hole. Determine the winner and produce a
table showing how well each golfer did (compared to par).

PP 5.14 Design and implement a program that compares two text input
files, line by line, for equality. Print any lines that are not equiva-
lent.

PP 5.15 Design and implement a program that counts the number of
punctuation marks in a text input file. Produce a table that
shows how many times each symbol occurred.

PP 5.16 Develop a simple tool for calculating basic statistics for a seg-
ment of text. The application should have a single window with
a scrolling text box (a JTextArea) and a stats box. The stats box
should be a panel with a titled border, containing labeled fields
that display the number of words in the text box and the average
word length, as well as any other statistics that you would like

266 CHAPTER 5 Conditionals and Loops

to add. The stats box should also contain a button that, when
pressed, recomputes the statistics for the current contents of the
text field.

PP 5.17 Using the PairOfDice class from PP 4.7, design and implement
a class to play a game called Pig. In this game, the user competes
against the computer. On each turn, the current player rolls a
pair of dice and accumulates points. The goal is to reach 100
points before your opponent does. If, on any turn, the player
rolls a 1, all points accumulated for that round are forfeited and
control of the dice moves to the other player. If the player rolls
two 1s in one turn, the player loses all points accumulated thus
far in the game and loses control of the dice. The player may vol-
untarily turn over the dice after each roll. Therefore, the player
must decide to either roll again (be a pig) and risk losing points,
or relinquish control of the dice, possibly allowing the other
player to win. Implement the computer player such that it always
relinquishes the dice after accumulating 20 or more points in any
given round.

267

Therac-25

What Happened?
The Therac-25 was a radiation therapy
machine used to deliver targeted elec-
tron or X-ray beams in order to destroy
cancerous tissue. While in use, hundreds
of patients were given proper treatments
using this device. But in six documented
cases from 1985 to 1987, the Therac-25
delivered an overdose of radiation result-
ing in severe disability and death.

In a typical treatment, the patient lies
down and the operator adjusts the
machine to target the appropriate area of
the body. The operator sets the param-
eters of the treatment on the machine’s
computer console and pushes a button
to deliver the radiation. Patients are told
that a typical side effect is minor skin dis-
comfort similar to that of a mild sunburn.

In the accident cases, some patients
reported feeling a “tremendous force of
heat” or an “electric tingling shock.” In
one case, the patient lost the use of her
shoulder and arm and had to have her left
breast removed because of the radiation
damage. Several others died of radiation
poisoning.

The amount of radiation delivered is
measured in rads (radiation absorbed
dose). A standard treatment is around
200 rads. It’s estimated that the accidents
caused 20,000 rads to be administered.

What Caused It?
The operators were told the Therac-25 had so many safety precautions that it
would be “virtually impossible” to overdose a patient. But part of the software
used in the Therac-25 was reused from an earlier version of the machine that had
included many hardware-based safety precautions. Thus, the hardware features

S O F T W A R E F A I L U R E

■ Radiation therapy
machines deliver
precise amounts of
targeted radiation.

had masked problems with the underlying software. The safety features of the
Therac-25 were dominantly software-based, and the lurking problems emerged.

It turned out that if the operator mistyped a parameter and then corrected it in a
particular way, the software allowed the machine to deliver the maximum radia-
tion dose without diffusing it properly. It was such a strange error that techni-
cians testing the machine failed to reproduce the problem. At one point, one of
the machines that had clearly caused an overdose was put back into service after
technicians could find nothing wrong with it.

Analysts say that the software problems were only part of the reason the accidents
occurred. While there were fundamental programming errors, there was also
inadequate attention to safety issues in general. And one reason the machines
were used for so long was that the problems were not reported as accurately and
thoroughly as they should have been.

Lessons Learned
Software safety is the dominant issue in this case. When human lives are on the
line, it’s difficult to imagine not doing everything possible to ensure that your
software is as robust as possible. It comes down to risk analysis. How much are
you willing to risk that a particular piece of software you’re developing still con-
tains an error? For many applications, a problem might cause inconvenience to
the user and may have business implications, but other applications literally have
people’s lives at stake.

This case is also an example of the difficulty of isolating the problem. For hun-
dreds of patients, the Therac-25 provided excellent treatment. One of the initial
complaints was dismissed without proper investigation or reporting. Later, when
a problem had clearly occurred, it could not be replicated. This was an example
of a truly exceptional situation—one that does not occur usually or under normal
circumstances.

Source: computingcases.org, IEEE Computer

268 Software Failure

269

C H A P T E R O B J E C T I V E S
● Examine conditional processing using switch statements.

● Discuss the conditional operator.

● Examine alternative repetition statements: the do and for loops.

● Draw graphics with the aid of conditionals and loops.

● Explore the use of dialog boxes.

In Chapter 5 we examined the if statement for making decisions

and the while statement for looping. This chapter explores several

additional statements in Java for performing similar tasks. In particu-

lar, in this chapter we’ll explore the switch statement, which allows

us to choose among several paths of execution based on a specific

value. We’ll also explore the do and for loops, which provide logical

processing and/or syntax that distinguish them from the while loop.

These alternative statements differ in key details, and any particular

situation may lend itself to the use of one over another. The Graphics

Track sections of this chapter explore the use of conditionals and

loops to control our graphics and examine the purpose and use of

dialog boxes.

More Conditionals
and Loops 6

270 CHAPTER 6 More Conditionals and Loops

6.1 The switch Statement

 Another conditional statement in Java is called the switch statement , which causes
the executing program to follow one of several paths based on a single value.
Similar logic could be constructed with multiple if statements, but in the cases
where it is warranted, a switch statement usually makes code easier to read.

 The switch statement evaluates an expression to determine a value and then
matches that value with one of several possible cases. Each case has statements
associated with it. After evaluating the expression, control jumps to the state-
ment associated with the first case that matches the value. Consider the following
example:

 switch (idChar)
 {
 case 'A':
 aCount = aCount + 1;
 break ;
 case 'B':
 bCount = bCount + 1;
 break ;
 case 'C':
 cCount = cCount + 1;
 break ;
 default :
 System.out.println ("Error in Identification Character.");
 }

 First, the expression is evaluated. In this example, the expression is a simple
char variable called idChar . Execution then transfers to the first statement after

the case value that matches the result of the expression. Therefore,
if idChar contains an 'A' , the variable aCount is incremented. If it
contains a 'B' , the case for 'A' is skipped and processing continues
where bCount is incremented. Likewise, if idChar contains a 'C' ,
that case is processed.

 If no case value matches that of the expression, execution continues with the
optional default case, indicated by the reserved word default . If no default case
exists, no statements in the switch statement are executed and processing con-
tinues with the statement after the switch statement. It is often a good idea to
include a default case, even if you don’t expect it to be executed.

 When a break statement is encountered, processing jumps to the statement fol-
lowing the switch statement. A break statement is usually used to break out of
each case of a switch statement. Without a break statement, processing continues
into the next case of the switch . Therefore, if the break statement at the end of

 KEY CONCEPT
 A switch statement matches a
character or integer value to one of
several possible cases.

6.1 The switch Statement 271

the 'A' case in the previous example was not there, both the aCount
and bCount variables would be incremented when the idChar con-
tains an 'A' . Usually we want to perform only one case, so a break
statement is almost always used. Occasionally, though, the “pass
through” feature comes in handy.

 You’ll remember that the break statement was briefly mentioned
in Chapter 5 , because it could be used in other types of loops and conditionals.
We warned then that such processing is usually unnecessary and its use is consid-
ered by many developers to be bad practice. The switch statement is the excep-
tion to this guideline. Using a break statement is the only way to make sure the
code for only one case is executed.

 KEY CONCEPT
 A break statement is usually used at
the end of each case alternative of a
 switch statement.

 The expression evaluated at the beginning of a switch statement must be of
type char , byte , short , or int . In particular, it cannot be a boolean , or a floating
point value, or a String . Furthermore, the value of each case must be a constant;
it cannot be a variable or other expression. This limits the situations in which a
 switch statement is appropriate. But when it is appropriate, it usually makes the
code easier to read and understand.

 Switch Statement

 Switch Case

 The switch statement evaluates the initial Expression and matches
its value with one of the cases. Processing continues with the Statement
corresponding to that case. The optional default case will be executed if
no other case matches.

 Example:

 switch (numValues)
 {
 case 0:
 System.out.println ("No values were entered.");
 break;
 case 1:
 System.out.println ("One value was entered.");
 break;
 case 2:
 System.out.println ("Two values were entered.");
 break;
 default:
 System.out.println ("Too many values were entered.");
 }

switch ()
Switch Case

Expression { }

case

default

Expression :

:
Block Statement

272 CHAPTER 6 More Conditionals and Loops

Note also that the implicit boolean condition of a switch statement is based
on equality. The expression at the beginning of the statement is compared to each
case value to determine which one it equals. A switch statement cannot be used to
determine other relational operations (such as less than), unless some preliminary
processing is done. For example, the GradeReport program in Listing 6.1 prints a
comment based on a numeric grade that is entered by the user.

//**
// GradeReport.java Author: Lewis/Loftus
//
// Demonstrates the use of a switch statement.
//**

import java.util.Scanner;

public class GradeReport
{
 //---
 // Reads a grade from the user and prints comments accordingly.
 //---
 public static void main (String[] args)
 {
 int grade, category;

 Scanner scan = new Scanner (System.in);

 System.out.print ("Enter a numeric grade (0 to 100): ");
 grade = scan.nextInt();

 category = grade / 10;

 System.out.print ("That grade is ");

 switch (category)
 {
 case 10:
 System.out.println ("a perfect score. Well done.");
 break;
 case 9:
 System.out.println ("well above average. Excellent.");
 break;
 case 8:
 System.out.println ("above average. Nice job.");
 break;

L I S T I N G 6 . 1

 6.1 The switch Statement 273

In GradeReport, the category of the grade is determined by dividing the grade
by 10 using integer division, resulting in an integer value between 0 and 10
(assuming a valid grade is entered). This result is used as the expression of the
switch, which prints various messages for grades 60 or higher and a default sen-
tence for all other values.

Note that any switch statement could be implemented as a set of nested if
statements. However, nested if statements quickly become difficult for a human
reader to understand and are error prone to implement and debug. But because a
switch can evaluate only equality, sometimes nested if statements are necessary.
It depends on the situation.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 6.1 When a Java program is running, what happens if the expression eval-
uated for a switch statement does not match any of the case values
associated with the statement?

SR 6.2 What happens if a case in a switch statement does not end with a
break statement?

SR 6.3 What is the output of the GradeReport program if the user enters
“72”? What if the user enters “46”? What if the user enters “123”?

 case 7:
 System.out.println ("average.");
 break;
 case 6:
 System.out.println ("below average. You should see the");
 System.out.println ("instructor to clarify the material "
 + "presented in class.");
 break;
 default:
 System.out.println ("not passing.");
 }
 }
}

O U T P U T

Enter a numeric grade (0 to 100): 86
That grade is above average. Nice job.

L I S T I N G 6 . 1 continued

274 CHAPTER 6 More Conditionals and Loops

SR 6.4 Transform the following nested if statement into an equivalent
switch statement.

if (num1 == 5)
 myChar = 'W';
else
 if (num1 == 6)
 myChar = 'X';
 else
 if (num1 == 7)
 myChar = 'Y';
 else
 myChar = 'Z';

6.2 The Conditional Operator

 The Java conditional operator is similar to an if-else statement in some ways. It
is a ternary operator because it requires three operands. The symbol for the con-
ditional operator is usually written ?: , but it is not like other operators in that the
two symbols that make it up are always separated. The following is an example
of an expression that contains the conditional operator:

 (total > MAX) ? total + 1 : total * 2;

 Preceding the ? is a boolean condition. Following the ? are two expressions sepa-
rated by the : symbol. The entire conditional expression returns the value of the
first expression if the condition is true, and returns the value of the second expres-

sion if the condition is false.

 Keep in mind that this example is an expression that returns a
value. The conditional operator is just that, an operator, not a state-
ment that stands on its own. Usually we want to do something with
that value, such as assign it to a variable:

 total = (total > MAX) ? total + 1 : total * 2;

 The distinction between the conditional operator and a conditional statement
can be subtle. In many ways, the ?: operator lets us form succinct logic that serves
as an abbreviated if-else statement. The previous statement is functionally
equivalent to, but sometimes more convenient than, the following:

 if (total > MAX)
 total = total + 1;
 else
 total = total * 2;

 KEY CONCEPT
 The conditional operator evaluates to
one of two possible values based on
a boolean condition.

 6.2 The Conditional Operator 275

Let’s look at a couple more examples. Consider the following declaration:

int larger = (num1 > num2) ? num1 : num2;

If num1 is greater than num2, the value of num1 is returned and used to ini-
tialize the variable larger. If not, the value of num2 is returned and used to
initialize larger. Similarly, the following statement prints the smaller of the
two values:

System.out.println ("Smaller: " + ((num1 < num2) ? num1 : num2));

The conditional operator is occasionally helpful to evaluate a short condi-
tion and return a result. It is not a replacement for an if-else statement, how-
ever, because the operands to the ?: operator are expressions, not necessarily
full statements. Even when the conditional operator is a viable alternative,
you should use it carefully because it may be less readable than an if-else
statement.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 6.5 What is the difference between a conditional operator and a condi-
tional statement?

SR 6.6 Write a declaration that initializes a char variable named id to 'A' if
the boolean variable first is true and to 'B' otherwise.

SR 6.7 Express the following logic in a succinct manner using the conditional
operator.

if (val <= 10)
 System.out.println ("The value is not greater than 10.");
else
 System.out.println ("The value is greater than 10.");

6.3 The do Statement

Remember from Chapter 5 that the while statement first examines its condi-
tion, then executes its body if that condition is true. The do statement is similar
to the while statement except that its termination condition is at the end of
the loop body. Like the while loop, the do loop executes the statement in the
loop body until the condition becomes false. The condition is written at the end
of the loop to indicate that it is not evaluated until the loop body is executed.
Note that the body of a do loop is always executed at least once. Figure 6.1
shows this processing.

276 CHAPTER 6 More Conditionals and Loops

 The following code prints the numbers from 1 to 5 using a do loop. Compare
this code with the similar example in Chapter 5 that uses a while loop to accom-
plish the same task.

int count = 0;
do
 {
 count++;
 System.out.println (count);
 }
while (count < 5);

 Note that the do loop begins simply with the reserved word do .
The body of the do loop continues until the while clause that con-
tains the boolean condition that determines whether the loop body
will be executed again. Sometimes it is difficult to determine whether

a line of code that begins with the reserved word while is the beginning of a while
loop or the end of a do loop.

 Let’s look at another example of the do loop. The program called ReverseNumber ,
shown in Listing 6.2 , reads an integer from the user and reverses its digits math-
ematically.

 FIGURE 6.1 The logic of a do loop

false

statement

condition
evaluated

true

 KEY CONCEPT
 A do statement executes its loop
body at least once.

 Do Statement

 The do loop repeatedly executes the specified Statement as long as
the boolean Expression is true. The Statement is executed at least once,
then the Expression is evaluated to determine whether the Statement
should be executed again.

do ()whileStatement ;Expression

 6.2 The Conditional Operator 277

Example:

do
{
 System.out.print ("Enter a word:");
 word = scan.next();
 System.out.println (word);
}
while (!word.equals("quit"));

//**
// ReverseNumber.java Author: Lewis/Loftus
//
// Demonstrates the use of a do loop.
//**

import java.util.Scanner;

public class ReverseNumber
{
 //---
 // Reverses the digits of an integer mathematically.
 //---
 public static void main (String[] args)
 {
 int number, lastDigit, reverse = 0;

 Scanner scan = new Scanner (System.in);

 System.out.print ("Enter a positive integer: ");
 number = scan.nextInt();

 do
 {
 lastDigit = number % 10;
 reverse = (reverse * 10) + lastDigit;
 number = number / 10;
 }
 while (number > 0);

 System.out.println ("That number reversed is " + reverse);
 }
}

L I S T I N G 6 . 2

278 CHAPTER 6 More Conditionals and Loops

The do loop in the ReverseNumber program uses the remainder operation to
determine the digit in the 1’s position, then adds it into the reversed number, then
truncates that digit from the original number using integer division. The do loop
terminates when we run out of digits to process, which corresponds to the point
when the variable number reaches the value zero. Carefully trace the logic of this
program with a few examples to see how it works.

If you know you want to perform the body of a loop at least once, then you
probably want to use a do statement. A do loop has many of the same properties
as a while statement, so it must also be checked for termination conditions to
avoid infinite loops.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 6.8 Compare and contrast a while loop and a do loop.

SR 6.9 What output is produced by the following code fragment?

int low = 0, high = 10;
do
{
 System.out.println (low);
 low++;
} while (low < high);

SR 6.10 What output is produced by the following code fragment?

int low = 10, high = 0;
do
{
 System.out.println (low);
 low++;
} while (low <= high);

SR 6.11 Write a do loop to obtain a sequence of positive integers from the
user, using zero as a sentinel value. The program should output the
sum of the numbers.

O U T P U T

Enter a positive integer: 2896
That number reversed is 6982

L I S T I N G 6 . 2 continued

6.4 The for Statement 279

6.4 The for Statement

 The while and the do statements are good to use when you don’t
initially know how many times you want to execute the loop body.
The for statement is another repetition statement that is particularly
well suited for executing the body of a loop a specific number of
times that can be determined before the loop is executed.

 The following code prints the numbers 1 through 5 using a for loop, just as
we did using other loop statements in previous examples:

for (int count=1; count <= 5; count++)
 System.out.println (count);

 The header of a for loop contains three parts separated by semicolons. Before
the loop begins, the first part of the header, called the initialization, is executed.
The second part of the header is the boolean condition, which is evaluated
before the loop body (like the while loop). If true, the body of the loop is
executed, followed by the execution of the third part of the header, which is
called the increment. Note that the initialization part is executed only once, but
the increment part is executed after each iteration of the loop. Figure 6.2 shows
this processing.

 KEY CONCEPT
 A for statement is usually used
when a loop will be executed a set
number of times.

 FIGURE 6.2 The logic of a for loop

falsetrue

statement

increment

initialization

condition
evaluated

280 CHAPTER 6 More Conditionals and Loops

A for loop can be a bit tricky to read until you get used to it. The execution
of the code doesn’t follow a “top to bottom, left to right” reading. The increment
code executes after the body of the loop even though it is in the header.

In this example, the initialization portion of the for loop header is used to
declare the variable count as well as to give it an initial value. We are not required
to declare a variable there, but it is common practice in situations where the vari-
able is not needed outside of the loop. Because count is declared in the for loop
header, it exists only inside the loop body and cannot be referenced elsewhere.
The loop control variable is set up, checked, and modified by the actions in the
loop header. It can be referenced inside the loop body, but it should not be modi-
fied except by the actions defined in the loop header.

Examples using for
loops.

VideoNote

For Statement

For Init For Update

for
For Init

;
Expression

;
For Update

)(Statement

Local Variable Declaration

Statement Expression

,

Statement Expression

,

The for statement repeatedly executes the specified Statement as
long as the boolean Expression is true. The For Init portion of the
header is executed only once, before the loop begins. The For Update
portion executes after each execution of Statement.

Examples:

for (int value=1; value < 25; value++)
 System.out.println (value + " squared is " + value*value);

for (int num=40; num > 0; num-=3)
 sum = sum + num;

The increment portion of the for loop header, despite its name, could decre-
ment a value rather than increment it. For example, the following loop prints the
integer values from 100 down to 1:

for (int num = 100; num > 0; num--)
 System.out.println (num);

 6.4 The for Statement 281

In fact, the increment portion of the for loop can perform any calculation, not
just a simple increment or decrement. Consider the program shown in Listing 6.3,
which prints multiples of a particular value up to a particular limit.

The increment portion of the for loop in the Multiples program adds the
value entered by the user after each iteration. The number of values printed per
line is controlled by counting the values printed and then moving to the next line
whenever count is evenly divisible by the PER_LINE constant.

//**
// Multiples.java Author: Lewis/Loftus
//
// Demonstrates the use of a for loop.
//**

import java.util.Scanner;

public class Multiples
{
 //---
 // Prints multiples of a user-specified number up to a user-
 // specified limit.
 //---
 public static void main (String[] args)
 {
 final int PER_LINE = 5;
 int value, limit, mult, count = 0;

 Scanner scan = new Scanner (System.in);

 System.out.print ("Enter a positive value: ");
 value = scan.nextInt();

 System.out.print ("Enter an upper limit: ");
 limit = scan.nextInt();

 System.out.println ();
 System.out.println ("The multiples of " + value + " between " +
 value + " and " + limit + " (inclusive) are:");

 for (mult = value; mult <= limit; mult += value)
 {
 System.out.print (mult + "\t");

L I S T I N G 6 . 3

282 CHAPTER 6 More Conditionals and Loops

The Stars program in Listing 6.4 shows the use of nested for loops. The
output is a triangle shape made of asterisk characters. The outer loop executes
exactly 10 times. Each iteration of the outer loop prints one line of the output.
The inner loop performs a different number of iterations depending on the line
value controlled by the outer loop. Each iteration of the inner loop prints one
star on the current line. Writing programs that print variations on this triangle
configuration are included in the programming projects at the end of the chapter.

The for-each Loop
A variation of the for statement, often called the for-each loop, is particularly
helpful in situations that involve iterators. In Chapter 5 we discussed that some

 // Print a specific number of values per line of output
 count++;
 if (count % PER_LINE == 0)
 System.out.println();
 }
 }
}

O U T P U T

Enter a positive value: 7
Enter an upper limit: 400

The multiples of 7 between 7 and 400 (inclusive) are:
7 14 21 28 35
42 49 56 63 70
77 84 91 98 105
112 119 126 133 140
147 154 161 168 175
182 189 196 203 210
217 224 231 238 245
252 259 266 273 280
287 294 301 308 315
322 329 336 343 350
357 364 371 378 385
392 399

L I S T I N G 6 . 3 continued

 6.4 The for Statement 283

//**
// Stars.java Author: Lewis/Loftus
//
// Demonstrates the use of nested for loops.
//**

public class Stars
{
 //---
 // Prints a triangle shape using asterisk (star) characters.
 //---
 public static void main (String[] args)
 {
 final int MAX_ROWS = 10;

 for (int row = 1; row <= MAX_ROWS; row++)
 {
 for (int star = 1; star <= row; star++)
 System.out.print ("*");

 System.out.println();
 }
 }
}

O U T P U T

*
**

L I S T I N G 6 . 4

objects are considered to be iterators, which have hasNext and next methods
to process each item from a group. If an object has implemented the Iterable
interface, then we can use a variation of the for loop to process items using a
simplified syntax.

284 CHAPTER 6 More Conditionals and Loops

 An ArrayList object is an Iterable object. Therefore,
for example, if library is an ArrayList<Book> object (that
is, an ArrayList that manages Book objects), we can use
a for loop to process each Book object in the collection as
follows:

for (Book myBook : library)
 System.out.println (myBook);

 This code can be read as follows: for each Book in library , print the book
object . The variable myBook takes the value of each Book object in the collection in
turn, and the body of the loop can process it appropriately. That succinct for-each
loop is essentially equivalent to the following:

 Book myBook;
while (bookList.hasNext())
 {
 myBook = bookList.next();
 System.out.println (myBook);
 }

 This version of the for loop can also be used on arrays, which are discussed in
 Chapter 8 . We use the for-each loop as appropriate in various situations through-
out the rest of the book.

 Comparing Loops
 The three basic loop statements (while , do , and for) are functionally equivalent.
Any particular loop written using one type of loop can be written using either of
the other two loop types. Which type of loop we use depends on the situation.

 As we mentioned earlier, the primary difference between a while loop and a do
loop is when the condition is evaluated. If we know we want to execute the loop
body at least once, a do loop is usually the better choice. The body of a while
loop, on the other hand, might not be executed at all if the condition is initially
false. Therefore, we say that the body of a while loop is executed zero or more
times, but the body of a do loop is executed one or more times.

 A for loop is like a while loop in that the condition is
evaluated before the loop body is executed. We generally
use a for loop when the number of times we want to iterate
through a loop is fixed or can be easily calculated. In many
situations, it is simply more convenient to separate the code

that sets up and controls the loop iterations inside the for loop header from the
body of the loop.

 KEY CONCEPT
 The for-each version of a for loop
simplifies the processing of all ele-
ments in an Iterable object.

 KEY CONCEPT
 The loop statements are function-
ally equivalent. Which one you use
should depend on the situation.

 6.5 Drawing with Loops and Conditionals 285

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 6.12 When would we use a for loop instead of a while loop?

SR 6.13 What output is produced by the following code fragment?

int value = 0;
for (int num = 10; num <= 40; num += 10)
{
 value = value + num;
}
System.out.println (value);

SR 6.14 What output is produced by the following code fragment?

int value = 0;
for (int num = 10; num < 40; num += 10)
{
 value = value + num;
}
System.out.println (value);

SR 6.15 What output is produced by the following code fragment?

int value = 6;
for (int num = 1; num <= value; num ++)
{
 for (int i = 1; i <= (value — num); i++)
 System.out.print (" ");
 for (int i = 1; i <= ((2 * num) — 1); i++)
 System.out.print ("*");
 System.out.println ();
}

SR 6.16 Assume die is a Die object (as defined in Section 4.2). Write a code frag-
ment that will roll die 100 times and output the average value rolled.

6.5 Drawing with Loops and Conditionals

Conditionals and loops greatly enhance our ability to generate interesting graphics.

The Bullseye program shown in Listing 6.5 draws a target. The drawing actu-
ally occurs in the BullseyePanel class, shown in Listing 6.6. The paintComponent
of the BullseyePanel class uses an if statement to alternate the colors between
black and white.

Note that each ring is actually drawn as a filled circle (an oval of equal width
and length). Because we draw the circles on top of each other, the inner circles

//**
// Bullseye.java Author: Lewis/Loftus
//
// Demonstrates the use of loops to draw.
//**

import javax.swing.JFrame;

public class Bullseye
{
 //---
 // Creates the main frame of the program.
 //---
 public static void main (String[] args)
 {
 JFrame frame = new JFrame ("Bullseye");
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

 BullseyePanel panel = new BullseyePanel();

 frame.getContentPane().add(panel);
 frame.pack();
 frame.setVisible(true);
 }
}

D I S P L A Y

L I S T I N G 6 . 5

286 CHAPTER 6 More Conditionals and Loops

//**
// BullseyePanel.java Author: Lewis/Loftus
//
// Demonstrates the use of conditionals and loops to guide drawing.
//**

import javax.swing.JPanel;
import java.awt.*;

public class BullseyePanel extends JPanel
{
 private final int MAX_WIDTH = 300, NUM_RINGS = 5, RING_WIDTH = 25;

 //---
 // Sets up the bullseye panel.
 //---
 public BullseyePanel ()
 {
 setBackground (Color.cyan);
 setPreferredSize (new Dimension(300,300));
 }

 //---
 // Paints a bullseye target.
 //---
 public void paintComponent (Graphics page)
 {
 super.paintComponent (page);

 int x = 0, y = 0, diameter = MAX_WIDTH;

 page.setColor (Color.white);

 for (int count = 0; count < NUM_RINGS; count++)
 {
 if (page.getColor() == Color.black) // alternate colors
 page.setColor (Color.white);
 else
 page.setColor (Color.black);

 page.fillOval (x, y, diameter, diameter);

L I S T I N G 6 . 6

 6.5 Drawing with Loops and Conditionals 287

cover the inner part of the larger circles, creating the ring effect. At the end, a final
red circle is drawn for the bull’s-eye.

Let’s look at another example. Listing 6.7 shows the Boxes class, which
instantiates and displays BoxesPanel, shown in Listing 6.8. The purpose of this
program is to draw several randomly sized rectangles in random locations. If the
width of a rectangle is below a certain thickness (5 pixels), the box is filled with
the color yellow. If the height is less than the same minimal thickness, the box is
filled with the color green. Otherwise, the box is drawn, unfilled, in white.

 diameter -= (2 * RING_WIDTH);
 x += RING_WIDTH;
 y += RING_WIDTH;
 }

 // Draw the red bullseye in the center
 page.setColor (Color.red);
 page.fillOval (x, y, diameter, diameter);
 }
}

L I S T I N G 6 . 6 continued

//**
// Boxes.java Author: Lewis/Loftus
//
// Demonstrates the use of loops to draw.
//**

import javax.swing.JFrame;

public class Boxes
{
 //---
 // Creates the main frame of the program.
 //---
 public static void main (String[] args)
 {
 JFrame frame = new JFrame ("Boxes");
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

L I S T I N G 6 . 7

288 CHAPTER 6 More Conditionals and Loops

 BoxesPanel panel = new BoxesPanel();

 frame.getContentPane().add(panel);
 frame.pack();
 frame.setVisible(true);
 }
}

D I S P L A Y

L I S T I N G 6 . 7 continued

//**
// BoxesPanel.java Author: Lewis/Loftus
//
// Demonstrates the use of conditionals and loops to guide drawing.
//**

import javax.swing.JPanel;
import java.awt.*;
import java.util.Random;

L I S T I N G 6 . 8

 6.5 Drawing with Loops and Conditionals 289

public class BoxesPanel extends JPanel
{
 private final int NUM_BOXES = 50, THICKNESS = 5, MAX_SIDE = 50;
 private final int MAX_X = 350, MAX_Y = 250;
 private Random generator;

 //---
 // Sets up the drawing panel.
 //---
 public BoxesPanel ()
 {
 generator = new Random();

 setBackground (Color.black);
 setPreferredSize (new Dimension(400, 300));
 }

 //---
 // Paints boxes of random width and height in a random location.
 // Narrow or short boxes are highlighted with a fill color.
 //---
 public void paintComponent(Graphics page)
 {
 super.paintComponent (page);

 int x, y, width, height;

 for (int count = 0; count < NUM_BOXES; count++)
 {
 x = generator.nextInt(MAX_X) + 1;
 y = generator.nextInt(MAX_Y) + 1;

 width = generator.nextInt(MAX_SIDE) + 1;
 height = generator.nextInt(MAX_SIDE) + 1;

 if (width <= THICKNESS) // check for narrow box
 {
 page.setColor (Color.yellow);
 page.fillRect (x, y, width, height);
 }
 else
 if (height <= THICKNESS) // check for short box
 {

L I S T I N G 6 . 8 continued

290 CHAPTER 6 More Conditionals and Loops

6.6 Dialog Boxes

 A component called a dialog box can be helpful to assist in GUI
processing. A dialog box is a graphical window that pops up on
top of any currently active window so that the user can interact
with it. A dialog box can serve a variety of purposes, such as
conveying some information, confirming an action, or allowing
the user to enter some information. Usually a dialog box has a
solitary purpose, and the user’s interaction with it is brief.

 The Swing package of the Java class library contains a class called JOptionPane
that simplifies the creation and use of basic dialog boxes. Figure 6.3 lists some of
the methods of JOptionPane .

 page.setColor (Color.green);
 page.fillRect (x, y, width, height);
 }
 else
 {
 page.setColor (Color.white);
 page.drawRect (x, y, width, height);
 }
 }
 }
 }

 L I S T I N G 6 . 8 continued

 KEY CONCEPT
 A dialog box is a pop-up window
that allows brief, specific user inter-
action to provide information or
verify an action.

 FIGURE 6.3 Some methods of the JOptionPane class

static String showInputDialog (Object msg)
 Displays a dialog box containing the specified message and an input text
field. The contents of the text field are returned.

static int showConfirmDialog (Component parent, Object msg)
 Displays a dialog box containing the specified message and Yes/No
button options. If the parent component is null, the box is centered on the screen.

static void showMessageDialog (Component parent, Object msg)
 Displays a dialog box containing the specified message. If the parent
component is null, the box is centered on the screen.

6.6 Dialog Boxes 291

The basic formats for a JOptionPane dialog box fall into three categories. A
message dialog box simply displays an output string. An input dialog box presents
a prompt and a single input text field into which the user can enter one string of
data. A confirm dialog box presents the user with a simple yes-or-no question.

Let’s look at a program that uses each of these types of dialog boxes. Listing 6.9
shows a program that first presents the user with an input dialog box that requests
the user to enter an integer. After the user presses the OK button on the input dialog
box, a second dialog box (this time a message dialog box) appears, informing the
user whether the number entered was even or odd. After the user dismisses that
box, a third dialog box appears, to determine whether the user would like to test
another number. If the user presses the button labeled Yes, the series of dialog
boxes repeats. Otherwise the program terminates.

//**
// EvenOdd.java Author: Lewis/Loftus
//
// Demonstrates the use of the JOptionPane class.
//**

import javax.swing.JOptionPane;

public class EvenOdd
{
 //---
 // Determines if the value input by the user is even or odd.
 // Uses multiple dialog boxes for user interaction.
 //---
 public static void main (String[] args)
 {
 String numStr, result;
 int num, again;

 do
 {
 numStr = JOptionPane.showInputDialog ("Enter an integer: ");
 num = Integer.parseInt(numStr);

 result = "That number is " + ((num%2 == 0) ? "even" : "odd");

 JOptionPane.showMessageDialog (null, result);
 again = JOptionPane.showConfirmDialog (null, "Do Another?");
 }
 while (again == JOptionPane.YES_OPTION);

L I S T I N G 6 . 9

292 CHAPTER 6 More Conditionals and Loops

The first parameter to the showMessageDialog and the showConfirmDialog
methods specifies the governing parent component for the dialog box. Using a
null reference as this parameter causes the dialog box to appear centered on the
screen.

Many of the JOptionPane methods allow the programmer to tailor the con-
tents of the dialog box. Furthermore, the showOptionDialog method can be used
to create dialog boxes that combine characteristics of the three basic formats for
more elaborate interactions.

 }
}

D I S P L A Y

L I S T I N G 6 . 9 continued

 6.6 Dialog Boxes 293

294 CHAPTER 6 More Conditionals and Loops

Summary of Key Concepts
■ A switch statement matches a character or integer value to one of several

possible cases.

■ A break statement is usually used at the end of each case alternative of a
switch statement.

■ The conditional operator evaluates to one of two possible values based on
a boolean condition.

■ A do statement executes its loop body at least once.

■ A for statement is usually used when a loop will be executed a set number
of times.

■ The for-each version of a for loop simplifies the processing of all elements
in an Iterable object.

■ The loop statements are functionally equivalent. Which one you use should
depend on the situation.

■ A dialog box is a pop-up window that allows brief, specific user interac-
tion to provide information or verify an action.

Exercises
Visit www.myprogramminglab.com to complete many of these Exercises
online and get instant feedback.

EX 6.1 What output is produced by the following code fragment?

for (int num = 0; num <= 200; num += 2)
 System.out.println (num);

EX 6.2 What output is produced by the following code fragment?

for (int val = 200; val >= 0; val -= 1)
 if (val % 4 != 0)
 System.out.println (val);

EX 6.3 Transform the following while loop into an equivalent do loop
(make sure it produces the same output).

int num = 1;
while (num < 20)
{
 num++;
 System.out.println (num);
}

www.myprogramminglab.com

 Exercises 295

EX 6.4 Transform the while loop from the previous exercise into an
equivalent for loop (make sure it produces the same output).

EX 6.5 Write a do loop that verifies that the user enters an even integer
value.

EX 6.6 Write a for loop to print the odd numbers from 1 to 99
(inclusive).

EX 6.7 Write a for loop to print the multiples of 3 from 300 down to 3.

EX 6.8 Write a code fragment that reads 10 integer values from the user
and prints the highest value entered.

EX 6.9 Write a code fragment that determines and prints the number of
times the character 'a' appears in a String object called name.

EX 6.10 Write a code fragment that prints the characters stored in a
String object called str backward.

EX 6.11 Write a code fragment that prints every other character in a
String object called word starting with the first character.

EX 6.12 Write a method called powersOfTwo that prints the first 10 pow-
ers of 2 (starting with 2). The method takes no parameters and
doesn’t return anything.

EX 6.13 Write a method called alarm that prints the string "Alarm!" mul-
tiple times on separate lines. The method should accept an inte-
ger parameter that specifies how many times the string is printed.
Print an error message if the parameter is less than 1.

EX 6.14 Write a method called sum100 that returns the sum of the inte-
gers from 1 to 100, inclusive.

EX 6.15 Write a method called sumRange that accepts two integer param-
eters that represent a range. Issue an error message and return
zero if the second parameter is less than the first. Otherwise,
the method should return the sum of the integers in that range
(inclusive).

EX 6.16 Write a method called countA that accepts a String parameter
and returns the number of times the character 'A' is found in the
string.

EX 6.17 Write a method called reverse that accepts a String parameter
and returns a string that contains the characters of the parameter
in reverse order. Note that there is a method in the String class
that performs this operation, but for the sake of this exercise,
you are expected to write your own.

296 CHAPTER 6 More Conditionals and Loops

Programming Projects
Visit www.myprogramminglab.com to complete many of these Programming
Projects online and get instant feedback.

PP 6.1 Design and implement an application that reads an integer value
and prints the sum of all even integers between 2 and the input
value, inclusive. Print an error message if the input value is less
than 2. Prompt accordingly.

PP 6.2 Design and implement an application that reads a string from the
user and prints it one character per line.

PP 6.3 Design and implement an application that produces a multipli-
cation table, showing the results of multiplying the integers 1
through 12 by themselves.

PP 6.4 Design and implement an application that prints the first few
verses of the traveling song “One Hundred Bottles of Beer.” Use
a loop such that each iteration prints one verse. Read the number
of verses to print from the user. Validate the input. The follow-
ing are the first two verses of the song:

100 bottles of beer on the wall
100 bottles of beer
If one of those bottles should happen to fall
99 bottles of beer on the wall

99 bottles of beer on the wall
99 bottles of beer
If one of those bottles should happen to fall
98 bottles of beer on the wall

PP 6.5 Using the PairOfDice class from PP 4.7, design and implement
an application that rolls a pair of dice 1000 times, counting the
number of box cars (two sixes) that occur.

PP 6.6 Using the Coin class defined in this chapter, design and imple-
ment a driver class called CountFlips whose main method flips a
coin 100 times and counts how many times each side comes up.
Print the results.

PP 6.7 Create modified versions of the Stars program to print the fol-
lowing patterns. Create a separate program to produce each pat-
tern. Hint: Parts b, c, and d require several loops, some of which
print a specific number of spaces.

VideoNote

Developing a solution
of PP 6.2

www.myprogramminglab.com

 Programming Projects 297

a. ********** b. * c.********** d. *
 ********* ** ********* ***
 ******** *** ******** *****
 ******* **** ******* *******
 ****** ***** ****** *********
 ***** ****** ***** *********
 **** ******* **** *******
 *** ******** *** *****
 ** ********* ** ***
 * ********** * *

PP 6.8 Design and implement an application that prints a table show-
ing a subset of the Unicode characters and their numeric values.
Print five number/character pairs per line, separated by tab
characters. Print the table for numeric values from 32 (the space
character) to 126 (the ~ character), which corresponds to the
printable ASCII subset of the Unicode character set. Compare
your output to the table in Appendix C. Unlike the table in
Appendix C, the values in your table can increase as they go
across a row.

PP 6.9 Design and implement an application that reads a string from
the user, then determines and prints how many of each lowercase
vowel (a, e, i, o, and u) appear in the entire string. Have a sepa-
rate counter for each vowel. Also count and print the number of
nonvowel characters.

PP 6.10 Design and implement an application that prints the verses of the
song “The Twelve Days of Christmas,” in which each verse adds
one line. The first two verses of the song are:

On the 1st day of Christmas my true love gave to me
A partridge in a pear tree.
On the 2nd day of Christmas my true love gave to me
Two turtle doves, and
A partridge in a pear tree.

 Use a switch statement in a loop to control which lines get
printed. Hint: Order the cases carefully and avoid the break
statement. Use a separate switch statement to put the appropri-
ate suffix on the day number (1st, 2nd, 3rd, etc.). The final verse
of the song involves all 12 days, as follows:

On the 12th day of Christmas, my true love gave to me
Twelve drummers drumming,
Eleven pipers piping,

298 CHAPTER 6 More Conditionals and Loops

Ten lords a-leaping,
Nine ladies dancing,
Eight maids a-milking,
Seven swans a-swimming,
Six geese a-laying,
Five golden rings,
Four calling birds,
Three French hens,
Two turtle doves, and
A partridge in a pear tree.

PP 6.11 Design and implement a program that draws 20 horizontal,
evenly spaced parallel lines of random length.

PP 6.12 Design and implement a program that draws the side view of
stair steps from the lower left to the upper right.

PP 6.13 Design and implement a program that draws 100 circles of ran-
dom color and random diameter in random locations. Ensure
that in each case the entire circle appears in the visible area of
the applet.

PP 6.14 Design and implement a program that draws 10 concentric cir-
cles of random radius.

PP 6.15 Design and implement a program that draws a brick wall pattern
in which each row of bricks is offset from the row above and
below it.

PP 6.16 Design and implement a program that draws a quilt in which a
simple pattern is repeated in a grid of squares.

PP 6.17 Modify the previous problem such that it draws a quilt using a
separate class called Pattern that represents a particular pat-
tern. Allow the constructor of the Pattern class to vary some
characteristics of the pattern, such as its color scheme. Instantiate
two separate Pattern objects and incorporate them in a checker-
board layout in the quilt.

PP 6.18 Design and implement a program that draws a simple fence with
vertical, equally spaced slats backed by two horizontal support
boards. Behind the fence show a simple house in the background.
Make sure the house is visible between the slats in the fence.

PP 6.19 Design and implement a program that draws a rainbow. Use
tightly spaced concentric arcs to draw each part of the rainbow
in a particular color.

 Programming Projects 299

PP 6.20 Design and implement a program that draws 20,000 points in
random locations within the visible area. Make the points on the
left half of the panel appear in red and the points on the right
half of the panel appear in green. Draw each point by drawing a
line with a length of only one pixel.

PP 6.21 Design and implement a program that draws 10 circles of ran-
dom radius in random locations. Fill in the largest circle in red.

PP 6.22 Design and implement an application that uses dialog boxes to
obtain two integer values (one dialog box for each value) and
display the sum and product of the values. Use another dialog
box to see whether the user wants to process another pair of
values.

PP 6.23 Redesign and implement a version of the PalindromeTester
program so that it uses dialog boxes to obtain the input string,
display the results, and prompt to continue.

PP 6.24 Design and implement a class called Card that represents a stan-
dard playing card. Each card has a suit and a face value. Create
a program that deals five random cards.

This page intentionally left blank

301

C H A P T E R O B J E C T I V E S
● Establish key issues related to the design of object-oriented software.

● Explore techniques for identifying the classes and objects needed in a
program.

● Discuss the relationships among classes.

● Describe the effect of the static modifier on methods and data.

● Discuss the creation of a formal object interface.

● Further explore the definition of enumerated type classes.

● Discuss issues related to the design of methods, including method
overloading.

● Explore issues related to the design of graphical user interfaces, including
layout managers.

This chapter extends our discussion of the design of object-oriented

software. We first focus on the stages of software development and

the process of identifying classes and objects in the problem domain.

We then discuss various issues that affect the design of a class,

including static members, class relationships, interfaces, and enumer-

ated types. We also explore design issues at the method level and

introduce the concept of method overloading. A discussion of testing

strategies rounds out these issues. In the Graphics Track sections of

this chapter we focus on GUI design concepts, including layout man-

agers and containment hierarchies.

Object-Oriented
Design 7

7.1 Software Development Activities

Creating software involves much more than just writing code. As the problems
you tackle get bigger, and the solutions include more classes, it becomes crucial to
carefully think through the design of the software. Any proper software develop-
ment effort consists of four basic development activities:

■ establishing the requirements

■ creating a design

■ implementing the design

■ testing

It would be nice if these activities, in this order, defined a step-by-step approach
for developing software. However, although they may seem to be sequential, they
are almost never completely linear in reality. They overlap and interact. Let’s
discuss each development activity briefly.

Software requirements specify what a program must accomplish. They indi-
cate the tasks that a program should perform, not how it performs them. Often
requirements are expressed in a document called a functional specification.

We discussed in Chapter 1 the basic premise that programming is really about
problem solving; we create a program to solve a particular problem. Requirements
are the clear expression of that problem. Until we truly know what problem we
are trying to solve, we can’t actually solve it.

The person or group who wants a software product developed (the client) will
often provide an initial set of requirements. However, these initial requirements
are often incomplete, ambiguous, and perhaps even contradictory. The software
developer must work with the client to refine the requirements until all key deci-
sions about what the system will do have been addressed.

Requirements often address user interface issues such as output format, screen
layouts, and graphical interface components. Essentially, the requirements establish
the characteristics that make the program useful for the end user. They may also
apply constraints to your program, such as how fast a task must be performed.

A software design indicates how a program will accomplish its requirements.
The design specifies the classes and objects needed in a program and defines how
they interact. It also specifies the relationships among the classes. Low-level design
issues deal with how individual methods accomplish their tasks.

A civil engineer would never consider building a bridge without designing it
first. The design of software is no less essential. Many problems that occur in soft-
ware are directly attributable to a lack of good design effort. It has been shown
time and again that the effort spent on the design of a program is well worth it,
saving both time and money in the long run.

302 CHAPTER 7 Object-Oriented Design

7.2 Identifying Classes and Objects 303

 During software design, alternatives need to be considered and
explored. Often, the first attempt at a design is not the best solution.
Fortunately, changes are relatively easy to make during the design stage.

Implementation is the process of writing the source code that will
solve the problem. More precisely, implementation is the act of translating the
design into a particular programming language. Too many programmers focus
on implementation exclusively when actually it should be the least creative of all
development activities. The important decisions should be made when establish-
ing the requirements and creating the design.

 Testing is the act of ensuring that a program will solve the intended problem
given all of the constraints under which it must perform. Testing includes run-
ning a program multiple times with various inputs and carefully scrutinizing the
results. But it means far more than that. We revisit the issues related to testing in
Section 7.9.

 SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 7.1 Name the four basic activities that are involved in a software develop-
ment process.

SR 7.2 Who creates/specifies software requirements, the client or the devel-
oper? Discuss.

SR 7.3 Compare and contrast the four basic development activities presented
in this section with the five general problem-solving steps presented in
Section 1.6.

7.2 Identifying Classes and Objects

 A fundamental part of object-oriented software design is determining the classes
that will contribute to the program. We have to carefully consider how we want
to represent the various elements that make up the overall solution. These classes
determine the objects that we will manage in the system.

 One way to identify potential classes is to identify the objects discussed in
the program requirements. Objects are generally nouns. You literally may want
to scrutinize a problem description, or a functional specification if available, to
identify the nouns found in it. For example, Figure 7.1 shows part of a problem
description with the nouns circled.

 Of course, not every noun in the problem specification will cor-
respond to a class in your program. This activity is just a starting
point that allows you to think about the types of objects a program
will manage.

 KEY CONCEPT
 The effort put into design is both
crucial and cost-effective.

 KEY CONCEPT
 The nouns in a problem description
may indicate some of the classes and
objects needed in a program.

304 CHAPTER 7 Object-Oriented Design

Remember that a class represents a group of objects with similar behavior. A
plural noun in the specification, such as products, may indicate the need for a
class that represents one of those items, such as Product. Even if there is only one
of a particular kind of object needed in your system, it may best be represented
as a class.

Classes that represent objects should generally be given names that are singular
nouns, such as Coin, Student, and Message. A class represents a single item from
which we are free to create as many instances as we choose.

Another key decision is whether to represent something as an object or as a
primitive attribute of another object. For example, we may initially think that
an employee’s salary should be represented as an integer, and that may work for
much of the system’s processing. But upon further reflection we might realize
that the salary is based on the person’s rank, which has upper and lower salary
bounds that must be managed with care. Therefore the final conclusion may be
that we’d be better off representing all of that data and the associated behavior
as a separate class.

Given the needs of a particular program, we want to strike a good balance
between classes that are too general and those that are too specific. For example,
it may complicate our design unnecessarily to create a separate class for each type
of appliance that exists in a house. It may be sufficient to have a single Appliance
class, with perhaps a piece of instance data that indicates what type of appliance
it is. Then again, it may not. It all depends on what the software is intended to
accomplish.

In addition to classes that represent objects from the problem domain, we
likely will need classes that support the work necessary to get the job done. For
example, in addition to Member objects, we may want a separate class to help us
manage all of the members of a club.

Keep in mind that when producing a real system, some of the classes we iden-
tify during design may already exist. Even if nothing matches exactly, there may
be an old class that’s similar enough to serve as the basis for our new class. The

FIGURE 7.1 A partial problem description with the nouns circled

The user must be allowed to specify each product by
its primary characteristics, including its name and
product number. If the bar code does not match the
product, then an error should be generated to the
message window and entered into the error log. The
summary report of all transactions must be structured
as specified in section 7.A.

 7.3 Static Class Members 305

existing class may be part of the Java standard class library, part of a solution to
a problem we’ve solved previously, or part of a library that can be bought from a
third party. These are all examples of software reuse.

Assigning Responsibilities
Part of the process of identifying the classes needed in a program is the process
of assigning responsibilities to each class. Each class represents an object with
certain behaviors that are defined by the methods of the class. Any activity that
the program must accomplish must be represented somewhere in the behaviors of
the classes. That is, each class is responsible for carrying out certain activities, and
those responsibilities must be assigned as part of designing a program.

The behaviors of a class perform actions that make up the functionality of a
program. Thus we generally use verbs for the names of behaviors and the methods
that accomplish them.

Sometimes it is challenging to determine which is the best class to carry out a
particular responsibility. Consider multiple possibilities. Sometimes such analysis
makes you realize that you could benefit from defining another class to shoulder
the responsibility.

It’s not necessary in the early stages of a design to identify all the methods that
a class will contain. It is often sufficient to assign primary responsibilities and
consider how those responsibilities translate to particular methods.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 7.4 How can identifying the nouns in a problem specification help you
design an object-oriented solution to the problem?

SR 7.5 Is it important to identify and define all of the methods that a class
will contain during the early stages of problem solution design?
Discuss.

7.3 Static Class Members

We’ve used static methods in various situations in previous examples in the book.
For example, all the methods of the Math class are static. Recall that a static
method is one that is invoked through its class name, instead of through an object
of that class.

Not only can methods be static, but variables can be static as well. We declare
static class members using the static modifier.

Exploring the static
modifier.

VideoNote

306 CHAPTER 7 Object-Oriented Design

 Deciding whether to declare a method or variable as static is a key step in class
design. Let’s examine the implications of static variables and methods more closely.

 Static Variables
 So far, we’ve seen two categories of variables: local variables that are declared
inside a method, and instance variables that are declared in a class but not inside

a method. The term instance variable is used, because each instance
of the class has its own version of the variable. That is, each object
has distinct memory space for each variable so that each object can
have a distinct value for that variable.

 A static variable , which is sometimes called a class variable , is
shared among all instances of a class. There is only one copy of a static variable
for all objects of the class. Therefore, changing the value of a static variable in
one object changes it for all of the others. The reserved word static is used as a
modifier to declare a static variable as follows:

private static int count = 0;

 Memory space for a static variable is established when the class that contains
it is referenced for the first time in a program. A local variable declared within a
method cannot be static.

 Constants, which are declared using the final modifier, are often declared
using the static modifier. Because the value of constants cannot be changed,
there might as well be only one copy of the value across all objects of the class.

 Static Methods
 In Chapter 3 we briefly introduced the concept of a static method (also called a
 class method). Static methods can be invoked through the class name. We don’t
have to instantiate an object of the class in order to invoke the method. In Chapter 3
we noted that all the methods of the Math class are static methods. For example, in
the following line of code the sqrt method is invoked through the Math class name:

 System.out.println ("Square root of 27: " + Math.sqrt(27));

 The methods in the Math class perform basic computations based on values
passed as parameters. There is no object state to maintain in these situations; there-
fore, there is no good reason to create an object in order to request these services.

 A method is made static by using the static modifier in the method declara-
tion. As we’ve seen many times, the main method of a Java program must be
declared with the static modifier; this is done so that main can be executed by
the interpreter without instantiating an object from the class that contains main .

 KEY CONCEPT
 A static variable is shared among all
instances of a class.

 7.3 Static Class Members 307

Because static methods do not operate in the context of a particular object,
they cannot reference instance variables, which exist only in an instance of a class.
The compiler will issue an error if a static method attempts to use a nonstatic
variable. A static method can, however, reference static variables, because static
variables exist independent of specific objects. Therefore, the main method can
access only static or local variables.

The program in Listing 7.1 instantiates several objects of the Slogan class,
printing each one out in turn. At the end of the program it invokes a method
called getCount through the class name, which returns the number of Slogan
objects that were instantiated in the program.

//**
// SloganCounter.java Author: Lewis/Loftus
//
// Demonstrates the use of the static modifier.
//**

public class SloganCounter
{
 //---
 // Creates several Slogan objects and prints the number of
 // objects that were created.
 //---
 public static void main (String[] args)
 {
 Slogan obj;

 obj = new Slogan ("Remember the Alamo.");
 System.out.println (obj);

 obj = new Slogan ("Don't Worry. Be Happy.");
 System.out.println (obj);

 obj = new Slogan ("Live Free or Die.");
 System.out.println (obj);

 obj = new Slogan ("Talk is Cheap.");
 System.out.println (obj);

 obj = new Slogan ("Write Once, Run Anywhere.");
 System.out.println (obj);

L I S T I N G 7 . 1

308 CHAPTER 7 Object-Oriented Design

Listing 7.2 shows the Slogan class. The constructor of Slogan increments
a static variable called count, which is initialized to zero when it is declared.
Therefore, count serves to keep track of the number of instances of Slogan that
are created.

The getCount method of Slogan is also declared as static, which allows it to
be invoked through the class name in the main method. Note that the only data
referenced in the getCount method is the integer variable count, which is static.
As a static method, getCount cannot reference any nonstatic data.

The getCount method could have been declared without the static modifier,
but then its invocation in the main method would have to have been done through
an instance of the Slogan class instead of the class itself.

//**
// Slogan.java Author: Lewis/Loftus
//
// Represents a single slogan string.
//**

public class Slogan
{
 private String phrase;
 private static int count = 0;

L I S T I N G 7 . 2

 System.out.println();
 System.out.println ("Slogans created: " + Slogan.getCount());
 }

}

O U T P U T

Remember the Alamo.
Don't Worry. Be Happy.
Live Free or Die.
Talk is Cheap.
Write Once, Run Anywhere.

Slogans created: 5

L I S T I N G 7 . 1 continued

 7.3 Static Class Members 309

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 7.6 What is the difference between a static variable and an instance variable?

SR 7.7 Assume you are defining a BankAccount class whose objects each
represent a separate bank account. Write a declaration for a variable
of the class that will hold the combined total balance of all the bank
accounts represented by the class.

SR 7.8 Assume you are defining a BankAccount class whose objects each represent
a separate bank account. Write a declaration for a variable of the class that
will hold the minimum balance that each account must maintain.

SR 7.9 What kinds of variables can the main method of any program refer-
ence? Why?

 //---
 // Constructor: Sets up the slogan and counts the number of
 // instances created.
 //---
 public Slogan (String str)
 {
 phrase = str;
 count++;
 }

 //---
 // Returns this slogan as a string.
 //---
 public String toString()
 {
 return phrase;
 }

 //---
 // Returns the number of instances of this class that have been
 // created.
 //---
 public static int getCount ()
 {
 return count;
 }
}

L I S T I N G 7 . 2 continued

310 CHAPTER 7 Object-Oriented Design

7.4 Class Relationships

The classes in a software system have various types of relationships to each
other. Three of the more common relationships are dependency, aggregation,
and inheritance.

We’ve seen dependency relationships in many examples in which one class
“uses” another. This section revisits the dependency relationship and explores
the situation where a class depends on itself. We then explore aggregation, in
which the objects of one class contain objects of another, creating a “has-a”
relationship. Inheritance, which we introduced in Chapter 1, creates an “is-a”
relationship between classes. We defer our detailed examination of inheritance
until Chapter 8.

Dependency
In many previous examples, we’ve seen the idea of one class being dependent on
another. This means that one class relies on another in some sense. Often the
methods of one class will invoke the methods of the other class. This establishes
a “uses” relationship.

Generally, if class A uses class B, then one or more methods of class A invoke
one or more methods of class B. If an invoked method is static, then A merely ref-
erences B by name. If the invoked method is not static, then A must have access to
a specific instance of class B in order to invoke the method. That is, A must have
a reference to an object of class B.

The way in which one object gains access to an object of another class is
an important design decision. It occurs when one class instantiates the objects
of another, but that’s often the basis of an aggregation relationship. The
access can also be accomplished by passing one object to another as a method
parameter.

In general, we want to minimize the number of dependencies among classes.
The less dependent our classes are on each other, the less impact changes and
errors will have on the system.

Dependencies Among Objects of the Same Class
In some cases, a class depends on itself. That is, an object of one class interacts
with another object of the same class. To accomplish this, a method of the class
may accept as a parameter an object of the same class. Designing such a class
drives home the idea that a class represents a particular object.

 7.4 Class Relationships 311

The concat method of the String class is an example of this situation. The
method is executed through one String object and is passed another String
object as a parameter. For example:

str3 = str1.concat(str2);

The String object executing the method (str1) appends its characters to those
of the String passed as a parameter (str2). A new String object is returned as a
result and stored as str3.

The RationalTester program shown in Listing 7.3 demonstrates a similar
situation. A rational number is a value that can be represented as a ratio of two
integers (a fraction). The RationalTester program creates two objects represent-
ing rational numbers and then performs various operations on them to produce
new rational numbers.

//**
// RationalTester.java Author: Lewis/Loftus
//
// Driver to exercise the use of multiple Rational objects.
//**

public class RationalTester
{
 //---
 // Creates some rational number objects and performs various
 // operations on them.
 //---
 public static void main (String[] args)
 {
 RationalNumber r1 = new RationalNumber (6, 8);
 RationalNumber r2 = new RationalNumber (1, 3);
 RationalNumber r3, r4, r5, r6, r7;

 System.out.println ("First rational number: " + r1);
 System.out.println ("Second rational number: " + r2);

 if (r1.isLike(r2))
 System.out.println ("r1 and r2 are equal.");
 else
 System.out.println ("r1 and r2 are NOT equal.");

 r3 = r1.reciprocal();
 System.out.println ("The reciprocal of r1 is: " + r3);

L I S T I N G 7 . 3

312 CHAPTER 7 Object-Oriented Design

The RationalNumber class is shown in Listing 7.4. Keep in mind as you exam-
ine this class that each object created from the RationalNumber class represents a
single rational number. The RationalNumber class contains various operations on
rational numbers, such as addition and subtraction.

 r4 = r1.add(r2);
 r5 = r1.subtract(r2);
 r6 = r1.multiply(r2);
 r7 = r1.divide(r2);

 System.out.println ("r1 + r2: " + r4);
 System.out.println ("r1 - r2: " + r5);
 System.out.println ("r1 * r2: " + r6);
 System.out.println ("r1 / r2: " + r7);
 }
}

O U T P U T

First rational number: 3/4
Second rational number: 1/3
r1 and r2 are NOT equal.
The reciprocal of r1 is: 4/3
r1 + r2: 13/12
r1 - r2: 5/12
r1 * r2: 1/4
r1 / r2: 9/4

L I S T I N G 7 . 3 continued

//**
// RationalNumber.java Author: Lewis/Loftus
//
// Represents one rational number with a numerator and denominator.
//**

public class RationalNumber
{
 private int numerator, denominator;

L I S T I N G 7 . 4

 7.4 Class Relationships 313

 //---
 // Constructor: Sets up the rational number by ensuring a nonzero
 // denominator and making only the numerator signed.
 //---
 public RationalNumber (int numer, int denom)
 {
 if (denom == 0)
 denom = 1;

 // Make the numerator "store" the sign
 if (denom < 0)
 {
 numer = numer * -1;
 denom = denom * -1;
 }

 numerator = numer;
 denominator = denom;

 reduce();
 }

 //---
 // Returns the numerator of this rational number.
 //---
 public int getNumerator ()
 {
 return numerator;
 }

 //---
 // Returns the denominator of this rational number.
 //---
 public int getDenominator ()
 {
 return denominator;
 }

 //---
 // Returns the reciprocal of this rational number.
 //---
 public RationalNumber reciprocal ()
 {
 return new RationalNumber (denominator, numerator);
 }

L I S T I N G 7 . 4 continued

314 CHAPTER 7 Object-Oriented Design

 //---
 // Adds this rational number to the one passed as a parameter.
 // A common denominator is found by multiplying the individual
 // denominators.
 //---
 public RationalNumber add (RationalNumber op2)
 {
 int commonDenominator = denominator * op2.getDenominator();
 int numerator1 = numerator * op2.getDenominator();
 int numerator2 = op2.getNumerator() * denominator;
 int sum = numerator1 + numerator2;

 return new RationalNumber (sum, commonDenominator);
 }

 //---
 // Subtracts the rational number passed as a parameter from this
 // rational number.
 //---
 public RationalNumber subtract (RationalNumber op2)
 {
 int commonDenominator = denominator * op2.getDenominator();
 int numerator1 = numerator * op2.getDenominator();
 int numerator2 = op2.getNumerator() * denominator;
 int difference = numerator1 - numerator2;

 return new RationalNumber (difference, commonDenominator);
 }

 //---
 // Multiplies this rational number by the one passed as a
 // parameter.
 //---
 public RationalNumber multiply (RationalNumber op2)
 {
 int numer = numerator * op2.getNumerator();
 int denom = denominator * op2.getDenominator();

 return new RationalNumber (numer, denom);
 }

 //---
 // Divides this rational number by the one passed as a parameter
 // by multiplying by the reciprocal of the second rational.
 //---

L I S T I N G 7 . 4 continued

 7.4 Class Relationships 315

 public RationalNumber divide (RationalNumber op2)
 {
 return multiply (op2.reciprocal());
 }

 //---
 // Determines if this rational number is equal to the one passed
 // as a parameter. Assumes they are both reduced.
 //---
 public boolean isLike (RationalNumber op2)
 {
 return (numerator == op2.getNumerator() &&
 denominator == op2.getDenominator());
 }

 //---
 // Returns this rational number as a string.
 //---
 public String toString ()
 {
 String result;
 if (numerator == 0)
 result = "0";
 else
 if (denominator == 1)
 result = numerator + "";
 else
 result = numerator + "/" + denominator;
 return result;
 }

 //---
 // Reduces this rational number by dividing both the numerator
 // and the denominator by their greatest common divisor.
 //---
 private void reduce ()
 {
 if (numerator != 0)
 {
 int common = gcd (Math.abs(numerator), denominator);

 numerator = numerator / common;
 denominator = denominator / common;
 }

L I S T I N G 7 . 4 continued

316 CHAPTER 7 Object-Oriented Design

 The methods of the RationalNumber class, such as add , subtract , multiply ,
and divide , use the RationalNumber object that is executing the method as the
first (left) operand and the RationalNumber object passed as a parameter as the
second (right) operand.

 The isLike method of the RationalNumber class is used to determine if two
rational numbers are essentially equal. It’s tempting, therefore, to call that method
 equals , similar to the method used to compare String objects (discussed in
 Chapter 5). However, in Chapter 9 we will discuss how the equals method is
somewhat special due to inheritance, and that it should be implemented in a par-
ticular way. So to avoid confusion we call this method isLike for now.

 Note that some of the methods in the RationalNumber class, including reduce
and gcd , are declared with private visibility. These methods are private because
we don’t want them executed directly from outside a RationalNumber object.
They exist only to support the other services of the object.

 Aggregation
 Some objects are made up of other objects. A car, for instance, is made up of its

engine, its chassis, its wheels, and several other parts. Each of these
other parts could be considered a separate object. Therefore we can
say that a car is an aggregation —it is composed, at least in part, of
other objects. Aggregation is sometimes described as a has-a rela-
tionship . For instance, a car has a chassis.

 L I S T I N G 7 . 4 continued

 }

 //---
 // Computes and returns the greatest common divisor of the two
 // positive parameters. Uses Euclid's algorithm.
 //---
 private int gcd (int num1, int num2)
 {
 while (num1 != num2)
 if (num1 > num2)
 num1 = num1 - num2;
 else
 num2 = num2 - num1;

 return num1;
 }
 }

 KEY CONCEPT
 An aggregate object is composed
of other objects, forming a has-a
relationship.

 7.4 Class Relationships 317

In the software world, we define an aggregate object as any object that contains
references to other objects as instance data. For example, an Account object con-
tains, among other things, a String object that represents the name of the account
owner. We sometimes forget that strings are objects, but technically that makes
each Account object an aggregate object.

Aggregation is a special type of dependency. That is, a class that is defined in
part by another class is dependent on that class. The methods of the aggregate
object generally invoke the methods of the objects from which it is composed.

Let’s consider another example. The program StudentBody shown in Listing 7.5
creates two Student objects. Each Student object is composed, in part, of two
Address objects, one for the student’s address at school and another for the stu-
dent’s home address. The main method does nothing more than create the Student
objects and print them out. Once again we are passing objects to the println
method, relying on the automatic call to the toString method to create a valid
representation of the object that is suitable for printing.

The Student class shown in Listing 7.6 represents a single student. This class
would have to be greatly expanded if it were to represent all aspects of a student.
We deliberately keep it simple for now so that the object aggregation is clearly
shown. The instance data of the Student class includes two references to Address
objects. We refer to those objects in the toString method as we create a string
representation of the student. By concatenating an Address object to another
string, the toString method in Address is automatically invoked.

L I S T I N G 7 . 5

//**
// StudentBody.java Author: Lewis/Loftus
//
// Demonstrates the use of an aggregate class.
//**

public class StudentBody
{
 //---
 // Creates some Address and Student objects and prints them.
 //---
 public static void main (String[] args)
 {
 Address school = new Address ("800 Lancaster Ave.", "Villanova",
 "PA", 19085);
 Address jHome = new Address ("21 Jump Street", "Lynchburg",
 "VA", 24551);

318 CHAPTER 7 Object-Oriented Design

 Student john = new Student ("John", "Smith", jHome, school);

 Address mHome = new Address ("123 Main Street", "Euclid", "OH",
 44132);
 Student marsha = new Student ("Marsha", "Jones", mHome, school);

 System.out.println (john);
 System.out.println ();
 System.out.println (marsha);
 }
}

O U T P U T

John Smith
Home Address:
21 Jump Street
Lynchburg, VA 24551
School Address:
800 Lancaster Ave.
Villanova, PA 19085

Marsha Jones
Home Address:
123 Main Street
Euclid, OH 44132
School Address:
800 Lancaster Ave.
Villanova, PA 19085

L I S T I N G 7 . 5 continued

L I S T I N G 7 . 6

//**
// Student.java Author: Lewis/Loftus
//
// Represents a college student.
//**

public class Student
{
 private String firstName, lastName;
 private Address homeAddress, schoolAddress;

 7.4 Class Relationships 319

The Address class is shown in Listing 7.7. It represents a street address. Note
that nothing about the Address class indicates that it is part of a Student object.
The Address class is kept generic by design and therefore could be used in any
situation in which a street address is needed.

 //---
 // Constructor: Sets up this student with the specified values.
 //---
 public Student (String first, String last, Address home,
 Address school)
 {
 firstName = first;
 lastName = last;
 homeAddress = home;
 schoolAddress = school;
 }

 //---
 // Returns a string description of this Student object.
 //---
 public String toString()
 {
 String result;

 result = firstName + " " + lastName + "\n";
 result += "Home Address:\n" + homeAddress + "\n";
 result += "School Address:\n" + schoolAddress;

 return result;
 }
}

L I S T I N G 7 . 6 continued

L I S T I N G 7 . 7

//**
// Address.java Author: Lewis/Loftus
//
// Represents a street address.
//**

public class Address
{

320 CHAPTER 7 Object-Oriented Design

The more complex an object, the more likely it will need to be represented as
an aggregate object. In UML, aggregation is represented by a connection between
two classes, with an open diamond at the end near the class that is the aggregate.
Figure 7.2 shows a UML class diagram for the StudentBody program.

Note that in previous UML diagram examples and in Figure 7.2, strings are not
represented as separate classes with aggregation relationships, though technically
they could be. Strings are so fundamental to programming that often they are
represented as though they were a primitive type in a UML diagram.

The this Reference
Before we leave the topic of relationships among classes, we should examine
another special reference used in Java programs called the this reference. The
word this is a reserved word in Java. It allows an object to refer to itself. As we
have discussed, a nonstatic method is invoked through (or by) a particular object

L I S T I N G 7 . 7 continued

 private String streetAddress, city, state;
 private long zipCode;

 //---
 // Constructor: Sets up this address with the specified data.
 //---
 public Address (String street, String town, String st, long zip)
 {
 streetAddress = street;
 city = town;
 state = st;
 zipCode = zip;
 }

 //---
 // Returns a description of this Address object.
 //---
 public String toString()
 {
 String result;

 result = streetAddress + "\n";
 result += city + ", " + state + " " + zipCode;

 return result;
 }
}

 7.4 Class Relationships 321

or class. Inside that method, the this reference can be used to refer to the cur-
rently executing object.

For example, in a class called ChessPiece there could be a method called move,
which could contain the following line:

if (this.position == piece2.position)
 result = false;

In this situation, the this reference is being used to clarify which position is being
referenced. The this reference refers to the object through which the method was
invoked. So when the following line is used to invoke the method, the this refer-
ence refers to bishop1:

bishop1.move();

However, when a different object is used to invoke the method, the this reference
refers to that object. Therefore, when the following invocation is used, the this
reference in the move method refers to bishop2:

bishop2.move();

+ main (args : String[]) : void

StudentBody

 firstName : String
 lastName : String
 homeAddress : Address
 schoolAddress : Address

+ toString() : String

Student

 streetAddress : String
 city : String
 state : String
 zipCode : long

+ toString() : String

Address

FIGURE 7.2 A UML class diagram showing aggregation

322 CHAPTER 7 Object-Oriented Design

Often, the this reference is used to distinguish the parameters of a constructor
from their corresponding instance variables with the same names. For example,
the constructor of the Account class was presented in Chapter 4 as follows:

public Account (String owner, long account, double initial)
{
 name = owner;
 acctNumber = account;
 balance = initial;
}

When writing this constructor, we deliberately came up with different names for
the parameters to distinguish them from the instance variables name, acctNumber,
and balance. This distinction is arbitrary. The constructor could have been writ-
ten as follows using the this reference:

public Account (String name, long acctNumber, double balance)
{
 this.name = name;
 this.acctNumber = acctNumber;
 this.balance = balance;
}

In this version of the constructor, the this reference specifically refers to the
instance variables of the object. The variables on the right-hand side of the assign-
ment statements refer to the formal parameters. This approach eliminates the need
to come up with different yet equivalent names. This situation sometimes occurs
in other methods but comes up often in constructors.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 7.10 Describe a dependency relationship between two classes.

SR 7.11 Explain how a class can have an association with itself.

SR 7.12 What is an aggregate object?

SR 7.13 What does the this reference refer to?

7.5 Interfaces

We’ve used the term interface to refer to the set of public methods through which
we can interact with an object. That definition is consistent with our use of it in
this section, but now we are going to formalize this concept using a particular
language construct in Java.

7.5 Interfaces 323

//**
// Complexity.java Author: Lewis/Loftus
//
// Represents the interface for an object that can be assigned an
// explicit complexity.
//**

public interface Complexity
 {
 public void setComplexity (int complexity);
 public int getComplexity();
 }

 L I S T I N G 7 . 8

 A Java interface is a collection of constants and abstract methods.
An abstract method is a method that does not have an implemen-
tation. That is, there is no body of code defined for an abstract
method. The header of the method, including its parameter list, is
simply followed by a semicolon. An interface cannot be instantiated.

 Listing 7.8 shows an interface called Complexity . It contains two
abstract methods: setComplexity and getComplexity .

 An abstract method can be preceded by the reserved word abstract , though in
interfaces it usually is not. Methods in interfaces have public visibility by default.

 A class implements an interface by providing method implementations for
each of the abstract methods defined in the interface. A class that implements an
interface uses the reserved word implements followed by the interface name in
the class header. If a class asserts that it implements a particular interface, it must
provide a definition for all methods in the interface. The compiler will produce
errors if any of the methods in the interface are not given a definition in the class.

 The Question class, shown in Listing 7.9 , implements the Complexity inter-
face. Both the setComplexity and getComplexity methods are implemented.
They must be declared with the same signatures as their abstract counterparts
in the interface. In the Question class, the methods are defined simply to set or
return a numeric value representing the complexity level of the question that the
object represents.

 Note that the Question class also implements additional methods that are not
part of the Complexity interface. Specifically, it defines methods called getQues-
tion , getAnswer , answerCorrect , and toString , which have nothing to do with
the interface. The interface guarantees that the class implements certain methods,

 KEY CONCEPT
 An interface is a collection of
abstract methods and therefore can-
not be instantiated.

324 CHAPTER 7 Object-Oriented Design

//**
// Question.java Author: Lewis/Loftus
//
// Represents a question (and its answer).
//**

public class Question implements Complexity
{
 private String question, answer;
 private int complexityLevel;

 //---
 // Constructor: Sets up the question with a default complexity.
 //---
 public Question (String query, String result)
 {
 question = query;
 answer = result;
 complexityLevel = 1;
 }

 //---
 // Sets the complexity level for this question.
 //---
 public void setComplexity (int level)
 {
 complexityLevel = level;
 }

 //---
 // Returns the complexity level for this question.
 //---
 public int getComplexity()
 {
 return complexityLevel;
 }

 //---
 // Returns the question.
 //---
 public String getQuestion()
 {
 return question;
 }

L I S T I N G 7 . 9

 7.5 Interfaces 325

but it does not restrict it from having additional ones. It is common for a class
that implements an interface to have other methods.

Listing 7.10 shows a program called MiniQuiz, which uses some Question objects.

An interface and its relationship to a class that implements it can be shown in
a UML class diagram. An interface is represented similarly to a class node except
that the designation <<interface>> is inserted above the interface name. A dot-
ted arrow with a closed arrowhead is drawn from the class to the interface that
it implements. Figure 7.3 shows a UML class diagram for the MiniQuiz program.

Multiple classes can implement the same interface, providing alternative defini-
tions for the methods. For example, we could implement a class called Task that
also implements the Complexity interface. In it we could choose to manage the
complexity of a task in a different way (though it would still have to implement
all the methods of the interface).

A class can implement more than one interface. In these cases, the class must
provide an implementation for all methods in all interfaces listed. To show that

 //---
 // Returns the answer to this question.
 //---
 public String getAnswer()
 {
 return answer;
 }

 //---
 // Returns true if the candidate answer matches the answer.
 //---
 public boolean answerCorrect (String candidateAnswer)
 {
 return answer.equals(candidateAnswer);
 }

 //---
 // Returns this question (and its answer) as a string.
 //---
 public String toString()
 {
 return question + "\n" + answer;
 }
}

L I S T I N G 7 . 9 continued

326 CHAPTER 7 Object-Oriented Design

//**
// MiniQuiz.java Author: Lewis/Loftus
//
// Demonstrates the use of a class that implements an interface.
//**

import java.util.Scanner;

public class MiniQuiz
{
 //---
 // Presents a short quiz.
 //---
 public static void main (String[] args)
 {
 Question q1, q2;
 String possible;

 Scanner scan = new Scanner (System.in);

 q1 = new Question ("What is the capital of Jamaica?",
 "Kingston");
 q1.setComplexity (4);

 q2 = new Question ("Which is worse, ignorance or apathy?",
 "I don't know and I don't care");
 q2.setComplexity (10);

 System.out.print (q1.getQuestion());
 System.out.println (" (Level: " + q1.getComplexity() + ")");
 possible = scan.nextLine();
 if (q1.answerCorrect(possible))
 System.out.println ("Correct");
 else
 System.out.println ("No, the answer is " + q1.getAnswer());

 System.out.println();
 System.out.print (q2.getQuestion());
 System.out.println (" (Level: " + q2.getComplexity() + ")");
 possible = scan.nextLine();
 if (q2.answerCorrect(possible))
 System.out.println ("Correct");
 else

L I S T I N G 7 . 1 0

 7.5 Interfaces 327

 System.out.println ("No, the answer is " + q2.getAnswer());
 }
}

O U T P U T

What is the capital of Jamaica? (Level: 4)
Kingston
Correct

Which is worse, ignorance or apathy? (Level: 10)
apathy
No, the answer is I don't know and I don't care

L I S T I N G 7 . 1 0 continued

a class implements multiple interfaces, they are listed in the implements clause,
separated by commas. For example:

class ManyThings implements Interface1, Interface2, Interface3
{
 // contains all methods of all interfaces
}

In addition to, or instead of, abstract methods, an interface can also contain
constants, defined using the final modifier. When a class implements an inter-
face, it gains access to all the constants defined in it.

The interface construct formally defines the ways in which we can interact
with a class. It also serves as a basis for a powerful programming technique called
polymorphism, which we discuss in Chapter 10.

The Comparable Interface
The Java standard class library contains interfaces as well as classes. The
Comparable interface, for example, is defined in the java.lang package. The
Comparable interface contains only one method, compareTo, which takes an object
as a parameter and returns an integer.

The intention of this interface is to provide a common mechanism for compar-
ing one object to another. One object calls the method and passes another as a
parameter as follows:

if (obj1.compareTo(obj2) < 0)
 System.out.println ("obj1 is less than obj2");

328 CHAPTER 7 Object-Oriented Design

As specified by the documentation for the interface, the integer that is returned
from the compareTo method should be negative if obj1 is less than obj2, 0 if they
are equal, and positive if obj1 is greater than obj2. It is up to the designer of each
class to decide what it means for one object of that class to be less than, equal to,
or greater than another.

In Chapter 5, we mentioned that the String class contains a compareTo
method that operates in this manner. Now we can clarify that the String class
has this method because it implements the Comparable interface. The String class
implementation of this method bases the comparison on the lexicographic order-
ing defined by the Unicode character set.

The Iterator Interface
The Iterator interface is another interface defined as part of the Java standard
class library. It is used by a class that represents a collection of objects, providing
a means to move through the collection one object at a time.

+ main (args : String[]) : void

MiniQuiz

+ getQuestion () : String
+ getAnswer () : String
+ answerCorrect (String) : boolean
+ toString() : String

Question

+ getComplexity () : int
+ setComplexity (int) : void

<<interface>>
Complexity

FIGURE 7.3 A UML class diagram for the MiniQuiz program

 7.6 Enumerated Types Revisited 329

In Chapter 5 we defined the concept of an iterator, using a loop to process all
elements in the collection. Most iterators, including objects of the Scanner class,
are defined using the Iterator interface.

The two primary methods in the Iterator interface are hasNext, which returns
a boolean result, and next, which returns an object. Neither of these methods
takes any parameters. The hasNext method returns true if there are items left to
process, and next returns the next object. It is up to the designer of the class that
implements the Iterator interface to decide the order in which objects will be
delivered by the next method.

We should note that, according to the spirit of the interface, the next method does
not remove the object from the underlying collection; it simply returns a reference to
it. The Iterator interface also has a method called remove, which takes no param-
eters and has a void return type. A call to the remove method removes the object
that was most recently returned by the next method from the underlying collection.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 7.14 What is the difference between a class and an interface?

SR 7.15 Define a Java interface called Nameable. Classes that implement this
interface must provide a setName method that requires a single String
parameter and returns nothing, and a getName method that has no
parameters and returns a String.

SR 7.16 True or False? Explain.

a. A Java interface can include only abstract methods, nothing else.
b. An abstract method is a method that does not have an implementation.
c. All of the methods included in a Java interface definition must be

abstract.
d. A class that implements an interface can define only those methods

that are included in the interface.
e. Multiple classes can implement the same interface.
f. A class can implement more than one interface.
g. All classes that implement an interface must provide the exact

same definitions of the methods that are included in the interface.

7.6 Enumerated Types Revisited

In Chapter 3 we introduced the concept of an enumerated type, which defines a
new data type and lists all possible values of that type. We gave an example that
defined an enumerated type called Season, which was declared as follows:

enum Season {winter, spring, summer, fall}

330 CHAPTER 7 Object-Oriented Design

 We mentioned that an enumerated type is a special kind of class, and that the
values of the enumerated type are objects. The values are, in fact, instances of its
own enumerated type. For example, winter is an object of the Season class. Let’s
explore this concept a bit further.

 Suppose we declare a variable of the Season type as follows:

 Season time;

 Because an enumerated type is a special kind of class, the variable
 time is an object reference variable. Furthermore, as an enumerated
type, it can be assigned only the values listed in the Season defini-

tion. These values (winter , spring , summer , and fall) are actually references
to Season objects that are stored as public static variables within the Season
class. Thus we can make an assignment such as the following:

 time = Season.spring;

 Now let’s take this idea a step further. In Listing 7.11 we redefine the Season
type, giving it a more substantial definition. Note that we still use the enum
reserved word to declare the enumerated type, and we still list all possible values
of the type. In addition, in this definition we add a private String called span , a
constructor for the Season class, and a method named getSpan . Each value in the
list of values for the enumerated type invokes the constructor, passing it a charac-
ter string that is then stored in the span variable of each value.

 KEY CONCEPT
 The values of an enumerated type
are static variables of that type.

//**
// Season.java Author: Lewis/Loftus
//
// Enumerates the values for Season.
//**

public enum Season
 {
 winter ("December through February"),
 spring ("March through May"),
 summer ("June through August"),
 fall ("September through November");

 private String span;

 L I S T I N G 7 . 1 1

 7.6 Enumerated Types Revisited 331

The main method of the SeasonTester class, shown in Listing 7.12, prints each
value of the Season enumerated type, as well as the span statement for each. Every
enumerated type contains a static method called values that returns a list of all
possible values for that type. This list is an iterator, so we can use the enhanced
version of a for loop to process each value.

 //---
 // Constructor: Sets up each value with an associated string.
 //---
 Season (String months)
 {
 span = months;
 }

 //---
 // Returns the span message for this value.
 //---
 public String getSpan()
 {
 return span;
 }
}

L I S T I N G 7 . 1 1 continued

//**
// SeasonTester.java Author: Lewis/Loftus
//
// Demonstrates the use of a full enumerated type.
//**

public class SeasonTester
{
 //---
 // Iterates through the values of the Season enumerated type.
 //---
 public static void main (String[] args)
 {

L I S T I N G 7 . 1 2

332 CHAPTER 7 Object-Oriented Design

 In addition to the list of possible values defined in every enumerated
type, we can include any number of attributes or methods of our own
choosing. This provides various opportunities for creative class design.

 SELF-REVIEW QUESTION (see answer in Appendix N)

 SR 7.17 Using the enumerated type Season as defined in this section, what is
the output from the following code sequence?

 Season time1, time2;
 time1 = Season.winter;
 time2 = Season.summer;
 System.out.println (time1);
 System.out.println (time2.name());
 System.out.println (time1.ordinal());
 System.out.println (time2.getSpan());

 7.7 Method Design

 Once you have identified classes and assigned basic responsibilities, the design of
each method will determine how exactly the class will define its behaviors. Some
methods are straightforward and require little thought. Others are more interest-
ing and require careful planning.

 An algorithm is a step-by-step process for solving a problem. A recipe is an
example of an algorithm. Travel directions are another example of an algorithm.
Every method implements an algorithm that determines how that method accom-
plishes its goals.

 for (Season time : Season.values())
 System.out.println (time + "\t" + time.getSpan());
 }
 }

 O U T P U T

 winter December through February
 spring March through May
 summer June through August
 fall September through November

 L I S T I N G 7 . 1 2 continued

 KEY CONCEPT
 We can add attributes and methods to
the definition of an enumerated type.

7.7 Method Design 333

 An algorithm is often described using pseudocode , which is a mixture of code
statements and English phrases. Pseudocode provides enough structure to show
how the code will operate, without getting bogged down in the syntactic details
of a particular programming language or becoming prematurely constrained by
the characteristics of particular programming constructs.

 This section discusses two important aspects of program design at the method
level: method decomposition and the implications of passing objects as parameters.

 Method Decomposition
 Occasionally, a service that an object provides is so complicated that
it cannot reasonably be implemented using one method. Therefore
we sometimes need to decompose a method into multiple methods to
create a more understandable design. As an example, let’s examine a
program that translates English sentences into Pig Latin.

 Pig Latin is a made-up language in which each word of a sentence
is modified, in general, by moving the initial sound of the word to the end and
adding an “ay” sound. For example, the word happy would be written and pro-
nounced appyhay and the word birthday would become irthdaybay . Words that
begin with vowels simply have a “yay” sound added on the end, turning the word
 enough into enoughyay . Consonant blends such as “ch” and “st” at the beginning
of a word are moved to the end together before adding the “ay” sound. Therefore
the word grapefruit becomes apefruitgray .

 The PigLatin program shown in Listing 7.13 reads one or more sentences,
translating each into Pig Latin.

 The workhorse behind the PigLatin program is the PigLatinTranslator
class, shown in Listing 7.14 . The PigLatinTranslator class provides one fun-
damental service, a static method called translate , which accepts a string and
translates it into Pig Latin. Note that the PigLatinTranslator class does not
contain a constructor because none is needed.

 KEY CONCEPT
 A complex service provided by an
object can be decomposed to make
use of private support methods.

//**
// PigLatin.java Author: Lewis/Loftus
//
// Demonstrates the concept of method decomposition.
//**

import java.util.Scanner;

 L I S T I N G 7 . 1 3

334 CHAPTER 7 Object-Oriented Design

public class PigLatin
{
 //---
 // Reads sentences and translates them into Pig Latin.
 //---
 public static void main (String[] args)
 {
 String sentence, result, another;

 Scanner scan = new Scanner (System.in);

 do
 {
 System.out.println ();
 System.out.println ("Enter a sentence (no punctuation):");
 sentence = scan.nextLine();

 System.out.println ();
 result = PigLatinTranslator.translate (sentence);
 System.out.println ("That sentence in Pig Latin is:");
 System.out.println (result);

 System.out.println ();
 System.out.print ("Translate another sentence (y/n)? ");
 another = scan.nextLine();
 }
 while (another.equalsIgnoreCase("y"));
 }
}

O U T P U T

Enter a sentence (no punctuation):
Do you speak Pig Latin
That sentence in Pig Latin is:
oday ouyay eakspay igpay atinlay

Translate another sentence (y/n)? y

Enter a sentence (no punctuation):
Play it again Sam

That sentence in Pig Latin is:
ayplay ityay againyay amsay

Translate another sentence (y/n)? n

L I S T I N G 7 . 1 3 continued

 7.7 Method Design 335

//**
// PigLatinTranslator.java Author: Lewis/Loftus
//
// Represents a translator from English to Pig Latin. Demonstrates
// method decomposition.
//**

import java.util.Scanner;

public class PigLatinTranslator
{
 //---
 // Translates a sentence of words into Pig Latin.
 //---
 public static String translate (String sentence)
 {
 String result = "";

 sentence = sentence.toLowerCase();

 Scanner scan = new Scanner (sentence);

 while (scan.hasNext())
 {
 result += translateWord (scan.next());
 result += " ";
 }

 return result;
 }

 //---
 // Translates one word into Pig Latin. If the word begins with a
 // vowel, the suffix "yay" is appended to the word. Otherwise,
 // the first letter or two are moved to the end of the word,
 // and "ay" is appended.
 //---
 private static String translateWord (String word)
 {
 String result = "";

 if (beginsWithVowel(word))
 result = word + "yay";
 else
 if (beginsWithBlend(word))

L I S T I N G 7 . 1 4

336 CHAPTER 7 Object-Oriented Design

 result = word.substring(2) + word.substring(0,2) + "ay";
 else
 result = word.substring(1) + word.charAt(0) + "ay";

 return result;
 }

 //---
 // Determines if the specified word begins with a vowel.
 //---
 private static boolean beginsWithVowel (String word)
 {
 String vowels = "aeiou";

 char letter = word.charAt(0);

 return (vowels.indexOf(letter) != -1);
 }

 //---
 // Determines if the specified word begins with a particular
 // two-character consonant blend.
 //---
 private static boolean beginsWithBlend (String word)
 {
 return (word.startsWith ("bl") || word.startsWith ("sc") ||
 word.startsWith ("br") || word.startsWith ("sh") ||
 word.startsWith ("ch") || word.startsWith ("sk") ||
 word.startsWith ("cl") || word.startsWith ("sl") ||
 word.startsWith ("cr") || word.startsWith ("sn") ||
 word.startsWith ("dr") || word.startsWith ("sm") ||
 word.startsWith ("dw") || word.startsWith ("sp") ||
 word.startsWith ("fl") || word.startsWith ("sq") ||
 word.startsWith ("fr") || word.startsWith ("st") ||
 word.startsWith ("gl") || word.startsWith ("sw") ||
 word.startsWith ("gr") || word.startsWith ("th") ||
 word.startsWith ("kl") || word.startsWith ("tr") ||
 word.startsWith ("ph") || word.startsWith ("tw") ||
 word.startsWith ("pl") || word.startsWith ("wh") ||
 word.startsWith ("pr") || word.startsWith ("wr"));
 }
}

L I S T I N G 7 . 1 4 continued

 7.7 Method Design 337

The act of translating an entire sentence into Pig Latin is not trivial. If written
in one big method, it would be very long and difficult to follow. A better solution,
as implemented in the PigLatinTranslator class, is to decompose the translate
method and use several other support methods to help with the task.

The translate method uses a Scanner object to separate the string into words.
Recall that one role of the Scanner class (discussed in Chapter 3) is to separate a
string into smaller elements called tokens. In this case, the tokens are separated by
space characters so we can use the default white space delimiters. The PigLatin
program assumes that no punctuation is included in the input.

The translate method passes each word to the private support method
translateWord. Even the job of translating one word is somewhat involved,
so the translateWord method makes use of two other private methods,
beginsWithVowel and beginsWithBlend.

The beginsWithVowel method returns a boolean value that indicates whether
the word passed as a parameter begins with a vowel. Note that instead of checking
each vowel separately, the code for this method declares a string that contains all
the vowels, and then invokes the String method indexOf to determine whether
the first character of the word is in the vowel string. If the specified character can-
not be found, the indexOf method returns a value of �1.

The beginsWithBlend method also returns a boolean value. The body of the
method contains only a return statement with one large expression that makes
several calls to the startsWith method of the String class. If any of these calls
returns true, then the beginsWithBlend method returns true as well.

Note that the translateWord, beginsWithVowel, and beginsWithBlend
methods are all declared with private visibility. They are not intended to pro-
vide services directly to clients outside the class. Instead, they exist to help the
translate method, which is the only true service method in this class, to do
its job. By declaring them with private visibility, they cannot be invoked from
outside this class. If the main method of the PigLatin class attempted to invoke
the translateWord method, for instance, the compiler would issue an error
message.

Figure 7.4 shows a UML class diagram for the PigLatin program. Note the
notation showing the visibility of various methods.

Whenever a method becomes large or complex, we should consider decompos-
ing it into multiple methods to create a more understandable class design. First,
however, we must consider how other classes and objects can be defined to create
better overall system design. In an object-oriented design, method decomposition
must be subordinate to object decomposition.

338 CHAPTER 7 Object-Oriented Design

 Method Parameters Revisited
 Another important issue related to method design involves the way parameters
are passed into a method. In Java, all parameters are passed by value . That is,
the current value of the actual parameter (in the invocation) is copied into the
formal parameter in the method header. We mentioned this issue in Chapter 4 ;
let’s examine it now in more detail.

 Essentially, parameter passing is like an assignment statement, assigning to the
formal parameter a copy of the value stored in the actual parameter. This issue
must be considered when making changes to a formal parameter inside a method.
The formal parameter is a separate copy of the value that is passed in, so any
changes made to it have no effect on the actual parameter. After control returns to
the calling method, the actual parameter will have the same value as it did before
the method was called.

 However, when we pass an object to a method, we are actually passing a refer-
ence to that object. The value that gets copied is the address of the object. Therefore,

the formal parameter and the actual parameter become aliases of each
other. If we change the state of the object through the formal param-
eter reference inside the method, we are changing the object referenced
by the actual parameter, because they refer to the same object. On
the other hand, if we change the formal parameter reference itself (to
make it point to a new object, for instance), we have not changed the

fact that the actual parameter still refers to the original object.

 The program in Listing 7.15 illustrates the nuances of parameter passing.
Carefully trace the processing of this program and note the values that are output.
The ParameterTester class contains a main method that calls the changeValues
method in a ParameterModifier object. Two of the parameters to changeValues
are Num objects, each of which simply stores an integer value. The other parameter
is a primitive integer value.

+ main (args : String[]) : void

PigLatin

+ translate (sentence : String) : String
— translateWord (word : String) : String
— beginsWithVowel (word : String) : boolean
— beginsWithBlend (word : String) : boolean

PigLatinTranslator

 FIGURE 7.4 A UML class diagram for the PigLatin program

 KEY CONCEPT
 When an object is passed to a
method, the actual and formal
parameters become aliases.

 7.7 Method Design 339

//**
// ParameterTester.java Author: Lewis/Loftus
//
// Demonstrates the effects of passing various types of parameters.
//**

public class ParameterTester
{
 //---
 // Sets up three variables (one primitive and two objects) to
 // serve as actual parameters to the changeValues method. Prints
 // their values before and after calling the method.
 //---
 public static void main (String[] args)
 {
 ParameterModifier modifier = new ParameterModifier();

 int a1 = 111;
 Num a2 = new Num (222);
 Num a3 = new Num (333);

 System.out.println ("Before calling changeValues:");
 System.out.println ("a1\ta2\ta3");
 System.out.println (a1 + "\t" + a2 + "\t" + a3 + "\n");

 modifier.changeValues (a1, a2, a3);

 System.out.println ("After calling changeValues:");
 System.out.println ("a1\ta2\ta3");
 System.out.println (a1 + "\t" + a2 + "\t" + a3 + "\n");
 }
}

O U T P U T

Before calling changeValues
a1 a2 a3
111 222 333

Before changing the values:
f1 f2 f3
111 222 333

L I S T I N G 7 . 1 5

340 CHAPTER 7 Object-Oriented Design

After changing the values:
f1 f2 f3
999 888 777

After calling changeValues:
a1 a2 a3
111 888 333

L I S T I N G 7 . 1 5 continued

Listing 7.16 shows the ParameterModifier class, and Listing 7.17 shows the
Num class. Inside the changeValues method, a modification is made to each of the
three formal parameters: the integer parameter is set to a different value, the value
stored in the first Num parameter is changed using its setValue method, and a new

//**
// ParameterModifier.java Author: Lewis/Loftus
//
// Demonstrates the effects of changing parameter values.
//**

public class ParameterModifier
{
 //---
 // Modifies the parameters, printing their values before and
 // after making the changes.
 //---
 public void changeValues (int f1, Num f2, Num f3)
 {
 System.out.println ("Before changing the values:");
 System.out.println ("f1\tf2\tf3");
 System.out.println (f1 + "\t" + f2 + "\t" + f3 + "\n");

 f1 = 999;
 f2.setValue(888);
 f3 = new Num (777);

 System.out.println ("After changing the values:");
 System.out.println ("f1\tf2\tf3");
 System.out.println (f1 + "\t" + f2 + "\t" + f3 + "\n");
 }
}

L I S T I N G 7 . 1 6

 7.7 Method Design 341

//**
// Num.java Author: Lewis/Loftus
//
// Represents a single integer as an object.
//**

public class Num
{
 private int value;

 //---
 // Sets up the new Num object, storing an initial value.
 //---
 public Num (int update)
 {
 value = update;
 }

 //---
 // Sets the stored value to the newly specified value.
 //---
 public void setValue (int update)
 {
 value = update;
 }

 //---
 // Returns the stored integer value as a string.
 //---
 public String toString ()
 {
 return value + "";
 }
}

L I S T I N G 7 . 1 7

Num object is created and assigned to the second Num parameter. These changes are
reflected in the output printed at the end of the changeValues method.

However, note the final values that are printed after returning from the
method. The primitive integer was not changed from its original value, because
the change was made to a copy inside the method. Likewise, the last parameter
still refers to its original object with its original value. This is because the new Num
object created in the method was referred to only by the formal parameter. When

342 CHAPTER 7 Object-Oriented Design

STEP 1 STEP 2

STEP 3 STEP 4

Before invoking changeValues

f1 = 999; f2.setValue (888);

tester.changeValues (a1, a2, a3);

a1 a2

f1 f2 f1 f2f3 f3

a1 a2a3 a3

111 111 222 333

111

222 333

a1 a2

f1 f2 f1 f2f3 f3

a1 a2a3 a3

111 111 888 333

999

222 333

999

STEP 5 STEP 6

f3 = new Num (777); After returning from changeValues

a1 a2

f1 f2 f1 f2f3 f3

a1 a2a3 a3

111 111 888 333888 333

999 777

= Undefined

FIGURE 7.5 Tracing the parameters in the ParameterTesting program

the method returned, that formal parameter was destroyed and the Num object it
referred to was marked for garbage collection. The only change that is “perma-
nent” is the change made to the state of the second parameter. Figure 7.5 shows
the step-by-step processing of this program.

7.8 Method Overloading 343

 SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 7.18 What is method decomposition?

SR 7.19 Answer the following questions about the PigLatinTranslator class.

 a. No constructor is defined. Why not?
 b. Some of the defined methods are private. Why?
 c. A Scanner object is declared in the translate method. What is it

used to scan?

SR 7.20 Identify the resultant sequence of calls/returns of PigLatinTranslator
support methods when translate is invoked with the following actual
parameters.

 a. "animal"
 b. "hello"
 c. "We are the champions"

 SR 7.21 How are objects passed as parameters?

 7.8 Method Overloading

 As we’ve discussed, when a method is invoked, the flow of control transfers to the
code that defines the method. After the method has been executed, control returns
to the location of the call, and processing continues.

 Often the method name is sufficient to indicate which method is being called
by a specific invocation. But in Java, as in other object-oriented languages, you
can use the same method name with different parameter lists for multiple meth-
ods. This technique is called method overloading . It is useful when you need to
perform similar methods on different types of data.

 The compiler must still be able to associate each invocation to a
specific method declaration. If the method name for two or more meth-
ods is the same, additional information is used to uniquely identify the
version that is being invoked. In Java, a method name can be used for
multiple methods as long as the number of parameters, the types of
those parameters, and/or the order of the types of parameters is distinct.

 For example, we could declare a method called sum as follows:

 public int sum (int num1, int num2)
 {
 return num1 + num2;
 }

 KEY CONCEPT
 The versions of an overloaded
method are distinguished by the
number, type, and order of their
parameters.

344 CHAPTER 7 Object-Oriented Design

Then we could declare another method called sum, within the same class, as
follows:

public int sum (int num1, int num2, int num3)
{
 return num1 + num2 + num3;
}

Now, when an invocation is made, the compiler looks at the number of param-
eters to determine which version of the sum method to call. For instance, the fol-
lowing invocation will call the second version of the sum method:

sum (25, 69, 13);

A method’s name, along with the number, type, and order of its parameters, is
called the method’s signature. The compiler uses the complete method signature
to bind a method invocation to the appropriate definition.

The compiler must be able to examine a method invocation to determine which
specific method is being invoked. If you attempt to specify two method names
with the same signature, the compiler will issue an appropriate error message and
will not create an executable program. There can be no ambiguity.

Note that the return type of a method is not part of the method signature. That
is, two overloaded methods cannot differ only by their return type. This is because
the value returned by a method can be ignored by the invocation. The compiler
would not be able to distinguish which version of an overloaded method is being
referenced in such situations.

The println method is an example of a method that is overloaded several times,
each accepting a single type. The following is a partial list of its various signatures:

■ println (String s)

■ println (int i)

■ println (double d)

■ println (char c)

■ println (boolean b)

The following two lines of code actually invoke different methods that have
the same name:

System.out.println ("Number of students: ");
System.out.println (count);

The first line invokes the version of println that accepts a string. The second
line, assuming count is an integer variable, invokes the version of println that
accepts an integer.

Examples of method
overloading.

VideoNote

 7.9 Testing 345

We often use a println statement that prints several distinct types, such as:

System.out.println ("Number of students: " + count);

Remember, in this case the plus sign is the string concatenation operator. First,
the value in the variable count is converted to a string representation, then the
two strings are concatenated into one longer string, and finally the definition of
println that accepts a single string is invoked.

Constructors can be overloaded, and often are. By providing multiple versions
of a constructor, we provide multiple ways to set up an object.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 7.22 How are overloaded methods distinguished from each other?

SR 7.23 For each of the following pairs of method headers, state whether or
not the signatures are distinct. If not, explain why not.

a. String describe (String name, int count)
String describe (int count, String name)

b. void count ()
int count ()

c. int howMany (int compareValue)
 int howMany (int ceiling)
d. boolean greater (int value1)

boolean greater (int value1, int value2)

SR 7.24 The Num class is defined in Section 7.7. Overload the constructor of
that class by defining a second constructor which takes no parameters
and sets the value attribute to zero.

7.9 Testing

The term testing can be applied in many ways to software development. Testing
certainly includes its traditional definition: the act of running a completed pro-
gram with various inputs to discover problems. But it also includes any evalua-
tion that is performed by human or machine to assess the quality of the evolving
system. These evaluations should occur long before a single line of code is written.

The goal of testing is to find errors. By finding errors and fixing them, we
improve the quality of our program. It’s likely that later on someone else will
find any errors that remain hidden during development. The earlier the errors are
found, the easier and cheaper they are to fix. Taking the time to uncover problems
as early as possible is almost always worth the effort.

346 CHAPTER 7 Object-Oriented Design

 Running a program with specific input and producing the correct
results establishes only that the program works for that particular
input. As more and more test cases execute without revealing errors,
our confidence in the program rises, but we can never really be sure
that all errors have been eliminated. There could always be another

error still undiscovered. Because of that, it is important to thoroughly test a pro-
gram in as many ways as possible and with well-designed test cases.

 It is possible to prove that a program is correct, but that technique is enor-
mously complex for large systems, and errors can be made in the proof itself.
Therefore, we generally rely on testing to determine the quality of a program.

 After determining that an error exists, we determine the cause of the error and
fix it. After a problem is fixed, we should run previous tests again to make sure
that while fixing the problem we didn’t create another. This technique is called
 regression testing .

 Reviews
 One technique used to evaluate design or code is called a review , which is a meet-
ing in which several people carefully examine a design document or section of
code. Presenting our design or code to others causes us to think more carefully
about it and permits others to share their suggestions with us. The participants
discuss its merits and problems, and create a list of issues that must be addressed.
The goal of a review is to identify problems, not to solve them, which usually
takes much more time.

 A design review should determine whether the requirements have been
addressed. It should also assess the way the system is decomposed into classes
and objects. A code review should determine how faithfully the design satisfies
the requirements and how faithfully the implementation represents the design. It
should identify any specific problems that would cause the design or the imple-
mentation to fail in its responsibilities.

 Sometimes a review is called a walkthrough , because its goal is to step carefully
through a document and evaluate each section.

 Defect Testing
 Since the goal of testing is to find errors, it is often referred to as defect testing.
With that goal in mind, a good test is one that uncovers any deficiencies in a
program. This might seem strange, because we ultimately don’t want to have
problems in our system. But keep in mind that errors almost certainly exist. Our
testing efforts should make every attempt to find them. We want to increase the

 KEY CONCEPT
 Testing a program can never guaran-
tee the absence of errors.

7.9 Testing 347

reliability of our program by finding and fixing the errors that exist,
rather than letting users discover them.

 A test case consists of a set of inputs, user actions, or other initial
conditions, along with the expected output. A test case should be
appropriately documented so that it can be repeated later as needed.
Developers often create a complete test suite , which is a set of test cases that cov-
ers various aspects of the system.

 Because programs operate on a large number of possible inputs,
it is not feasible to create test cases for all possible input or user
actions. Nor is it usually necessary to test every single situation.
Two specific test cases may be so similar that they actually do not
test unique aspects of the program. To do both would be a wasted
effort. We’d rather execute a test case that stresses the program in
some new way. Therefore we want to choose our test cases carefully. To that end,
let’s examine two approaches to defect testing: black-box testing and white-box
testing.

 As the name implies, black-box testing treats the thing being tested as a black
box. In black-box testing, test cases are developed without regard to the internal
workings. Black-box tests are based on inputs and outputs. An entire program
can be tested using a black-box technique, in which case the inputs are the user-
provided information and user actions such as button pushes. A test case is suc-
cessful only if the input produces the expected output. A single class can also be
tested using a black-box technique, which focuses on the system interface (its
public methods) of the class. Certain parameters are passed in, producing certain
results. Black-box test cases are often derived directly from the requirements of
the system or from the stated purpose of a method.

 The input data for a black-box test case are often selected by defining
equivalence categories. An equivalence category is a collection of inputs that are
expected to produce similar outputs. Generally, if a method will work for one
value in the equivalence category, we have every reason to believe it will work for
the others. For example, the input to a method that computes the square root of
an integer can be divided into two equivalence categories: nonnegative integers
and negative integers. If it works appropriately for one nonnegative value, it will
likely work for all nonnegative values. Likewise, if it works appropriately for one
negative value, it will likely work for all negative values.

 Equivalence categories have defined boundaries. Because all values of an equiv-
alence category essentially test the same features of a program, only one test case
inside the equivalence boundary is needed. However, because programming often
produces “off by one” errors, the values on and around the boundary should be
tested exhaustively. For an integer boundary, a good test suite would include at
least the exact value of the boundary, the boundary minus 1, and the boundary

 KEY CONCEPT
 A good test is one that uncovers an
error.

 KEY CONCEPT
 It is not feasible to exhaustively test
a program for all possible input and
user actions.

348 CHAPTER 7 Object-Oriented Design

plus 1. Test cases that use these cases, plus at least one from within the general
field of the category, should be defined.

Let’s look at an example. Consider a method whose purpose is to validate that
a particular integer value is in the range 0 to 99, inclusive. There are three equiva-
lence categories in this case: values below 0, values in the range of 0 to 99, and
values above 99. Black-box testing dictates that we use test values that surround
and fall on the boundaries, as well as some general values from the equivalence
categories. Therefore, a set of black-box test cases for this situation might be:
−500, −1, 0, 1, 50, 98, 99, 100, and 500.

White-box testing, also known as glass-box testing, exercises the internal struc-
ture and implementation of a method. A white-box test case is based on the logic
of the code. The goal is to ensure that every path through a program is executed at
least once. A white-box test maps the possible paths through the code and ensures
that the test cases cause every path to be executed. This type of testing is often
called statement coverage.

Paths through code are controlled by various control flow statements that
use conditional expressions, such as if statements. In order to have every path
through the program executed at least once, the input data values for the test
cases need to control the values for the conditional expressions. The input data of
one or more test cases should cause the condition of an if statement to evaluate
to true in at least one case and to false in at least one case. Covering both true
and false values in an if statement guarantees that both the paths through the if
statement will be executed. Similar situations can be created for loops and other
constructs.

In both black-box and white-box testing, the expected output for each test
should be established prior to running the test. It’s too easy to be persuaded that
the results of a test are appropriate if you haven’t first carefully determined what
the results should be.

SELF-REVIEW QUESTION (see answer in Appendix N)

SR 7.25 Select the term from the following list that best matches each of the
following phrases:

 black-box, defects, regression, review, test case, test suite, walk-
through, white-box

a. Running previous test cases after a change is made to a program
to help ensure that the change did not introduce an error.

b. A meeting in which several people collectively evaluate an artifact.
c. A review that steps carefully through a document, evaluating each

section.
d. The goal of testing is to discover these.

 e. A description of the input and corresponding expected output of a
code unit being tested.

 f. A set of test cases that covers various aspects of a system.
 g. With this testing approach, test cases are based solely on require-

ment specifications.
 h. With this testing approach, test cases are based on the internal

workings of the program.

 7.10 GUI Design

 As we focus on the details that allow us to create GUIs, we may sometimes lose
sight of the big picture. As we continue to explore GUI construction, we should
keep in mind that our goal is to solve a problem. Specifically, we want to create
software that is useful. Knowing the details of components, events, and other
language elements gives us the tools to put GUIs together, but we must guide that
knowledge with the following fundamental ideas of good GUI design:

■ Know the user.

■ Prevent user errors.

■ Optimize user abilities.

■ Be consistent.

 The software designer must understand the user’s needs
and potential activities in order to develop an interface that will serve that user well.
Keep in mind that, to the user, the interface is the software. It is the only way the
user interacts with the system. As such, the interface must satisfy the user’s needs.

 Whenever possible, we should design interfaces so that the user can make as few
mistakes as possible. In many situations, we have the flexibility to choose one of
several components to accomplish a specific task. We should always try to choose
components that will prevent inappropriate actions and avoid invalid input. For
example, if an input value must be one of a set of particular values, we should use
components that allow the user to make only a valid choice. That is, constraining
the user to a few valid choices with, for instance, a set of radio buttons is better
than allowing the user to type arbitrary and possibly invalid data into a text field.
We cover additional components appropriate for specific situations in this chapter.

 Not all users are alike. Some are more adept than others at using a particular
GUI or GUI components in general. We shouldn’t design with only the lowest com-
mon denominator in mind. For example, we should provide shortcuts whenever
reasonable. That is, in addition to a normal series of actions that will allow a user to
accomplish a task, we should also provide redundant ways to accomplish the same

 KEY CONCEPT
 The design of any GUI should adhere
to basic guidelines regarding consis-
tency and usability.

7.10 GUI Design 349

task. Using keyboard shortcuts (mnemonics) is a good example. Sometimes these
additional mechanisms are less intuitive, but they may be faster for the experienced
user.

 Finally, consistency is important when dealing with large systems or multiple
systems in a common environment. Users become familiar with a particular orga-
nization or color scheme; these should not be changed arbitrarily.

 SELF-REVIEW QUESTIONS (see answers in Appendix N)

 SR 7.26 What general guidelines for GUI design are presented in this section?

 SR 7.27 Why is a good user interface design so important?

 7.11 Layout Managers

 In addition to the components, events, and listeners that comprise the backbone
of a GUI, the most important activity in GUI design is the use of layout manag-
ers. A layout manager is an object that governs how components are arranged in
a container. It determines the size and position of each component and may take
many factors into account to do so. Every container has a default layout manager,
although we can replace it if we prefer another one.

 A container’s layout manager is consulted whenever
a change to the visual appearance of its contents might
be needed. When the size of a container is adjusted, for
example, the layout manager is consulted to determine how
all of the components in the container should appear in the
resized container. Every time a component is added to a con-

tainer, the layout manager determines how the addition affects all of the existing
components.

 The table in Figure 7.6 describes several of the predefined
layout managers provided by the Java standard class library.

 Every layout manager has its own particular properties
and rules governing the layout of components. For some
layout managers, the order in which you add the compo-
nents affects their positioning, whereas others provide more

specific control. Some layout managers take a component’s preferred size or
alignment into account, whereas others don’t. To develop good GUIs in Java, it is
important to become familiar with features and characteristics of various layout
managers.

 We can use the setLayout method of a container to change its layout manager.
We’ve done this a few times in previous examples. For example, the following

 KEY CONCEPT
 The layout manager of a container
determines how components are
visually presented.

 KEY CONCEPT
 When changes occur, the compo-
nents in a container reorganize
themselves according to the layout
manager’s policy.

350 CHAPTER 7 Object-Oriented Design

code sets the layout manager of a JPanel , which has a flow layout by default, so
that it uses a border layout instead:

 JPanel panel = new JPanel();
 panel.setLayout (new BorderLayout());

 Let’s explore some of these layout managers in more
detail. We’ll focus on the most popular layout managers at
this point: flow, border, box, and grid. The class presented in
 Listing 7.18 contains the main method of an application that
demonstrates the use and effects of these layout managers.

 The LayoutDemo program introduces the use of a tabbed pane, a container that
allows the user to select (by clicking on a tab) which of several panes is currently
visible. A tabbed pane is defined by the JTabbedPane class. The addTab method
creates a tab, specifying the name that appears on the tab and the component to
be displayed on that pane when it achieves focus by being “brought to the front”
and made visible to the user.

 Interestingly, there is an overlap in the functionality provided by tabbed panes
and the card layout manager. Similar to the tabbed pane, a card layout allows
several layers to be defined, and only one of those layers is displayed at any given
point. However, a container managed by a card layout can be adjusted only under
program control, whereas tabbed panes allow the user to indicate directly which
tab should be displayed.

 In this example, each tab of the tabbed pane contains a panel that is con-
trolled by a different layout manager. The first tab simply contains a panel with
an introductory message, as shown in Listing 7.19 . As we explore each layout
manager in more detail, we examine the class that defines the corresponding
panel of this program and discuss its visual effect.

Border Layout Organizes components into five areas (North, South, East, West and
Center).

Organizes components into one area such that only one is visible at any time.

Organizes components into a single row or column.

Organizes components from left to right, starting new rows as necessary.

Organizes components into a grid of rows and columns.

Organizes components into a grid of cells, allowing components to span
more than one cell.

Box Layout

Card Layout

Flow Layout

Grid Layout

GridBag Layout

Layout Manager Description

 FIGURE 7.6 Some predefined Java layout managers

7.11 Layout Managers 351

 KEY CONCEPT
 The layout manager for each con-
tainer can be explicitly set.

Flow Layout
Flow layout is one of the easiest layout managers to use. The JPanel class uses
flow layout by default. Flow layout puts as many components as possible on a
row, at their preferred size. When a component cannot fit on a row, it is put on
the next row. As many rows as needed are added to fit all components that have
been added to the container. Figure 7.7 depicts a container governed by a flow
layout manager.

The class in Listing 7.20 represents the panel that demonstrates the flow lay-
out in the LayoutDemo program. It explicitly sets the layout to be a flow layout

352 CHAPTER 7 Object-Oriented Design

L I S T I N G 7 . 1 8

//**
// LayoutDemo.java Author: Lewis/Loftus
//
// Demonstrates the use of flow, border, grid, and box layouts.
//**

import javax.swing.*;

public class LayoutDemo
{
 //---
 // Sets up a frame containing a tabbed pane. The panel on each
 // tab demonstrates a different layout manager.
 //---
 public static void main (String[] args)
 {
 JFrame frame = new JFrame ("Layout Manager Demo");
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

 JTabbedPane tp = new JTabbedPane();
 tp.addTab ("Intro", new IntroPanel());
 tp.addTab ("Flow", new FlowPanel());
 tp.addTab ("Border", new BorderPanel());
 tp.addTab ("Grid", new GridPanel());
 tp.addTab ("Box", new BoxPanel());

 frame.getContentPane().add(tp);
 frame.pack();
 frame.setVisible(true);
 }
}

//**
// IntroPanel.java Author: Lewis/Loftus
//
// Represents the introduction panel for the LayoutDemo program.
//**

import java.awt.*;
import javax.swing.*;

public class IntroPanel extends JPanel
{
 //---
 // Sets up this panel with two labels.
 //---
 public IntroPanel()
 {
 setBackground (Color.green);

 JLabel l1 = new JLabel ("Layout Manager Demonstration");
 JLabel l2 = new JLabel ("Choose a tab to see an example of " +
 "a layout manager.");

 add (l1);
 add (l2);
 }
}

D I S P L A Y

L I S T I N G 7 . 1 9

 7.11 Layout Managers 353

Component
1

Component
2

Component
4

Component
3

FIGURE 7.7 Flow layout puts as many components as possible on a row

//**
// FlowPanel.java Author: Lewis/Loftus
//
// Represents the panel in the LayoutDemo program that demonstrates
// the flow layout manager.
//**

import java.awt.*;
import javax.swing.*;

public class FlowPanel extends JPanel
{
 //---
 // Sets up this panel with some buttons to show how flow layout
 // affects their position.
 //---
 public FlowPanel ()
 {
 setLayout (new FlowLayout());

 setBackground (Color.green);

 JButton b1 = new JButton ("BUTTON 1");
 JButton b2 = new JButton ("BUTTON 2");
 JButton b3 = new JButton ("BUTTON 3");
 JButton b4 = new JButton ("BUTTON 4");
 JButton b5 = new JButton ("BUTTON 5");

L I S T I N G 7 . 2 0

354 CHAPTER 7 Object-Oriented Design

 add (b1);
 add (b2);
 add (b3);
 add (b4);
 add (b5);
 }
}

D I S P L A Y

L I S T I N G 7 . 2 0 continued

(though in this case that is unnecessary, because JPanel defaults to flow layout).
The buttons are then created and added to the panel.

The size of each button is made large enough to accommodate the size of the
label that is put on it. As we mentioned earlier, flow layout puts as many of these

 7.11 Layout Managers 355

buttons as possible on one row within the panel, and then starts putting compo-
nents on another row. When the size of the frame is widened (by dragging the
lower-right corner with the mouse, for example), the panel grows as well, and
more buttons can fit on a row. When the frame is resized, the layout manager is
consulted and the components are reorganized automatically. Note that on each
row the components are centered within the window by default.

The constructor of the FlowLayout class is overloaded to allow the program-
mer to tailor the characteristics of the layout manager. Within each row, com-
ponents are either centered, left aligned, or right aligned. The alignment defaults
to centered. The horizontal and vertical gap size between components also can
be specified when the layout manager is created. The FlowLayout class also has
methods to set the alignment and gap sizes after the layout manager is created.

Border Layout
A border layout has five areas to which components can be added: North, South,
East, West, and Center. The areas have a particular positional relationship to each
other, as shown in Figure 7.8.

The four outer areas become as big as needed in order to accommodate the
component they contain. If no components are added to the North, South, East,
or West areas, these areas do not take up any room in the overall layout. The
Center area expands to fill any available space.

A particular container might use only a few areas, depending on the functional-
ity of the system. For example, a program might use only the Center, South, and
West areas. This versatility makes border layout a very useful layout manager.

The add method for a container governed by a border layout takes as its
first parameter the component to be added. The second parameter indicates the
area to which it is added. The area is specified using constants defined in the
BorderLayout class. Listing 7.21 shows the panel used by the LayoutDemo pro-
gram to demonstrate the border layout.

Discussion of
layout
managers.

VideoNote

North

Center EastWest

South

FIGURE 7.8 Border layout organizes components in five areas

356 CHAPTER 7 Object-Oriented Design

//**
// BorderPanel.java Author: Lewis/Loftus
//
// Represents the panel in the LayoutDemo program that demonstrates
// the border layout manager.
//**

import java.awt.*;
import javax.swing.*;

public class BorderPanel extends JPanel
{
 //---
 // Sets up this panel with a button in each area of a border
 // layout to show how it affects their position, shape, and size.
 //---
 public BorderPanel()
 {
 setLayout (new BorderLayout());

 setBackground (Color.green);

 JButton b1 = new JButton ("BUTTON 1");
 JButton b2 = new JButton ("BUTTON 2");
 JButton b3 = new JButton ("BUTTON 3");
 JButton b4 = new JButton ("BUTTON 4");
 JButton b5 = new JButton ("BUTTON 5");

 add (b1, BorderLayout.CENTER);
 add (b2, BorderLayout.NORTH);
 add (b3, BorderLayout.SOUTH);
 add (b4, BorderLayout.EAST);
 add (b5, BorderLayout.WEST);
 }
}

L I S T I N G 7 . 2 1

 7.11 Layout Managers 357

In the BorderPanel class constructor, the layout manager of the panel is explic-
itly set to be border layout. The buttons are then created and added to specific
panel areas. By default, each button is made wide enough to accommodate its
label and tall enough to fill the area to which it has been assigned. As the frame
(and the panel) is resized, the size of each button adjusts as needed, with the but-
ton in the Center area filling any unused space.

Each area in a border layout displays only one component. That is, only one
component is added to each area of a given border layout. A common error is to
add two components to a particular area of a border layout, in which case the first
component added is replaced by the second, and only the second is seen when the
container is displayed. To add multiple components to an area within a border
layout, we first add the components to another container, such as a JPanel, then
add the panel to the area.

L I S T I N G 7 . 2 1 continued

D I S P L A Y

358 CHAPTER 7 Object-Oriented Design

Note that although the panel used to display the buttons has a green back-
ground, no green is visible in the display for Listing 7.21. By default there are no
horizontal or vertical gaps between the areas of a border layout. These gaps can be
set with an overloaded constructor or with explicit methods of the BorderLayout
class. If the gaps are increased, the underlying panel will show through.

Grid Layout
A grid layout presents a container’s components in a rectangular grid of rows and
columns. One component is placed in each grid cell, and all cells are the same size.
Figure 7.9 shows the general organization of a grid layout.

The number of rows and columns in a grid layout is established using parameters
to the constructor when the layout manager is created. The class in Listing 7.22
shows the panel used by the LayoutDemo program to demonstrate a grid layout.
It specifies that the panel should be managed using a grid of two rows and three
columns.

As buttons are added to the container, they fill the grid (by default) from left
to right and top to bottom. There is no way to explicitly assign a component to
a particular location in the grid other than the order in which they are added to
the container.

The size of each cell is determined by the container’s overall size. When the
container is resized, all of the cells change size proportionally to fill the container.

If the value used to specify either the number of rows or the number of columns
is zero, the grid expands as needed in that dimension to accommodate the number
of components added to the container. The values for the number of rows and
columns cannot both be zero.

Component
1

Component
2

Component
3

Component
4

Component
5

Component
6

Component
7

Component
8

Component
9

Component
10

Component
11

Component
12

FIGURE 7.9 Grid layout creates a rectangular grid of equal-sized cells

 7.11 Layout Managers 359

//**
// GridPanel.java Author: Lewis/Loftus
//
// Represents the panel in the LayoutDemo program that demonstrates
// the grid layout manager.
//**

import java.awt.*;
import javax.swing.*;

public class GridPanel extends JPanel
{
 //---
 // Sets up this panel with some buttons to show how grid
 // layout affects their position, shape, and size.
 //---
 public GridPanel()
 {
 setLayout (new GridLayout (2, 3));

 setBackground (Color.green);

 JButton b1 = new JButton ("BUTTON 1");
 JButton b2 = new JButton ("BUTTON 2");
 JButton b3 = new JButton ("BUTTON 3");
 JButton b4 = new JButton ("BUTTON 4");
 JButton b5 = new JButton ("BUTTON 5");

 add (b1);
 add (b2);
 add (b3);
 add (b4);
 add (b5);
 }
}

L I S T I N G 7 . 2 2

360 CHAPTER 2 Data and Expressions

By default, there are no horizontal and vertical gaps between the grid cells. The
gap sizes can be specified using an overloaded constructor or with the appropriate
GridLayout methods.

Box Layout
A box layout organizes components either vertically or horizontally, in one row
or one column, as shown in Figure 7.10. It is easy to use, yet when combined with
other box layouts, it can produce complex GUI designs similar to those that can be
accomplished with a GridBagLayout, which in general is far more difficult to master.

When a BoxLayout object is created, we specify that it will follow either the X
axis (horizontal) or the Y axis (vertical), using constants defined in the BoxLayout
class. Unlike other layout managers, the constructor of a BoxLayout takes as its

D I S P L A Y

L I S T I N G 7 . 2 2 continued

 7.11 Layout Managers 361

first parameter the component that it will govern. Therefore a new BoxLayout
object must be created for each component. Listing 7.23 shows the panel used by
the LayoutDemo program to demonstrate the box layout.

Components in containers governed by a box layout are organized (top to bot-
tom or left to right) in the order in which they are added to the container.

There are no gaps between the components in a box layout. Unlike previous
layout managers we’ve explored, a box layout does not have a specific vertical or
horizontal gap that can be specified for the entire container. Instead, we can add
invisible components to the container that take up space between other compo-
nents. The Box class, which is also part of the Java standard class library, contains
static methods that can be used to create these invisible components.

The two types of invisible components used in the BoxPanel class are rigid
areas, which have a fixed size, and glue, which specifies where excess space in a
container should go. A rigid area is created using the createRigidArea method
of the Box class, and takes a Dimension object as a parameter to define the size
of the invisible area. Glue is created using the createHorizontalGlue method or
createVerticalGlue method, as appropriate.

Note that in our example, the space between buttons separated by a rigid area
remains constant even when the container is resized. Glue, on the other hand,
expands or contracts as needed to fill the space.

A box layout—more than most of the other layout managers—respects the
alignments and the minimum, maximum, and preferred sizes of the components
it governs. Therefore, setting the characteristics of the components that go into
the container is another way to tailor the visual effect.

Component
1

Comp
2

Comp 3

Component
1

Comp
2 Comp 3

FIGURE 7.10 Box layout organizes components either vertically or horizontally

362 CHAPTER 7 Object-Oriented Design

//**
// BoxPanel.java Author: Lewis/Loftus
//
// Represents the panel in the LayoutDemo program that demonstrates
// the box layout manager.
//**

import java.awt.*;
import javax.swing.*;

public class BoxPanel extends JPanel
{
 //---
 // Sets up this panel with some buttons to show how a vertical
 // box layout (and invisible components) affects their position.
 //---
 public BoxPanel()
 {
 setLayout (new BoxLayout (this, BoxLayout.Y_AXIS));

 setBackground (Color.green);

 JButton b1 = new JButton ("BUTTON 1");
 JButton b2 = new JButton ("BUTTON 2");
 JButton b3 = new JButton ("BUTTON 3");
 JButton b4 = new JButton ("BUTTON 4");
 JButton b5 = new JButton ("BUTTON 5");

 add (b1);
 add (Box.createRigidArea (new Dimension (0, 10)));
 add (b2);
 add (Box.createVerticalGlue());
 add (b3);
 add (b4);
 add (Box.createRigidArea (new Dimension (0, 20)));
 add (b5);
 }
}

L I S T I N G 7 . 2 3

 7.11 Layout Managers 363

D I S P L A Y

L I S T I N G 7 . 2 2 continued

364 CHAPTER 7 Object-Oriented Design

 SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 7.28 When is a layout manager consulted?

SR 7.29 How does the flow layout manager behave?

SR 7.30 Describe the areas of a border layout.

SR 7.31 What effect does a glue component in a box layout have?

 7.12 Borders

 Java provides the ability to put a border around any Swing component. A bor-
der is not a component itself but rather defines how the edge of any component
should be drawn and has an important effect on the design of a GUI. A border
provides visual cues as to how GUI components are organized and can be used
to give titles to components. Figure 7.11 lists the predefined borders in the Java
standard class library.

 The BorderFactory class is useful for creating borders for
components. It has many methods for creating specific types
of borders. A border is applied to a component by using the
component’s setBorder method.

 The program in Listing 7.24 demonstrates several types
of borders. It simply creates several panels, sets a different
border for each, and then displays them in a larger panel by using a grid layout.

Empty Border Puts buffering space around the edge of a component, but otherwise
has no visual effect.

Creates the effect of an etched groove around a component.

A simple line surrounding the component.

Creates the effect of a component raised above the surface or
sunken below it.

Includes a text title on or around the border.

Allows the size of each edge to be specified. Uses either a solid color
or an image.

A combination of two borders.

Line Border

Etched Border

Bevel Border

Titled Border

Matte Border

Compound Border

Border Description

 FIGURE 7.11 Component borders

 KEY CONCEPT
 Borders can be applied to Swing
components to group objects and
focus attention.

7.12 Borders 365

//**
// BorderDemo.java Author: Lewis/Loftus
//
// Demonstrates the use of various types of borders.
//**

import java.awt.*;
import javax.swing.*;
import javax.swing.border.*;

public class BorderDemo
{
 //---
 // Creates several bordered panels and displays them.
 //---
 public static void main (String[] args)
 {
 JFrame frame = new JFrame ("Border Demo");
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

 JPanel panel = new JPanel();
 panel.setLayout (new GridLayout (0, 2, 5, 10));
 panel.setBorder (BorderFactory.createEmptyBorder (8, 8, 8, 8));

 JPanel p1 = new JPanel();
 p1.setBorder (BorderFactory.createLineBorder (Color.red, 3));
 p1.add (new JLabel ("Line Border"));
 panel.add (p1);

 JPanel p2 = new JPanel();
 p2.setBorder (BorderFactory.createEtchedBorder ());
 p2.add (new JLabel ("Etched Border"));
 panel.add (p2);

 JPanel p3 = new JPanel();
 p3.setBorder (BorderFactory.createRaisedBevelBorder ());
 p3.add (new JLabel ("Raised Bevel Border"));
 panel.add (p3);

 JPanel p4 = new JPanel();
 p4.setBorder (BorderFactory.createLoweredBevelBorder ());
 p4.add (new JLabel ("Lowered Bevel Border"));
 panel.add (p4);
 JPanel p5 = new JPanel();

L I S T I N G 7 . 2 4

366 CHAPTER 7 Object-Oriented Design

Let’s look at each type of border created in this program. An empty border is
applied to the larger panel that holds all the others, to create a buffer of space
around the outer edge of the frame. The sizes of the top, left, bottom, and right
edges of the empty border are specified in pixels. The line border is created using
a particular color and specifies the line thickness in pixels (3 in this case). The line
thickness defaults to 1 pixel if left unspecified. The etched border created in this
program uses default colors for the highlight and shadow of the etching, but both
could be explicitly set if desired.

A bevel border can be either raised or lowered. The default coloring is used in
this program, although the coloring of each aspect of the bevel can be tailored as

 p5.setBorder (BorderFactory.createTitledBorder ("Title"));
 p5.add (new JLabel ("Titled Border"));
 panel.add (p5);

 JPanel p6 = new JPanel();
 TitledBorder tb = BorderFactory.createTitledBorder ("Title");
 tb.setTitleJustification (TitledBorder.RIGHT);
 p6.setBorder (tb);
 p6.add (new JLabel ("Titled Border (right)"));
 panel.add (p6);

 JPanel p7 = new JPanel();
 Border b1 = BorderFactory.createLineBorder (Color.blue, 2);
 Border b2 = BorderFactory.createEtchedBorder ();
 p7.setBorder (BorderFactory.createCompoundBorder (b1, b2));
 p7.add (new JLabel ("Compound Border"));
 panel.add (p7);

 JPanel p8 = new JPanel();
 Border mb = BorderFactory.createMatteBorder (1, 5, 1, 1,
 Color.red);
 p8.setBorder (mb);
 p8.add (new JLabel ("Matte Border"));
 panel.add (p8);

 frame.getContentPane().add (panel);
 frame.pack();
 frame.setVisible(true);
 }
}

L I S T I N G 7 . 2 4 continued

 7.12 Borders 367

desired, including the outer highlight, inner highlight, outer shadow, and inner
shadow. Each of these aspects could be a different color if desired.

A titled border places a title on or around the border. The default position for
the title is on the border at the top-left edge. Using the setTitleJustification
method of the TitledBorder class, this position can be set to many other places
above, below, on, or to the left, right, or center of the border.

A compound border is a combination of two or more borders. The example
in this program creates a compound border using a line border and an etched
border. The createCompoundBorder method accepts two borders as parameters
and makes the first parameter the outer border and the second parameter the
inner border. Combinations of three or more borders are created by first creating
a compound border using two borders, then making another compound border
using it and yet another one.

D I S P L A Y

L I S T I N G 7 . 2 4 continued

368 CHAPTER 7 Object-Oriented Design

 A matte border specifies the sizes, in pixels, of the top, left, bottom, and right
edges of the border. Those edges can be composed of a single color, as they are in
this example, or an image icon can be used.

 Borders should be used carefully. They can be helpful in drawing attention to
appropriate parts of your GUI and can conceptually group related items together.
However, if used inappropriately, they can also detract from the elegance of the pre-
sentation. Borders should enhance the interface, not complicate or compete with it.

 SELF-REVIEW QUESTIONS (see answers in Appendix N)

 SR 7.32 What is the role of the BorderFactory class?

 SR 7.33 List and briefly describe each of the border types presented in this
section.

 7.13 Containment Hierarchies

 The way components are grouped into containers, and the way those containers
are nested within each other, establishes the containment hierarchy for a GUI.
We introduced this concept in Chapter 3 . By carefully designing the containment
hierarchy, a GUI can be tailored to have a precise visual effect.

 For any Java program, there is generally one primary container, called a top-
level container, such as a frame or applet. The top-level container of a program
often contains one or more other containers, such as panels. These panels may
contain other panels to organize the other components as desired.

 Each container can have its own layout manager. The
final appearance of a GUI is a function of the layout manag-
ers chosen for each of the containers and the design of the
containment hierarchy. Many combinations are possible, and
there is rarely a single best option. As always, we should be
guided by the desired system goals and general GUI design
guidelines.

 Figure 7.12 shows a GUI application that has been annotated to describe its
containment hierarchy. Several components used in this program have been dis-
cussed previously in this text; others are discussed in later chapters.

 Note that in many cases, the use of some containers is not obvious just by look-
ing at the GUI. A panel, in particular, is invisible unless we draw attention to it in
some way, such as by giving it a border. We can also use invisible components to
provide specific spacing between components. These elements are all part of the
containment hierarchy, even though they are not visible to the user.

 KEY CONCEPT
 A GUI’s appearance is a function of
the containment hierarchy and the
layout managers of each container.

7.13 Containment Hierarchies 369

The entire interface is governed by a
border layout with a panel in each area.

North:
two labels

East: two labels, a slider, and
a combo box with vertical

spacing in a box layout

West: four smaller panels
in a vertical box layout.

One panel for each label/text
field combination and another
for the gender radio buttons

Center: several check boxes,
a label, and a text field

South: two buttons
preceded by

horizontal glue
in a box layout

FIGURE 7.12 The containment hierarchy of a GUI

JFrame

JPanel
Entire Interface
(Border Layout)

JCheckBox
(quantity : 6)

JLabel

JTextField

JPanel
Center - Hobbies

(Vertical Box Layout)

JPanel
West - Name and Gender

(Vertical Box Layout)

JLabel

JLabel

JPanel
North - Title and Directions

(Vertical Box Layout)

JLabel

JLabel

JComboBox

JSlider

JPanel
East - Age and Salary
(Vertical Box Layout)

JLabel

JTextField

JPanel
First Name

(Horizontal Box Layout)

JLabel

JTextField

JPanel
Last Name

(Horizontal Box Layout)

JLabel

JTextField

JPanel
Middle Initial

(Horizontal Box Layout)

JRadioButton

JRadioButton

JPanel
Gender

(Vertical Box Layout)

JButton

JButton

JPanel
South - Clear and Submit
(Horizontal Box Layout)

Glue

FIGURE 7.13 The containment hierarchy tree

370 CHAPTER 7 Object-Oriented Design

A particular program’s containment hierarchy can be represented as a tree
structure, such as the one shown in Figure 7.13. The root of the tree is the top-
level container. Each level of the tree shows the containers and components held
in the containers of the level above.

When changes are made that might affect the visual layout of the components
in a program, the layout managers of each container are consulted in turn. The
changes in one may affect another. These changes ripple through the containment
hierarchy as needed.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 7.34 What is the containment hierarchy for a GUI?

SR 7.35 Draw the containment hierarchy tree for the LeftRight application
GUI presented in Chapter 5.

 7.13 Containment Hierarchies 371

372 CHAPTER 7 Object-Oriented Design

Summary of Key Concepts

■ The effort put into design is both crucial and cost effective.

■ The nouns in a problem description may indicate some of the classes and
objects needed in a program.

■ A static variable is shared among all instances of a class.

■ An aggregate object is composed of other objects, forming a has-a
relationship.

■ An interface is a collection of abstract methods and therefore cannot be
instantiated.

■ The values of an enumerated type are static variables of that type.

■ We can add attributes and methods to the definition of an enumerated
type.

■ A complex service provided by an object can be decomposed to make use
of private support methods.

■ When an object is passed to a method, the actual and formal parameters
become aliases.

■ The versions of an overloaded method are distinguished by the number,
type, and order of their parameters.

■ Testing a program can never guarantee the absence of errors.

■ A good test is one that uncovers an error.

■ It is not feasible to exhaustively test a program for all possible input and
user actions.

■ The design of any GUI should adhere to basic guidelines regarding consis-
tency and usability.

■ The layout manager of a container determines how components are visu-
ally presented.

■ When changes occur, the components in a container reorganize themselves
according to the layout manager’s policy.

■ The layout manager for each container can be explicitly set.

■ Borders can be applied to Swing components to group objects and focus
attention.

■ A GUI’s appearance is a function of the containment hierarchy and the
layout managers of each container.

 Exercises 373

Exercises
Visit www.myprogramminglab.com to complete many of these Exercises
online and get instant feedback.

EX 7.1 Write a method called average that accepts two integer param-
eters and returns their average as a floating point value.

EX 7.2 Overload the average method of Exercise 7.1 such that if three
integers are provided as parameters, the method returns the aver-
age of all three.

EX 7.3 Overload the average method of Exercise 7.1 to accept four
integer parameters and return their average.

EX 7.4 Write a method called multiConcat that takes a String and an
integer as parameters. Return a String that consists of the string
parameter concatenated with itself count times, where count is
the integer parameter. For example, if the parameter values are
"hi" and 4, the return value is "hihihihi". Return the original
string if the integer parameter is less than 2.

EX 7.5 Overload the multiConcat method from Exercise 7.4 such that
if the integer parameter is not provided, the method returns the
string concatenated with itself. For example, if the parameter is
"test", the return value is "testtest".

EX 7.6 Write a method called drawCircle that draws a circle based on
the method’s parameters: a Graphics object through which to
draw the circle, two integer values representing the (x, y) coor-
dinates of the center of the circle, another integer that represents
the circle’s radius, and a Color object that defines the circle’s
color. The method does not return anything.

EX 7.7 Overload the drawCircle method of Exercise 7.6 such that if the
Color parameter is not provided, the circle’s color will default to
black.

EX 7.8 Overload the drawCircle method of Exercise 7.6 such that if the
radius is not provided, a random radius in the range 10 to 100
(inclusive) will be used.

EX 7.9 Overload the drawCircle method of Exercise 7.6 such that if
both the color and the radius of the circle are not provided, the
color will default to red and the radius will default to 40.

EX 7.10 Discuss the manner in which Java passes parameters to a
method. Is this technique consistent between primitive types and
objects? Explain.

www.myprogramminglab.com

374 CHAPTER 7 Object-Oriented Design

EX 7.11 Explain why a static method cannot refer to an instance variable.

EX 7.12 Can a class implement two interfaces that each contains the same
method signature? Explain.

EX 7.13 Create an interface called Visible that includes two methods:
makeVisible and makeInvisible. Both methods should take no
parameters and should return a boolean result. Describe how a
class might implement this interface.

EX 7.14 Draw a UML class diagram that shows the relationships among
the elements of Exercise 7.13.

EX 7.15 Imagine a game in which some game elements can be broken by
the player and others can’t. Create an interface called Breakable
that has a method called break that takes no parameters and
another called broken that returns a boolean result indicating
whether that object is currently broken.

EX 7.16 Create an interface called VCR that has methods that represent
the standard operations on a video cassette recorder (play, stop,
etc.). Define the method signatures any way you desire. Describe
how a class might implement this interface.

EX 7.17 Draw a UML class diagram that shows the relationships among
the elements of Exercise 7.16.

EX 7.18 Draw the containment hierarchy tree for the LayoutDemo program.

EX 7.19 What visual effect would result by changing the horizontal and
vertical gaps on the border layout used in the LayoutDemo pro-
gram? Make the change to test your answer.

EX 7.20 Write the lines of code that will define a compound border using
three borders. Use a line border on the inner edge, an etched bor-
der on the outer edge, and a raised bevel border in between.

Programming Projects
Visit www.myprogramminglab.com to complete many of these
Programming Projects online and get instant feedback.

PP 7.1 Modify the Account class from Chapter 4 so that it also permits
an account to be opened with just a name and an account num-
ber, assuming an initial balance of zero. Modify the main method
of the Transactions class to demonstrate this new capability.

PP 7.2 Modify the Student class presented in this chapter as follows.
Each student object should also contain the scores for three

Developing a solution of
PP 7.1.

VideoNote

www.myprogramminglab.com

tests. Provide a constructor that sets all instance values based
on parameter values. Overload the constructor such that each
test score is assumed to be initially zero. Provide a method
called setTestScore that accepts two parameters: the test num-
ber (1 through 3) and the score. Also provide a method called
getTestScore that accepts the test number and returns the
appropriate score. Provide a method called average that com-
putes and returns the average test score for this student. Modify
the toString method such that the test scores and average are
included in the description of the student. Modify the driver class
main method to exercise the new Student methods.

PP 7.3 Design and implement a class called Course that represents a
course taken at a school. A course object should keep track of
up to five students, as represented by the modified Student class
from the previous programming project. The constructor of the
Course class should accept only the name of the course. Provide
a method called addStudent that accepts one Student parameter
(the Course object should keep track of how many valid students
have been added to the course). Provide a method called average
that computes and returns the average of all students’ test score
averages. Provide a method called roll that prints all students in
the course. Create a driver class with a main method that creates
a course, adds several students, prints a roll, and prints the over-
all course test average.

PP 7.4 Modify the RationalNumber class so that it implements the
Comparable interface. To perform the comparison, compute an
equivalent floating point value from the numerator and denomi-
nator for both RationalNumber objects, then compare them
using a tolerance value of 0.0001. Write a main driver to test
your modifications.

PP 7.5 Design a Java interface called Priority that includes two meth-
ods: setPriority and getPriority. The interface should define
a way to establish numeric priority among a set of objects.
Design and implement a class called Task that represents a task
(such as on a to-do list) that implements the Priority interface.
Create a driver class to exercise some Task objects.

PP 7.6 Modify the Task class from PP 7.5 so that it also implements the
Complexity interface defined in this chapter. Modify the driver
class to show these new features of Task objects.

PP 7.7 Modify the Task class from PPs 7.5 and 7.6 so that it also imple-
ments the Comparable interface from the Java standard class

 Programming Projects 375

376 CHAPTER 7 Object-Oriented Design

library. Implement the interface such that the tasks are ranked by
priority. Create a driver class whose main method shows these new
features of Task objects.

PP 7.8 Design a Java interface called Lockable that includes the follow-
ing methods: setKey, lock, unlock, and locked. The setKey,
lock, and unlock methods take an integer parameter that repre-
sents the key. The setKey method establishes the key. The lock
and unlock methods lock and unlock the object, but only if the
key passed in is correct. The locked method returns a boolean
that indicates whether or not the object is locked. A Lockable
object represents an object whose regular methods are protected:
if the object is locked, the methods cannot be invoked; if it is
unlocked, they can be invoked. Redesign and implement a ver-
sion of the Coin class from Chapter 5 so that it is Lockable.

PP 7.9 Redesign and implement a version of the Account class from
Chapter 4 so that it is Lockable as defined by PP 7.8.

PP 7.10 Redesign and implement a version of the PigLatin program so
that it uses a GUI. Accept the sentence using a text field and dis-
play the results using a label.

PP 7.11 Modify the IntroPanel class of the LayoutDemo program so that
it uses a box layout manager. Use invisible components to put
space before and between the two labels on the panel.

PP 7.12 Modify the QuoteOptions program from Chapter 5 to change its
visual appearance. Present the radio buttons in a vertical column
with a surrounding border to the left of the quote label.

PP 7.13 Design and implement a program that displays a numeric key-
pad that might appear on a phone. Above the keypad buttons,
show a label that displays the numbers as they are picked. To the
right of the keypad buttons, include another button to clear the
display. Use a border layout to manage the overall presentation,
and a grid layout to manage the keypad buttons. Put a border
around the keypad buttons to group them visually, and a border
around the display.

PP 7.14 Design and implement an application that helps a pizza restau-
rant take orders. Use a tabbed pane for different categories of
food (pizza, beverages, special items). Collect information about
quantity and size. Display the cost of the order as information is
gathered. Use appropriate components for collecting the various
kinds of information. Structure the interface carefully using the
containment hierarchy and layout managers.

377

S O F T W A R E F A I L U R E

2003 Northeast Blackout

What Happened?
On August 14, 2003, the largest electri-
cal blackout in American history hit the
northeastern United States and parts of
Canada. Several metropolitan areas were
affected, including New York, Cleveland,
Detroit, Toronto, and Ottawa. Within a
span of three minutes, 21 power plants
had shut down, affecting approximately
50 million people.

The typical problems resulted in the blackout areas. Lack of traffic lights caused
traffic problems. Trains and elevators were stuck. Airports delayed flights. Water
pressure that relied on electric pumps failed. Cell phone usage was disrupted.
(Wired telephone usage was still available, but it was overtaxed during the emer-
gency.) Internet traffic slowed due to downed servers and the attempt to reroute
messages. Some incidents of looting were reported.

Estimates place the total financial cost of the blackout anywhere between $4 and
$8 billion. Nine people died from various causes related to the blackout.

What Caused It?
Many sources of the problem were blamed during the early hours and days after
the blackout. Because of the heightened consciousness after the September 11,
2001 attacks, authorities were quick to rule out terrorism. Downed trees and
lightning strikes throughout the affected region were blamed. Officials even con-
sidered---but quickly ruled out---the “Blaster” computer worm that was spreading
at the time.

Over the course of the next few months, a task force sorted out the issues. The ini-
tial cause was determined to be in Akron, Ohio, where the FirstEnergy Corp. had
failed to keep trees near the power lines trimmed appropriately. On August 14,
2003, tree limbs caused three power lines to fail simultaneously. When such fail-
ures occur, the operators at the power control center are responsible for keeping
the load balanced. In this case, they failed to do so, because the computer-based
alarm system that would have informed them of the problem failed to operate cor-
rectly. The load imbalance quickly spread to neighboring power plants, resulting
in the cascading blackout.

So although there were various contributing factors, a big part of the problem
was the failure of the alarm system. This issue eventually was traced to a race
condition bug in the computer General Electric Energys used to monitor alarms.

■ The northeastern
United States
before and after the
blackout.

378 Software Failure

A race condition in a computer program occurs when two or more processes run-
ning concurrently access some shared data. One modifies the data after another
has read it, and they both continue processing under the wrong assumptions. In
this case, three power lines failing simultaneously caused the race condition that
caused the alarm system to fail, which went unnoticed by the operators. Resulting
problems caused the entire system to crash shortly thereafter. The backup system
crashed for the same reasons. After the bug was discovered, GE issued a patch to
correct it.

Lessons Learned
The problems of this event stemmed not from a lack of power but on the inability
to get the power where it was needed. This blackout highlighted the poor infra-
structure of power lines that exist and the danger of relying on voluntary rules for
maintaining the reliability of the power grid.

Regarding the software culpability, race conditions are a known source of failure
in concurrent systems and must be tested for thoroughly. Formal analysis is war-
ranted in situations like this one where so much is at stake.

Sources: CNN.com, WashingtonPost.com

379

C H A P T E R O B J E C T I V E S
● Define and use arrays for basic data organization.

● Discuss bounds checking and techniques for managing capacity.

● Discuss the issues related to arrays as objects and arrays of objects.

● Explore the use of command-line arguments.

● Describe the syntax and use of variable-length parameter lists.

● Discuss the creation and use of multidimensional arrays.

● Explore mouse and keyboard events.

In our programming efforts, we often want to organize objects

or primitive data in a form that is easy to access and modify. The

ArrayList class, explored in Chapter 5, was used for exactly that

purpose. As the class name implies, an ArrayList is implemented

using arrays, which are programming constructs that group data

into lists. In this chapter we’ll explore the details of arrays, which

are a fundamental component of most high-level languages. In the

Graphics Track sections of this chapter, we explore methods that let

us draw complex multisided figures, and examine the events gener-

ated by the mouse and the keyboard.

Arrays 8

380 CHAPTER 8 Arrays

8.1 Array Elements

 An array is a simple but powerful programming language construct used to
group and organize data. When writing a program that manages a large amount
of information, such as a list of 100 names, it is not practical to declare separate
variables for each piece of data. Arrays solve this problem by letting us declare
one variable that can hold multiple, individually accessible values.

 An array is a list of values. Each value is stored at a specific, numbered position
in the array. The number corresponding to each position is called an index or a
 subscript. Figure 8.1 shows an array of integers and the indexes that correspond
to each position. The array is called height ; it contains integers that represent
several peoples’ heights in inches.

 In Java, array indexes always begin at zero. Therefore the value stored at index
5 is actually the sixth value in the array. The array shown in Figure 8.1 has 11
values, indexed from 0 to 10.

 To access a value in an array, we use the name of the array fol-
lowed by the index in square brackets. For example, the following
expression refers to the ninth value in the array height :

 height[8]

 According to Figure 8.1 , height[8] (pronounced height-sub-eight) contains
the value 79. Don’t confuse the value of the index, in this case 8, with the value
stored in the array at that index, in this case 79.

 FIGURE 8.1 An array called height containing integer values

height

index

value of height[5]

0

1

2

3

4

5

6

7

8

9

10

69

61

70

74

62

69

66

73

79

62

70

 KEY CONCEPT
 An array of size N is indexed from
0 to N–1.

 8.2 Declaring and Using Arrays 381

The expression height[8] refers to a single integer stored at a particular memory
location. It can be used wherever an integer variable can be used. Therefore you can
assign a value to it, use it in calculations, print its value, and so on. Furthermore,
because array indexes are integers, you can use integer expressions to specify the index
used to access an array. These concepts are demonstrated in the following lines of code:

height[2] = 72;
height[count] = feet * 12;
average = (height[0] + height[1] + height[2]) / 3;
System.out.println ("The middle value is " + height[MAX/2]);
pick = height[rand.nextInt(11)];

Arrays are stored contiguously in memory, meaning that the elements are stored
one right after the other in memory just as we picture them conceptually. This
makes an array extremely efficient in terms of accessing any particular element by
its index. Internally, to determine the address of any particular element, the index
is multiplied by the size of each element, and added to the memory address of the
starting point of the array. That’s why array indexes begin at zero instead of one—
to make that computation as easy as possible. So from an efficiency point of view,
it’s as easy to access the 500th element in the array as it is to access the first element.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 8.1 What is an array?

SR 8.2 How is each element of an array referenced?

SR 8.3 Based on the array shown in Figure 8.1, what are each of the
following?

a. height[1]
b. height[2] + height[5]
c. height[2 + 5]
d. the value stored at index 8
e. the fourth value
f. height.length

8.2 Declaring and Using Arrays

In Java, arrays are objects. To create an array, the reference to the array must be
declared. The array can then be instantiated using the new operator, which allo-
cates memory space to store values. The following code represents the declaration
for the array shown in Figure 8.1:

int[] height = new int[11];

382 CHAPTER 8 Arrays

 The variable height is declared to be an array of integers whose
type is written as int [] . All values stored in an array have the same
type (or are at least compatible). For example, we can create an
array that can hold integers or an array that can hold strings, but
not an array that can hold both integers and strings. An array can be

set up to hold any primitive type or any object (class) type. A value stored in an
array is sometimes called an array element , and the type of values that an array
holds is called the element type of the array.

 KEY CONCEPT
 In Java, an array is an object that
must be instantiated.

//**
// BasicArray.java Author: Lewis/Loftus
//
// Demonstrates basic array declaration and use.
//**

public class BasicArray
 {
 //---
 // Creates an array, fills it with various integer values,
 // modifies one value, then prints them out.
 //---
 public static void main (String[] args)
 {
 final int LIMIT = 15, MULTIPLE = 10;

 int [] list = new int [LIMIT];

 // Initialize the array values
 for (int index = 0; index < LIMIT; index++)
 list[index] = index * MULTIPLE;

 list[5] = 999; // change one array value

 // Print the array values
 for (int value : list)
 System.out.print (value + " ");
 }
 }

 O U T P U T

 0 10 20 30 40 999 60 70 80 90 100 110 120 130 140

 L I S T I N G 8 . 1

 8.2 Declaring and Using Arrays 383

Note that the type of the array variable (int[]) does not include the size of the
array. The instantiation of height, using the new operator, reserves the memory
space to store 11 integers indexed from 0 to 10. Once an array is declared to be a
certain size, the number of values it can hold cannot be changed.

The example shown in Listing 8.1 creates an array called list that can hold
15 integers, which it loads with successive increments of 10. It then changes the
value of the sixth element in the array (at index 5). Finally, it prints all values
stored in the array.

Figure 8.2 shows the array as it changes during the execution of the BasicArray
program. It is often convenient to use for loops when handling arrays, because the
number of positions in the array is constant. Note that a constant called LIMIT is
used in several places in the BasicArray program. This constant is used to declare
the size of the array and to control the for loop that initializes the array values.

The iterator version of the for loop is used to print the values in the array.
Recall from Chapter 5 that this version of the for loop extracts each value in the

Overview of arrays.

VideoNote

FIGURE 8.2 The array list as it changes in the BasicArray program

After three
iterations of the

first loop

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

After completing
the first loop

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

After changing
the value of
list[5]

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

The array is created
with 15 elements,

indexed from 0 to 14

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

0

10

20

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

0

10

20

30

40

999

60

70

80

90

100

110

120

130

140

384 CHAPTER 8 Arrays

specified iterator. Every Java array is an iterator, so this type of loop can be used
whenever we want to process every element stored in an array.

 The square brackets used to indicate the index of an array are treated as an
operator in Java. Therefore, just like the + operator or the <= operator, the index
operator ([]) has a precedence relative to the other Java operators that determines
when it is executed. It has the highest precedence of all Java operators.

 Bounds Checking
 The index operator performs automatic bounds checking , which ensures that the
index is in range for the array being referenced. Whenever a reference to an array

element is made, the index must be greater than or equal to zero and
less than the size of the array. For example, suppose an array called
 prices is created with 25 elements. The valid indexes for the array
are from 0 to 24. Whenever a reference is made to a particular ele-
ment in the array (such as prices[count]), the value of the index
is checked. If it is in the valid range of indexes for the array (0 to

24), the reference is carried out. If the index is not valid, an exception called
 ArrayIndexOutOfBoundsException is thrown.

 Of course, in our programs we’ll want to perform our own bounds checking.
That is, we’ll want to be careful to remain within the bounds of the array and
process every element we intend to. Because array indexes begin at zero and go
up to one less than the size of the array, it is easy to create off-by-one errors in
a program, which are problems created by processing all but one element or by
attempting to index one element too many.

 One way to check for the bounds of an array is to use the length constant, which
is held in the array object and stores the size of the array. It is a public constant and
therefore can be referenced directly. For example, after the array prices is created
with 25 elements, the constant prices.length contains the value 25. Its value is set
once when the array is first created and cannot be changed. The length constant,
which is an integral part of each array, can be used when the array size is needed
without having to create a separate constant. Remember that the length of the array is
the number of elements it can hold, thus the maximum index of an array is length-1 .

 Let’s look at another example. The program shown in Listing 8.2 reads 10
integers into an array called numbers , and then prints them in reverse order.

 Note that in the ReverseOrder program, the array numbers is declared to have
10 elements and therefore is indexed from 0 to 9. The index range is controlled in
the for loops by using the length field of the array object. You should carefully
set the initial value of loop control variables and the conditions that terminate
loops to guarantee that all intended elements are processed and only valid indexes
are used to reference an array element.

 KEY CONCEPT
 Bounds checking ensures that an
index used to refer to an array ele-
ment is in range.

 8.2 Declaring and Using Arrays 385

//**
// ReverseOrder.java Author: Lewis/Loftus
//
// Demonstrates array index processing.
//**

import java.util.Scanner;

public class ReverseOrder
{
 //---
 // Reads a list of numbers from the user, storing them in an
 // array, then prints them in the opposite order.
 //---
 public static void main (String[] args)
 {
 Scanner scan = new Scanner (System.in);

 double[] numbers = new double[10];

 System.out.println ("The size of the array: " + numbers.length);

 for (int index = 0; index < numbers.length; index++)
 {
 System.out.print ("Enter number " + (index+1) + ": ");
 numbers[index] = scan.nextDouble();
 }

 System.out.println ("The numbers in reverse order:");

 for (int index = numbers.length-1; index >= 0; index--)
 System.out.print (numbers[index] + " ");
 }
}

O U T P U T

The size of the array: 10
Enter number 1: 18.36
Enter number 2: 48.9
Enter number 3: 53.5
Enter number 4: 29.06

L I S T I N G 8 . 2

386 CHAPTER 8 Arrays

Enter number 5: 72.404
Enter number 6: 34.8
Enter number 7: 63.41
Enter number 8: 45.55
Enter number 9: 69.0
Enter number 10: 99.18
The numbers in reverse order:
99.18 69.0 45.55 63.41 34.8 72.404 29.06 53.5 48.9 18.36

L I S T I N G 8 . 2 continued

The LetterCount example, shown in Listing 8.3, uses two arrays and a String
object. The array called upper is used to store the number of times each uppercase
alphabetic letter is found in the string. The array called lower serves the same
purpose for lowercase letters.

Because there are 26 letters in the English alphabet, both the upper and lower
arrays are declared with 26 elements. Each element contains an integer that is
initially zero by default. The for loop scans through the string one character at
a time. The appropriate counter in the appropriate array is incremented for each
character found in the string.

//**
// LetterCount.java Author: Lewis/Loftus
//
// Demonstrates the relationship between arrays an strings.
//**

import java.util.Scanner;

public class LetterCount
{
 //---
 // Reads a sentence from the user and counts the number of
 // uppercase and lowercase letters contained in it.
 //---
 public static void main (String[] args)
 {
 final int NUMCHARS = 26;

L I S T I N G 8 . 3

 8.2 Declaring and Using Arrays 387

 Scanner scan = new Scanner (System.in);

 int[] upper = new int[NUMCHARS];
 int[] lower = new int[NUMCHARS];

 char current; // the current character being processed
 int other = 0; // counter for non-alphabetics

 System.out.println ("Enter a sentence:");
 String line = scan.nextLine();

 // Count the number of each letter occurrence
 for (int ch = 0; ch < line.length(); ch++)
 {
 current = line.charAt(ch);
 if (current >= 'A' && current <= 'Z')
 upper[current-'A']++;
 else
 if (current >= 'a' && current <= 'z')
 lower[current-'a']++;
 else
 other++;
 }

 // Print the results
 System.out.println ();
 for (int letter=0; letter < upper.length; letter++)
 {
 System.out.print ((char) (letter + 'A'));
 System.out.print (": " + upper[letter]);
 System.out.print ("\t\t" + (char) (letter + 'a'));
 System.out.println (": " + lower[letter]);
 }

 System.out.println ();
 System.out.println ("Non-alphabetic characters: " + other);
 }
}

L I S T I N G 8 . 3 continued

388 CHAPTER 8 Arrays

O U T P U T

Enter a sentence:
In Casablanca, Humphrey Bogart never says "Play it again, Sam."

A: 0 a: 10
B: 1 b: 1
C: 1 c: 1
D: 0 d: 0
E: 0 e: 3
F: 0 f: 0
G: 0 g: 2
H: 1 h: 1
I: 1 i: 2
J: 0 j: 0
K: 0 k: 0
L: 0 l: 2
M: 0 m: 2
N: 0 n: 4
O: 0 o: 1
P: 1 p: 1
Q: 0 q: 0
R: 0 r: 3
S: 1 s: 3
T: 0 t: 2
U: 0 u: 1
V: 0 v: 1
W: 0 w: 0
X: 0 x: 0
Y: 0 y: 3
Z: 0 z: 0

Non-alphabetic characters: 14

L I S T I N G 8 . 3 continued

Discussion of the
LetterCount example.

VideoNote

Both of the counter arrays are indexed from 0 to 25. We have to map each
character to a counter. A logical way to do this is to use upper[0] to count the
number of 'A' characters found, upper[1] to count the number of 'B' characters
found, and so on. Likewise, lower[0] is used to count 'a' characters, lower[1] is

 8.2 Declaring and Using Arrays 389

used to count 'b' characters, and so on. A separate variable called other is used
to count any nonalphabetic characters that are encountered.

Note that to determine if a character is an uppercase letter we used the bool-
ean expression (current >= 'A' && current <= 'Z'). A similar expression is
used for determining the lowercase letters. We could have used the static methods
isUpperCase and isLowerCase in the Character class to make these determina-
tions but didn’t in this example to drive home the point that because characters
are based on the Unicode character set, they have a specific numeric value and
order that we can use in our programming.

We use the current character to calculate which index in the array to refer-
ence. We have to be careful when calculating an index to ensure that it remains
within the bounds of the array and matches to the correct element. Remember
that in the Unicode character set, the uppercase and lowercase alphabetic
letters are continuous and in order (see Appendix C). Therefore, taking the
numeric value of an uppercase letter such as 'E' (which is 69) and subtracting
the numeric value of the character 'A' (which is 65) yields 4, which is the cor-
rect index for the counter of the character 'E'. Note that nowhere in the pro-
gram do we actually need to know the specific numeric values for each letter.

Alternate Array Syntax
Syntactically, there are two ways to declare an array reference in Java. The first
technique, which is used in the previous examples and throughout this text, is
to associate the brackets with the type of values stored in the array. The second
technique is to associate the brackets with the name of the array. Therefore, the
following two declarations are equivalent:

int[] grades;
int grades[];

Although there is no difference between these declaration techniques as far
as the compiler is concerned, the first is consistent with other types of declara-
tions. The declared type is explicit if the array brackets are associated with the
element type, especially if there are multiple variables declared on the same
line. Therefore we associate the brackets with the element type throughout this
text.

Initializer Lists
You can use an initializer list to instantiate an array and provide the initial values
for the elements of the array. It is essentially the same idea as initializing a variable of

390 CHAPTER 8 Arrays

a primitive data type in its declaration except that an array requires
several values.

 The items in an initializer list are separated by commas and delim-
ited by braces ({}). When an initializer list is used, the new operator
is not used. The size of the array is determined by the number of
items in the initializer list. For example, the following declaration

instantiates the array scores as an array of eight integers, indexed from 0 to 7
with the specified initial values:

 int [] scores = {87, 98, 69, 87, 65, 76, 99, 83};

 An initializer list can be used only when an array is first declared.

 The type of each value in an initializer list must match the type of the array
elements. Let’s look at another example:

 char [] vowels = {'A', 'E', 'I', 'O', 'U'};

 In this case, the variable vowels is declared to be an array of five characters, and
the initializer list contains character literals.

 The program shown in Listing 8.4 demonstrates the use of an initializer list to
instantiate an array.

 Arrays as Parameters
 An entire array can be passed as a parameter to a method. Because
an array is an object, when an entire array is passed as a parameter,
a copy of the reference to the original array is passed. We discussed
this issue as it applies to all objects in Chapter 7 .

 A method that receives an array as a parameter can permanently
change an element of the array, because it is referring to the original

element value. The method cannot permanently change the reference to the array
itself, because a copy of the original reference is sent to the method. These rules
are consistent with the rules that govern any object type.

 An element of an array can be passed to a method as well. If the element type is
a primitive type, a copy of the value is passed. If that element is a reference to an
object, a copy of the object reference is passed. As always, the impact of changes
made to a parameter inside the method depends on the type of the parameter. We
discuss arrays of objects further in the next section.

 KEY CONCEPT
 An entire array can be passed as
a parameter, making the formal
parameter an alias of the original.

 KEY CONCEPT
 An initializer list can be used to
instantiate an array object instead of
using the new operator.

 8.2 Declaring and Using Arrays 391

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 8.4 What is an array’s element type?

SR 8.5 Describe the process of creating an array. When is memory allocated
for the array?

SR 8.6 Write an array declaration to represent the ages of all 100 children
attending a summer camp.

SR 8.7 Write an array declaration to represent the counts of how many times
each face appeared when a standard six-sided die is rolled.

//**
// Primes.java Author: Lewis/Loftus
//
// Demonstrates the use of an initializer list for an array.
//**

public class Primes
{
 //---
 // Stores some prime numbers in an array and prints them.
 //---
 public static void main (String[] args)
 {
 int[] primeNums = {2, 3, 5, 7, 11, 13, 17, 19};

 System.out.println ("Array length: " + primeNums.length);

 System.out.println ("The first few prime numbers are:");

 for (int prime : primeNums)
 System.out.print (prime + " ");
 }
}

O U T P U T

Array length: 8
The first few prime numbers are:
2 3 5 7 11 13 17 19

L I S T I N G 8 . 4

392 CHAPTER 8 Arrays

SR 8.8 Explain the concept of array bounds checking. What happens when a
Java array is indexed with an invalid value?

SR 8.9 What is an off-by-one error? How does it relate to arrays?

SR 8.10 Write code that increments (by one) each element of an array of
integers named values .

SR 8.11 Write code that computes and prints the sum of the elements of an
array of integers named values .

SR 8.12 What does an array initializer list accomplish?

SR 8.13 Can an entire array be passed as a parameter? How is this
accomplished?

8.3 Arrays of Objects

 In the previous examples in this chapter, we used arrays to store primitive types
such as integers and characters. Arrays can also store references to objects as ele-
ments. Fairly complex information management structures can be created using
only arrays and other objects. For example, an array could contain objects, and
each of those objects could consist of several variables and the methods that use
them. Those variables could themselves be arrays, and so on. The design of a
program should capitalize on the ability to combine these constructs to create the
most appropriate representation for the information.

 Keep in mind that the array itself is an object. So it would be appropriate to
picture an array of int values called weight as follows:

weight 125

182

160

104

147

 When we store objects in an array, each element is a separate
object. That is, an array of objects is really an array of object refer-
ences. Consider the following declaration:

 String[] words = new String[5];

 KEY CONCEPT
 Instantiating an array of objects
reserves room to store references
only. The objects that are stored in
each element must be instantiated
separately.

 8.3 Arrays of Objects 393

The variable words is an array of references to String objects. The new operator
in the declaration instantiates the array and reserves space for five String refer-
ences. This declaration does not create any String objects; it merely creates an
array that holds references to String objects. Initially, the array looks like this:

words —

—

—

—

—

words

—

—

“loyalty”

“honor”

“friendship”

After a few String objects are created and put in the array, it might look like this:

The words array is an object, and each character string it holds is its own object.
Each object contained in an array has to be instantiated separately.

Keep in mind that String objects can be represented as string literals. So the
following declaration creates an array called verbs and uses an initializer list to
populate it with several String objects, each instantiated using a string literal:

String[] verbs = {"play", "work", "eat", "sleep"};

The program called GradeRange shown in Listing 8.5 creates an array of Grade
objects, then prints them. The Grade objects are created using several new opera-
tors in the initialization list of the array.

The Grade class is shown in Listing 8.6. Each Grade object represents a let-
ter grade for a school course and includes a numerical lower bound. The values
for the grade name and lower bound can be set using the Grade constructor, or
using appropriate mutator methods. Accessor methods are also defined, as is a
toString method to return a string representation of the grade. The toString
method is automatically invoked when the grades are printed in the main method.

Let’s look at another example. Listing 8.7 shows the Movies class, which
contains a main method that creates, modifies, and examines a DVD collection.

394 CHAPTER 8 Arrays

//**
// GradeRange.java Author: Lewis/Loftus
//
// Demonstrates the use of an array of objects.
//**

public class GradeRange
{
 //---
 // Creates an array of Grade objects and prints them.
 //---
 public static void main (String[] args)
 {
 Grade[] grades =
 {
 new Grade("A", 95), new Grade("A-", 90),
 new Grade("B+", 87), new Grade("B", 85), new Grade("B-", 80),
 new Grade("C+", 77), new Grade("C", 75), new Grade("C-", 70),
 new Grade("D+", 67), new Grade("D", 65), new Grade("D-", 60),
 new Grade("F", 0)
 };

 for (Grade letterGrade : grades)
 System.out.println (letterGrade);
 }
}

O U T P U T

A 95
A- 90
B+ 87
B 85
B- 80
C+ 77
C 75
C- 70
D+ 67
D 65
D- 60
F 0

L I S T I N G 8 . 5

 8.3 Arrays of Objects 395

//**
// Grade.java Author: Lewis/Loftus
//
// Represents a school grade.
//**

public class Grade
{
 private String name;
 private int lowerBound;

 //---
 // Constructor: Sets up this Grade object with the specified
 // grade name and numeric lower bound.
 //---
 public Grade (String grade, int cutoff)
 {
 name = grade;
 lowerBound = cutoff;
 }

 //---
 // Returns a string representation of this grade.
 //---
 public String toString()
 {
 return name + "\t" + lowerBound;
 }

 //---
 // Name mutator.
 //---
 public void setName (String grade)
 {
 name = grade;
 }

 //---
 // Lower bound mutator.
 //---
 public void setLowerBound (int cutoff)
 {
 lowerBound = cutoff;
 }

L I S T I N G 8 . 6

396 CHAPTER 8 Arrays

 //---
 // Name accessor.
 //---
 public String getName()
 {
 return name;
 }

 //---
 // Lower bound accessor.
 //---
 public int getLowerBound()
 {
 return lowerBound;
 }
}

L I S T I N G 8 . 6 continued

//**
// Movies.java Author: Lewis/Loftus
//
// Demonstrates the use of an array of objects.
//**

public class Movies
{
 //---
 // Creates a DVDCollection object and adds some DVDs to it. Prints
 // reports on the status of the collection.
 //---
 public static void main (String[] args)
 {
 DVDCollection movies = new DVDCollection();

 movies.addDVD ("The Godfather", "Francis Ford Coppola", 1972, 24.95, true);
 movies.addDVD ("District 9", "Neill Blomkamp", 2009, 19.95, false);
 movies.addDVD ("Iron Man", "Jon Favreau", 2008, 15.95, false);
 movies.addDVD ("All About Eve", "Joseph Mankiewicz", 1950, 17.50, false);
 movies.addDVD ("The Matrix", "Andy & Lana Wachowski", 1999, 19.95, true);

L I S T I N G 8 . 7

 8.3 Arrays of Objects 397

 System.out.println (movies);

 movies.addDVD ("Iron Man 2", "Jon Favreau", 2010, 22.99, false);
 movies.addDVD ("Casablanca", "Michael Curtiz", 1942, 19.95, false);

 System.out.println (movies);
 }
}

O U T P U T

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
My DVD Collection

Number of DVDs: 5
Total cost: $98.30
Average cost: $19.66

DVD List:

$24.95  1972      The Godfather    Francis Ford Coppola     Blu-ray
$19.95  2009      District 9       Neill Blomkamp
$15.95  2008      Iron Man         Jon Favreau
$17.50  1950      All About Eve    Joseph Mankiewicz
$19.95  1999      The Matrix       Andy & Lana Wachowski    Blu-ray

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
My DVD Collection

Number of DVDs: 7
Total cost: $141.24
Average cost: $20.18

DVD List:

$24.95 1972 The Godfather Francis Ford Coppola Blu-ray
$19.95 2009 District 9 Neill Blomkamp
$15.95 2008 Iron Man Jon Favreau
$17.50 1950 All About Eve Joseph Mankiewicz
$19.95 1999 The Matrix Andy & Lana Wachowski Blu-ray
$22.99 2010 Iron Man 2 Jon Favreau
$19.95 1942 Casablanca Michael Curtiz

L I S T I N G 8 . 7 continued

398 CHAPTER 8 Arrays

Each DVD added to the collection is specified by its title, director, year of release,
purchase price, and whether or not it is in Blu-ray format.

Listing 8.8 shows the DVDCollection class. It contains an array of DVD objects
representing the collection. It maintains a count of the DVDs in the collection and
their combined value. It also keeps track of the current size of the collection array
so that a larger array can be created if too many DVDs are added to the collection.

//**
// DVDCollection.java Author: Lewis/Loftus
//
// Represents a collection of DVD movies.
//**

import java.text.NumberFormat;

public class DVDCollection
{
 private DVD[] collection;
 private int count;
 private double totalCost;

 //---
 // Constructor: Creates an initially empty collection.
 //---
 public DVDCollection ()
 {
 collection = new DVD[100];
 count = 0;
 totalCost = 0.0;
 }

 //---
 // Adds a DVD to the collection, increasing the size of the
 // collection array if necessary.
 //---
 public void addDVD (String title, String director, int year,
 double cost, boolean bluray)
 {
 if (count == collection.length)
 increaseSize();

 collection[count] = new DVD (title, director, year, cost, bluray);

L I S T I N G 8 . 8

 8.3 Arrays of Objects 399

 totalCost += cost;
 count++;
 }

 //---
 // Returns a report describing the DVD collection.
 //---
 public String toString()
 {
 NumberFormat fmt = NumberFormat.getCurrencyInstance();

 String report = "~~~\n";
 report += "My DVD Collection\n\n";

 report += "Number of DVDs: " + count + "\n";
 report += "Total cost: " + fmt.format(totalCost) + "\n";
 report += "Average cost: " + fmt.format(totalCost/count);

 report += "\n\nDVD List:\n\n";

 for (int dvd = 0; dvd < count; dvd++)
 report += collection[dvd].toString() + "\n";

 return report;
 }

 //---
 // Increases the capacity of the collection by creating a
 // larger array and copying the existing collection into it.
 //---
 private void increaseSize ()
 {
 DVD[] temp = new DVD[collection.length * 2];

 for (int dvd = 0; dvd < collection.length; dvd++)
 temp[dvd] = collection[dvd];

 collection = temp;
 }
}

L I S T I N G 8 . 8 continued

400 CHAPTER 8 Arrays

The collection array is instantiated in the DVDCollection constructor. Every
time a DVD is added to the collection (using the addDVD method), a new DVD
object is created and a reference to it is stored in the collection array.

Each time a DVD is added to the collection, we check to see whether we have
reached the current capacity of the collection array. If we didn’t perform this
check, an exception would eventually be thrown when we try to store a new DVD
object at an invalid index. If the current capacity has been reached, the private
increaseSize method is invoked, which first creates an array that is twice as
big as the current collection array. Each DVD in the existing collection is then
copied into the new array. Finally, the collection reference is set to the larger
array. Using this technique, we theoretically never run out of room in our DVD
collection. The user of the DVDCollection object (the main method in this case)
never has to worry about running out of space, because it’s all handled internally.

Figure 8.3 shows a UML class diagram of the Movies program. Recall that the
open diamond indicates aggregation. The cardinality of the relationship is also
noted: a DVDCollection object contains zero or more DVD objects.

The toString method of the DVDCollection class returns an entire report sum-
marizing the collection. The report is created, in part, using calls to the toString
method of each DVD object stored in the collection. Listing 8.9 shows the DVD class.

FIGURE 8.3 A UML class diagram of the Movies program

+ main (args : String[]) : void

Movies

– collection : DVD[]
– count : int
– totalCost : double

+ addDVD(title : String, director : String,
 year : int, cost : double, blueray :
 boolean) : void
+ toString() : String
– increaseSize() : void

DVDCollection

– title : String
– director : String
– year : int
– cost : double
– blueray : boolean

+ toString() : String

DVD

1

*

 8.3 Arrays of Objects 401

//**
// DVD.java Author: Lewis/Loftus
//
// Represents a DVD video disc.
//**

import java.text.NumberFormat;

public class DVD
{
 private String title, director;
 private int year;
 private double cost;
 private boolean bluray;

 //---
 // Creates a new DVD with the specified information.
 //---
 public DVD (String title, String director, int year, double cost,
 boolean bluray)
 {
 this.title = title;
 this.director = director;
 this.year = year;
 this.cost = cost;
 this.bluray = bluray;
 }

 //---
 // Returns a string description of this DVD.
 //---
 public String toString()
 {
 NumberFormat fmt = NumberFormat.getCurrencyInstance();

 String description;

 description = fmt.format(cost) + "\t" + year + "\t";
 description += title + "\t" + director;
 if (bluray)
 description += "\t" + "Blu-ray";

 return description;
 }
}

L I S T I N G 8 . 9

402 CHAPTER 8 Arrays

 SELF-REVIEW QUESTIONS (see answers in Appendix N)

 SR 8.14 How is an array of objects created?

 SR 8.15 Suppose team is an array of strings meant to hold the names of the six
players on a volleyball team: Amanda, Clare, Emily, Julie, Katie, and
Maria.

 a. Write an array declaration for team .
 b. Show how to both declare and populate team using an initializer

list.

 SR 8.16 Assume Book is a class whose objects represent books. Assume a con-
structor of the Book class accepts two parameters—the name of the
book and the number of pages.

 a. Write a declaration for a variable named library that is an array
of ten books.

 b. Write a new statement that sets the first book in the library array
to "Starship Troopers", which is 208 pages long.

 8.4 Command-Line Arguments

 The formal parameter to the main method of a Java application is always an array
of String objects. We’ve ignored that parameter in previous examples, but now
we can discuss how it might occasionally be useful.

 The Java run-time environment invokes the main method when
an application is submitted to the interpreter. The String[] param-
eter, which we typically call args , represents command-line argu-
ments that are provided when the interpreter is invoked. Any extra
information on the command line when the interpreter is invoked is

stored in the args array for use by the program. This technique is another way to
provide input to a program.

 The program shown in Listing 8.10 uses command-line arguments to print a
nametag. It assumes the first argument represents some type of greeting and the
second argument represents a person’s name.

 If two strings are not provided on the command line for the NameTag program,
the args array will not contain enough (if any) elements, and the references in the
program will cause an ArrayIndexOutOfBoundsException to be thrown. If extra
information is included on the command line, it will be stored in the args array
but ignored by the program.

 KEY CONCEPT
 Command-line arguments are stored
in an array of String objects and
are passed to the main method.

 8.4 Command-Line Arguments 403

Remember that the parameter to the main method is always an array of String
objects. If you want numeric information to be input as a command-line argu-
ment, the program has to convert it from its string representation.

You also should be aware that in some program development environments, a
command line is not used to submit a program to the interpreter. In such situa-
tions, the command-line information can be specified in some other way. Consult
the documentation for these specifics if necessary.

//**
// NameTag.java Author: Lewis/Loftus
//
// Demonstrates the use of command line arguments.
//**

public class NameTag
{
 //---
 // Prints a simple name tag using a greeting and a name that is
 // specified by the user.
 //---
 public static void main (String[] args)
 {
 System.out.println ();
 System.out.println (" " + args[0]);
 System.out.println ("My name is " + args[1]);
 }
}

O U T P U T

> java NameTag Howdy John

 Howdy
My name is John

> java NameTag Hello Bill

 Hello
My name is Bill

L I S T I N G 8 . 1 0

404 CHAPTER 8 Arrays

 SELF-REVIEW QUESTIONS (see answers in Appendix N)

 SR 8.17 What is a command-line argument?

 SR 8.18 Write a main method for a program that outputs the sum of the string
lengths of its first two command-line arguments.

 SR 8.19 Write a main method for a program that outputs the sum of the values
of its first two command-line arguments, which are integers.

 8.5 Variable Length Parameter Lists

 Suppose we wanted to design a method that processed a different amount of data
from one invocation to the next. For example, let’s design a method called average
that accepts a few integer values and returns their average. In one invocation of
the method we might pass in three integers to average:

 mean1 = average(42, 69, 37);

 In another invocation of the same method we might pass in seven integers to
average:

 mean2 = average(35, 43, 93, 23, 40, 21, 75);

 To accomplish this we could define overloaded versions of the
 average method, but that would require that we know the maxi-
mum number of parameters there might be and create a separate
version of the method for each possibility. Alternatively, we could
define the method to accept an array of integers, which could be of

different sizes for each call. But that would require packaging the integers into an
array in the calling method and passing in one parameter.

 Java provides a way to define methods that accept variable-length parameter
lists. By using some special syntax in the formal parameter list of the method, we
can define the method to accept any number of parameters. The parameters are
automatically put into an array for easy processing in the method. For example,
the average method could be written as follows:

 public double average (int ... list)
 {
 double result = 0.0;

 if (list.length != 0)

 KEY CONCEPT
 A Java method can be defined to
accept a varying number of
parameters.

 8.5 Variable Length Parameter Lists 405

 {
 int sum = 0;
 for (int num : list)
 sum += num;
 result = (double)sum / list.length;
 }

 return result;
}

Note the way the formal parameters are defined. The ellipsis (three periods in
a row) indicates that the method accepts a variable number of parameters. In
this case, the method accepts any number of int parameters, which it auto-
matically puts into an array called list. In the method, we process the array
normally.

We can now pass any number of int parameters to the average method,
including none at all. That’s why we check to see if the length of the array is zero
before we compute the average.

The type of the multiple parameters can be any primitive or object type. For
example, the following method accepts and prints multiple Grade objects (we
defined the Grade class earlier in this chapter):

public void printGrades (Grade ... grades)
{
 for (Grade letterGrade : grades)
 System.out.println (letterGrade);
}

A method that accepts a variable number of parameters can also accept other
parameters. For example, the following method accepts an int, a String object,
and then a variable number of double values that will be stored in an array called
nums:

public void test (int count, String name, double ... nums)
{
 // whatever
}

The varying parameters must come last in the formal arguments. A single method
cannot accept two sets of varying parameters.

Constructors can also be set up to accept a varying number of parameters.
The program shown in Listing 8.11 creates two Family objects, passing a vary-
ing number of strings (representing the family member names) into the Family
constructor.

406 CHAPTER 8 Arrays

//**
// VariableParameters.java Author: Lewis/Loftus
//
// Demonstrates the use of a variable length parameter list.
//**

public class VariableParameters
{
 //---
 // Creates two Family objects using a constructor that accepts
 // a variable number of String objects as parameters.
 //---
 public static void main (String[] args)
 {
 Family lewis = new Family ("John", "Sharon", "Justin", "Kayla",
 "Nathan", "Samantha");

 Family camden = new Family ("Stephen", "Annie", "Matt", "Mary",
 "Simon", "Lucy", "Ruthie", "Sam", "David");

 System.out.println(lewis);
 System.out.println();
 System.out.println(camden);
 }
}

O U T P U T

John
Sharon
Justin
Kayla
Nathan
Samantha

Stephen
Annie
Matt
Mary
Simon
Lucy
Ruthie
Sam
David

L I S T I N G 8 . 1 1

 8.5 Variable Length Parameter Lists 407

The Family class is shown in Listing 8.12. The constructor simply stores a refer-
ence to the array parameter until it is needed. By using a variable-length parameter
list for the constructor, we make it easy to create a family of any size.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 8.20 How can Java methods have variable-length parameter lists?

SR 8.21 Write a method called distance that accepts a multiple number of
integer parameters (each of which represents the distance of one leg of
a journey) and returns the total distance of the trip.

//**
// Family.java Author: Lewis/Loftus
//
// Demonstrates the use of variable length parameter lists.
//**

public class Family
{
 private String[] members;

 //---
 // Constructor: Sets up this family by storing the (possibly
 // multiple) names that are passed in as parameters.
 //---
 public Family (String ... names)
 {
 members = names;
 }

 //---
 // Returns a string representation of this family.
 //---
 public String toString()
 {
 String result = "";

 for (String name : members)
 result += name + "\n";

 return result;
 }
}

L I S T I N G 8 . 1 2

408 CHAPTER 8 Arrays

SR 8.22 Write a method called travelTime that accepts an integer parameter
indicating average speed followed by a multiple number of integer
parameters (each of which represents the distance of one leg of a jour-
ney) and returns the total time of the trip.

8.6 Two-Dimensional Arrays

The arrays we’ve examined so far have all been one-dimensional arrays in the
sense that they represent a simple list of values. As the name implies, a two-
dimensional array has values in two dimensions, which are often thought of as the
rows and columns of a table. Figure 8.4 graphically compares a one-dimensional
array with a two-dimensional array. We must use two indexes to refer to a value
in a two-dimensional array, one specifying the row and another the column.

Brackets are used to represent each dimension in the array. Therefore the type
of a two-dimensional array that stores integers is int[][]. Technically, Java rep-
resents two-dimensional arrays as an array of arrays. A two-dimensional integer
array is really a one-dimensional array of references to one-dimensional integer
arrays.

The TwoDArray program shown in Listing 8.13 instantiates a two-
dimensional array of integers. As with one-dimensional arrays, the size of the
dimensions is specified when the array is created. The size of the dimensions
can be different.

Nested for loops are used in the TwoDArray program to load the array with val-
ues and also to print those values in a table format. Carefully trace the processing
to see how the nested loops eventually visit each element in the two-dimensional
array. Note that the outer loops are governed by table.length, which represents
the number of rows, and the inner loops are governed by table[row].length,
which represents the number of columns in that row.

FIGURE 8.4 A one-dimensional array and a two-dimensional array

one dimension two dimensions

 8.6 Two-Dimensional Arrays 409

//**
// TwoDArray.java Author: Lewis/Loftus
//
// Demonstrates the use of a two-dimensional array.
//**

public class TwoDArray
{
 //---
 // Creates a 2D array of integers, fills it with increasing
 // integer values, then prints them out.
 //---
 public static void main (String[] args)
 {
 int[][] table = new int[5][10];

 // Load the table with values
 for (int row=0; row < table.length; row++)
 for (int col=0; col < table[row].length; col++)
 table[row][col] = row * 10 + col;

 // Print the table
 for (int row=0; row < table.length; row++)
 {
 for (int col=0; col < table[row].length; col++)
 System.out.print (table[row][col] + "\t");
 System.out.println();
 }
 }
}

O U T P U T

0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49

L I S T I N G 8 . 1 3

410 CHAPTER 8 Arrays

As with one-dimensional arrays, an initializer list can be used to instanti-
ate a two-dimensional array, where each element is itself an array initializer
list. This technique is used in the SodaSurvey program, which is shown in
Listing 8.14.

//**
// SodaSurvey.java Author: Lewis/Loftus
//
// Demonstrates the use of a two-dimensional array.
//**

import java.text.DecimalFormat;

public class SodaSurvey
{
 //---
 // Determines and prints the average of each row (soda) and each
 // column (respondent) of the survey scores.
 //---
 public static void main (String[] args)
 {
 int[][] scores = { {3, 4, 5, 2, 1, 4, 3, 2, 4, 4},
 {2, 4, 3, 4, 3, 3, 2, 1, 2, 2},
 {3, 5, 4, 5, 5, 3, 2, 5, 5, 5},
 {1, 1, 1, 3, 1, 2, 1, 3, 2, 4} };

 final int SODAS = scores.length;
 final int PEOPLE = scores[0].length;

 int[] sodaSum = new int[SODAS];
 int[] personSum = new int[PEOPLE];

 for (int soda=0; soda < SODAS; soda++)
 for (int person=0; person < PEOPLE; person++)
 {
 sodaSum[soda] += scores[soda][person];
 personSum[person] += scores[soda][person];
 }

 DecimalFormat fmt = new DecimalFormat ("0.#");
 System.out.println ("Averages:\n");

L I S T I N G 8 . 1 4

 8.6 Two-Dimensional Arrays 411

Suppose a soda manufacturer held a taste test for four new flavors to see how
people liked them. The manufacturer got 10 people to try each new flavor and
give it a score from 1 to 5, where 1 equals poor and 5 equals excellent. The two-
dimensional array called scores in the SodaSurvey program stores the results of
that survey. Each row corresponds to a soda and each column in that row corre-
sponds to the person who tasted it. More generally, each row holds the responses
that all testers gave for one particular soda flavor, and each column holds the
responses of one person for all sodas.

 for (int soda=0; soda < SODAS; soda++)
 System.out.println ("Soda #" + (soda+1) + ": " +
 fmt.format ((float)sodaSum[soda]/PEOPLE));

 System.out.println ();
 for (int person=0; person < PEOPLE; person++)
 System.out.println ("Person #" + (person+1) + ": " +
 fmt.format ((float)personSum[person]/SODAS));
 }
}

O U T P U T

Averages:

Soda #1: 3.2
Soda #2: 2.6
Soda #3: 4.2
Soda #4: 1.9

Person #1: 2.2
Person #2: 3.5
Person #3: 3.2
Person #4: 3.5
Person #5: 2.5
Person #6: 3
Person #7: 2
Person #8: 2.8
Person #9: 3.2
Person #10: 3.8

L I S T I N G 8 . 1 4 continued

412 CHAPTER 8 Arrays

 The SodaSurvey program computes and prints the average responses for each
soda and for each respondent. The sums of each soda and person are first stored in
one-dimensional arrays of integers. Then the averages are computed and printed.

 Multidimensional Arrays
 An array can have one, two, three, or even more dimensions. Any array with more
than one dimension is called a multidimensional array .

 It’s fairly easy to picture a two-dimensional array as a table. A three-dimensional
array could be drawn as a cube. However, once you are past three dimensions,
multidimensional arrays might seem hard to visualize. Yet, consider that each
subsequent dimension is simply a subdivision of the previous one. It is often best
to think of larger multidimensional arrays in this way.

 For example, suppose we wanted to store the number of students attending
universities across the United States, broken down in a meaningful way. We
might represent it as a four-dimensional array of integers. The first dimension
represents the state. The second dimension represents the universities in each
state. The third dimension represents the colleges in each university. Finally, the
fourth dimension represents departments in each college. The value stored at
each location is the number of students in one particular department. Figure 8.5
shows these subdivisions.

 Two-dimensional arrays are fairly common. However, care
should be taken when deciding to create multidimensional arrays
in a program. When dealing with large amounts of data that are
managed at multiple levels, additional information and the methods
needed to manage that information will probably be required. It is
far more likely, for instance, that in the previous example, each state

would be represented by an object, which may contain, among other things, an
array to store information about each university, and so on.

 There is one other important characteristic of Java arrays to consider. As
we established previously, Java does not directly support multidimensional

 FIGURE 8.5 Visualization of a four-dimensional array

state

university

college

department

 KEY CONCEPT
 Using an array with more than two
dimensions is rare in an object-
oriented system.

8.7 Polygons and Polylines 413

arrays. Instead, they are represented as arrays of references to array objects.
Those arrays could themselves contain references to other arrays. This layer-
ing continues for as many dimensions as required. Because of this technique
for representing each dimension, the arrays in any one dimension could be of
different lengths. These are sometimes called ragged arrays. For example, the
number of elements in each row of a two-dimensional array may not be the
same. In such situations, care must be taken to make sure the arrays are man-
aged appropriately.

 SELF-REVIEW QUESTIONS (see answers in Appendix N)

 SR 8.23 How are multidimensional arrays implemented in Java?

 SR 8.24 A two-dimensional array named scores holds the test scores for a
class of students for a semester. Write code that prints out a single
value that represents the range of scores held in the array. It prints out
the value of the highest score minus the value of the lowest score. Each
test score is represented as an integer.

 8.7 Polygons and Polylines

 Arrays are helpful when drawing complex shapes. A polygon, for example, is
a multisided shape that is defined in Java using a series of (x, y) points that
indicate the vertices of the polygon. Arrays are often used to store the list of
coordinates.

 Polygons are drawn using methods of the Graphics class, similar to how we
draw rectangles and ovals. Like these other shapes, a polygon can be drawn
filled or unfilled. The methods used to draw a polygon are called drawPolygon
and fillPolygon . Both of these methods are overloaded. One version uses
arrays of integers to define the polygon, and the other uses an object of the
 Polygon class to define the polygon. We discuss the Polygon class later in this
section.

 In the version that uses arrays, the drawPolygon and fillPolygon methods
take three parameters. The first is an array of integers representing the x coordi-
nates of the points in the polygon, the second is an array of integers representing
the corresponding y coordinates of those points, and the third is an integer that
indicates how many points are used from each of the two
arrays. Taken together, the first two parameters represent the
(x, y) coordinates of the vertices of the polygons.

 A polygon is always closed. A line segment is always drawn
from the last point in the list to the first point in the list.

 KEY CONCEPT
 A polyline is similar to a polygon
except that a polyline is not a closed
shape.

Similar to a polygon, a polyline contains a series of points connected by line
segments. Polylines differ from polygons in that the first and last coordinates are
not automatically connected when it is drawn. Since a polyline is not closed, it
cannot be filled. Therefore there is only one method, called drawPolyline, used
to draw a polyline.

As with the drawPolygon method, the first two parameters of the drawPolyline
method are both arrays of integers. Taken together, the first two parameters
represent the (x, y) coordinates of the end points of the line segments of the
polyline. The third parameter is the number of points in the coordinate list.

The program shown in Listing 8.15 uses polygons to draw a rocket. In the
RocketPanel class, shown in Listing 8.16, the arrays called xRocket and yRocket
define the points of the polygon that make up the main body of the rocket. The first
point in the arrays is the upper tip of the rocket, and they progress clockwise from
there. The xWindow and yWindow arrays specify the points for the polygon that form the
window in the rocket. Both the rocket and the window are drawn as filled polygons.

//**
// Rocket.java Author: Lewis/Loftus
//
// Demonstrates the use of polygons and polylines.
//**

import javax.swing.JFrame;

public class Rocket
{
 //---
 // Creates the main frame of the program.
 //---
 public static void main (String[] args)
 {
 JFrame frame = new JFrame ("Rocket");
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

 RocketPanel panel = new RocketPanel();

 frame.getContentPane().add(panel);
 frame.pack();
 frame.setVisible(true);
 }
}

L I S T I N G 8 . 1 5

414 CHAPTER 8 Arrays

D I S P L A Y

L I S T I N G 8 . 1 5 continued

//**
// RocketPanel.java Author: Lewis/Loftus
//
// Demonstrates the use of polygons and polylines.
//**

import javax.swing.JPanel;
import java.awt.*;

public class RocketPanel extends JPanel
{
 private int[] xRocket = {100, 120, 120, 130, 130, 70, 70, 80, 80};
 private int[] yRocket = {15, 40, 115, 125, 150, 150, 125, 115, 40};

 private int[] xWindow = {95, 105, 110, 90};
 private int[] yWindow = {45, 45, 70, 70};

L I S T I N G 8 . 1 6

 8.7 Polygons and Polylines 415

The xFlame and yFlame arrays define the points of a polyline that are used to
create the image of flame shooting out of the tail of the rocket. Because it is drawn
as a polyline, and not a polygon, the flame is not closed or filled.

The Polygon Class
A polygon can also be defined explicitly using an object of the Polygon class,
which is defined in the java.awt package of the Java standard class library. Two
versions of the overloaded drawPolygon and fillPolygon methods take a single
Polygon object as a parameter.

 private int[] xFlame = {70, 70, 75, 80, 90, 100, 110, 115, 120,
 130, 130};
 private int[] yFlame = {155, 170, 165, 190, 170, 175, 160, 185,
 160, 175, 155};

 //---
 // Constructor: Sets up the basic characteristics of this panel.
 //---
 public RocketPanel()
 {
 setBackground (Color.black);
 setPreferredSize (new Dimension(200, 200));
 }

 //---
 // Draws a rocket using polygons and polylines.
 //---
 public void paintComponent (Graphics page)
 {
 super.paintComponent (page);
 page.setColor (Color.cyan);
 page.fillPolygon (xRocket, yRocket, xRocket.length);

 page.setColor (Color.gray);
 page.fillPolygon (xWindow, yWindow, xWindow.length);

 page.setColor (Color.red);
 page.drawPolyline (xFlame, yFlame, xFlame.length);
 }
}

L I S T I N G 8 . 1 6 continued

416 CHAPTER 8 Arrays

A Polygon object encapsulates the coordinates of the polygon sides. The con-
structors of the Polygon class allow the creation of an initially empty polygon or
one defined by arrays of integers representing the point coordinates. The Polygon
class contains methods to add points to the polygon and to determine whether
a given point is contained within the polygon shape. It also contains methods to
get a representation of a bounding rectangle for the polygon, as well as a method
to translate all of the points in the polygon to another position. Figure 8.6 lists
these methods.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 8.25 What is a polyline? How do we specify its shape?

SR 8.26 What is the difference between a polygon and a polyline?

SR 8.27 What is the result of separately making each of the following changes
to the RocketPanel class? You may make the change, compile and run

 8.7 Polygons and Polylines 417

FIGURE 8.6 Some methods of the Polygon class

Polygon ()
 Constructor: Creates an empty polygon.

Polygon (int[] xpoints, int[] ypoints, int npoints)
 Constructor: Creates a polygon using the (x, y) coordinate pairs
 in corresponding entries of xpoints and ypoints.

void addPoint (int x, int y)
 Appends the specified point to this polygon.

boolean contains (int x, int y)
 Returns true if the specified point is contained in this polygon.

boolean contains (Point p)
 Returns true if the specified point is contained in this polygon.

Rectangle getBounds ()
 Gets the bounding rectangle for this polygon.

void translate (int deltaX, int deltaY)
 Translates the vertices of this polygon by deltaX along the x axis
 and deltaY along the y axis.

the program, and observe and report the results. Briefly explain what
you observe.

a. Change the page.drawPolyline method call to a page.
fillPolygon method call.

b. Change the fillPolygon parameter xWindow.length() to the
numeric literal "2".

c. Switch the x and the y values in each of the arrays. For example
yWindow becomes {95, 105, 110, 90}.

d. A new, filled yellow polygon is drawn first with coordinates
(0, 100), (100, 0), (200, 100), and (100, 200).

e. A new, filled yellow polygon is drawn last with coordinates
(0, 100), (100, 0), (200, 100), and (100, 200).

8.8 Mouse Events

Let’s examine the events that are generated when using a mouse. Java divides
these events into two categories: mouse events and mouse motion events. The
table in Figure 8.7 defines these events.

When you click the mouse button over a Java GUI component, three events are
generated: one when the mouse button is pushed down (mouse pressed) and two
when it is let up (mouse released and mouse clicked). A mouse click is defined
as pressing and releasing the mouse button in the same location. If you press
the mouse button down, move the mouse, and then release the mouse button, a
mouse clicked event is not generated.

418 CHAPTER 8 Arrays

FIGURE 8.7 Mouse events and mouse motion events

mouse pressed The mouse button is pressed down.

The mouse button is released.

The mouse pointer is moved onto (over) a component.

The mouse pointer is moved off of a component.

The mouse button is pressed down and released without moving
the mouse in between.

mouse released

mouse clicked

mouse entered

mouse exited

Mouse Event Description

mouse moved The mouse is moved.

The mouse is moved while the mouse button is pressed down.mouse dragged

Mouse Motion Event Description

 A component will generate a mouse entered event when the mouse pointer
passes into its graphical space. Likewise, it generates a mouse exited event when
the mouse pointer leaves.

 Mouse motion events, as the name implies, occur while
the mouse is in motion. The mouse moved event indicates
simply that the mouse is in motion. The mouse dragged
event is generated when the user has pressed the mouse but-
ton down and moved the mouse without releasing the but-
ton. Mouse motion events are generated many times, very
quickly, while the mouse is in motion.

 In a specific situation, we may care about only one or two mouse events. What
we listen for depends on what we are trying to accomplish.

 The Dots program shown in Listing 8.17 responds to one mouse event.
Specifically, it draws a green dot at the location of the mouse pointer whenever
the mouse button is pressed.

 The main method of the Dots class creates a frame and adds one panel to it.
That panel is defined by the DotsPanel class shown in Listing 8.18 .

 KEY CONCEPT
 Moving the mouse and clicking the
mouse button generate events to
which a program can respond.

//**
// Dots.java Author: Lewis/Loftus
//
// Demonstrates mouse events.
//**

import javax.swing.JFrame;

public class Dots
 {
 //---
 // Creates and displays the application frame.
 //---
 public static void main (String[] args)
 {
 JFrame frame = new JFrame ("Dots");
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

 frame.getContentPane().add (new DotsPanel());

 frame.pack();
 frame.setVisible(true);
 }
 }

 L I S T I N G 8 . 1 7

8.8 Mouse Events 419

L I S T I N G 8 . 1 7 continued

//**
// DotsPanel.java Author: Lewis/Loftus
//
// Represents the primary panel for the Dots program.
//**

import java.util.ArrayList;
import javax.swing.JPanel;
import java.awt.*;
import java.awt.event.*;

public class DotsPanel extends JPanel
{
 private final int SIZE = 6; // radius of each dot

L I S T I N G 8 . 1 8

420 CHAPTER 8 Arrays

D I S P L A Y

 private ArrayList<Point> pointList;

 //---
 // Constructor: Sets up this panel to listen for mouse events.
 //---
 public DotsPanel()
 {
 pointList = new ArrayList<Point>();

 addMouseListener (new DotsListener());

 setBackground (Color.black);
 setPreferredSize (new Dimension(300, 200));
 }

 //---
 // Draws all of the dots stored in the list.
 //---
 public void paintComponent (Graphics page)
 {
 super.paintComponent(page);

 page.setColor (Color.green);

 for (Point spot : pointList)
 page.fillOval (spot.x-SIZE, spot.y-SIZE, SIZE*2, SIZE*2);

 page.drawString ("Count: " + pointList.size(), 5, 15);
 }

 //***
 // Represents the listener for mouse events.
 //***
 private class DotsListener implements MouseListener
 {
 //--
 // Adds the current point to the list of points and redraws
 // the panel whenever the mouse button is pressed.
 //--
 public void mousePressed (MouseEvent event)
 {
 pointList.add(event.getPoint());
 repaint();
 }

L I S T I N G 8 . 1 8 continued

 8.8 Mouse Events 421

 The DotsPanel class keeps track of a list of Point objects that represent all of
the locations at which the user has clicked the mouse. A Point class represents
the (x, y) coordinates of a given point in two-dimensional space. It provides pub-
lic access to the instance variables x and y for the point. Each time the panel is
painted, all of the points stored in the list are drawn.

 The list of Point objects is maintained as an ArrayList object. More precisely,
the type of the pointList object is ArrayList<Point> , specifying that only Point
objects can be stored in that ArrayList . To draw the points, we use a for loop
to iterate over all the points stored in the list.

 The listener for the mouse pressed event is defined as a private inner class that
implements the MouseListener interface. The mousePressed method is invoked
by the panel each time the user presses down on the mouse button while it is over
the panel.

 A mouse event always occurs at some point in two-dimensional space, and the
object that represents that event keeps track of that location. In a mouse listener,
we can get and use that point whenever we need it. In the Dots program, each
time the mousePressed method is called, the location of the event is obtained
using the getPoint method of the MouseEvent object. That point is stored in the
 ArrayList , and the panel is then repainted.

 Note that, unlike the listener interfaces that we’ve used
in previous examples that contain one method each, the
 MouseListener interface contains five methods. For this
program, the only event in which we are interested is the
mouse pressed event. Therefore, the only method in which
we have any interest is the mousePressed method. However,

 //--
 // Provide empty definitions for unused event methods.
 //--
 public void mouseClicked (MouseEvent event) {}
 public void mouseReleased (MouseEvent event) {}
 public void mouseEntered (MouseEvent event) {}
 public void mouseExited (MouseEvent event) {}
 }
 }

 L I S T I N G 8 . 1 8 continued

 KEY CONCEPT
 A listener may have to provide
empty method definitions for
unheeded events to satisfy the
interface.

422 CHAPTER 8 Arrays

implementing an interface means we must provide definitions for all methods in
the interface. Therefore we provide empty methods corresponding to the other
events. When those events are generated, the empty methods are called, but no
code is executed. In Chapter 9 we discuss a technique for creating listeners that
lets us avoid creating such empty methods.

 Let’s look at an example that responds to two mouse-oriented events. The
RubberLines program shown in Listing 8.19 draws a line between two points.
The first point is determined by the location at which the mouse is first pressed
down. The second point changes as the mouse is dragged while the mouse but-
ton is held down. When the button is released, the line remains fixed between
the first and second points. When the mouse button is pressed again, a new line
is started.

 The panel on which the lines are drawn is represented by the RubberLinesPanel
class shown in Listing 8.20 . Because we need to listen for both a mouse pressed
event and a mouse dragged event, we need a listener that responds to both mouse
events and mouse motion events. Note that the listener class in this example
implements both the MouseListener and MouseMotionListener interfaces. It
must therefore implement all methods of both interfaces. The two methods of
interest, mousePressed and mouseDragged , are implemented to accomplish our
goals, and the other methods are given empty definitions to satisfy the interface
contract.

 When the mousePressed method is called, the variable
 point1 is set. Then, as the mouse is dragged, the vari-
able point2 is continually reset and the panel repainted.
Therefore, the line is constantly being redrawn as the mouse
is dragged, giving the appearance that one line is being
stretched between a fixed point and a moving point. This
effect is called rubberbanding and is common in graphical programs.

 Note that, in the RubberLinesPanel constructor, the listener object is added
to the panel twice: once as a mouse listener and once as a mouse motion listener.
The method called to add the listener must correspond to the object passed as the
parameter. In this case, we had one object that served as a listener for both cat-
egories of events. We could have had two listener classes if desired: one listening
for mouse events and one listening for mouse motion events. A component can
have multiple listeners for various event categories.

 Also note that this program draws one line at a time. That is, when the user
begins to draw another line with a new mouse click, the previous one disappears.
This is because the paintComponent method redraws its background, eliminating
the line every time. To see the previous lines, we’d have to keep track of them,
perhaps using an ArrayList as was done in the Dots program. This modification
to the RubberLines program is left as a programming project.

 KEY CONCEPT
 Rubberbanding is the graphical
effect caused when a shape seems to
expand as the mouse is dragged.

 Example using
rubberbanding
and arrays.

VideoNote

8.8 Mouse Events 423

//**
// RubberLines.java Author: Lewis/Loftus
//
// Demonstrates mouse events and rubberbanding.
//**

import javax.swing.JFrame;

public class RubberLines
{
 //---
 // Creates and displays the application frame.
 //---
 public static void main (String[] args)
 {
 JFrame frame = new JFrame ("Rubber Lines");
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

 frame.getContentPane().add (new RubberLinesPanel());

 frame.pack();
 frame.setVisible(true);
 }
}

D I S P L A Y

L I S T I N G 8 . 1 9

424 CHAPTER 8 Arrays

//**
// RubberLinesPanel.java Author: Lewis/Loftus
//
// Represents the primary drawing panel for the RubberLines program.
//**

import javax.swing.JPanel;
import java.awt.*;
import java.awt.event.*;

public class RubberLinesPanel extends JPanel
{
 private Point point1 = null, point2 = null;

 //---
 // Constructor: Sets up this panel to listen for mouse events.
 //---
 public RubberLinesPanel()
 {
 LineListener listener = new LineListener();
 addMouseListener (listener);
 addMouseMotionListener (listener);

 setBackground (Color.black);
 setPreferredSize (new Dimension(400, 200));
 }

 //---
 // Draws the current line from the initial mouse-pressed point to
 // the current position of the mouse.
 //---
 public void paintComponent (Graphics page)
 {
 super.paintComponent (page);

 page.setColor (Color.yellow);
 if (point1 != null && point2 != null)
 page.drawLine (point1.x, point1.y, point2.x, point2.y);
 }

 //***
 // Represents the listener for all mouse events.
 //***

L I S T I N G 8 . 2 0

 8.8 Mouse Events 425

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 8.28 What is a mouse event?

SR 8.29 What sequence of mouse events is generated when the mouse button is
clicked over a GUI component and then released?

SR 8.30 What sequence of mouse events is generated when the mouse button is
clicked over a GUI component, the mouse is moved so it is no longer
over that component, and then the mouse button is released?

 private class LineListener implements MouseListener,
 MouseMotionListener
 {
 //--
 // Captures the initial position at which the mouse button is
 // pressed.
 //--
 public void mousePressed (MouseEvent event)
 {
 point1 = event.getPoint();
 }

 //--
 // Gets the current position of the mouse as it is dragged and
 // redraws the line to create the rubberband effect.
 //--
 public void mouseDragged (MouseEvent event)
 {
 point2 = event.getPoint();
 repaint();
 }

 //--
 // Provide empty definitions for unused event methods.
 //--
 public void mouseClicked (MouseEvent event) {}
 public void mouseReleased (MouseEvent event) {}
 public void mouseEntered (MouseEvent event) {}
 public void mouseExited (MouseEvent event) {}
 public void mouseMoved (MouseEvent event) {}
 }
}

L I S T I N G 8 . 2 0 continued

426 CHAPTER 8 Arrays

SR 8.31 Which mouse events are responded to in the Dots program? Which are
responded to in the RubberLines program?

SR 8.32 Suppose you are creating a GUI to support a program that plays
Tic-Tac-Toe against the user. Describe how your program might
respond to various mouse events.

8.9 Key Events

 A key event is generated when a keyboard key is pressed.
Key events allow a program to respond immediately to the
user while he or she is typing or pressing other keyboard keys
such as the arrow keys. If key events are being processed, the
program can respond as soon as the key is pressed; there is
no need to wait for the Enter key to be pressed or for some
other component (like a button) to be activated.

 The Direction program shown in Listing 8.21 responds to key events. An
image of an arrow is displayed, and the image moves across the screen as the
arrow keys are pressed. Actually, four different images are used, one each for the
arrow pointing in each of the primary directions (up, down, right, and left).

 The DirectionPanel class, shown in Listing 8.22 , represents the panel on
which the arrow image is displayed. The constructor loads the four arrow images,
one of which is always considered to be the current image (the one displayed).
The current image is set based on the arrow key that was most recently pressed.
For example, if the up arrow is pressed, the image with the arrow pointing up is
displayed. If an arrow key is continually pressed, the appropriate image “moves”
in the appropriate direction.

 The arrow images are managed as ImageIcon objects. In this example, the
image is drawn using the paintIcon method each time the panel is repainted.
The paintIcon method takes four parameters: a component to serve as an image
observer , the graphics context on which the image will be drawn, and the (x , y)
coordinates where the image is drawn. An image observer is a component that
serves to manage image loading; in this case we use the panel as the image observer.

 The private inner class called DirectionListener is set up to respond to key
events. It implements the KeyListener interface, which defines three methods that
we can use to respond to keyboard activity. Figure 8.8 lists these methods.

 Specifically, the Direction program responds to key pressed events. Because
the listener class must implement all methods defined in the interface, we provide
empty methods for the other events.

8.9 Key Events 427

 KEY CONCEPT
 Key events allow a program to
respond immediately to the user
pressing keyboard keys.

428 CHAPTER 8 Arrays

//**
// Direction.java Author: Lewis/Loftus
//
// Demonstrates key events.
//**

import javax.swing.JFrame;

public class Direction
{
 //---
 // Creates and displays the application frame.
 //---
 public static void main (String[] args)
 {
 JFrame frame = new JFrame ("Direction");
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

 frame.getContentPane().add (new DirectionPanel());

 frame.pack();
 frame.setVisible(true);
 }
}

D I S P L A Y

L I S T I N G 8 . 2 1

//**
// DirectionPanel.java Author: Lewis/Loftus
//
// Represents the primary display panel for the Direction program.
//**

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class DirectionPanel extends JPanel
{
 private final int WIDTH = 300, HEIGHT = 200;
 private final int JUMP = 10; // increment for image movement

 private final int IMAGE_SIZE = 31;

 private ImageIcon up, down, right, left, currentImage;
 private int x, y;

 //---
 // Constructor: Sets up this panel and loads the images.
 //---
 public DirectionPanel()
 {
 addKeyListener (new DirectionListener());

 x = WIDTH / 2;
 y = HEIGHT / 2;

 up = new ImageIcon ("arrowUp.gif");
 down = new ImageIcon ("arrowDown.gif");
 left = new ImageIcon ("arrowLeft.gif");
 right = new ImageIcon ("arrowRight.gif");

 currentImage = right;

 setBackground (Color.black);
 setPreferredSize (new Dimension(WIDTH, HEIGHT));
 setFocusable(true);
 }

 8.9 Key Events 429

L I S T I N G 8 . 2 2

 //---
 // Draws the image in the current location.
 //---
 public void paintComponent (Graphics page)
 {
 super.paintComponent (page);
 currentImage.paintIcon (this, page, x, y);
 }

 //***
 // Represents the listener for keyboard activity.
 //***
 private class DirectionListener implements KeyListener
 {
 //--
 // Responds to the user pressing arrow keys by adjusting the
 // image and image location accordingly.
 //--
 public void keyPressed (KeyEvent event)
 {
 switch (event.getKeyCode())
 {
 case KeyEvent.VK_UP:
 currentImage = up;
 y -= JUMP;
 break;
 case KeyEvent.VK_DOWN:
 currentImage = down;
 y += JUMP;
 break;
 case KeyEvent.VK_LEFT:
 currentImage = left;
 x -= JUMP;
 break;
 case KeyEvent.VK_RIGHT:
 currentImage = right;
 x += JUMP;
 break;
 }

 repaint();
 }

430 CHAPTER 8 Arrays

L I S T I N G 8 . 2 2 continued

 //--
 // Provide empty definitions for unused event methods.
 //--
 public void keyTyped (KeyEvent event) {}
 public void keyReleased (KeyEvent event) {}
 }
}

L I S T I N G 8 . 2 2 continued

 8.9 Key Events 431

The KeyEvent object passed to the keyPressed method of the listener can be
used to determine which key was pressed. In the example, we call the getKeyCode
method of the event object to get a numeric code that represents the key that was
pressed. We use a switch statement to determine which key was pressed and to
respond accordingly. The KeyEvent class contains constants that correspond to
the numeric code that is returned from the getKeyCode method. If any key other
than an arrow key is pressed, it is ignored.

FIGURE 8.8 The methods of the KeyListener interface

void keyPressed (KeyEvent event)
Called when a key is pressed.

void keyReleased (KeyEvent event)
Called when a key is released.

void keyTyped (KeyEvent event)
Called when a pressed key or key combination produces
a key character.

432 CHAPTER 8 Arrays

Key events fire whenever a key is pressed, but most systems enable the concept
of key repetition. That is, when a key is pressed and held down, it’s as if that key
is being pressed repeatedly and quickly. Key events are generated in the same way.
In the Direction program, the user can hold down an arrow key and watch the
image move across the screen quickly.

The component that generates key events is the one that currently has the
keyboard focus. Usually the keyboard focus is held by the primary “active” com-
ponent. A component usually gets the keyboard focus when the user clicks on it
with the mouse. The call to the setFocusable method in the panel constructor
sets the keyboard focus to the panel.

The Direction program sets no boundaries for the arrow image, so it can be
moved out of the visible window, then moved back in if desired. You could add
code to the listener to stop the image when it reaches one of the window boundar-
ies. This modification is left as a programming project.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 8.33 What is a key event?

SR 8.34 Answer the following questions about our Direction program.

a. Which key pressed events are responded to?
b. Which key pressed events are not responded to?
c. What is the key code for the up-arrow key?
d. In what file do we store the left-arrow image?
e. Which image is displayed when the program begins?

 8.1 Array Elements 433 Summary of Key Concepts 433

Summary of Key Concepts

■ An array of size N is indexed from 0 to N−1.

■ In Java, an array is an object that must be instantiated.

■ Bounds checking ensures that an index used to refer to an array element is
in range.

■ An initializer list can be used to instantiate an array object instead of using
the new operator.

■ An entire array can be passed as a parameter, making the formal param-
eter an alias of the original.

■ Instantiating an array of objects reserves room to store references only.
The objects that are stored in each element must be instantiated separately.

■ Command-line arguments are stored in an array of String objects and are
passed to the main method.

■ A Java method can be defined to accept a varying number of parameters.

■ Using an array with more than two dimensions is rare in an object-ori-
ented system.

■ A polyline is similar to a polygon except that a polyline is not a closed
shape.

■ Moving the mouse and clicking the mouse button generate events to which
a program can respond.

■ A listener may have to provide empty method definitions for unheeded
events to satisfy the interface.

■ Rubberbanding is the graphical effect caused when a shape seems to
expand as the mouse is dragged.

■ Key events allow a program to respond immediately to the user pressing
keyboard keys.

Exercises
Visit www.myprogramminglab.com to complete many of these Exercises
online and get instant feedback.

EX 8.1 Which of the following are valid declarations? Which instantiate
an array object? Explain your answers.

int primes = {2, 3, 4, 5, 7, 11};
float elapsedTimes[] = {11.47, 12.04, 11.72, 13.88};

www.myprogramminglab.com

434 CHAPTER 8 Arrays

int[] scores = int[30];
int[] primes = new {2,3,5,7,11};
int[] scores = new int[30];
char grades[] = {'a', 'b', 'c', 'd', 'f'};
char[] grades = new char[];

EX 8.2 Describe five programs that would be difficult to implement
without using arrays.

EX 8.3 Describe how an element in an array is accessed in memory. For
example, where is myArray[25] stored in memory?

EX 8.4 Describe what problem occurs in the following code. What mod-
ifications should be made to it to eliminate the problem?

int[] numbers = {3, 2, 3, 6, 9, 10, 12, 32, 3, 12, 6};
for (int count = 1; count <= numbers.length; count++)
 System.out.println (numbers[count]);

EX 8.5 Write an array declaration and any necessary supporting classes
to represent the following statements:

a. students’ names for a class of 25 students

b. students’ test grades for a class of 40 students

c. credit-card transactions that contain a transaction number, a
merchant name, and a charge

d. students’ names for a class and homework grades for each
student

e. for each employee of the L&L International Corporation: the
employee number, hire date, and the amount of the last five
raises

EX 8.6 Write code that sets each element of an array called nums to the
value of the constant INITIAL.

EX 8.7 Write code that prints the values stored in an array called names
backwards.

EX 8.8 Write code that sets each element of a boolean array called flags
to alternating values (true at index 0, false at index 1, etc.).

EX 8.9 Write a method called sumArray that accepts an array of floating
point values and returns the sum of the values stored in the array.

EX 8.10 Write a method called switchThem that accepts two integer
arrays as parameters and switches the contents of the arrays.
Take into account that the arrays may be of different sizes.

 Programming Projects 435

EX 8.11 Describe a program for which you would use the ArrayList
class instead of arrays. Describe a program for which you would
use arrays instead of the ArrayList class. Explain your choices.

EX 8.12 What would happen if, in the Dots program, we did not pro-
vide empty definitions for one or more of the unused mouse
events?

EX 8.13 The Dots program listens for a mouse pressed event to draw a
dot. How would the program behave differently if it listened for
a mouse released event instead? A mouse clicked event?

EX 8.14 What would happen if the call to super.paintComponent were
removed from the paintComponent method of the DotsPanel
class? Remove it and run the program to test your answer.

EX 8.15 What would happen if the call to super.paintComponent
were removed from the paintComponent method of the
RubberLinesPanel class? Remove it and run the program to
test your answer. In what ways is the answer different from the
answer to Exercise 8.13?

EX 8.16 Create a UML class diagram for the Direction program.

Programming Projects
Visit www.myprogramminglab.com to complete many of these
Programming Projects online and get instant feedback.

PP 8.1 Design and implement an application that reads an arbitrary
number of integers that are in the range 0 to 50 inclusive and
counts how many occurrences of each are entered. After all input
has been processed, print all of the values (with the number of
occurrences) that were entered one or more times.

PP 8.2 Modify the program from PP 8.1 so that it works for numbers in
the range between −25 and 25.

PP 8.3 Design and implement an application that creates a histogram
that allows you to visually inspect the frequency distribution of
a set of values. The program should read in an arbitrary number
of integers that are in the range 1 to 100 inclusive; then produce
a chart similar to the one below that indicates how many input
values fell in the range 1 to 10, 11 to 20, and so on. Print one
asterisk for each value entered.

www.myprogramminglab.com

436 CHAPTER 8 Arrays

PP 8.4 The lines in the histogram in PP 8.3 will be too long if a large
number of values is entered. Modify the program so that it
prints an asterisk for every five values in each category. Ignore
leftovers. For example, if a category had 17 values, print three
asterisks in that row. If a category had 4 values, do not print any
asterisks in that row.

PP 8.5 Design and implement an application that computes and prints
the mean and standard deviation of a list of integers x1 through
xn. Assume that there will be no more than 50 input values.
Compute both the mean and standard deviation as floating point
values, using the following formulas.

mean 5
a
n

i51
Xi

n

sd 5 Åa
n

i51

1Xi 2 mean 22

PP 8.6 The L&L Bank can handle up to 30 customers who have sav-
ings accounts. Design and implement a program that manages the
accounts. Keep track of key information and allow each customer to
make deposits and withdrawals. Produce appropriate error messages
for invalid transactions. Hint: you may want to base your accounts
on the Account class from Chapter 4. Also provide a method to add
3 percent interest to all accounts whenever the method is invoked.

1 - 10 | *****
11 - 20 | **
21 - 30 | *******************
31 - 40 |
41 - 50 | ***
51 - 60 | ********
61 - 70 | **
71 - 80 | *****
81 - 90 | *******
91 - 100 | *********

Developing a solution
of PP 8.5.

VideoNote

 Programming Projects 437

PP 8.7 The programming projects of Chapter 4 discussed a Card class
that represents a standard playing card. Create a class called
DeckOfCards that stores 52 objects of the Card class. Include
methods to shuffle the deck, deal a card, and report the num-
ber of cards left in the deck. The shuffle method should
assume a full deck. Create a driver class with a main method
that deals each card from a shuffled deck, printing each card
as it is dealt.

PP 8.8 Design and implement an application that reads a sequence of
up to 25 pairs of names and postal (ZIP) codes for individuals.
Store the data in an object designed to store a first name (string),
last name (string), and postal code (integer). Assume each line of
input will contain two strings followed by an integer value, each
separated by a tab character. Then, after the input has been read
in, print the list in an appropriate format to the screen.

PP 8.9 Modify the program you created in PP 8.8 to accomplish the fol-
lowing:

■ Support the storing of additional user information: street
address (string), city (string), state (string), and 10 digit phone
number (long integer, contains area code and does not include
special characters such as '(', ')', or '-')

■ Store the data in an ArrayList object.

PP 8.10 Use the Question class from Chapter 7 to define a Quiz class.
A quiz can be composed of up to 25 questions. Define the add
method of the Quiz class to add a question to a quiz. Define the
giveQuiz method of the Quiz class to present each question in
turn to the user, accept an answer for each one, and keep track
of the results. Define a class called QuizTime with a main method
that populates a quiz, presents it, and prints the final results.

PP 8.11 Modify your answer to PP 8.10 so that the complexity level of
the questions given in the quiz is taken into account. Overload
the giveQuiz method so that it accepts two integer parameters
that specify the minimum and maximum complexity levels for
the quiz questions and presents only questions in that com-
plexity range. Modify the main method to demonstrate this
feature.

PP 8.12 Design a class that represents a star with a specified radius and
color. Use a filled polygon to draw the star. Design and imple-
ment a program that draws 10 stars of random radius in random
locations.

438 CHAPTER 8 Arrays

PP 8.13 Design a class that represents the visual representation of a car.
Use polylines and polygons to draw the car in any graphics con-
text and at any location. Create a main driver to display the car.

PP 8.14 Modify the solution to PP 8.13 so that it uses the Polygon class
to represent all polygons used in the drawing.

PP 8.15 Modify the QuoteOptions program from Chapter 5 so that it
provides three additional quote options. Use an array to store all
of the quote strings.

PP 8.16 Design and implement a program that draws 20 circles, with the
radius and location of each circle determined at random. If a
circle does not overlap any other circle, draw that circle in black.
If a circle overlaps one or more other circles, draw it in cyan.
Use an array to store a representation of each circle, then deter-
mine the color of each circle. Two circles overlap if the distance
between their center points is less than the sum of their radii.

PP 8.17 Design and implement a program that draws a checkerboard
with five red and eight black checkers on it in various locations.
Store the checkerboard as a two-dimensional array.

PP 8.18 Modify the program from PP 8.17 so that the program deter-
mines whether any black checkers can jump any red checkers.
Under the checkerboard, print (using drawString) the row and
column position of all black checkers that have possible jumps.

PP 8.19 Modify the RubberLines program from this chapter so that it
shows all of the lines drawn. Show only the final lines (from
initial mouse press to mouse release), not the intermediate lines
drawn to show the rubberbanding effect. Hint: Keep track of
a list of objects that represent the lines similar to how the Dots
program kept track of multiple dots.

PP 8.20 Design and implement a program that counts the number of
times the mouse has been clicked. Display that number in the
center of the applet window.

PP 8.21 Design and implement an application that creates a polyline
shape dynamically using mouse clicks. Each mouse click adds
a new line segment from the previous point. Include a button
below the drawing area to clear the current polyline and begin
another.

PP 8.22 Design and implement an application that draws a circle using
a rubberbanding technique. The circle size is determined by a
mouse drag. Use the original mouse click location as a fixed

 Programming Projects 439

center point. Compute the distance between the current location
of the mouse pointer and the center point to determine the cur-
rent radius of the circle.

PP 8.23 Design and implement an application that serves as a mouse
odometer, continually displaying how far, in pixels, the mouse
has moved (while it is over the program window). Display the
current odometer value using a label. Hint: Use the mouse move-
ment event to determine the current position, and compare it to
the last position of the mouse. Use the distance formula to see
how far the mouse has traveled, and add that to a running total
distance.

PP 8.24 Design and implement a program whose background changes
color depending on where the mouse pointer is located. If the
mouse pointer is on the left half of the program window, display
red; if it is on the right half, display green.

PP 8.25 Design and implement a class that represents a spaceship, which
can be drawn (side view) in any particular location. Create a
program that displays the spaceship so that it follows the move-
ment of the mouse. When the mouse button is pressed down,
have a laser beam shoot out of the front of the spaceship (one
continuous beam, not a moving projectile) until the mouse but-
ton is released.

PP 8.26 Design and implement a program that helps a hospital analyze
the flow of patients through the emergency room. A text input
file contains integers that represent the number of patients that
entered the emergency room during each hour of each day for
four weeks. Read the information and store it in a three dimen-
sional array. Then analyze it to compare the total number of
patients per week, per day, and per hour. Display the results of
the analysis.

PP 8.27 Modify the Direction program from this chapter so that the
image is not allowed to move out of the visible area of the panel.
Ignore any key event that would cause that to happen.

PP 8.28 Modify the Direction program from this chapter so that, in
addition to responding to the arrow keys, it also responds to
four other keys that move the image in diagonal directions.
When the 't' key is pressed, move the image up and to the left.
Likewise, use 'u' to move up and right, 'g' to move down and
left, and 'j' to move down and right. Do not move the image if
it has reached a window boundary.

This page intentionally left blank

441

S O F T W A R E F A I L U R E

LA Air Traffic Control

What Happened?
At about 5 pm on Tuesday, September
14, 2004, the Los Angeles air traffic-
control center suddenly lost voice con-
tact with 400 planes they were tracking
in the southwestern United States. The
Voice Switching and Control System
(VSCS), designed by the Harris Corp.
of Melbourne, Florida, had unexpect-
edly shut down. Then the backup system
designed to take over when such a failure
occurred crashed within a minute after it
was activated. Without the controller’s
guidance, planes began coming danger-
ously close to each other, resulting in
several near misses.

Collisions were avoided due in part to
the quick thinking of some controllers, who used their cell phones to alert other
traffic-control centers and the airlines. But the main reason the incident wasn’t a
disaster was the on-board collision avoidance systems now found in commercial
jets. These systems track the transponders of nearby aircraft and give emergency
instructions to the pilots to climb or descend at the last minute. It’s likely that
several midair collisions would have resulted if the problem had occurred 10 to
15 years earlier, before planes had such avoidance systems.

What Caused It?
Officially, the incident was blamed on human error. The FAA reported that the
problem was “not the result of system reliability” and would have been avoided
if FAA procedures had been followed. The key procedure in this case requires that
the voice switching system be rebooted every 30 days.

The root cause, however, was traced to a software problem. The VSCS relies on
a subsystem that periodically runs built-in tests. A countdown timer in the sub-
system is used to determine when the tests will run. The timer counts down in
milliseconds, starting at the highest numeric value that the system could handle:
232. That’s just over four billion milliseconds. It takes just under 50 days for the
timer to go from 232 down to zero. Unfortunately, when the timer reaches zero,
the tests cannot be run, and the system shuts down. By rebooting the system every
30 days, the timer is reset almost three weeks before it expires.

■ Air traffic con-
trollers in action,
using voice and
imaging systems.

The FAA first discovered the problem when it ran tests on the system in the
field. It ran for 49.7 days, and then crashed. After rebooting, everything seemed
fine. When a similar crash happened with another system, the FAA instituted the
30-day reboot procedure.

After the incident in Los Angeles, the issue was tracked down, and a software
patch was created to fix the problem. Now the system periodically resets the
counter without the need for human intervention.

Lessons Learned
In this situation, the problem (if not its implications) was known beforehand.
Harris (the manufacturer) knew about the potential for the timer to expire but
hadn’t determined the impact it might have on the system. The FAA discovered
the problem during tests---although not the root cause. Instead of delving further,
they instituted a human-based, manual solution---the ultimate “when in doubt,
reboot” scenario.

It’s true that the problem would have been avoided if the FAA procedures had
been followed, but that’s of little comfort when the software can make such pro-
cedures unnecessary. It’s also true that the incident would have been negligible if
the backup system had not failed. Having redundant backup systems would lessen
the chance of complete failure.

In this case, though, the bottom line is that thorough testing and investigation
would have brought the problem to light. In safety-critical systems, nothing less
should be acceptable.

Source: IEEE Spectrum, November 2004

442 Software Failure

443

C H A P T E R O B J E C T I V E S
● Explore the derivation of new classes from existing ones.

● Define the concept and purpose of method overriding.

● Discuss the design of class hierarchies.

● Discuss the issue of visibility as it relates to inheritance.

● Explore the ability to derive one interface from another.

● Discuss object-oriented design in the context of inheritance.

● Describe the inheritance structure for GUI components.

● Explore the creation of listeners by extending adaptor classes.

This chapter explains inheritance, a fundamental technique for

organizing and creating classes. It is a simple but powerful idea that

influences the way we design object-oriented software and enhances

our ability to reuse classes in other situations and programs. In this

chapter we explore the technique for creating subclasses and class

hierarchies, and we discuss a technique for overriding the definition

of an inherited method. We examine the protected modifier and dis-

cuss the effect all visibility modifiers have on inherited attributes and

methods. Finally, we discuss how inheritance affects various issues

related to graphical user interfaces (GUIs) in Java, such as the ability

to extend an adaptor class to create a listener.

Inheritance 9

9.1 Creating Subclasses

 In our introduction to object-oriented concepts in Chapter 1 . we presented the
analogy that a class is to an object what a blueprint is to a house. In subsequent
chapters we’ve reinforced that idea, writing classes that define a set of similar
objects. A class establishes the characteristics and behaviors of an object but
reserves no memory space for variables (unless those variables are declared as
static). Classes are the plan, and objects are the embodiment of that plan.

 Many houses can be created from the same blueprint. They are essentially
the same house in different locations with different people living in them. Now
suppose you want a house that is similar to another but with some different or
additional features. You want to start with the same basic blueprint but modify
it to suit new, slightly different, needs. Many housing developments are created
this way. The houses in the development have the same core layout, but they have
unique features. For instance, they might all be split-level homes with the same
basic room configuration, but some have a fireplace or full basement while others
do not, or an upgraded gourmet kitchen instead of the standard version.

 It’s likely that the housing developer commissioned a master architect to create
a single blueprint to establish the basic design of all houses in the development,
then a series of new blueprints that include variations designed to appeal to differ-
ent buyers. The act of creating the series of blueprints was simplified since they all
begin with the same underlying structure, while the variations give them unique
characteristics that may be important to the prospective owners.

 Creating a new blueprint that is based on an existing blueprint
is analogous to the object-oriented concept of inheritance , which
is the process in which a new class is derived from an existing one.
Inheritance is a powerful software development technique and a
defining characteristic of object-oriented programming.

 Via inheritance, the new class automatically contains the variables and
methods in the original class. Then, to tailor the class as needed, the program-
mer can add new variables and methods to the derived class or modify the
inherited ones.

 In general, new classes can be created via inheritance faster, easier,
and cheaper than by writing them from scratch. Inheritance is one
way to support the idea of software reuse. By using existing software
components to create new ones, we capitalize on the effort that went
into the design, implementation, and testing of the existing software.

 Keep in mind that the word class comes from the idea of classifying groups
of objects with similar characteristics. Classification schemes often use levels
of classes that relate to each other. For example, all mammals share certain

444 CHAPTER 9 Inheritance

 KEY CONCEPT
 Inheritance is the process of deriving
a new class from an existing one.

 KEY CONCEPT
 One purpose of inheritance is to
reuse existing software.

characteristics: They are warmblooded, have hair, and produce milk to feed their
young. Now consider a subset of mammals, such as horses. All horses are mam-
mals and have all of the characteristics of mammals, but they also have unique
features that make them different from other mammals such as dogs.

 If we translate this idea into software terms, an existing class called Mammal
would have certain variables and methods that describe the state and behavior of
mammals. A Horse class could be derived from the existing Mammal class, auto-
matically inheriting the variables and methods contained in Mammal . The Horse
class can refer to the inherited variables and methods as if they had been declared
locally in that class. New variables and methods can then be added to the derived
class to distinguish a horse from other mammals.

 The original class that is used to derive a new one is called the par-
ent class, superclass, or base class. The derived class is called a child
class, or subclass. Java uses the reserved word extends to indicate
that a new class is being derived from an existing class.

 The process of inheritance should establish an is-a relationship
between two classes. That is, the child class should be a more specific version of
the parent. For example, a horse is a mammal. Not all mammals are horses, but
all horses are mammals. For any class X that is derived from class Y, you should
be able to say that “X is a Y.” If such a statement doesn’t make sense, then that
relationship is probably not an appropriate use of inheritance.

 Let’s look at an example. The program shown in Listing 9.1 instantiates an
object of class Dictionary , which is derived from a class called Book . In the main
method, three methods are invoked through the Dictionary object: two that were
declared locally in the Dictionary class and one that was inherited from the Book
class.

 The Book class (see Listing 9.2) is used to derive the Dictionary class (see
 Listing 9.3) using the reserved word extends in the header of Dictionary .
The Dictionary class automatically inherits the definition of the setPages and
getPages methods, as well as the pages variable. It is as if those methods and
the pages variable were declared inside the Dictionary class. Note that, in the
 Dictionary class, the computeRatio method explicitly references the pages vari-
able, even though the variable is declared in the Book class.

 Also note that although the Book class is needed to create the definition of
 Dictionary , no Book object is ever instantiated in the program. An instance of a
child class does not rely on an instance of the parent class.

 Inheritance is a one-way street. The Book class cannot use variables or methods
that are declared explicitly in the Dictionary class. For instance, if we created
an object from the Book class, it could not be used to invoke the setDefinitions
method. This restriction makes sense, because a child class is a more specific

9.1 Creating Subclasses 445

 KEY CONCEPT
 Inheritance creates an is-a relation-
ship between the parent and child
classes.

446 CHAPTER 9 Inheritance

version of the parent class. A dictionary has pages, because all books have pages;
but although a dictionary has definitions, not all books do.

Inheritance relationships are often represented in UML class diagrams. Figure 9.1
shows the inheritance relationship between the Book and Dictionary classes. An
arrow with an open arrowhead is used to show inheritance in a UML diagram,
with the arrow pointing from the child class to the parent class.

//**
// Words.java Author: Lewis/Loftus
//
// Demonstrates the use of an inherited method.
//**

public class Words
{
 //---
 // Instantiates a derived class and invokes its inherited and
 // local methods.
 //---
 public static void main (String[] args)
 {
 Dictionary webster = new Dictionary();

 System.out.println ("Number of pages: " + webster.getPages());

 System.out.println ("Number of definitions: " +
 webster.getDefinitions());

 System.out.println ("Definitions per page: " +
 webster.computeRatio());
 }
}

O U T P U T

Number of pages: 1500
Number of definitions: 52500
Definitions per page: 35.0

L I S T I N G 9 . 1

 9.1 Creating Subclasses 447

The protected Modifier
As we’ve seen, visibility modifiers are used to control access to the members of
a class. This effect extends into the process of inheritance as well. Any public
method or variable in a parent class can be explicitly referenced by name in the
child class and through objects of that child class. On the other hand, private
methods and variables of the parent class cannot be referenced in the child class
or through an object of the child class.

However, if we declare a variable with public visibility so that a derived
class can reference it, we violate the principle of encapsulation. Therefore, Java
provides a third visibility modifier: protected. Note that the variable pages is
declared with protected visibility in the Book class. When a variable or method is

//**
// Book.java Author: Lewis/Loftus
//
// Represents a book. Used as the parent of a derived class to
// demonstrate inheritance.
//**

public class Book
{
 protected int pages = 1500;

 //--
 // Pages mutator.
 //--
 public void setPages (int numPages)
 {
 pages = numPages;
 }

 //--
 // Pages accessor.
 //--
 public int getPages ()
 {
 return pages;
 }
}

L I S T I N G 9 . 2

448 CHAPTER 9 Inheritance

//**
// Dictionary.java Author: Lewis/Loftus
//
// Represents a dictionary, which is a book. Used to demonstrate
// inheritance.
//**

public class Dictionary extends Book
{
 private int definitions = 52500;

 //---
 // Prints a message using both local and inherited values.
 //---
 public double computeRatio ()
 {
 return (double) definitions/pages;
 }

 //--
 // Definitions mutator.
 //--
 public void setDefinitions (int numDefinitions)
 {
 definitions = numDefinitions;
 }

 //--
 // Definitions accessor.
 //--
 public int getDefinitions ()
 {
 return definitions;
 }
}

L I S T I N G 9 . 3

declared with protected visibility, a derived class can reference it. And protected
visibility allows the class to retain some encapsulation properties. The encapsula-
tion with protected visibility is not as tight as it would be if the variable or method
were declared private, but it is better than if it were declared public. Specifically, a

9.1 Creating Subclasses 449

variable or method declared with protected visibility may be accessed
by any class in the same package, in addition to being accessible by
any derived classes. The relationships among all Java modifiers are
explained completely in Appendix E.

 In a UML diagram, protected visibility can be indicated by pre-
ceding the protected member with a hash mark (#). The pages vari-
able of the Book class has this annotation in Figure 9.1 .

 Each variable or method retains the effect of its original visibility modifier. For
example, the setPages method is still considered to be public in its inherited form
in the Dictionary class.

 Let’s be clear about our terms. All methods and variables, even those declared
with private visibility, are inherited by the child class. That is, their definitions
exist and memory space is reserved for the variables. It’s just that they can’t be
referenced by name. This issue is explored in more detail in section 9.4.

 Constructors, however, are not inherited. Constructors are special methods
that are used to set up a particular type of object, so it doesn’t make sense for a
class called Dictionary to have a constructor called Book . But you can imagine
that a child class may want to refer to the constructor of the parent class, which
is one of the reasons for the super reference, described next.

+ main (args : String[]) : void

Words

+ getPages() : int

+ setPages(numPages : int) : void

pages : int

Book

+ setDefinitions (numDefinitions : int) : void

+ getDefinitions () : int

+ computeRatio() : double

– definitions : int

Dictionary

 FIGURE 9.1 A UML class diagram showing an inheritance relationship

 KEY CONCEPT
 Protected visibility provides the best
possible encapsulation that permits
inheritance.

 Overview of inheritance.

VideoNote

450 CHAPTER 9 Inheritance

 The super Reference
 The reserved word super can be used in a class to refer to its parent
class. Using the super reference, we can access a parent’s members.
Like the this reference, what the word super refers to depends on
the class in which it is used.

 One use of the super reference is to invoke a parent’s constructor. Let’s look
at an example. Listing 9.4 shows a modification of the original Words program
from Listing 9.1 . Similar to the original version, we use a class called Book2

 KEY CONCEPT
 A parent’s constructor can be
invoked using the super reference.

//**
// Words2.java Author: Lewis/Loftus
//
// Demonstrates the use of the super reference.
//**

public class Words2
 {
 //---
 // Instantiates a derived class and invokes its inherited and
 // local methods.
 //---
 public static void main (String[] args)
 {
 Dictionary2 webster = new Dictionary2 (1500, 52500);

 System.out.println ("Number of pages: " + webster.getPages());

 System.out.println ("Number of definitions: " +
 webster.getDefinitions());

 System.out.println ("Definitions per page: " +
 webster.computeRatio());
 }
 }

 O U T P U T

Number of pages: 1500
 Number of definitions: 52500
 Definitions per page: 35.0

 L I S T I N G 9 . 4

 9.1 Creating Subclasses 451

(see Listing 9.5) as the parent of the derived class Dictionary2 (see Listing 9.6).
However, unlike earlier versions of these classes, Book2 and Dictionary2 have
explicit constructors used to initialize their instance variables. The output of the
Words2 program is the same as it is for the original Words program.

//**
// Book2.java Author: Lewis/Loftus
//
// Represents a book. Used as the parent of a derived class to
// demonstrate inheritance and the use of the super reference.
//**

public class Book2
{
 protected int pages;

 //--
 // Constructor: Sets up the book with the specified number of
 // pages.
 //--
 public Book2 (int numPages)
 {
 pages = numPages;
 }

 //--
 // Pages mutator.
 //--
 public void setPages (int numPages)
 {
 pages = numPages;
 }

 //--
 // Pages accessor.
 //--
 public int getPages ()
 {
 return pages;
 }
}

L I S T I N G 9 . 5

452 CHAPTER 9 Inheritance

//**
// Dictionary2.java Author: Lewis/Loftus
//
// Represents a dictionary, which is a book. Used to demonstrate
// the use of the super reference.
//**

public class Dictionary2 extends Book2
{
 private int definitions;

 //---
 // Constructor: Sets up the dictionary with the specified number
 // of pages and definitions.
 //---
 public Dictionary2 (int numPages, int numDefinitions)
 {
 super(numPages);

 definitions = numDefinitions;
 }

 //---
 // Prints a message using both local and inherited values.
 //---
 public double computeRatio ()
 {
 return (double) definitions/pages;
 }

 //--
 // Definitions mutator.
 //--
 public void setDefinitions (int numDefinitions)
 {
 definitions = numDefinitions;
 }

 //--
 // Definitions accessor.
 //--

L I S T I N G 9 . 6

 9.1 Creating Subclasses 453

The Dictionary2 constructor takes two integer values as parameters, repre-
senting the number of pages and definitions in the book. Because the Book2 class
already has a constructor that performs the work to set up the parts of the diction-
ary that were inherited, we rely on that constructor to do that work. However,
since the constructor is not inherited, we cannot invoke it directly, and so we use
the super reference to get to it in the parent class. The Dictionary2 constructor
then proceeds to initialize its definitions variable.

In this case, it would have been just as easy to set the pages variable explic-
itly in the Dictionary2 constructor instead of using super to call the Book2
constructor. However, it is good practice to let each class “take care of itself.”
If we choose to change the way that the Book2 constructor sets up its pages
variable, we would also have to remember to make that change in Dictionary2.
By using the super reference, a change made in Book2 is automatically reflected
in Dictionary2.

A child’s constructor is responsible for calling its parent’s constructor.
Generally, the first line of a constructor should use the super reference call to
a constructor of the parent class. If no such call exists, Java will automatically
make a call to super() at the beginning of the constructor. This rule ensures
that a parent class initializes its variables before the child class constructor
begins to execute. Using the super reference to invoke a parent’s constructor
can be done only in the child’s constructor, and if included it must be the first
line of the constructor.

The super reference can also be used to reference other variables and meth-
ods defined in the parent’s class. We use this technique in later sections of this
chapter.

Multiple Inheritance
Java’s approach to inheritance is called single inheritance. This term means that
a derived class can have only one parent. Some object-oriented languages allow a

 public int getDefinitions ()
 {
 return definitions;
 }
}

L I S T I N G 9 . 6 continued

454 CHAPTER 9 Inheritance

child class to have multiple parents. This approach is called multiple inheritance
and is occasionally useful for describing objects that are in between two categories
or classes. For example, suppose we had a class Car and a class Truck and we
wanted to create a new class called PickupTruck. A pickup truck is somewhat like
a car and somewhat like a truck. With single inheritance, we must decide whether
it is better to derive the new class from Car or Truck. With multiple inheritance,
it can be derived from both, as shown in Figure 9.2.

Multiple inheritance works well in some situations, but it comes with a price.
What if both Truck and Car have methods with the same name? Which method
would PickupTruck inherit? The answer to this question is complex, and it
depends on the rules of the language that supports multiple inheritance.

The designers of the Java language explicitly decided not to support multiple
inheritance. Instead, we can rely on interfaces to provide the best features of
multiple inheritance without the added complexity. Although a Java class can
be derived from only one parent class, it can implement multiple interfaces.
Therefore, we can interact with a particular class in specific ways while inheriting
the core information from one parent class.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 9.1 Describe the relationship between a parent class and a child class.

SR 9.2 How does inheritance support software reuse?

SR 9.3 What relationship should every class derivation represent?

SR 9.4 What does the protected modifier accomplish?

SR 9.5 Why is the super reference important to a child class?

SR 9.6 Define a class SchoolBook2 that extends Book2 to include an attribute
indicating the age (4 through 16) that a book targets. The construc-
tor accepts the age as a parameter. The class also provides a level

FIGURE 9.2 A UML class diagram showing multiple inheritance

Car Truck

PickupTruck

9.2 Overriding Methods 455

method that returns a string as follows: “Pre-school” if the target age is 4
through 6, “Early” if the target age is 7 through 9, “Middle” if the target
age is 10 through 12, and “Upper” if the target age is 13 through 16.

SR 9.7 What is the difference between single inheritance and multiple
inheritance?

9.2 Overriding Methods

 When a child class defines a method with the same name and signa-
ture as a method in the parent class, we say that the child’s version
overrides the parent’s version in favor of its own. The need for over-
riding occurs often in inheritance situations.

 The program in Listing 9.7 provides a simple demonstration of
method overriding in Java. The Messages class contains a main
method that instantiates two objects: one from class Thought and
one from class Advice . The Thought class is the parent of the Advice class.

 KEY CONCEPT
 A child class can override (redefine)
the parent’s definition of an inherited
method.

//**
// Messages.java Author: Lewis/Loftus
//
// Demonstrates the use of an overridden method.
//**
public class Messages
 {
 //---
 // Creates two objects and invokes the message method in each.
 //---
 public static void main (String[] args)
 {
 Thought parked = new Thought();
 Advice dates = new Advice();

 parked.message();

 dates.message(); // overridden
 }
 }

 L I S T I N G 9 . 7

456 CHAPTER 9 Inheritance

Both the Thought class (see Listing 9.8) and the Advice class (see Listing 9.9)
contain a definition for a method called message. The version of message defined
in the Thought class is inherited by Advice, but Advice overrides it with an alter-
native version. The new version of the method prints out an entirely different
message and then invokes the parent’s version of the message method using the
super reference.

The object that is used to invoke a method determines which version of the
method is actually executed. When message is invoked using the parked object in

O U T P U T

I feel like I'm diagonally parked in a parallel universe.

Warning: Dates in calendar are closer than they appear.

I feel like I'm diagonally parked in a parallel universe.

L I S T I N G 9 . 7 continued

//**
// Thought.java Author: Lewis/Loftus
//
// Represents a stray thought. Used as the parent of a derived
// class to demonstrate the use of an overridden method.
//**

public class Thought
{
 //---
 // Prints a message.
 //---
 public void message()
 {
 System.out.println ("I feel like I'm diagonally parked in a " +
 "parallel universe.");

 System.out.println();
 }
}

L I S T I N G 9 . 8

 9.2 Overriding Methods 457

the main method, the Thought version of message is executed. When message is
invoked using the dates object, the Advice version of message is executed.

A method can be defined with the final modifier. A child class cannot over-
ride a final method. This technique is used to ensure that a derived class uses a
particular definition of a method.

Method overriding is a key element in object-oriented design. It allows two objects
that are related by inheritance to use the same naming conventions for methods that
accomplish the same general task in different ways. Overriding becomes even more
important when it comes to polymorphism, which is discussed in Chapter 10.

Shadowing Variables
It is possible, although not recommended, for a child class to declare a variable with
the same name as one that is inherited from the parent. Note the distinction between
redeclaring a variable and simply giving an inherited variable a particular value. If a
variable of the same name is declared in a child class, it is called a shadow variable. It is
similar in concept to the process of overriding methods but creates confusing subtleties.

//**
// Advice.java Author: Lewis/Loftus
//
// Represents some thoughtful advice. Used to demonstrate the use
// of an overridden method.
//**

public class Advice extends Thought
{
 //---
 // Prints a message. This method overrides the parent's version.
 //---
 public void message()
 {
 System.out.println ("Warning: Dates in calendar are closer " +
 "than they appear.");

 System.out.println();

 super.message(); // explicitly invokes the parent's version
 }
}

L I S T I N G 9 . 9

458 CHAPTER 9 Inheritance

 Because an inherited variable is already available to the child class, there is
usually no good reason to redeclare it. Someone reading code with a shadowed
variable will find two different declarations that seem to apply to a variable used
in the child class. This confusion causes problems and serves no useful purpose.
A redeclaration of a particular variable name could change its type, but that is
usually unnecessary. In general, shadowing variables should be avoided.

 SELF-REVIEW QUESTIONS (see answers in Appendix N)

 SR 9.8 Why would a child class override one or more of the methods of its
parent class?

 SR 9.9 True or False? Explain.

 a. A child class may define a method with the same name as a
method in the parent class.

 b. A child class can override the constructor of the parent class.
 c. A child class can override a final method of the parent class.
 d. It is considered poor design when a child class overrides a method

from the parent class.
 e. A child class may define a variable with the same name as a vari-

able in the parent class.

 9.3 Class Hierarchies

 A child class derived from one parent can be the parent of its own
child class. Furthermore, multiple classes can be derived from a
single parent. Therefore, inheritance relationships often develop
into class hierarchies. The diagram in Figure 9.3 shows a class

Animal

ParrotSnake Lizard Horse Bat

BirdReptile Mammal

 FIGURE 9.3 A UML class diagram showing a class hierarchy

 KEY CONCEPT
 The child of one class can be the
parent of one or more other classes,
creating a class hierarchy.

9.3 Class Hierarchies 459

hierarchy that includes the inheritance relationship between the Mammal and
Horse classes.

 There is no limit to the number of children a class can have or to the number
of levels to which a class hierarchy can extend. Two children of the same parent
are called siblings. Although siblings share the characteristics passed on by their
common parent, they are not related by inheritance, because one is not used to
derive the other.

 In class hierarchies, common features should be kept as high in the hierarchy
as reasonably possible. That way, the only characteristics explicitly established
in a child class are those that make the class distinct from its parent and from its
siblings. This approach maximizes the potential to reuse classes. It also facilitates
maintenance activities, because when changes are made to the parent, they are
automatically reflected in the descendents. Always remember to maintain the is-a
relationship when building class hierarchies.

 The inheritance mechanism is transitive. That is, a parent passes
along a trait to a child class, and that child class passes it along to
its children, and so on. An inherited feature might have originated
in the immediate parent or possibly several levels higher in a more
distant ancestor class.

 There is no single best hierarchy organization for all situations. The deci-
sions you make when you are designing a class hierarchy restrict and guide
more detailed design decisions and implementation options, so you must make
them carefully.

 Earlier in this chapter we discussed a class hierarchy that organized animals
by their major biological classifications, such as Mammal , Bird , and Reptile .
However, in a different situation, the same animals might logically be organized
in a different way. For example, as shown in Figure 9.4 , the class hierarchy might
be organized around a function of the animals, such as their ability to fly. In this
case, a Parrot class and a Bat class would be siblings derived from a general
 FlyingAnimal class. This class hierarchy is as valid and reasonable as the original
one. The needs of the programs that use the classes will determine which is best
for the particular situation.

 KEY CONCEPT
 Common features should be located
as high in a class hierarchy as is rea-
sonably possible.

Parrot

FlyingAnimal

Bat Mosquito

 FIGURE 9.4 An alternative hierarchy for organizing animals

460 CHAPTER 9 Inheritance

 The Object Class
 In Java, all classes are derived ultimately from the Object class. If a class defi-
nition doesn’t use the extends clause to derive itself explicitly from another
class, then that class is automatically derived from the Object class by default.
Therefore, the following two class definitions are equivalent:

class Thing
 {
 // whatever
 }

 and

class Thing extends Object
 {
 // whatever
 }

 Because all classes are derived from Object , all public methods of
 Object are inherited by every Java class. They can be invoked through
any object created in any Java program. The Object class is defined in
the java.lang package of the Java standard class library. Figure 9.5
lists some of the methods of the Object class.

 As it turns out, we’ve been using Object methods quite often in our exam-
ples. The toString method, for instance, is defined in the Object class, so the
 toString method can be called on any object. As we’ve seen several times, when

a println method is called with an object parameter, toString is
called to determine what to print.

 Therefore, when we define a toString method in a class, we are
actually overriding an inherited definition. The definition for toString
that is provided by the Object class returns a string containing the

boolean equals (Object obj)
 Returns true if this object is an alias of the specified object.

String toString ()
 Returns a string representation of this object.

Object clone ()
 Creates and returns a copy of this object.

 FIGURE 9.5 Some methods of the Object class

 KEY CONCEPT
 All Java classes are derived, directly
or indirectly, from the Object class.

 KEY CONCEPT
 The toString and equals methods
are inherited by every class in every
Java program.

9.3 Class Hierarchies 461

object’s class name followed by a numeric value that is unique for that object. Usually,
we override the Object version of toString to fit our own needs. The String class
has overridden the toString method so that it returns its stored string value.

 We are also overriding an inherited method when we define an equals method
for a class. As we’ve discussed previously, the purpose of the equals method is
to determine whether two objects are equal. The definition of the equals method
provided by the Object class returns true if the two object references actually refer
to the same object (that is, if they are aliases). Classes often override the inherited
definition of the equals method in favor of a more appropriate definition. For
instance, the String class overrides equals so that it returns true only if both
strings contain the same characters in the same order.

 Abstract Classes
 An abstract class represents a generic concept in a class hierarchy. An abstract
class cannot be instantiated and usually contains one or more abstract methods ,
which have no definition. We’ve discussed abstract methods in Chapter 7 when
they are used to define a Java interface. An abstract class is similar to an interface
in some ways. However, unlike interfaces, an abstract class can contain methods
that are not abstract. It can also contain data declarations other than constants.

 A class is declared as abstract by including the abstract modi-
fier in the class header. Any class that contains one or more abstract
methods must be declared as abstract. In abstract classes (unlike
interfaces), the abstract modifier must be applied to each abstract
method. A class declared as abstract does not have to contain
abstract methods.

 Abstract classes serve as placeholders in a class hierarchy. As the name implies,
an abstract class represents an abstract entity that is usually insufficiently defined
to be useful by itself. Instead, an abstract class may contain a partial description
that is inherited by all of its descendants in the class hierarchy. Its children, which
are more specific, fill in the gaps.

 Consider the class hierarchy shown in Figure 9.6 . The Vehicle class at the top
of the hierarchy may be too generic for a particular application. Therefore we
may choose to implement it as an abstract class. In UML diagrams, abstract class
names are shown in italic.

 Concepts that apply to all vehicles can be represented in the Vehicle class and
are inherited by its descendants. That way, each of its descendants doesn’t have to
define the same concept redundantly (and perhaps inconsistently). For example,
we may say that all vehicles have a particular speed. Therefore we declare a speed
variable in the Vehicle class, and all specific vehicles below it in the hierarchy

 Example using a class
hierarchy.

VideoNote

 KEY CONCEPT

 An abstract class cannot be instanti-
ated. It represents a concept on
which other classes can build their
definitions.

462 CHAPTER 9 Inheritance

automatically have that variable because of inheritance. Any change we make to the
representation of the speed of a vehicle is automatically reflected in all descendant
classes. Similarly, we may declare an abstract method called fuelConsumption ,
whose purpose is to calculate how quickly fuel is being consumed by a particular
vehicle. The details of the fuelConsumption method must be defined by each type of
vehicle, but the Vehicle class establishes that all vehicles consume fuel and provides
a consistent way to compute that value.

 Some concepts don’t apply to all vehicles, so we wouldn’t represent those
concepts at the Vehicle level. For instance, we wouldn’t include a variable called
 numberOfWheels in the Vehicle class, because not all vehicles have wheels. The
child classes for which wheels are appropriate can add that concept at the appro-
priate level in the hierarchy.

 There are no restrictions as to where in a class hierarchy an abstract class
can be defined. Usually they are located at the upper levels of a class hierarchy.
However, it is possible to derive an abstract class from a nonabstract parent.

 Usually, a child of an abstract class will provide a specific definition for an
abstract method inherited from its parent. Note that this is just a specific case of

overriding a method, giving a different definition than the one the
parent provides. If a child of an abstract class does not give a defini-
tion for every abstract method that it inherits from its parent, then
the child class is also considered abstract.

 Note that it would be a contradiction for an abstract method to
be modified as final or static . Because a final method cannot be
overridden in subclasses, an abstract final method would have no

way of being given a definition in subclasses. A static method can be invoked
using the class name without declaring an object of the class. Because abstract
methods have no implementation, an abstract static method would make no sense.

 Choosing which classes and methods to make abstract is an important part
of the design process. You should make such choices only after careful consider-
ation. By using abstract classes wisely, you can create flexible, extensible software
designs.

Car

Vehicle

Boat Plane

 FIGURE 9.6 A vehicle class hierarchy

 KEY CONCEPT
 A class derived from an abstract par-
ent must override all of its parent’s
abstract methods, or the derived class
will also be considered abstract.

9.4 Visibility 463

 Interface Hierarchies
 The concept of inheritance can be applied to interfaces as well as
classes. That is, one interface can be derived from another interface.
These relationships can form an interface hierarchy, which is similar
to a class hierarchy. Inheritance relationships between interfaces are
shown in UML diagrams using the same connection (an arrow with
an open arrowhead) as they are with classes.

 When a parent interface is used to derive a child interface, the child inherits
all abstract methods and constants of the parent. Any class that implements the
child interface must implement all of the methods. There are no visibility issues
when dealing with inheritance between interfaces (as there are with protected and
private members of a class), because all members of an interface are public.

 Class hierarchies and interface hierarchies do not overlap. That is, an interface
cannot be used to derive a class, and a class cannot be used to derive an interface.
A class and an interface interact only when a class is designed to implement a
particular interface.

 SELF-REVIEW QUESTIONS (see answers in Appendix N)

 SR 9.10 Draw a UML class diagram showing an inheritance hierarchy contain-
ing classes that represent different types of food. Show some appropri-
ate variables and method names for at least two of these classes.

 SR 9.11 What is the significance of the Object class?

 SR 9.12 Which is the only Java class that does not have a parent class?
Explain.

 SR 9.13 What is the role of an abstract class?

 SR 9.14 Why is it a contradiction to define a final , abstract class?

SR 9.15 What is an interface hierarchy?

9.4 Visibility

 As we discussed earlier in this chapter, all variables and methods,
even private members, that are defined in a parent class are inher-
ited by a child class. They exist for an object of a derived class, even
though they can’t be referenced directly. They can, however, be
referenced indirectly.

 Let’s look at an example that demonstrates this situation. The
program shown in Listing 9.10 contains a main method that instantiates a Pizza

 KEY CONCEPT
 Inheritance can be applied to inter-
faces so that one interface can be
derived from another.

 KEY CONCEPT
 Private members are inherited by the
child class, but cannot be referenced
directly by name. They may be used
indirectly, however.

464 CHAPTER 9 Inheritance

object and invokes a method to determine how many calories the pizza has per
serving due to its fat content.

The FoodItem class shown in Listing 9.11 represents a generic type of food.
The constructor of FoodItem accepts the number of grams of fat and the number
of servings of that food. The calories method returns the number of calories
due to fat, which the caloriesPerServing method invokes to help compute the
number of fat calories per serving.

The Pizza class, shown in Listing 9.12, is derived from the FoodItem class,
but it adds no special functionality or data. Its constructor calls the constructor of
FoodItem using the super reference, asserting that there are eight servings per pizza.

The Pizza object called special in the main method is used to invoke the
method caloriesPerServing, which is defined as a public method of FoodItem.
Note that caloriesPerServing calls calories, which is declared with private vis-
ibility. Furthermore, calories references the variable fatGrams and the constant
CALORIES_PER_GRAM, which are also declared with private visibility.

//**
// FoodAnalyzer.java Author: Lewis/Loftus
//
// Demonstrates indirect access to inherited private members.
//**

public class FoodAnalyzer
{
 //---
 // Instantiates a Pizza object and prints its calories per
 // serving.
 //---
 public static void main (String[] args)
 {
 Pizza special = new Pizza (275);

 System.out.println ("Calories per serving: " +
 special.caloriesPerServing());
 }
}

O U T P U T

Calories per serving: 309

L I S T I N G 9 . 1 0

 9.4 Visibility 465

//**
// FoodItem.java Author: Lewis/Loftus
//
// Represents an item of food. Used as the parent of a derived class
// to demonstrate indirect referencing.
//**

public class FoodItem
{
 final private int CALORIES_PER_GRAM = 9;
 private int fatGrams;
 protected int servings;

 //---
 // Sets up this food item with the specified number of fat grams
 // and number of servings.
 //---
 public FoodItem (int numFatGrams, int numServings)
 {
 fatGrams = numFatGrams;
 servings = numServings;
 }

 //---
 // Computes and returns the number of calories in this food item
 // due to fat.
 //---
 private int calories()
 {
 return fatGrams * CALORIES_PER_GRAM;
 }

 //---
 // Computes and returns the number of fat calories per serving.
 //---
 public int caloriesPerServing()
 {
 return (calories() / servings);
 }
}

L I S T I N G 9 . 1 1

466 CHAPTER 9 Inheritance

 Even though the Pizza class cannot explicitly reference calories , fatGrams , or
CALORIES_PER_GRAM , they are available for use indirectly when the Pizza object
needs them. A Pizza object cannot be used to invoke the calories method, but
it can call a method that can. Note that a FoodItem object was never created or
needed.

 SELF-REVIEW QUESTIONS (see answers in Appendix N)

 SR 9.16 Are all members of a parent class inherited by the child? Explain.

 SR 9.17 Could the Pizza class refer to the variable servings explicitly? What
about the calories method? Explain.

 9.5 Designing for Inheritance

 As a major characteristic of object-oriented software, inheritance
must be carefully and specifically addressed during software design.
A little thought about inheritance relationships can lead to a far
more elegant design, which pays huge dividends in the long term.

 KEY CONCEPT
 Software design must carefully and
specifically address inheritance.

//**
// Pizza.java Author: Lewis/Loftus
//
// Represents a pizza, which is a food item. Used to demonstrate
// indirect referencing through inheritance.
//**

public class Pizza extends FoodItem
 {
 //---
 // Sets up a pizza with the specified amount of fat (assumes
 // eight servings).
 //---
 public Pizza (int fatGrams)
 {
 super (fatGrams, 8);
 }
 }

 L I S T I N G 9 . 1 2

9.5 Designing for Inheritance 467

 Throughout this chapter, several design issues have been addressed in the discussion
of the nuts and bolts of inheritance in Java. The following list summarizes some of
the inheritance issues that you should keep in mind during the program design stage:

■ Every derivation should be an is-a relationship. The child should be a more
specific version of the parent.

■ Design a class hierarchy to capitalize on reuse, and potential reuse in the
future.

■ As classes and objects are identified in the problem domain, find their
commonality. Push common features as high in the class hierarchy as
appropriate for consistency and ease of maintenance.

■ Override methods as appropriate to tailor or change the functionality of a
child.

■ Add new variables to the child class as needed, but don’t shadow (redefine)
any inherited variables.

■ Allow each class to manage its own data. Therefore use the super refer-
ence to invoke a parent’s constructor and to call overridden versions of
methods if appropriate.

■ Use interfaces to create a class that serves multiple roles (simulating mul-
tiple inheritance).

■ Design a class hierarchy to fit the needs of the application, with attention
to how it may be useful in the future.

■ Even if there are no current uses for them, override general methods such
as toString and equals appropriately in child classes so that the inherited
versions don’t cause unintentional problems later.

■ Use abstract classes to specify a common class interface for the concrete
classes lower in the hierarchy.

■ Use visibility modifiers carefully to provide the needed access in derived
classes without violating encapsulation.

 Restricting Inheritance
 We’ve seen the final modifier used in declarations to create constants many
times. The other uses of the final modifier involve inheritance and can have a
significant influence on software design. Specifically, the final modifier can be
used to curtail the abilities related to inheritance.

 Earlier in this chapter we mentioned that a method can be declared
as final , which means it cannot be overridden in any classes that
extend the one it is in. A final method is often used to insist that
particular functionality be used in all child classes.

 KEY CONCEPT
 The final modifier can be used to
restrict inheritance.

468 CHAPTER 9 Inheritance

 The final modifier can also be applied to an entire class. A final class cannot
be extended at all. Consider the following declaration:

public final class Standards
 {
 // whatever
 }

 Given this declaration, the Standards class cannot be used in the extends
clause of another class. The compiler will generate an error message in such a
case. The Standards class can be used normally, but it cannot be the parent of
another class.

 Using the final modifier to restrict inheritance abilities is a key design decision. It
should be done in situations in which a child class could possibly be used to change
functionality that you, as the designer, specifically want to be handled a certain way.
This issue comes up again in the discussion of polymorphism in Chapter 10 .

 SELF-REVIEW QUESTIONS (see answers in Appendix N)

 SR 9.18 What does it mean for an inheritance derivation to represent an is-a
relationship?

 SR 9.19 Where should common features of classes appear in a class hierarchy?
Why?

 SR 9.20 How can you define a class with multiple roles?

 SR 9.21 Why should you override the toString method of a parent in its child
class, even when the method is not invoked through the child by your
current applications?

 SR 9.22 How can the final modifier be used to restrict inheritance? Why
would you do this?

 9.6 The Component Class Hierarchy

 All of the Java classes that define GUI components are part
of a class hierarchy, shown in part in Figure 9.7 . Almost all
Swing GUI components are derived from the JComponent
class, which defines how all components work in general.
 JComponent is derived from the Container class, which in
turn is derived from the Component class.

 You’ll recall that there are two primary GUI APIs used in Java: the Abstract
Windowing Toolkit (AWT) and the Swing classes. The AWT is the original set of

 KEY CONCEPT
 The classes that represent Java GUI
components are organized into a
class hierarchy.

graphics classes in Java. Swing classes were introduced later, adding components
that provided much more functionality than their AWT counterparts. We use
Swing components in our examples in this book. In the component class hierar-
chy, some Swing classes are ultimately derived from AWT classes.

Both Container and Component are original AWT classes. The Component class
contains much of the general functionality that applies to all GUI components,
such as basic painting and event handling. So although we may prefer to use
some of the specific Swing components, they are based on core AWT concepts
and respond to the same events as AWT components. Because they are derived
from Container, many Swing components can serve as containers, though in most
circumstances those abilities are curtailed. For example, we’ve seen that a JLabel
object can contain an image, but it cannot be used as a generic container to which
any component can be added.

Many features that apply to all Swing components are defined in the
JComponent class and are inherited into its descendants. For example, we have the

Component

JComponent

JPanel AbstractButton JLabel JTextComponent

JTextField
JButton JToggleButton

JCheckBox JRadioButton

Container

FIGURE 9.7 Part of the GUI component class hierarchy

 9.6 The Component Class Hierarchy 469

ability to put a border on any Swing component (as we saw in Chapter 6). This
ability is defined once in the JComponent class and is inherited by any class that is
derived, directly or indirectly, from it.

Some component classes, such as JPanel and JLabel, are derived directly from
JComponent. Other component classes are nested further down in the inheritance
hierarchy structure. For example, the AbstractButton class is an abstract class
that defines the functionality that applies to all types of GUI buttons. JButton is
derived directly from it. However, note that JCheckBox and JRadioButton are
both derived from a class called JToggleButton, which embodies the common
characteristics for buttons that can be in one of two states. The set of classes that
define GUI buttons shows once again how common characteristics are put at
appropriately high levels of the class hierarchy rather than duplicated in multiple
classes.

The world of text components demonstrates this as well. The JTextField class
that we’ve used in previous examples is one of many Java GUI components that
support the management of text data. They are organized under a class called
JTextComponent. Keep in mind that there are many GUI component classes that
are not shown in the diagram in Figure 9.7.

In previous chapters we’ve extended the component class hierarchy further by
defining panel and applet classes of our own using inheritance. By extending the
JPanel or JApplet class, we create our own classes that automatically have all the
characteristics of those components. Sometimes we then overrode the definition
of a method, such as the paintComponent method, to behave in a particular way.

Creating our own panel and applet classes is a classic use of inheritance,
allowing the parent class to shoulder the responsibilities that apply to all of its
descendants. For example, the JApplet class is already designed to handle all of
the details concerning applet creation and execution. An applet interacts with a
browser, can accept parameters through HTML code, and is constrained by cer-
tain security limitations. The JApplet class already takes care of these details in
a generic way that applies to all applets. The applet class that we write (the one
derived from JApplet) is ready to focus on the purpose of that particular pro-
gram. In other words, the only issues that we address in our applet code are those
that make it different from other applets.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 9.23 True or False, based on the GUI component class hierarchy diagram
displayed in this section.

a. A JCheckBox object is a JToggleButton.
b. A JCheckBox object is an AbstractButton.
c. A JTextField object is a JLabel.

470 CHAPTER 9 Inheritance

 d. A JComponent object is a JPanel .
 e. A JToggleButton object is a JButton .
 f. A JRadioButton is a Component .

SR 9.24 What benefits do you derive by having your applet class extend the
Java library’s JApplet class?

9.7 Extending Adapter Classes

 In previous event-based examples, we’ve created the listener classes by imple-
menting a particular listener interface. For instance, to create a class that listens
for mouse events, we created a listener class that implements the MouseListener
interface. As we saw in the Dots and RubberLines programs in Chapter 8 , a
listener interface often contains event methods that are not
important to a particular program, in which case we pro-
vided empty definitions to satisfy the interface requirement.

 An alternative technique for creating a listener class is to
extend an event adapter class. Each listener interface that con-
tains more than one method has a corresponding adapter class
that already contains empty definitions for all of the methods in
the interface. To create a listener, we can derive a new listener class from the appro-
priate adapter class and override any event methods in which we are interested. Using
this technique, we no longer need to provide empty definitions for unused methods.

 The program shown in Listing 9.13 displays a panel that responds to mouse
click events. Whenever the mouse button is clicked over the panel, a line is drawn
from the location of the mouse pointer to the center of the panel. The distance
that line represents in pixels is displayed.

 The listener class is implemented as an inner class of the OffCenterPanel
class, shown in Listing 9.14 . Instead of implementing the MouseListener inter-
face directly as we have done in previous examples, this listener extends the
MouseAdapter class, which is defined in the java.awt.event package of the Java
standard class library. The MouseAdapter class implements the MouseListener
interface and contains empty definitions for all of the mouse event methods. In
our listener class, we override the definition of the mouseClicked method to suit
our needs. Because we inherit the other empty methods corresponding to the rest
of the mouse events, we don’t have to provide our own empty definitions.

 Because of inheritance, we now have a choice when it comes to creating event
listeners. We can implement an event listener interface, or we can extend an event
adapter class. This is a design decision that should be considered carefully. The
best technique depends on the situation.

 KEY CONCEPT
 A listener class can be created by
deriving it from an event adapter
class.

9.7 Extending Adapter Classes 471

//**
// OffCenter.java Author: Lewis/Loftus
//
// Demonstrates the use of an event adapter class.
//**

import javax.swing.*;

public class OffCenter
{
 //---
 // Creates the main frame of the program.
 //---
 public static void main (String[] args)
 {
 JFrame frame = new JFrame ("Off Center");
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

 frame.getContentPane().add(new OffCenterPanel());
 frame.pack();
 frame.setVisible(true);
 }
}

D I S P L A Y

L I S T I N G 9 . 1 3

472 CHAPTER 9 Inheritance

//**
// OffCenterPanel.java Author: Lewis/Loftus
//
// Represents the primary drawing panel for the OffCenter program.
//**

import java.awt.*;
import java.awt.event.*;
import java.text.DecimalFormat;
import javax.swing.*;

public class OffCenterPanel extends JPanel
{
 private final int WIDTH=300, HEIGHT=300;

 private DecimalFormat fmt;
 private Point current;
 private int centerX, centerY;
 private double length;

 //---
 // Constructor: Sets up the panel and necessary data.
 //---
 public OffCenterPanel()
 {
 addMouseListener (new OffCenterListener());

 centerX = WIDTH / 2;
 centerY = HEIGHT / 2;

 fmt = new DecimalFormat ("0.##");

 setPreferredSize (new Dimension(WIDTH, HEIGHT));
 setBackground (Color.yellow);
 }

 //---
 // Draws a line from the mouse pointer to the center point of
 // the panel and displays the distance.
 //---
 public void paintComponent (Graphics page)
 {
 super.paintComponent (page);

L I S T I N G 9 . 1 4

 9.7 Extending Adapter Classes 473

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 9.25 What is an adapter class?

SR 9.26 Is an OffCenterPanel object a JPanel? Is it a JComponent? Is it a
Container? Is it an Object? Explain.

SR 9.27 In the private listener class defined for the RubberLinesPanel class in
Chapter 8, five empty mouse event methods were included. Why are
there no such methods included for the private OffCenterListener
class defined in this section?

 page.setColor (Color.black);
 page.drawOval (centerX-3, centerY-3, 6, 6);

 if (current != null)
 {
 page.drawLine (current.x, current.y, centerX, centerY);
 page.drawString ("Distance: " + fmt.format(length), 10, 15);
 }
 }

 //***
 // Represents the listener for mouse events. Demonstrates the
 // ability to extend an adapter class.
 //***
 private class OffCenterListener extends MouseAdapter
 {
 //--
 // Computes the distance from the mouse pointer to the center
 // point of the applet.
 //--
 public void mouseClicked (MouseEvent event)
 {
 current = event.getPoint();
 length = Math.sqrt(Math.pow((current.x-centerX), 2) +
 Math.pow((current.y-centerY), 2));
 repaint();
 }
 }
}

L I S T I N G 9 . 1 4 continued

474 CHAPTER 9 Inheritance

9.8 The Timer Class

 A timer object, created from the Timer class of the javax.
swing package, can be thought of as a GUI component.
However, unlike other components, it does not have a visual
representation that appears on the screen. Instead, as the
name implies, it helps us manage an activity over time.

 A timer object generates an action event at regular inter-
vals. To perform an animation, we set up a timer to generate an action event peri-
odically, then update the animation graphics in the action listener. The methods
of the Timer class are shown in Figure 9.8 .

 The program shown in Listing 9.15 displays the image of a smiling face that
seems to glide across the program window at an angle, bouncing off of the win-
dow edges.

 The constructor of the ReboundPanel class, shown in Listing 9.16 , creates a
Timer object. The first parameter to the Timer constructor is the delay in milli-
seconds. The second parameter to the constructor is the listener that handles the
action events of the timer. The constructor also sets up the initial position for the
image and the number of pixels it will move, in both the vertical and horizontal
directions, each time the image is redrawn.

Timer (int delay, ActionListener listener)
 Constructor: Creates a timer that generates an action event at
 regular intervals, specified by the delay. The event will be handled
 by the specified listener.

void addActionListener (ActionListener listener)
 Adds an action listener to the timer.

boolean isRunning ()
 Returns true if the timer is running.

void setDelay (int delay)
 Sets the delay of the timer.

void start ()
 Starts the timer, causing it to generate action events.

void stop ()
 Stops the timer, causing it to stop generating action events.

 FIGURE 9.8 Some methods of the Timer class

 KEY CONCEPT
 A Timer object generates action
events at regular intervals and can
be used to control an animation.

VideoNote

 Example using the
 Timer class.

9.8 The Timer Class 475

476 CHAPTER 9 Inheritance

//**
// Rebound.java Author: Lewis/Loftus
//
// Demonstrates an animation and the use of the Timer class.
//**

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Rebound
{
 //---
 // Displays the main frame of the program.
 //---
 public static void main (String[] args)
 {
 JFrame frame = new JFrame ("Rebound");
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

 frame.getContentPane().add(new ReboundPanel());
 frame.pack();
 frame.setVisible(true);
 }
}

D I S P L A Y

L I S T I N G 9 . 1 5

//**
// ReboundPanel.java Author: Lewis/Loftus
//
// Represents the primary panel for the Rebound program.
//**

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class ReboundPanel extends JPanel
{
 private final int WIDTH = 300, HEIGHT = 100;
 private final int DELAY = 20, IMAGE_SIZE = 35;

 private ImageIcon image;
 private Timer timer;
 private int x, y, moveX, moveY;

 //---
 // Sets up the panel, including the timer for the animation.
 //---
 public ReboundPanel()
 {
 timer = new Timer(DELAY, new ReboundListener());

 image = new ImageIcon ("happyFace.gif");

 x = 0;
 y = 40;
 moveX = moveY = 3;

 setPreferredSize (new Dimension(WIDTH, HEIGHT));
 setBackground (Color.black);
 timer.start();
 }

 //---
 // Draws the image in the current location.
 //---
 public void paintComponent (Graphics page)
 {
 super.paintComponent (page);
 image.paintIcon (this, page, x, y);
 }

L I S T I N G 9 . 1 6

 9.8 The Timer Class 477

The actionPerformed method of the listener updates the current x and y coor-
dinate values, then checks to see if those values cause the image to “run into” the
edge of the panel. If so, the movement is adjusted so that the image will make
future moves in the opposite direction horizontally, vertically, or both. Note that
this calculation takes the image size into account.

The speed of the animation in this program is a function of two factors: the
pause between the action events and the distance the image is shifted each time.
In this example, the timer is set to generate an action event every 20 milliseconds,
and the image is shifted 3 pixels each time it is updated. You can experiment with
these values to change the speed of the animation. The goal should be to create
the illusion of movement that is pleasing to the eye.

 //***
 // Represents the action listener for the timer.
 //***
 private class ReboundListener implements ActionListener
 {
 //--
 // Updates the position of the image and possibly the direction
 // of movement whenever the timer fires an action event.
 //--
 public void actionPerformed (ActionEvent event)
 {
 x += moveX;
 y += moveY;

 if (x <= 0 || x >= WIDTH-IMAGE_SIZE)
 moveX = moveX * -1;

 if (y <= 0 || y <= HEIGHT-IMAGE_SIZE)
 moveY = moveY * -1;

 repaint();
 }
 }
}

L I S T I N G 9 . 1 6 continued

478 CHAPTER 9 Inheritance

 9.8 The Timer Class 479

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 9.28 What does a Timer object do?

SR 9.29 List each of the Timer methods used in the Rebound program, and
describe how they are used.

SR 9.30 Describe how you would change the ReboundPanel class to provide
each of the following changes to the Rebound program:

a. The smiling face moves faster.
b. The smiling face moves slower.
c. A different image bounces around.
d. Larger “jumps” are made by the smiling face.
e. Each time the smiling face “hits” a window edge it speeds up.

480 CHAPTER 9 Inheritance

Summary of Key Concepts
■ Inheritance is the process of deriving a new class from an existing one.

■ One purpose of inheritance is to reuse existing software.

■ Inheritance creates an is-a relationship between the parent and child
classes.

■ Protected visibility provides the best possible encapsulation that permits
inheritance.

■ A parent’s constructor can be invoked using the super reference.

■ A child class can override (redefine) the parent’s definition of an inherited
method.

■ The child of one class can be the parent of one or more other classes, cre-
ating a class hierarchy.

■ Common features should be located as high in a class hierarchy as is rea-
sonably possible.

■ All Java classes are derived, directly or indirectly, from the Object class.

■ The toString and equals methods are inherited by every class in every
Java program.

■ An abstract class cannot be instantiated. It represents a concept on which
other classes can build their definitions.

■ A class derived from an abstract parent must override all of its parent’s
abstract methods, or the derived class will also be considered abstract.

■ Inheritance can be applied to interfaces so that one interface can be
derived from another.

■ Private members are inherited by the child class, but cannot be referenced
directly by name. They may be used indirectly, however.

■ Software design must carefully and specifically address inheritance.

■ The final modifier can be used to restrict inheritance.

■ The classes that represent Java GUI components are organized into a class
hierarchy.

■ A listener class can be created by deriving it from an event adapter class.

■ A Timer object generates action events at regular intervals and can be used
to control an animation.

 Exercises 481

Exercises
Visit www.myprogramminglab.com to complete many of these Exercises
online and get instant feedback.

EX 9.1 Draw a UML class diagram showing an inheritance hierarchy
containing classes that represent different types of clocks. Show
the variables and method names for two of these classes.

EX 9.2 Show an alternative diagram for the hierarchy in Exercise 9.1.
Explain why it may be a better or worse approach than the
original.

EX 9.3 Draw a UML class diagram showing an inheritance hierarchy
containing classes that represent different types of cars, organized
first by manufacturer. Show some appropriate variables and
method names for at least two of these classes.

EX 9.4 Show an alternative diagram for the hierarchy in Exercise 9.3
in which the cars are organized first by type (sports car, sedan,
SUV, etc.). Show some appropriate variables and method names
for at least two of these classes. Compare and contrast the two
approaches.

EX 9.5 Draw a UML class diagram showing an inheritance hierarchy
containing classes that represent different types of airplanes.
Show some appropriate variables and method names for at least
two of these classes.

EX 9.6 Draw a UML class diagram showing an inheritance hierarchy
containing classes that represent different types of trees (oak,
elm, etc.). Show some appropriate variables and method names
for at least two of these classes.

EX 9.7 Draw a UML class diagram showing an inheritance hierarchy
containing classes that represent different types of payment trans-
actions at a store (cash, credit card, etc). Show some appropriate
variables and method names for at least two of these classes.

EX 9.8 Experiment with a simple derivation relationship between two
classes. Put println statements in constructors of both the par-
ent and child classes. Do not explicitly call the constructor of
the parent in the child. What happens? Why? Change the child’s
constructor to explicitly call the constructor of the parent. Now
what happens?

www.myprogramminglab.com

Programming Projects
Visit www.myprogramminglab.com to complete many of these Programming
Projects online and get instant feedback.

PP 9.1 Design and implement a class called MonetaryCoin that is
derived from the Coin class presented in Chapter 5. Store an
integer in the MonetaryCoin that represents its value and add
a method that returns its value. Create a main driver class
to instantiate and compute the sum of several MonetaryCoin
objects. Demonstrate that a monetary coin inherits its parent’s
ability to be flipped.

PP 9.2 Design and implement a set of classes that define the employees
of a hospital: doctor, nurse, administrator, surgeon, receptionist,
janitor, and so on. Include methods in each class that are named
according to the services provided by that person and that print
an appropriate message. Create a main driver class to instantiate
and exercise several of the classes.

PP 9.3 Design and implement a set of classes that define various types
of reading material: books, novels, magazines, technical jour-
nals, textbooks, and so on. Include data values that describe
various attributes of the material, such as the number of pages
and the names of the primary characters. Include methods
that are named appropriately for each class and that print an
appropriate message. Create a main driver class to instantiate
and exercise several of the classes.

PP 9.4 Design and implement a set of classes that keeps track of
various sports statistics. Have each low-level class represent
a specific sport. Tailor the services of the classes to the sport
in question, and move common attributes to the higher-level
classes as appropriate. Create a main driver class to instantiate
and exercise several of the classes.

PP 9.5 Design and implement a set of classes that keeps track of demo-
graphic information about a set of people, such as age, national-
ity, occupation, income, and so on. Design each class to focus on
a particular aspect of data collection. Create a main driver class
to instantiate and exercise several of the classes.

PP 9.6 Modify the Rebound program from this chapter such that when
the mouse button is clicked the animation stops, and when it is
clicked again the animation resumes.

482 CHAPTER 9 Inheritance

www.myprogramminglab.com

 Programming Projects 483

PP 9.7 Design and implement an application that displays an animation
of a car (side view) moving across the screen from left to right.
Create a Car class that represents the car (or use one that was
created for a programming project in Chapter 8).

PP 9.8 Design and implement an application that displays an animation
of a horizontal line segment moving across the screen, eventually
passing across a vertical line. As the vertical line is passed, the
horizontal line should change color. The change of color should
occur while the horizontal line crosses the vertical one; therefore,
while crossing, the horizontal line will be two different colors.

PP 9.9 Design and implement an application that plays a game called
Catch-the-Creature. Use an image to represent the creature. Have
the creature appear at a random location for a random dura-
tion, then disappear and reappear somewhere else. The goal is
to “catch” the creature by pressing the mouse button while the
mouse pointer is on the creature image. Create a separate class to
represent the creature, and include in it a method that determines
if the location of the mouse click corresponds to the current loca-
tion of the creature. Display a count of the number of times the
creature is caught.

PP 9.10 Design and implement an application that works as a stopwatch.
Include a display that shows the time (in seconds) as it incre-
ments. Include buttons that allow the user to start and stop the
time, and reset the display to zero. Arrange the components to
present a nice interface. Hint: use the Timer class to control the
timing of the stopwatch.

PP 9.11 Design and implement a set of classes that define a series of
three-dimensional geometric shapes. For each, store fundamental
data about their size and provide methods to access and modify
this data. In addition, provide appropriate methods to compute
each shape’s circumference, area, and volume. In your design,
consider how shapes are related and thus where inheritance can
be implemented. Create a main driver class to instantiate several
shapes of differing types and exercise the behavior you provided.

PP 9.12 Design and implement a set of classes that define various types
of electronics equipment (computers, cell phones, pagers, digital
cameras, etc.). Include data values that describe various attri-
butes of the electronics, such as the weight, cost, power usage,
and the names of the manufacturers. Include methods that are

Developing a solution
of PP 9.8.

VideoNote

484 CHAPTER 9 Inheritance

named appropriately for each class and that print an appropriate
message. Create a main driver class to instantiate and exercise
several of the classes.

PP 9.13 Design and implement a set of classes that define various courses
in your curriculum. Include information about each course such
as the title, number, description, and department that teaches the
course. Consider the categories of classes that constitutes your
curriculum when designing your inheritance structure. Create a
main driver class to instantiate and exercise several of the classes.

485

S O F T W A R E F A I L U R E

Ariane 5 Flight 501

What Happened?
Ariane 5 is an expendable launch system
designed by the European Space Agency
(ESA) to deliver payloads into earth
orbit. On June 4, 1996, the first flight
of the rocket (Flight 501) exploded 37
seconds after liftoff.

The control system had malfunctioned,
causing the rocket to veer off course.
Strong aerodynamic forces caused the
main portion of the rocket to break
apart. An on-board monitor detected
the break up and initiated an automatic
destruct system to destroy the vehicle in
the air.

Flight 501 was carrying four unmanned
spacecraft designed to study the magnetic
field of the Earth. The rocket’s destruction resulted in a complete loss of the pay-
load at an estimated cost of $370 million.

What Caused It?
The Ariane 5 rocket reused some of the software that was used to control its
predecessor, the Ariane 4. That software contained a segment for converting a
floating-point number to a signed 16-bit integer. On Flight 501, this value was
outside of the range that a 16-bit integer could represent, causing an overflow
error. In the Ariane 4, the converted value had always been small enough to avoid
this problem.

The overflow error would have been caught by an exception handler, but that
part of the system had been disabled for efficiency reasons. The error occurred
almost simultaneously in both the main and backup computers, causing them to
shut down. This led to the rocket veering off course and its destruction.

Lessons Learned
The success of the Ariane 4 gave the designers of the Ariane 5 confidence in the
software. Therefore, minimal testing was done for some parts of the system. The
potential problem had always existed in the previous system, but the data (which
represented a measurement) was always small. The varying parameters of the new
system were not taken into account. So while the root cause was a software bug,

■ The first flight of
the Ariane 5 rocket
exploded shortly
after liftoff.

the failure resulted from changes in the dynamics of the system and its environ-
ment. It is a failure of design and testing---more so than a software bug.

Better reactions to such a problem would have been helpful as well. The exception
handling system, if left in place, could have handled the problem more gracefully,
rather than simply shutting down the control computer. Ironically, in this case,
the measurement in question wasn’t even needed after liftoff.

Sources: IEEE Software, cnn.com

486 Software Failure

487

C H A P T E R O B J E C T I V E S
● Define polymorphism and explore its benefits.

● Discuss the concept of dynamic binding.

● Use inheritance relationships to create polymorphic references.

● Use interfaces to create polymorphic references.

● Explore sorting and searching using polymorphic implementations.

● Discuss object-oriented design in the context of polymorphism.

● Discuss the processing of events as an example of polymorphism.

● Examine more GUI components.

This chapter discusses polymorphism, another fundamental prin-

ciple of object-oriented software. We first explore the concept of

binding and discuss how it relates to polymorphism. Then we exam-

ine how polymorphic references can be accomplished using either

inheritance or interfaces. Design issues related to polymorphism are

examined. The Graphics Track of this chapter discusses how event

processing in a graphical user interface is an example of polymor-

phism. We also examine several new GUI components.

Polymorphism 10

488 CHAPTER 10 Polymorphism

10.1 Late Binding

 Often, the type of a reference variable matches the class of the object to which it
refers exactly. For example, consider the following reference:

 ChessPiece bishop;

 The bishop variable may be used to point to an object that is created by instan-
tiating the ChessPiece class. However, it doesn’t have to. The variable type and
the object it refers to must be compatible, but their types need not be exactly the
same. The relationship between a reference variable and the object it refers to is
more flexible than that.

 The term polymorphism can be defined as “having many forms.”
A polymorphic reference is a reference variable that can refer to
different types of objects at different points in time. The specific
method invoked through a polymorphic reference can change from
one invocation to the next.

 Consider the following line of code:

 obj.doIt();

 If the reference obj is polymorphic, it can refer to different types of objects at
different times. So if that line of code is in a loop, or if it’s in a method that is
called more than once, that line of code could call a different version of the doIt
method each time it is invoked.

 At some point, the commitment is made to execute certain code to carry
out a method invocation. This commitment is referred to as binding a method
invocation to a method definition. In many situations, the binding of a method
invocation to a method definition can occur at compile time. For polymor-
phic references, however, the decision cannot be made until run time. The
method definition that is used is based on the object that is being referred to

by the reference variable at that moment. This deferred commit-
ment is called late binding or dynamic binding. It is less efficient
than binding at compile time, because the decision must be made
during the execution of the program. This overhead is generally
acceptable in light of the flexibility that a polymorphic reference
provides.

 We can create a polymorphic reference in Java in two ways: using inheritance
and using interfaces. Let’s look at each in turn.

 KEY CONCEPT
 A polymorphic reference can refer to
different types of objects over time.

 KEY CONCEPT
 The binding of a method invocation
to its definition is performed at run
time for a polymorphic reference.

10.2 Polymorphism via Inheritance 489

 SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 10.1 What is polymorphism?

SR 10.2 Why is compile time binding considered more efficient than dynamic
binding?

10.2 Polymorphism via Inheritance

 When we declare a reference variable using a particular class name, it can be used
to refer to any object of that class. In addition, it can also refer to any object of
any class that is related to its declared type by inheritance. For example, if the
class Mammal is the parent of the class Horse , then a Mammal reference
can be used to refer to any object of class Horse . This ability is shown
in the following code segment:

 Mammal pet;
 Horse secretariat = new Horse();
 pet = secretariat; // a valid assignment

 The reverse operation, assigning the Mammal object to a Horse reference, can
also be done but it requires an explicit cast. Assigning a reference in this direc-
tion is generally less useful and more likely to cause problems, because although
a horse has all the functionality of a mammal (because a horse is-a mammal), the
reverse is not necessarily true.

 This relationship works throughout a class hierarchy. If the Mammal class were
derived from a class called Animal , the following assignment would also be valid:

 Animal creature = new Horse();

 Carrying this to the limit, an Object reference can be used to refer to any
object, because ultimately all classes are descendants of the Object class. An
 ArrayList , for example, uses polymorphism in that it is designed to hold
 Object references. That’s why an ArrayList that doesn’t specify an element
type can be used to store any kind of object. In fact, a particular ArrayList
can be used to hold several different types of objects at one time, because, by
inheritance, they are all Object objects.

 The reference variable creature can be polymorphic, because at
any point in time it can refer to an Animal object, a Mammal object,
or a Horse object. Suppose that all three of these classes have a
method called move that is implemented in different ways (because

 KEY CONCEPT
 A reference variable can refer to any
object created from any class related
to it by inheritance.

 KEY CONCEPT
 The type of the object, not the type
of the reference, is used to determine
which version of a method to invoke.

490 CHAPTER 10 Polymorphism

the child class overrode the definition it inherited). The following invocation calls
the move method, but the particular version of the method it calls is determined
at run time:

creature.move();

When this line is executed, if creature currently refers to an Animal object, the
move method of the Animal class is invoked. Likewise, if creature currently refers
to a Mammal object, the Mammal version of move is invoked. Likewise if it currently
refers to a Horse object.

Of course, since Animal and Mammal represent general concepts, they may be
defined as abstract classes. This situation does not eliminate the ability to have
polymorphic references. Suppose the move method in the Mammal class is abstract
and is given unique definitions in the Horse, Dog, and Whale classes (all derived
from Mammal). A Mammal reference variable can be used to refer to any objects cre-
ated from any of the Horse, Dog, and Whale classes, and can be used to execute
the move method on any of them.

Let’s look at another situation. Consider the class hierarchy shown in Figure 10.1.
The classes in it represent various types of employees that might be employed at
a particular company. Let’s explore an example that uses this hierarchy to pay a
set of employees of various types.

The Firm class shown in Listing 10.1 contains a main driver that creates a
Staff of employees and invokes the payday method to pay them all. The program
output includes information about each employee and how much each is paid (if
anything).

The Staff class shown in Listing 10.2 maintains an array of objects that repre-
sent individual employees of various kinds. Note that the array is declared to hold
StaffMember references, but it is actually filled with objects created from several
other classes, such as Executive and Employee. These classes are all descendants
of the StaffMember class, so the assignments are valid. The staffList array is
filled with polymorphic references.

The payday method of the Staff class scans through the list of employees,
printing their information and invoking their pay methods to determine how
much each employee should be paid. The invocation of the pay method is poly-
morphic, because each class has its own version of the pay method.

The StaffMember class shown in Listing 10.3 is abstract. It does not represent
a particular type of employee and is not intended to be instantiated. Rather,
it serves as the ancestor of all employee classes and contains information that
applies to all employees. Each employee has a name, address, and phone number,
so variables to store these values are declared in the StaffMember class and are
inherited by all descendants.

Exploring the Firm
program.

VideoNote

 10.2 Polymorphism via Inheritance 491

The StaffMember class contains a toString method to return the information
managed by the StaffMember class. It also contains an abstract method called
pay, which takes no parameters and returns a value of type double. At the generic
StaffMember level, it would be inappropriate to give a definition for this method.

+ main (args : String[]) : void

Firm

+ payday() : void

– staffList : StaffMember[]

Staff

+ awardBonus (execBonus : double) : void
+ pay() : double

– bonus : double

Executive

+ addHours (moreHours : int) : void
+ pay() : double
+ toString() : String

– hoursWorked : int

Hourly

+ pay() : double

Volunteer Employee

socialSecurityNumber : String
payRate : double

+ toString() : String
+ pay() : double

name : String
address : String
phone : String

+ toString() : String
+ pay() : double

StaffMember

FIGURE 10.1 A class hierarchy of employees

492 CHAPTER 10 Polymorphism

//**
// Firm.java Author: Lewis/Loftus
//
// Demonstrates polymorphism via inheritance.
//**

public class Firm
{
 //---
 // Creates a staff of employees for a firm and pays them.
 //---
 public static void main (String[] args)
 {
 Staff personnel = new Staff();

 personnel.payday();
 }
}

O U T P U T

Name: Sam
Address: 123 Main Line
Phone: 555-0469
Social Security Number: 123-45-6789
Paid: 2923.07

Name: Carla
Address: 456 Off Line
Phone: 555-0101
Social Security Number: 987-65-4321
Paid: 1246.15

Name: Woody
Address: 789 Off Rocker
Phone: 555-0000
Social Security Number: 010-20-3040
Paid: 1169.23

Name: Diane
Address: 678 Fifth Ave.
Phone: 555-0690

L I S T I N G 1 0 . 1

 10.2 Polymorphism via Inheritance 493

Social Security Number: 958-47-3625
Current hours: 40
Paid: 422.0

Name: Norm
Address: 987 Suds Blvd.
Phone: 555-8374
Thanks!

Name: Cliff
Address: 321 Duds Lane
Phone: 555-7282
Thanks!

L I S T I N G 1 0 . 1 continued

//**
// Staff.java Author: Lewis/Loftus
//
// Represents the personnel staff of a particular business.
//**

public class Staff
{
 private StaffMember[] staffList;

 //---
 // Constructor: Sets up the list of staff members.
 //---
 public Staff ()
 {
 staffList = new StaffMember[6];

 staffList[0] = new Executive ("Sam", "123 Main Line",
 "555-0469", "123-45-6789", 2423.07);

L I S T I N G 1 0 . 2

494 CHAPTER 10 Polymorphism

 staffList[1] = new Employee ("Carla", "456 Off Line",
 "555-0101", "987-65-4321", 1246.15);
 staffList[2] = new Employee ("Woody", "789 Off Rocker",
 "555-0000", "010-20-3040", 1169.23);

 staffList[3] = new Hourly ("Diane", "678 Fifth Ave.",
 "555-0690", "958-47-3625", 10.55);

 staffList[4] = new Volunteer ("Norm", "987 Suds Blvd.",
 "555-8374");
 staffList[5] = new Volunteer ("Cliff", "321 Duds Lane",
 "555-7282");

 ((Executive)staffList[0]).awardBonus (500.00);

 ((Hourly)staffList[3]).addHours (40);
 }

 //---
 // Pays all staff members.
 //---
 public void payday ()
 {
 double amount;

 for (int count=0; count < staffList.length; count++)
 {
 System.out.println (staffList[count]);

 amount = staffList[count].pay(); // polymorphic

 if (amount == 0.0)
 System.out.println ("Thanks!");
 else
 System.out.println ("Paid: " + amount);

 System.out.println ("-----------------------------------");
 }
 }
}

L I S T I N G 1 0 . 2 continued

 10.2 Polymorphism via Inheritance 495

//**
// StaffMember.java Author: Lewis/Loftus
//
// Represents a generic staff member.
//**

abstract public class StaffMember
{
 protected String name;
 protected String address;
 protected String phone;

 //---
 // Constructor: Sets up this staff member using the specified
 // information.
 //---
 public StaffMember (String eName, String eAddress, String ePhone)
 {
 name = eName;
 address = eAddress;
 phone = ePhone;
 }

 //---
 // Returns a string including the basic employee information.
 //---
 public String toString()
 {
 String result = "Name: " + name + "\n";

 result += "Address: " + address + "\n";
 result += "Phone: " + phone;

 return result;
 }

 //---
 // Derived classes must define the pay method for each type of
 // employee.
 //---
 public abstract double pay();
}

L I S T I N G 1 0 . 3

496 CHAPTER 10 Polymorphism

However, the descendants of StaffMember each provide their own specific definition
for pay. By defining pay abstractly in StaffMember, the payday method of Staff
can polymorphically pay each employee.

This is the essence of polymorphism. Each class knows best how it should
handle a specific behavior, in this case paying an employee. Yet in one sense it’s
all the same behavior—the employee is getting paid. Polymorphism lets us treat
similar objects in consistent but unique ways.

The Volunteer class shown in Listing 10.4 represents a person that is not
compensated monetarily for his or her work. We keep track only of a volunteer’s
basic information, which is passed into the constructor of Volunteer, which in
turn passes it to the StaffMember constructor using the super reference. The
pay method of Volunteer simply returns a zero pay value. If pay had not been

//**
// Volunteer.java Author: Lewis/Loftus
//
// Represents a staff member that works as a volunteer.
//**

public class Volunteer extends StaffMember
{
 //---
 // Constructor: Sets up this volunteer using the specified
 // information.
 //---
 public Volunteer (String eName, String eAddress, String ePhone)
 {
 super (eName, eAddress, ePhone);
 }

 //---
 // Returns a zero pay value for this volunteer.
 //---
 public double pay()
 {
 return 0.0;
 }
}

L I S T I N G 1 0 . 4

 10.2 Polymorphism via Inheritance 497

overridden, the Volunteer class would have been considered abstract and could
not have been instantiated.

Note that when a volunteer gets “paid” in the payday method of Staff, a
simple expression of thanks is printed. In all other situations, where the pay value
is greater than zero, the payment itself is printed.

The Employee class shown in Listing 10.5 represents an employee that gets paid
at a particular rate each pay period. The pay rate, as well as the employee’s Social
Security number, is passed along with the other basic information to the Employee
constructor. The basic information is passed to the constructor of StaffMember
using the super reference.

The toString method of Employee is overridden to concatenate the additional
information that Employee manages to the information returned by the parent’s
version of toString, which is called using the super reference. The pay method
of an Employee simply returns the pay rate for that employee.

The Executive class shown in Listing 10.6 represents an employee that may
earn a bonus in addition to his or her normal pay rate. The Executive class
is derived from Employee and therefore inherits from both StaffMember and
Employee. The constructor of Executive passes along its information to the
Employee constructor and sets the executive bonus to zero.

A bonus is awarded to an executive using the awardBonus method. This
method is called in the Staff constructor for the only executive that is part of the
staffList array. Note that the generic StaffMember reference must be cast into
an Executive reference to invoke the awardBonus method (which doesn’t exist
for a StaffMember).

The Executive class overrides the pay method so that it first determines
the payment as it would for any employee, then adds the bonus. The pay method
of the Employee class is invoked using super to obtain the normal payment
amount. This technique is better than using just the payRate variable, because
if we choose to change how Employee objects get paid, the change will auto-
matically be reflected in Executive. After the bonus is awarded, it is reset
to zero.

The Hourly class shown in Listing 10.7 represents an employee whose pay rate
is applied on an hourly basis. It keeps track of the number of hours worked in the
current pay period, which can be modified by calls to the addHours method. This
method is called from the payday method of Staff. The pay method of Hourly
determines the payment based on the number of hours worked and then resets
the hours to zero.

498 CHAPTER 10 Polymorphism

//**
// Employee.java Author: Lewis/Loftus
//
// Represents a general paid employee.
//**

public class Employee extends StaffMember
{
 protected String socialSecurityNumber;
 protected double payRate;

 //---
 // Constructor: Sets up this employee with the specified
 // information.
 //---
 public Employee (String eName, String eAddress, String ePhone,
 String socSecNumber, double rate)
 {
 super (eName, eAddress, ePhone);

 socialSecurityNumber = socSecNumber;
 payRate = rate;
 }

 //---
 // Returns information about an employee as a string.
 //---
 public String toString()
 {
 String result = super.toString();

 result += "\nSocial Security Number: " + socialSecurityNumber;

 return result;
 }

 //---
 // Returns the pay rate for this employee.
 //---
 public double pay()
 {
 return payRate;
 }
}

L I S T I N G 1 0 . 5

 10.2 Polymorphism via Inheritance 499

//**
// Executive.java Author: Lewis/Loftus
//
// Represents an executive staff member, who can earn a bonus.
//**

public class Executive extends Employee
{
 private double bonus;

 //---
 // Constructor: Sets up this executive with the specified
 // information.
 //---
 public Executive (String eName, String eAddress, String ePhone,
 String socSecNumber, double rate)
 {
 super (eName, eAddress, ePhone, socSecNumber, rate);

 bonus = 0; // bonus has yet to be awarded
 }

 //---
 // Awards the specified bonus to this executive.
 //---
 public void awardBonus (double execBonus)
 {
 bonus = execBonus;
 }

 //---
 // Computes and returns the pay for an executive, which is the
 // regular employee payment plus a one-time bonus.
 //---
 public double pay()
 {
 double payment = super.pay() + bonus;

 bonus = 0;

 return payment;
 }
}

L I S T I N G 1 0 . 6

500 CHAPTER 10 Polymorphism

//**
// Hourly.java Author: Lewis/Loftus
//
// Represents an employee that gets paid by the hour.
//**

public class Hourly extends Employee
{
 private int hoursWorked;

 //---
 // Constructor: Sets up this hourly employee using the specified
 // information.
 //---
 public Hourly (String eName, String eAddress, String ePhone,
 String socSecNumber, double rate)
 {
 super (eName, eAddress, ePhone, socSecNumber, rate);

 hoursWorked = 0;
 }

 //---
 // Adds the specified number of hours to this employee's
 // accumulated hours.
 //---
 public void addHours (int moreHours)
 {
 hoursWorked += moreHours;
 }

 //---
 // Computes and returns the pay for this hourly employee.
 //---
 public double pay()
 {
 double payment = payRate * hoursWorked;

 hoursWorked = 0;

 return payment;
 }

L I S T I N G 1 0 . 7

 10.2 Polymorphism via Inheritance 501

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 10.3 How does inheritance support polymorphism?

SR 10.4 Suppose the class MusicPlayer is the parent of the class CDPlayer. Is
the following sequence of statements legal? Explain.

MusicPlayer mplayer = new MusicPlayer();
CDPlayer cdplayer = new CDPlayer();
mplayer = cdplayer;

SR 10.5 Suppose the class MusicPlayer is the parent of the class CDPlayer. Is
the following sequence of statements legal? Explain.

MusicPlayer mplayer = new MusicPlayer();
CDPlayer cdplayer = new CDPlayer();
cdplayer = mplayer;

SR 10.6 How is overriding related to polymorphism?

SR 10.7 Why is the StaffMember class in the Firm example declared as
abstract?

SR 10.8 Why is the pay method declared in the StaffMember class, given that it
is abstract and has no body at that level?

SR 10.9 Which pay method is invoked by the following line from the payday
method of the Staff class?

amount = staffList[count].pay();

 //---
 // Returns information about this hourly employee as a string.
 //---
 public String toString()
 {
 String result = super.toString();

 result += "\nCurrent hours: " + hoursWorked;

 return result;
 }
}

L I S T I N G 1 0 . 7 continued

502 CHAPTER 10 Polymorphism

10.3 Polymorphism via Interfaces

 Now let’s examine how we can create polymorphic references using
interfaces. As we’ve seen many times, a class name can be used to
declare the type of an object reference variable. Similarly, an inter-
face name can be used as the type of a reference variable as well. An
interface reference variable can be used to refer to any object of any

class that implements that interface.

 Suppose we declare an interface called Speaker as follows:

public interface Speaker
 {
 public void speak();
 public void announce (String str);
 }

 The interface name, Speaker , can now be used to declare an object reference
variable:

 Speaker current;

 The reference variable current can be used to refer to any object of
any class that implements the Speaker interface. For example, if we
define a class called Philosopher such that it implements the Speaker
interface, we can then assign a Philosopher object to a Speaker refer-
ence as follows:

 current = new Philosopher();

 This assignment is valid, because a Philosopher is a Speaker . In this sense
the relationship between a class and its interface is the same as the relationship
between a child class and its parent. It is an is-a relationship. And that relationship
forms the basis of the polymorphism.

 The flexibility of an interface reference allows us to create polymorphic refer-
ences. As we saw earlier in this chapter, using inheritance, we can create a poly-
morphic reference that can refer to any one of a set of objects as long as they are
related by inheritance. Using interfaces, we can create similar polymorphic refer-
ences among objects that implement the same interface.

 For example, if we create a class called Dog that also implements the Speaker
interface, it can be assigned to a Speaker reference variable as well. The same
reference variable, in fact, can at one point refer to a Philosopher object and then
later refer to a Dog object. The following lines of code illustrate this:

 KEY CONCEPT
 An interface name can be used to
declare an object reference variable.

 KEY CONCEPT
 An interface reference can refer to
any object of any class that imple-
ments that interface.

10.3 Polymorphism via Interfaces 503

 Speaker guest;
 guest = new Philosopher();
 guest.speak();
 guest = new Dog();
 guest.speak();

 In this code, the first time the speak method is called, it invokes the speak
method defined in the Philosopher class. The second time it is called, it invokes
the speak method of the Dog class. As with polymorphic references via inheri-
tance, it is not the type of the reference that determines which method gets
invoked; it is based on the type of the object that the reference points to at the
moment of invocation.

 Note that when we are using an interface reference variable, we can invoke
only the methods defined in the interface, even if the object it refers to has other
methods to which it can respond. For example, suppose the Philosopher class
also defined a public method called pontificate . The second line of the following
code would generate a compiler error, even though the object can in fact respond
to the pontificate method:

 Speaker special = new Philosopher();
 special.pontificate(); // generates a compiler error

 The problem is that the compiler can determine only that the object is a
Speaker , and therefore can guarantee only that the object can respond to the
speak and announce methods. Because the reference variable special could
refer to a Dog object (which cannot pontificate), it does not allow the invoca-
tion. If we know in a particular situation that such an invocation is valid, we
can cast the object into the appropriate reference so that the compiler will
accept it, as follows:

 ((Philosopher)special).pontificate();

 As we can with polymorphic references based in inheritance,
an interface name can be used as the type of a method parameter.
In such situations, any object of any class that implements the
interface can be passed into the method. For example, the fol-
lowing method takes a Speaker object as a parameter. Therefore
both a Dog object and a Philosopher object can be passed into it
in separate invocations:

 public void sayIt (Speaker current)
 {
 current.speak();
 }

 KEY CONCEPT
 A parameter to a method can be
polymorphic, giving the method
flexible control of its arguments.

504 CHAPTER 10 Polymorphism

Using a polymorphic reference as the formal parameter to a method is a power-
ful technique. It allows the method to control the types of parameters passed into
it, yet gives it the flexibility to accept arguments of various types.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 10.10 How can polymorphism be accomplished using interfaces?

SR 10.11 Suppose that the Speaker interface and the Philosopher and Dog
classes are as described in this section. Are the following sequences of
statements legal? Explain.

a. Speaker current = new Speaker();

b. Speaker current = new Dog();

c. Speaker first, second;
 first = new Dog();
 second = new Philosopher();
 first.speak();
 first = second;

d. Speaker first = new Dog();
 Philospher second = new Philosopher();
 second.pontificate();
 first = second;

e. Speaker first = new Dog();
 Philospher second = new Philosopher();
 first = second;
 second.pontificate();
 first.pontificate();

10.4 Sorting

Let’s examine a problem that lends itself to a polymorphic solution. Sorting is the
process of arranging a list of items in a well-defined order. For example, you may
want to alphabetize a list of names or put a list of survey results into descending
numeric order. Many sorting algorithms have been developed and critiqued over the
years. In fact, sorting is considered to be a classic area of study in computer science.

This section examines two sorting algorithms: selection sort and insertion
sort. Complete coverage of various sorting techniques is beyond the scope of this

 10.4 Sorting 505

text. Instead we introduce the topic and establish some of the fundamental ideas
involved. We do not delve into a detailed analysis of the algorithms but instead
focus on the strategies involved and general characteristics.

Selection Sort
The selection sort algorithm sorts a list of values by successively putting par-
ticular values in their final, sorted positions. In other words, for each position
in the list, the algorithm selects the value that should go in that position and
puts it there. Let’s consider the problem of putting a list of numeric values into
ascending order.

The general strategy of selection sort is: Scan the entire list to find the small-
est value. Exchange that value with the value in the first position of the list.
Scan the rest of the list (all but the first value) to find the smallest value, then
exchange it with the value in the second position of the list. Scan the rest of
the list (all but the first two values) to find the smallest value, then exchange
it with the value in the third position of the list. Continue this process for all
but the last position in the list (which will end up containing the largest value).
When the process is complete, the list is sorted. Figure 10.2 demonstrates the
use of the selection sort algorithm.

Scan right starting with 3.
1 is the smallest. Exchange 1 and 3.

Scan right starting with 9.
2 is the smallest. Exchange 9 and 2.

Scan right starting with 6.
3 is the smallest. Exchange 6 and 3.

Scan right starting with 6.
6 is the smallest. Exchange 6 and 6.

3 9 6 1 2

1 9 6 3 2

1 2 6 3 9

1 2 3 6 9

1 2 3 6 9

FIGURE 10.2 Selection sort processing

506 CHAPTER 10 Polymorphism

 Let’s look at an example. The program shown in Listing 10.8 uses a selection
sort to arrange a list of Contact objects into ascending order.

 Listing 10.9 shows the Sorting class. It contains two static sorting algorithms.
The PhoneList program uses only the selectionSort method. The other method
is discussed later in this section.

 The selectionSort method accepts an array of Comparable objects to sort.
Recall that Comparable is an interface that includes only one method, compareTo ,
which is designed to return an integer that is less than zero, equal to zero, or
greater than zero if the executing object is less than, equal to, or greater than the
object to which it is being compared, respectively.

 Any class that implements the Comparable interface must define the compareTo
method. Therefore any such object can be compared to another object to deter-
mine their relative order.

 The selectionSort method is polymorphic. Note that it doesn’t refer to
 Contact objects at all and yet is used to sort an array of Contact objects. The
 selectionSort method is set up to sort any array of objects, as long as those
objects can be compared to determine their order. You can call selectionSort
multiple times, passing in arrays of different types of objects, as long as they are
 Comparable .

 Each Contact object represents a person with a last name, a first
name, and a phone number. Listing 10.10 shows the Contact class.

 The Contact class implements the Comparable interface and
therefore provides a definition of the compareTo method. In this
case, the contacts are sorted by last name; if two contacts have the
same last name, their first names are used.

 The implementation of the selectionSort method uses two for loops to sort
the array. The outer loop controls the position in the array where the next small-
est value will be stored. The inner loop finds the smallest value in the rest of the
list by scanning all positions greater than or equal to the index specified by the
outer loop. When the smallest value is determined, it is exchanged with the value
stored at the index. This exchange is done in three assignment statements by using
an extra variable called temp . This type of exchange is often called swapping.

 Note that because this algorithm finds the smallest value during each iteration,
the result is an array sorted in ascending order (that is, smallest to largest). The
algorithm can easily be changed to put values in descending order by finding the
largest value each time.

 Also note that we’ve set up the sorting methods to sort arrays of objects.
Therefore, if your goal is to sort an array of a primitive type, such as an array of
integer values, they would have to be put into an array of Integer objects to be
processed. All of the wrapper classes implement the Comparable interface.

 KEY CONCEPT
 Implementing a sort algorithm
polymorphically allows it to sort any
comparable set of objects.

 Sorting Comparable
objects.

VideoNote

 10.4 Sorting 507

//**
// PhoneList.java Author: Lewis/Loftus
//
// Driver for testing a sorting algorithm.
//**

public class PhoneList
{
 //---
 // Creates an array of Contact objects, sorts them, then prints
 // them.
 //---
 public static void main (String[] args)
 {
 Contact[] friends = new Contact[8];

 friends[0] = new Contact ("John", "Smith", "610-555-7384");
 friends[1] = new Contact ("Sarah", "Barnes", "215-555-3827");
 friends[2] = new Contact ("Mark", "Riley", "733-555-2969");
 friends[3] = new Contact ("Laura", "Getz", "663-555-3984");
 friends[4] = new Contact ("Larry", "Smith", "464-555-3489");
 friends[5] = new Contact ("Frank", "Phelps", "322-555-2284");
 friends[6] = new Contact ("Mario", "Guzman", "804-555-9066");
 friends[7] = new Contact ("Marsha", "Grant", "243-555-2837");

 Sorting.selectionSort(friends);

 for (Contact friend : friends)
 System.out.println (friend);
 }
}

O U T P U T

Barnes, Sarah 215-555-3827
Getz, Laura 663-555-3984
Grant, Marsha 243-555-2837
Guzman, Mario 804-555-9066
Phelps, Frank 322-555-2284
Riley, Mark 733-555-2969
Smith, John 610-555-7384
Smith, Larry 464-555-3489

L I S T I N G 1 0 . 8

508 CHAPTER 10 Polymorphism

//**
// Sorting.java Author: Lewis/Loftus
//
// Demonstrates the selection sort and insertion sort algorithms.
//**

public class Sorting
{
 //---
 // Sorts the specified array of objects using the selection
 // sort algorithm.
 //---
 public static void selectionSort (Comparable[] list)
 {
 int min;
 Comparable temp;

 for (int index = 0; index < list.length-1; index++)
 {
 min = index;
 for (int scan = index+1; scan < list.length; scan++)
 if (list[scan].compareTo(list[min]) < 0)
 min = scan;

 // Swap the values
 temp = list[min];
 list[min] = list[index];
 list[index] = temp;
 }
 }

 //---
 // Sorts the specified array of objects using the insertion
 // sort algorithm.
 //---
 public static void insertionSort (Comparable[] list)
 {
 for (int index = 1; index < list.length; index++)
 {
 Comparable key = list[index];
 int position = index;

L I S T I N G 1 0 . 9

 10.4 Sorting 509

 // Shift larger values to the right
 while (position > 0 && key.compareTo(list[position-1]) < 0)
 {
 list[position] = list[position-1];
 position--;
 }

 list[position] = key;
 }
 }
}

L I S T I N G 1 0 . 9 continued

//**
// Contact.java Author: Lewis/Loftus
//
// Represents a phone contact.
//**

public class Contact implements Comparable
{
 private String firstName, lastName, phone;

 //---
 // Constructor: Sets up this contact with the specified data.
 //---
 public Contact (String first, String last, String telephone)
 {
 firstName = first;
 lastName = last;
 phone = telephone;
 }

 //---
 // Returns a description of this contact as a string.
 //---
 public String toString ()
 {
 return lastName + ", " + firstName + "\t" + phone;
 }

L I S T I N G 1 0 . 1 0

510 CHAPTER 10 Polymorphism

 //---
 // Returns true if the first and last names of this contact match
 // those of the parameter.
 //---
 public boolean equals (Object other)
 {
 return (lastName.equals(((Contact)other).getLastName()) &&
 firstName.equals(((Contact)other).getFirstName()));
 }

 //---
 // Uses both last and first names to determine ordering.
 //---
 public int compareTo (Object other)
 {
 int result;

 String otherFirst = ((Contact)other).getFirstName();
 String otherLast = ((Contact)other).getLastName();

 if (lastName.equals(otherLast))
 result = firstName.compareTo(otherFirst);
 else
 result = lastName.compareTo(otherLast);

 return result;
 }

 //---
 // First name accessor.
 //---
 public String getFirstName ()
 {
 return firstName;
 }

 //---
 // Last name accessor.
 //---
 public String getLastName ()
 {
 return lastName;
 }
}

L I S T I N G 1 0 . 1 0 continued

 10.4 Sorting 511

Insertion Sort
The Sorting class also contains a method that performs an insertion sort on an
array of Comparable objects. If used to sort the array of Contact objects in the
PhoneList program, it would produce the same results as the selection sort did.
However, the logic used to put the objects in order is different.

The insertion sort algorithm sorts a list of values by repetitively inserting a par-
ticular value into a subset of the list that has already been sorted. One at a time,
each unsorted element is inserted at the appropriate position in that sorted subset
until the entire list is in order.

The general strategy of insertion sort is: Begin with a “sorted” list contain-
ing only one value. Sort the first two values in the list relative to each other by
exchanging them if necessary. Insert the list’s third value into the appropriate
position relative to the first two (sorted) values. Then insert the fourth value into
its proper position relative to the first three values in the list. Each time an inser-
tion is made, the number of values in the sorted subset increases by one. Continue
this process until all values are inserted in their proper places, at which point the
list is completely sorted.

The insertion process requires that the other values in the array shift to make
room for the inserted element. Figure 10.3 demonstrates the behavior of the inser-
tion sort algorithm with integers.

3 is sorted.
Shift nothing. Insert 9.

3 and 9 are sorted.
Shift 9 to the right. Insert 6.

3, 6 and 9 are sorted.
Shift 9, 6, and 3 to the right. Insert 1.

1, 3, 6 and 9 are sorted.
Shift 9, 6, and 3 to the right. Insert 2.

All values are sorted.

3 9 6 1 2

3 9 6 1 2

3 6 9 1 2

1 3 6 9 2

1 2 3 6 9

FIGURE 10.3 Insertion sort processing

512 CHAPTER 10 Polymorphism

Similar to the selection sort implementation, the insertionSort method
uses two for loops to sort the array. In the insertion sort, however, the outer
loop controls the index in the array of the next value to be inserted. The inner
loop compares the current insert value with values stored at lower indexes
(which make up a sorted subset of the entire list). If the current insert value
is less than the value at position, that value is shifted to the right. Shifting
continues until the proper position is opened to accept the insert value. Each
iteration of the outer loop adds one more value to the sorted subset of the list,
until the entire list is sorted.

Comparing Sorts
There are various reasons for choosing one sorting algorithm over another,
including the algorithm’s simplicity, its level of efficiency, and the amount of
memory it uses. An algorithm that is easier to understand is also easier to imple-
ment and debug. However, often the simplest sorts are the most inefficient ones.
Efficiency is usually considered to be the primary criterion when comparing sort-
ing algorithms. In general, one sorting algorithm is less efficient than another if it
performs more comparisons than the other. There are several algorithms that are
more efficient than the two we examined, but they are also more complex.

Both selection sort and insertion sort have essentially the same level of effi-
ciency. Both have an outer loop and an inner loop with similar properties, if not
purposes. The outer loop is executed once for each value in the list, and the inner
loop compares the value in the outer loop with most, if not all, of the values in
the rest of the list. Therefore, both algorithms perform approximately n2 number
of comparisons, where n is the number of values in the list. We say that both
selection sort and insertion sort are algorithms of order n2. More efficient sorts
perform fewer comparisons and are of a smaller order, such as n log2 n.

Because both selection sort and insertion sort have the same general efficiency,
the choice between them is almost arbitrary. However, there are some additional
issues to consider. Selection sort is usually easy to understand and will often suf-
fice in many situations. Further, each value moves exactly once to its final place
in the list. That is, although the selection and insertion sorts are equivalent (gener-
ally) in the number of comparisons made, selection sort makes fewer swaps.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 10.12 Describe the Comparable interface.

SR 10.13 Show the sequence of changes the selection sort algorithm makes to
the following list of numbers:

 5 7 1 8 2 4 3

 10.5 Searching 513

SR 10.14 Show the sequence of changes the insertion sort algorithm makes to
the following list of numbers:

 5 7 1 8 2 4 3

SR 10.15 In what way are the sort methods defined in this chapter polymorphic?

SR 10.16 Which is better: selection sort or insertion sort? Explain.

10.5 Searching

Like sorting, searching for an item is another classic computing problem, and
also lends itself to a polymorphic solution. Searching is the process of finding a
designated target element within a group of items. For example, we may need to
search for a person named Vito Andolini in a club roster.

The group of items to be searched is sometimes called the search pool. The
search pool is usually organized into a collection of objects of some kind, such
as an array.

Whenever we perform a search, we must consider the possibility that the target
is not present in the group. Furthermore, we would like to perform a search effi-
ciently. We don’t want to make any more comparisons than we have to.

In this section we examine two search algorithms, linear search and binary
search. We explore versatile, polymorphic implementations of these algorithms
and compare their efficiency.

Linear Search
If the search pool can be examined one element at a time in any order, one
straightforward way to perform the search is to start at the beginning of the list
and compare each value in turn to the target element. Eventually, either the target
element will be found or we will come to the end of the list and conclude that the
target doesn’t exist in the group.

This approach is called a linear search, because it begins at one end and scans
the search pool in a linear manner. This process is depicted in Figure 10.4. When
items are stored in an array, a linear search is relatively simple.

The program shown in Listing 10.11 is similar to the PhoneList program from
the previous section. It begins with the same, unsorted array of Contact objects.
It then performs a linear search for a contact and prints the result. Then it calls
the selectionSort method, which was discussed in the previous section, to sort
the contacts. It then searches for another contact using a binary search, which is
discussed later in this section.

514 CHAPTER 10 Polymorphism

start

FIGURE 10.4 A linear search

//**
// PhoneList2.java Author: Lewis/Loftus
//
// Driver for testing searching algorithms.
//**

public class PhoneList2
{
 //---
 // Creates an array of Contact objects, sorts them, then prints
 // them.
 //---
 public static void main (String[] args)
 {
 Contact test, found;
 Contact[] friends = new Contact[8];

 friends[0] = new Contact ("John", "Smith", "610-555-7384");
 friends[1] = new Contact ("Sarah", "Barnes", "215-555-3827");
 friends[2] = new Contact ("Mark", "Riley", "733-555-2969");
 friends[3] = new Contact ("Laura", "Getz", "663-555-3984");
 friends[4] = new Contact ("Larry", "Smith", "464-555-3489");
 friends[5] = new Contact ("Frank", "Phelps", "322-555-2284");
 friends[6] = new Contact ("Mario", "Guzman", "804-555-9066");
 friends[7] = new Contact ("Marsha", "Grant", "243-555-2837");

 test = new Contact ("Frank", "Phelps", "");
 found = (Contact) Searching.linearSearch(friends, test);
 if (found != null)
 System.out.println ("Found: " + found);
 else

L I S T I N G 1 0 . 1 1

 10.5 Searching 515

Listing 10.12 shows the Searching class. It contains two static searching
algorithms.

In the linearSearch method, the while loop steps through the elements of
the array, terminating either when the target is found or the end of the array is
reached. The boolean variable found is initialized to false and is only changed to
true if the target element is located.

Note that we’ll have to examine every element before we can conclude that the
target doesn’t exist in the array. On average, the linear search approach will look
through half the data before finding a target that is present in the array.

The linearSearch method is implemented to process an array of Comparable
objects. For this algorithm, however, which relies only on the equals method,
that restriction is not necessary.

Binary Search
If the elements in an array are sorted, in either ascending or descending order,
then our approach to searching can be much more efficient than the linear search
algorithm. A binary search eliminates large parts of the search pool with each
comparison by capitalizing on the fact that the search pool is ordered.

 System.out.println ("The contact was not found.");
 System.out.println ();

 Sorting.selectionSort(friends);

 test = new Contact ("Mario", "Guzman", "");
 found = (Contact) Searching.binarySearch(friends, test);
 if (found != null)
 System.out.println ("Found: " + found);
 else
 System.out.println ("The contact was not found.");
 }
}

O U T P U T

Found: Phelps, Frank 322-555-2284

Found: Guzman, Mario 804-555-9066

L I S T I N G 1 0 . 1 1 continued

516 CHAPTER 10 Polymorphism

//**
// Searching.java Author: Lewis/Loftus
//
// Demonstrates the linear search and binary search algorithms.
//**

public class Searching
{
 //---
 // Searches the specified array of objects for the target using
 // a linear search. Returns a reference to the target object from
 // the array if found, and null otherwise.
 //---
 public static Comparable linearSearch (Comparable[] list,
 Comparable target)
 {
 int index = 0;
 boolean found = false;

 while (!found && index < list.length)
 {
 if (list[index].compareTo(target) == 0)
 found = true;
 else
 index++;
 }

 if (found)
 return list[index];
 else
 return null;
 }

 //---
 // Searches the specified array of objects for the target using
 // a binary search. Assumes the array is already sorted in
 // ascending order when it is passed in. Returns a reference to
 // the target object from the array if found, and null otherwise.
 //---
 public static Comparable binarySearch (Comparable[] list,
 Comparable target)
 {
 int min=0, max=list.length-1, mid=0;
 boolean found = false;

L I S T I N G 1 0 . 1 2

 10.5 Searching 517

Consider the following sorted array of integers:

0

10

1

12

2

18

3

22

4

31

5

34

6

40

7

46

8

59

9

67

10

69

11

72

12

82

13

84

14

98

0

10

1

12

2

18

3

22

4

31

5

34

6

40

7

46

8

59

9

67

10

69

11

72

12

82

13

84

14

98

Viable Candidates

 while (!found && min <= max)
 {
 mid = (min+max) / 2;
 if (list[mid].compareTo(target) == 0)
 found = true;
 else
 if (target.compareTo(list[mid]) < 0)
 max = mid-1;
 else
 min = mid+1;
 }

 if (found)
 return list[mid];
 else
 return null;
 }
}

L I S T I N G 1 0 . 1 2 continued

Suppose we were trying to determine if the number 67 is in this list. Initially, the
target might be anywhere in the list, or not at all. That is, at first, all items in the
search pool are viable candidates.

Instead of starting the search at one end or the other, a binary search begins
in the middle of the sorted list. If the target element is not found at that middle
element, then the search continues. The middle element of this list is 46, which is
not our target, so we must search on. However, since the list is sorted, we know
that if 67 is in the list, it will be in the later half of the array. All values at lower
indexes are less than 46. Thus, with one comparison, we’ve taken half of the data
out of consideration, and we are left with the following viable candidates:

518 CHAPTER 10 Polymorphism

To search the remaining candidates, we once again examine the “middle” ele-
ment. The middle element is 72, and thus we have still not found the target. But
once again, we can eliminate half of the viable candidates (those greater than 72)
and we are left with:

0

10

1

12

2

18

3

22

4

31

5

34

6

40

7

46

8

59

9

67

10

69

11

72

12

82

13

84

14

98

Viable Candidates

Employing the same approach again, we select the middle element, 67, and
find the element we are seeking. If it had not been our target, we would have
continued with this process until we either found the value or eliminated all
possible data.

With each comparison, a binary search eliminates approximately half of the
remaining data to be searched (it also eliminates the middle element as well). That is,
a binary search eliminates half of the data with the first comparison, another quarter
of the data with the second comparison, another eighth of the data with the third
comparison, and so on. The binary search approach is pictured in Figure 10.5.

The binarySearch method from the Searching class performs a binary search
by looping until the target element is found or until the viable candidates drop to
zero. Two integer indexes, min and max, are used to define the portion of the array
that is still considered viable. When min becomes greater than max, then the viable
candidates have been exhausted.

On each iteration of the loop, the midpoint is calculated by dividing the sum of
min and max by two. If there are currently an even number of viable candidates,
and thus two “middle” values, this calculation discards the fractional remainder
and picks the first of the two.

If the target element is not found, the value of min or max is modified to elimi-
nate the appropriate half of the viable candidates. Then the search continues.

start

FIGURE 10.5 A binary search

 10.6 Designing for Polymorphism 519

Comparing Searches
As far as the search algorithms go, there is no doubt that the binary search approach
is far more efficient than the linear search. However, the binary search requires that
the data be sorted. So once again, the algorithm to choose depends on the situation.

If it’s relatively easy to keep the data sorted, or if there will be a lot of search-
ing, it will likely be more appropriate to use a binary search. On the other hand,
a linear search is quite simple to implement and may be the best choice when
long-term efficiency is not an issue.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 10.17 Given the following list of numbers, how many elements of the list
would be examined by the linear search algorithm to determine if
each of the indicated target elements are on the list?

 15 21 4 17 8 27 1 22 43 57 25 7 53 12 16

 a. 17
 b. 15
 c. 16
 d. 45

SR 10.18 Describe the general concept of a binary search.

SR 10.19 Given the following list of numbers, how many elements of the list
would be examined by the binary search algorithm to determine if
each of the indicated target elements are on the list?

 1 4 7 8 12 15 16 17 21 22 25 27 43 53 57

 a. 17
 b. 15
 c. 57
 d. 45

10.6 Designing for Polymorphism

We’ve been evolving the concepts underlying good software design throughout
this book. For every aspect of object-oriented software, we should make decisions,
consciously and carefully, that lead to well-structured, flexible, and elegant code.
We want to define appropriate classes and objects, with proper encapsulation. We
want to define appropriate relationships among the classes and objects, including
leveraging the powerful aspects of inheritance when possible. Now we can add
polymorphism to our set of intellectual tools for thinking about software design.

520 CHAPTER 10 Polymorphism

 Polymorphism provides a means to create elegant versatility in
our software. It allows us to apply a consistent approach to incon-
sistent but related behaviors. We should try to find opportunities in
our software systems that lend themselves to polymorphic solutions.
We should seek them out, actively and deliberately, before we begin
to write code.

 Whenever you find situations in which different types of objects perform the
same type of behavior, there is an opportunity for a polymorphic solution. The
more experience you get, the easier it will be to detect such situations. See if you
recognize the opportunity for polymorphism in the following situations:

■ Different types of vehicles move in different ways.

■ All business transactions for a company must be logged.

■ All products produced by a company must meet certain quality standards.

■ A hotel needs to plan their remodeling efforts for every room.

■ A casino wants to analyze the profit margin for their games.

■ A dispatcher must schedule moving vans and personnel based on the job
size.

■ A drawing program allows the user to draw various shapes.

 The common theme in these examples is that the same basic behav-
ior applies to multiple objects, and those behaviors are accomplished
differently depending on the specific type of object. Every circle is
drawn using the same basic techniques and information, which is
different from the information needed and the steps taken to draw a
rectangle. Yet both types of shapes get drawn. Different, but similar.
Polymorphic.

 The example of a drawing program is explored in more detail in the PaintBox
case study presented in Appendix J. It follows the refinement of a large program
through various stages of its development. The heart of its design is a polymorphic
approach to handling the various types of shapes that the user can draw.

 Once a polymorphic situation is identified, the specifics of the design can
be addressed. In particular, should you use inheritance or interfaces as the
mechanism to define polymorphic references? The answer to that question
lies in the relationships among the different types of objects involved. If those
objects can be related naturally by inheritance, with true is-a relationships,
then polymorphism via inheritance is probably the way to go. But if the main
thing the objects have in common is their need to be processed in a particular
way, then perhaps using an interface to create the polymorphic references is
the better solution.

 KEY CONCEPT
 Polymorphism allows us to apply a
consistent approach to inconsistent
behaviors.

 KEY CONCEPT
 We should hone our design senses
to identify situations that lend them-
selves to polymorphic solutions.

 10.7 Event Processing 521

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 10.20 Suppose you are designing classes for a banking-related system.
Both checking accounts and savings accounts require deposit and
withdraw operations. You decide to provide these behaviors using
polymorphism. Which polymorphic mechanism (inheritance or
interfaces) is best suited for this situation? Provide support for your
choice.

SR 10.21 Suppose you are designing classes to help create aquarium-based
screen savers. At times, you will want some aquarium objects to
“float” from wherever they are to the top of the tank. You decide
to provide this behavior using polymorphism. Which polymorphic
mechanism (inheritance or interfaces) is best suited for this situation?
Provide support for your choice.

SR 10.22 Suppose you are designing classes to support the modeling of
rain forest environments. Animal objects, such as butterflies and
monkeys, need to grow older periodically. You decide to provide
this behavior using polymorphism. Which polymorphic mechanism
(inheritance or interfaces) is best suited for this situation? Provide
support for your choice.

10.7 Event Processing

Let’s revisit the concept of event processing in a Java GUI and see how it relates
to polymorphism. As we’ve seen many times in previous examples, in order to
respond to an event, we must establish a relationship between an event listener
object and a particular component that may fire the event. We establish the rela-
tionship between the listener and the component it listens to by making a method
call that adds the listener to the component.

For example, suppose a class called MyButtonListener represents an action lis-
tener. To set up a listener to respond to a JButton object, we might do the following:

JButton button = new JButton();
button.addActionListener (new MyButtonListener());

Once this relationship is established, the listener will respond whenever the
button fires an action event (because the user pressed it). Now think about the
addActionListener method carefully. It is a method of the JButton class, which
was written by someone at Sun Microsystems years ago. On the other hand, we
might have written the MyButtonListener class today. So how can a method writ-
ten years ago take a parameter whose class was just written?

 The answer is polymorphism. If you examine the source
code for the addActionListener method, you’ll discover that
it accepts a parameter of type ActionListener , the interface.
Therefore, instead of accepting a parameter of only one object
type, the addActionListener method can accept any object of
any class that implements the ActionListener interface. All
other add listener methods work in similar ways.

 The JButton object doesn’t know anything particular about the object that
is passed to the addActionListener method, except for the fact that it imple-
ments the ActionListener interface (otherwise the code wouldn’t compile). The
 JButton object simply stores the listener object and invokes its actionPerformed
method when the event occurs.

 In Chapter 9 we discussed that we can also create a listener by extending an
adapter class. Well, it turns out that using an adapter class isn’t really a new way
to create a listener after all. Each adapter class is written to implement the appro-
priate listener interface, providing empty methods for all event handlers. So by
extending an adapter class, the new listener class automatically implements the
corresponding listener interface. And that is what really makes it a listener such
that it can be passed to an appropriate add listener method.

 Thus, no matter how a listener object is created, we are using polymorphism
via interfaces to set up the relationship between a listener and the component it
listens to. GUI events are a wonderful example of the power and versatility pro-
vided by polymorphism.

 10.8 File Choosers

 Dialog boxes were introduced in Chapter 6 . We used the
 JOptionPane class to create several dialog boxes to present
information, accept input, and confirm actions.

 The JFileChooser class represents another specialized
dialog box, a file chooser , which allows the user to select
a file from a hard disk or other storage medium. You have

probably run many programs that allow you to open a file using a similar
dialog box.

 The program shown in Listing 10.13 uses a JFileChooser dialog box to select
a file. This program also demonstrates the use of another GUI component, a text
area , which is similar to a text field but can display multiple lines of text at one
time. After the user selects a file using the file chooser dialog box, the text con-
tained in that file is displayed in a text area.

 KEY CONCEPT
 Establishing the relationship between
a listener and the component it
listens to is accomplished using
polymorphism.

 KEY CONCEPT
 A file chooser allows the user to
browse a disk and select a file to be
processed.

522 CHAPTER 10 Polymorphism

//**
// DisplayFile.java Author: Lewis/Loftus
//
// Demonstrates the use of a file chooser and a text area.
//**

import java.util.Scanner;
import java.io.*;
import javax.swing.*;

public class DisplayFile
{
 //---
 // Opens a file chooser dialog, reads the selected file and
 // loads it into a text area.
 //---
 public static void main (String[] args) throws IOException
 {
 JFrame frame = new JFrame ("Display File");
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

 JTextArea ta = new JTextArea (20, 30);
 JFileChooser chooser = new JFileChooser();

 int status = chooser.showOpenDialog (null);

 if (status != JFileChooser.APPROVE_OPTION)
 ta.setText ("No File Chosen");
 else
 {
 File file = chooser.getSelectedFile();
 Scanner scan = new Scanner(file);

 String info = "";
 while (scan.hasNext())
 info += scan.nextLine() + "\n";

 ta.setText (info);
 }

 frame.getContentPane().add (ta);
 frame.pack();
 frame.setVisible(true);
 }
}

L I S T I N G 1 0 . 1 3

 10.8 File Choosers 523

524 CHAPTER 10 Polymorphism

The file chooser dialog box is displayed when the showOpenDialog method
is invoked. It automatically presents the list of files contained in a particular
directory. The user can use the controls on the dialog box to navigate to other
directories, change the way the files are viewed, and specify which types of files
are displayed.

The showOpenDialog method returns an integer representing the status of the
operation, which can be checked against constants defined in the JFileChooser
class. In this program, if a file was not selected (perhaps by pressing the Cancel
button), a default message is displayed in the text area. If the user chose a file, it is
opened and its contents are read using the Scanner class. Note that this program
assumes the selected file contains text. It does not catch any exceptions, so if the
user selects an inappropriate file, the program will terminate when the exception
is thrown.

A text area component is defined by the JTextArea class. In this program, we
pass two parameters to its constructor, specifying the size of the text area in terms
of the number of characters (rows and columns) it should display. The text to
display is set using the setText method.

D I S P L A Y

L I S T I N G 1 0 . 1 3 continued

 A text area component, like a text field, can be set so that it is either edit-
able or noneditable. The user can change the contents of an editable text area
by clicking on the text area and typing with the keyboard. If the text area is
noneditable, it is used to display text only. By default, a JTextArea component
is editable.

 A JFileChooser component makes it easy to allow users to specify a specific
file to use. Another specialized dialog box—one that allows the user to choose a
color—is discussed in the next section.

10.9 Color Choosers

 In many situations we may want to give the user of a pro-
gram the ability to choose a color. We could accomplish
this in various ways. For instance, we could provide a list of
colors using a set of radio buttons. However, with the wide
variety of colors available, it’s nice to have an easier and
more flexible technique to accomplish this common task. A
specialized dialog box, often referred to as a color chooser ,
is a graphical component that serves this purpose.

 The JColorChooser class represents a color chooser. It can be used to display
a dialog box that lets the user click on a color of choice from a palette presented
for that purpose. The user could also specify a color using RGB values or other
color representation techniques.

 The program shown in Listing 10.14 uses a color chooser dialog box to specify
the color of a panel that is displayed in a separate frame.

 After a color has been chosen. the new color is displayed in the primary frame
and another dialog box (this one was created using JOptionPane as discussed in
 Chapter 6) is used to determine if the user wants to change the color again. If so,
another color chooser dialog box is displayed. This cycle can continue as long as
the user desires.

 Invoking the static showDialog method of the JColorChooser class causes
the color chooser dialog box to appear. The parameters to that method
specify the parent component for the dialog box, the title that appears in the
dialog box frame, and the initial color showing in the color chooser. By using
the variable shade as the third parameter, the color initially showing in the
color chooser when it first appears will coincide with the current color of the
panel.

10.9 Color Choosers 525

 KEY CONCEPT
 A color chooser allows the user to
select a color from a palette or use
RGB values.

526 CHAPTER 10 Polymorphism

//**
// DisplayColor.java Author: Lewis/Loftus
//
// Demonstrates the use of a color chooser.
//**

import javax.swing.*;
import java.awt.*;

public class DisplayColor
{
 //---
 // Presents a frame with a colored panel, then allows the user
 // to change the color multiple times using a color chooser.
 //---
 public static void main (String[] args)
 {
 JFrame frame = new JFrame ("Display Color");
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

 JPanel colorPanel = new JPanel();
 colorPanel.setBackground (Color.white);
 colorPanel.setPreferredSize (new Dimension (300, 100));

 frame.getContentPane().add (colorPanel);
 frame.pack();
 frame.setVisible(true);

 Color shade = Color.white;
 int again;

 do
 {
 shade = JColorChooser.showDialog (frame, "Pick a Color!",
 shade);

 colorPanel.setBackground (shade);

 again = JOptionPane.showConfirmDialog (null,
 "Display another color?");
 }
 while (again == JOptionPane.YES_OPTION);
 }
}

L I S T I N G 1 0 . 1 4

10.10 Sliders

 A slider is a component that allows the user to specify a
numeric value within a bounded range. A slider can be pre-
sented either vertically or horizontally and can have optional
tick marks and labels indicating the range of values.

 A program called SlideColor is shown in Listing 10.15 .
In one sense, this program is an improvement over the
DisplayColor program from the previous section in that it allows the user to con-
stantly change the displayed color without using a color chooser each time. This
program presents three sliders that control the RGB components of a color. The
color specified by the values of the sliders is shown in a square that is displayed
to the right of the sliders.

 The SlideColorPanel class shown in Listing 10.16 is a panel used to display
the three sliders. Each is created from the JSlider class, which accepts four
parameters. The first determines the orientation of the slider using one of two
JSlider constants (HORIZONTAL or VERTICAL). The second and third parameters
specify the maximum and minimum values of the slider, which are set to 0 and
255 for each of the sliders in the example. The last parameter of the JSlider

 D I S P L A Y

L I S T I N G 1 0 . 1 4 continued

10.10 Sliders 527

 KEY CONCEPT
 A slider lets the user specify a
numeric value within a bounded
range.

//**
// SlideColor.java Author: Lewis/Loftus
//
// Demonstrates the use of slider components.
//**

import java.awt.*;
import javax.swing.*;

public class SlideColor
{
 //---
 // Presents a frame with a control panel and a panel that
 // changes color as the sliders are adjusted.
 //---
 public static void main (String[] args)
 {
 JFrame frame = new JFrame ("Slide Colors");
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

 frame.getContentPane().add(new SlideColorPanel());

 frame.pack();
 frame.setVisible(true);
 }
}

D I S P L A Y

L I S T I N G 1 0 . 1 5

528 CHAPTER 10 Polymorphism

//**
// SlideColorPanel.java Author: Lewis/Loftus
//
// Represents the slider control panel for the SlideColor program.
//**

import java.awt.*;
import javax.swing.*;
import javax.swing.event.*;

public class SlideColorPanel extends JPanel
{
 private JPanel controls, colorPanel;
 private JSlider rSlider, gSlider, bSlider;
 private JLabel rLabel, gLabel, bLabel;

 //---
 // Sets up the sliders and their labels, aligning them along
 // their left edge using a box layout.
 //---
 public SlideColorPanel()
 {
 rSlider = new JSlider (JSlider.HORIZONTAL, 0, 255, 0);
 rSlider.setMajorTickSpacing (50);
 rSlider.setMinorTickSpacing (10);
 rSlider.setPaintTicks (true);
 rSlider.setPaintLabels (true);
 rSlider.setAlignmentX (Component.LEFT_ALIGNMENT);

 gSlider = new JSlider (JSlider.HORIZONTAL, 0, 255, 0);
 gSlider.setMajorTickSpacing (50);
 gSlider.setMinorTickSpacing (10);
 gSlider.setPaintTicks (true);
 gSlider.setPaintLabels (true);
 gSlider.setAlignmentX (Component.LEFT_ALIGNMENT);

 bSlider = new JSlider (JSlider.HORIZONTAL, 0, 255, 0);
 bSlider.setMajorTickSpacing (50);
 bSlider.setMinorTickSpacing (10);
 bSlider.setPaintTicks (true);
 bSlider.setPaintLabels (true);
 bSlider.setAlignmentX (Component.LEFT_ALIGNMENT);

L I S T I N G 1 0 . 1 6

 10.10 Sliders 529

 SliderListener listener = new SliderListener();
 rSlider.addChangeListener (listener);
 gSlider.addChangeListener (listener);
 bSlider.addChangeListener (listener);

 rLabel = new JLabel ("Red: 0");
 rLabel.setAlignmentX (Component.LEFT_ALIGNMENT);
 gLabel = new JLabel ("Green: 0");
 gLabel.setAlignmentX (Component.LEFT_ALIGNMENT);
 bLabel = new JLabel ("Blue: 0");
 bLabel.setAlignmentX (Component.LEFT_ALIGNMENT);

 controls = new JPanel();
 BoxLayout layout = new BoxLayout (controls, BoxLayout.Y_AXIS);
 controls.setLayout (layout);
 controls.add (rLabel);
 controls.add (rSlider);
 controls.add (Box.createRigidArea (new Dimension (0, 20)));
 controls.add (gLabel);
 controls.add (gSlider);
 controls.add (Box.createRigidArea (new Dimension (0, 20)));
 controls.add (bLabel);
 controls.add (bSlider);

 colorPanel = new JPanel();
 colorPanel.setPreferredSize (new Dimension (100, 100));
 colorPanel.setBackground (new Color (0, 0, 0));

 add (controls);
 add (colorPanel);
 }

 //***
 // Represents the listener for all three sliders.
 //***
 private class SliderListener implements ChangeListener
 {
 private int red, green, blue;

L I S T I N G 1 0 . 1 6 continued

530 CHAPTER 10 Polymorphism

 10.10 Sliders 531

constructor specifies the slider’s initial value. In our example, the initial value of
each slider is zero, which puts the slider knob to the far left when the program
initially executes.

The panel called colorPanel is used to display the color specified by the sliders
by setting its background color. Initially, the settings of the sliders are all zero,
which correspond to the initial color displayed (black).

The JSlider class has several methods that allow the programmer to tailor
the look of a slider. Major tick marks can be set at specific intervals using the
setMajorTickSpacing method. Intermediate minor tick marks can be set using
the setMinorTickSpacing method. Neither is displayed, however, unless the
setPaintTicks method, with a parameter of true, is invoked as well. Labels
indicating the value of the major tick marks are displayed if indicated by a call to
the setPaintLabels method.

Note that in this example, the major tick spacing is set to 50. Starting at zero,
each increment of 50 is labeled. The last label is therefore 250, even though the
slider value can reach 255.

 //--
 // Gets the value of each slider, then updates the labels and
 // the color panel.
 //--
 public void stateChanged (ChangeEvent event)
 {
 red = rSlider.getValue();
 green = gSlider.getValue();
 blue = bSlider.getValue();

 rLabel.setText ("Red: " + red);
 gLabel.setText ("Green: " + green);
 bLabel.setText ("Blue: " + blue);

 colorPanel.setBackground (new Color (red, green, blue));
 }
 }
}

L I S T I N G 1 0 . 1 6 continued

A slider produces a change event, indicating that the position of the slider and
the value it represents has changed. The ChangeListener interface contains a
single method called stateChanged. In the SlideColor program, the same listener
object is used for all three sliders. In the stateChanged method, which is called
whenever any of the sliders is adjusted, the value of each slider is obtained, the
labels of all three are updated, and the background color of the display panel is
revised. It is actually only necessary to update one of the labels (the one whose
corresponding slider changed). However, the effort to determine which slider was
adjusted is not warranted. It’s easier—and probably more efficient—to update all
three labels each time. Another alternative is to have a unique listener for each
slider, though that extra coding effort is not needed either.

A slider is often a good choice when a large range of values is possible but
strictly bounded on both ends. Compared to alternatives such as a text field, slid-
ers convey more information to the user and eliminate input errors.

532 CHAPTER 10 Polymorphism

Summary of Key Concepts
■ A polymorphic reference can refer to different types of objects over time.

■ The binding of a method invocation to its definition is performed at run
time for a polymorphic reference.

■ A reference variable can refer to any object created from any class related
to it by inheritance.

■ The type of the object, not the type of the reference, is used to determine
which version of a method to invoke.

■ An interface name can be used to declare an object reference variable.

■ An interface reference can refer to any object of any class that implements
that interface.

■ A parameter to a method can be polymorphic, giving the method flexible
control of its arguments.

■ Implementing a sort algorithm polymorphically allows it to sort any
comparable set of objects.

■ Polymorphism allows us to apply a consistent approach to inconsistent
behaviors.

■ We should hone our design senses to identify situations that lend them-
selves to polymorphic solutions.

■ Establishing the relationship between a listener and the component it lis-
tens to is accomplished using polymorphism.

■ A file chooser allows the user to browse a disk and select a file to be
processed.

■ A color chooser allows the user to select a color from a palette or use RGB
values.

■ A slider lets the user specify a numeric value within a bounded range.

Exercises
Visit www.myprogramminglab.com to complete many of these Exercises
online and get instant feedback.

EX 10.1 Draw and annotate a class hierarchy that represents various
types of faculty at a university. Show what characteristics would
be represented in the various classes of the hierarchy. Explain
how polymorphism could play a role in the process of assigning
courses to each faculty member.

 Exercises 533

www.myprogramminglab.com

EX 10.2 Draw and annotate a class hierarchy that represents various
types of animals in a zoo. Show what characteristics would be
represented in the various classes of the hierarchy. Explain how
polymorphism could play a role in guiding the feeding of the
animals.

EX 10.3 Draw and annotate a class hierarchy that represents various
types of sales transactions in a store (cash, credit, etc.). Show
what characteristics would be represented in the various classes
of the hierarchy. Explain how polymorphism could play a role
in the payment process.

EX 10.4 What would happen if the pay method were not defined as an
abstract method in the StaffMember class of the Firm program?

EX 10.5 Explain how a call to the addMouseListener method represents
a polymorphic situation.

EX 10.6 Draw the containment hierarchy tree for the SlideColor program.

Programming Projects

Visit www.myprogramminglab.com to complete many of these Programming
Projects online and get instant feedback.

PP 10.1 Modify the Firm example from this chapter such that it accom-
plishes its polymorphism using an interface called Payable.

PP 10.2 Modify the Firm example from this chapter such that all employ-
ees can be given different vacation options depending on their
classification. Modify the driver program to demonstrate this new
functionality.

PP 10.3 Implement the Speaker interface described in Section 10.3, and
create three classes that implement Speaker in various ways.
Create a driver class whose main method instantiates some of
these objects and tests their abilities.

PP 10.4 Rewrite the Sorting class so that both sorting algorithms put
the values in descending order. Create a driver class with a main
method to exercise the modifications.

PP 10.5 Modify the Movies program from Chapter 8 so that it keeps the
DVDs sorted by title.

534 CHAPTER 10 Polymorphism

Developing a solution
of PP 10.1.

VideoNote

www.myprogramminglab.com

PP 10.6 Design and implement a program that graphically displays the
processing of a selection sort. Use bars of various heights to rep-
resent the values being sorted. Display the set of bars after each
swap. Put a delay in the processing of the sort to give the human
observer a chance to see how the order of the values changes.

PP 10.7 Repeat PP 10.6 using an insertion sort.

PP 10.8 Design and implement a program that combines the functionality
of the StyleOptions and QuoteOptions programs from Chapter
5. That is, the new program should present the appropriate
quote (using radio buttons) whose style can be changed (using
checkboxes). Also include a slider that regulates the size of the
quotation font. Design the containment hierarchy carefully and
use layout managers as appropriate to create a nice interface.

PP 10.9 Design and implement an application that draws the graph of
the equation ax2 + bx + c, where the values of a, b, and c are set
using three sliders.

 Programming Projects 535

This page intentionally left blank

537

C H A P T E R O B J E C T I V E S
● Discuss the purpose of exceptions.

● Examine exception messages and the call stack trace.

● Examine the try-catch statement for handling exceptions.

● Explore the concept of exception propagation.

● Describe the exception class hierarchy in the Java standard class library.

● Explore I/O exceptions and the ability to write text files.

● Create GUIs using mnemonics and tool tips.

● Explore additional GUI components and containers.

Exception handling is an important part of an object-oriented soft-

ware system. Exceptions represent problems or unusual situations

that may occur in a program. Java provides various ways to handle

exceptions when they occur. We explore the class hierarchy from the

Java standard library used to define exceptions, as well as the ability

to define our own exception objects. This chapter also discusses the

use of exceptions when dealing with input and output, and examines

an example that writes a text file. The Graphics Track sections of

this chapter explore some special features of Swing components, as

well as a few additional components and containers.

Exceptions 11

538 CHAPTER 11 Exceptions

11.1 Exception Handling

 As we’ve discussed briefly in other parts of the text, problems that arise in a
Java program may generate exceptions or errors. An exception is an object that

defines an unusual or erroneous situation. An exception is thrown
by a program or the run-time environment and can be caught and
handled appropriately if desired. An error is similar to an exception
except that an error generally represents an unrecoverable situation
and should not be caught. Java has a predefined set of exceptions
and errors that may occur during the execution of a program.

 Problem situations represented by exceptions and errors can have various kinds
of root causes. Here are some situations that cause exceptions to be thrown:

 ■ Attempting to divide by zero.

 ■ An array index that is out of bounds.

 ■ A specified file that could not be found.

 ■ A requested I/O operation that could not be completed normally.

 ■ An attempt was made to follow a null reference.

 ■ An attempt was made to execute an operation that violates some kind of
security measure.

 These are just a few examples. There are dozens of others that address very spe-
cific situations.

 As many of these examples show, an exception can represent a truly errone-
ous situation. But as the name implies, they may simply represent an exceptional
situation. That is, an exception may represent a situation that won’t occur under
usual conditions. Exception handling is set up to be an efficient way to deal with
such situations, especially given that they don’t happen too often.

 We have several options when it comes to dealing with exceptions. A program
can be designed to process an exception in one of three ways. It can:

 ■ not handle the exception at all,

 ■ handle the exception where it occurs, or

 ■ handle the exception at another point in the program.

 We explore each of these approaches in the following sections.

 SELF-REVIEW QUESTIONS (see answers in Appendix N)

 SR 11.1 What is the difference between an error and an exception?

 SR 11.2 In what ways might a thrown exception be handled?

 KEY CONCEPT
 Errors and exceptions are objects
that represent unusual or invalid
processing.

 11.2 Uncaught Exceptions 539

11.2 Uncaught Exceptions

If a program does not handle the exception at all, it will terminate abnormally
and produce a message that describes what exception occurred and where it was
produced. The information associated with an exception is often helpful in track-
ing down the cause of a problem.

Let’s look at the output of an exception. The program shown in Listing 11.1
throws an ArithmeticException when an invalid arithmetic operation is attempted.
In this case, the program attempts to divide by zero.

Because there is no code in this program to handle the exception explicitly,
it terminates when the exception occurs, printing specific information about the
exception. Note that the last println statement in the program never executes,
because the exception occurs first.

//**
// Zero.java Author: Lewis/Loftus
//
// Demonstrates an uncaught exception.
//**

public class Zero
{
 //---
 // Deliberately divides by zero to produce an exception.
 //---
 public static void main (String[] args)
 {
 int numerator = 10;
 int denominator = 0;

 System.out.println (numerator / denominator);

 System.out.println ("This text will not be printed.");
 }
}

O U T P U T

Exception in thread "main" java.lang.ArithmeticException: / by zero
 at Zero.main(Zero.java:17)

L I S T I N G 1 1 . 1

540 CHAPTER 11 Exceptions

 The first line of the exception output indicates which excep-
tion was thrown and provides some information about why it was
thrown. The remaining lines are the call stack trace ; they indicate
where the exception occurred. In this case, there is only one line in
the call stack trace, but there may be several depending on where
the exception originated. The first trace line indicates the method,

file, and line number where the exception occurred. The other trace lines, if pres-
ent, indicate the methods that were called to get to the method that produced the
exception. In this program, there is only one method, and it produced the excep-
tion; therefore there is only one line in the trace.

 The call stack trace information is also available by calling methods of the
exception class that is being thrown. The method getMessage returns a string
explaining the reason the exception was thrown. The method printStackTrace
prints the call stack trace.

 SELF-REVIEW QUESTION (see answer in Appendix N)

 SR 11.3 True or False. Explain.

 a. An exception and an error are the same thing.
 b. An attempt to divide by zero will cause an exception to be thrown.
 c. If a program does not handle a raised exception, the exception is

ignored and nothing happens.
 d. If a program does not handle an exception, a message related to

the exception will be produced.
 e. A call stack trace shows the sequence of method calls that led to

the code where an exception occurred.

 11.3 The try-catch Statement

 Let’s now examine how we catch and handle an exception when it is thrown.
The try-catch statement identifies a block of statements that may throw an excep-
tion. A catch clause , which follows a try block, defines how a particular kind of
exception is handled. A try block can have several catch clauses associated with
it. Each catch clause is called an exception handler.

 When a try statement is executed, the statements in the try block are exe-
cuted. If no exception is thrown during the execution of the try block, processing
continues with the statement following the try statement (after all of the catch
clauses). This situation is the normal execution flow and should occur most of
the time.

 KEY CONCEPT
 The messages printed when an
exception is thrown provide a
method call stack trace.

11.3 The try-catch Statement 541

 If an exception is thrown at any point during the execution of
the try block, control is immediately transferred to the appropri-
ate catch handler if it is present. That is, control transfers to the
first catch clause whose exception class corresponds to the excep-
tion that was thrown. After executing the statements in the catch
clause, control transfers to the statement after the entire try-catch
statement.

 Let’s look at an example. Suppose a hypothetical company uses codes to rep-
resent its various products. A product code includes, among other information, a
character in the tenth position that represents the zone from which that product
was made, and a four-digit integer in positions 4 through 7 that represents the
district in which it will be sold. Due to some reorganization, products from zone
R are banned from being sold in districts with a designation of 2000 or higher.
The program shown in Listing 11.2 reads product codes from the user and counts
the number of banned codes entered.

 KEY CONCEPT
 Each catch clause handles a particu-
lar kind of exception that may be
thrown within the try block.

 Try Statement

 A try statement contains a block of code followed by one or more catch
clauses. If an exception occurs in the try block, the code of the cor-
responding catch clause is executed. The finally clause, if present, is
executed no matter how the try block is exited.

 Example:

 try
 {
 System.out.println (Integer.parseInt(numString));
 }
 catch (NumberFormatException exception)
 {
 System.out.println ("Caught an exception.");
 }
 finally
 {
 System.out.println ("Done.");
 }

Blocktry catch

finally

Block

Block

()Type Identifier

542 CHAPTER 11 Exceptions

//**
// ProductCodes.java Author: Lewis/Loftus
//
// Demonstrates the use of a try-catch block.
//**

import java.util.Scanner;

public class ProductCodes
{
 //---
 // Counts the number of product codes that are entered with a
 // zone of R and and district greater than 2000.
 //---
 public static void main (String[] args)
 {
 String code;
 char zone;
 int district, valid = 0, banned = 0;

 Scanner scan = new Scanner (System.in);

 System.out.print ("Enter product code (XXX to quit): ");
 code = scan.nextLine();

 while (!code.equals ("XXX"))
 {
 try
 {
 zone = code.charAt(9);
 district = Integer.parseInt(code.substring(3, 7));
 valid++;
 if (zone == 'R' && district > 2000)
 banned++;
 }
 catch (StringIndexOutOfBoundsException exception)
 {
 System.out.println ("Improper code length: " + code);
 }
 catch (NumberFormatException exception)
 {
 System.out.println ("District is not numeric: " + code);
 }

L I S T I N G 1 1 . 2

 11.3 The try-catch Statement 543

The programming statements in the try block attempt to pull out the zone
and district information, and then determine whether it represents a banned
product code. If there is any problem extracting the zone and district informa-
tion, the product code is considered to be invalid and is not processed further.
For example, a StringIndexOutOfBoundsException could be thrown by either
the charAt or substring methods. Furthermore, a NumberFormatException
could be thrown by the parseInt method if the substring does not contain a
valid integer. A particular message is printed depending on which exception is
thrown. In either case, since the exception is caught and handled, processing
continues normally.

Note that, for each code examined, the integer valid is incremented only if no
exception is thrown. If an exception is thrown, control transfers immediately to
the appropriate catch clause. Likewise, the zone and district are tested by the if
statement only if no exception is thrown.

 System.out.print ("Enter product code (XXX to quit): ");
 code = scan.nextLine();
 }

 System.out.println ("# of valid codes entered: " + valid);
 System.out.println ("# of banned codes entered: " + banned);
 }
}

O U T P U T

Enter product code (XXX to quit): TRV2475A5R-14
Enter product code (XXX to quit): TRD1704A7R-12
Enter product code (XXX to quit): TRL2k74A5R-11
District is not numeric: TRL2k74A5R-11
Enter product code (XXX to quit): TRQ2949A6M-04
Enter product code (XXX to quit): TRV2105A2
Improper code length: TRV2105A2
Enter product code (XXX to quit): TRQ2778A7R-19
Enter product code (XXX to quit): XXX
of valid codes entered: 4
of banned codes entered: 2

L I S T I N G 1 1 . 2 continued

544 CHAPTER 11 Exceptions

 The finally Clause
 A try-catch statement can have an optional finally clause . The
 finally clause defines a section of code that is executed no matter
how the try block is exited. Most often, a finally clause is used to
manage resources or to guarantee that particular parts of an algo-
rithm are executed.

 If no exception is generated, the statements in the finally clause
are executed after the try block is complete. If an exception is generated in the try
block, control first transfers to the appropriate catch clause. After executing the
exception-handling code, control transfers to the finally clause and its statements
are executed. A finally clause, if present, must be listed following the catch clauses.

 Note that a try block does not need to have a catch clause at all. If there are
no catch clauses, a finally clause may used by itself if that is appropriate for
the situation.

 SELF-REVIEW QUESTIONS (see answers in Appendix N)

 SR 11.4 What is a catch clause?

 SR 11.5 What is a finally clause?

 SR 11.6 What output is produced by the following code fragment under each
of the stated conditions?

 try
 {
 review.question();
 }
 catch (Exception1 exception)
 {
 System.out.println ("one caught");
 }
 catch (Exception2 exception)
 {
 System.out.println ("two caught");
 }
 finally
 {
 System.out.println ("finally");
 }
 System.out.println ("the end");

 a. No exception is thrown by the review.question() method.

 KEY CONCEPT
 The finally clause is executed
whether the try block is exited
normally or because of a thrown
exception.

11.4 Exception Propagation 545

 b. An Exception1 exception is thrown by the review.question()
method.

 c. An Exception2 exception is thrown by the review.question()
method.

 d. An Exception3 exception is thrown by the review.question()
method.

11.4 Exception Propagation

 If an exception is not caught and handled where it occurs, control is immediately
returned to the method that invoked the method that produced the exception. We
can design our software so that the exception is caught and handled at this outer
level. If it isn’t caught there, control returns to the method that called
it. This process is called propagating the exception. This propaga-
tion continues until the exception is caught and handled or until it is
passed out of the main method, which terminates the program and
produces an exception message. To catch an exception at an outer
level, the method that produces the exception must be invoked inside
a try block that has catch clauses to handle it.

 The Propagation program shown in Listing 11.3 succinctly demonstrates
the process of exception propagation. The main method invokes method
 level1 in the ExceptionScope class (see Listing 11.4), which invokes level2 ,
which invokes level3 , which produces an exception. Method level3 does
not catch and handle the exception, so control is transferred back to level2 .
The level2 method does not catch and handle the exception either, so con-
trol is transferred back to level1 . Because the invocation of level2 is made
inside a try block (in method level1), the exception is caught and handled at
that point.

 Note that the output does not include the messages indicating that the methods
 level3 and level2 are ending. These println statements are never executed,
because an exception occurred and had not yet been caught. However, after
method level1 handles the exception, processing continues normally from that
point, printing the messages indicating that method level1 and the program are
ending.

 Note also that the catch clause that handles the exception uses the getMessage
and printStackTrace methods to output that information. The stack trace shows
the methods that were called when the exception occurred.

 KEY CONCEPT
 If an exception is not caught and
handled where it occurs, it is propa-
gated to the calling method.

 Proper exception
handling.

VideoNote

546 CHAPTER 11 Exceptions

//**
// Propagation.java Author: Lewis/Loftus
//
// Demonstrates exception propagation.
//**

public class Propagation
{
 //---
 // Invokes the level1 method to begin the exception demonstration.
 //---
 public static void main (String[] args)
 {
 ExceptionScope demo = new ExceptionScope();

 System.out.println("Program beginning.");
 demo.level1();
 System.out.println("Program ending.");
 }
}

O U T P U T

Program beginning.
Level 1 beginning.
Level 2 beginning.
Level 3 beginning.

The exception message is: / by zero

The call stack trace:
java.lang.ArithmeticException: / by zero
 at ExceptionScope.level3(ExceptionScope.java:54)
 at ExceptionScope.level2(ExceptionScope.java:41)
 at ExceptionScope.level1(ExceptionScope.java:18)
 at Propagation.main(Propagation.java:17)

Level 1 ending.
Program ending.

L I S T I N G 1 1 . 3

 11.4 Exception Propagation 547

//**
// ExceptionScope.java Author: Lewis/Loftus
//
// Demonstrates exception propagation.
//**

public class ExceptionScope
{
 //---
 // Catches and handles the exception that is thrown in level3.
 //---
 public void level1()
 {
 System.out.println("Level 1 beginning.");

 try
 {
 level2();
 }
 catch (ArithmeticException problem)
 {
 System.out.println ();
 System.out.println ("The exception message is: " +
 problem.getMessage());
 System.out.println ();
 System.out.println ("The call stack trace:");
 problem.printStackTrace();
 System.out.println ();
 }

 System.out.println("Level 1 ending.");
 }

 //---
 // Serves as an intermediate level. The exception propagates
 // through this method back to level1.
 //---
 public void level2()
 {
 System.out.println("Level 2 beginning.");
 level3 ();
 System.out.println("Level 2 ending.");
 }

L I S T I N G 1 1 . 4

548 CHAPTER 11 Exceptions

 A programmer must pick the most appropriate level at which to
catch and handle an exception. There is no single best answer as to
how to do this. It depends on the situation and the design of the sys-
tem. Sometimes the right approach will be not to catch an exception
at all and let the program terminate.

 SELF-REVIEW QUESTIONS (see answers in Appendix N)

 SR 11.7 What happens if an exception is not caught?

 SR 11.8 How would the result of the Propagation program change if the fol-
lowing code fragment was placed in the level2 method just before the
call to the level3 method?

 int num = 10, den = 0;
 int res = num / den;

 SR 11.9 How would the result of the Propagation program change if the fol-
lowing code fragment was placed in the level2 method just after the
call to the level3 method?

 int num = 10, den = 0;
 int res = num / den;

 //---
 // Performs a calculation to produce an exception. It is not
 // caught and handled at this level.
 //---
 public void level3 ()
 {
 int numerator = 10, denominator = 0;

 System.out.println("Level 3 beginning.");
 int result = numerator / denominator;
 System.out.println("Level 3 ending.");
 }
 }

 L I S T I N G 1 1 . 4 continued

 KEY CONCEPT
 A programmer must carefully con-
sider how and where exceptions
should be handled, if at all.

 11.5 The Exception Class Hierarchy 549

11.5 The Exception Class Hierarchy

The classes that define various exceptions are related by inheritance, creating a
class hierarchy that is shown in part in Figure 11.1

The Throwable class is the parent of both the Error class and the Exception
class. Many types of exceptions are derived from the Exception class, and these
classes also have many children. Though these high-level classes are defined
in the java.lang package, many child classes that define specific exceptions
are part of several other packages. Inheritance relationships can span package
boundaries.

Exception

Object

Throwable

Error

AWTError

VirtualMachineError

ThreadDeath

LinkageError

NullPointerException

IndexOutOfBoundsException

ArithmeticException

ClassNotFoundException

NoSuchMethodException

IllegalAccessException

RunTimeException

FIGURE 11.1 Part of the Error and Exception class hierarchy

550 CHAPTER 11 Exceptions

 We can define our own exceptions by deriving a new class from Exception or
one of its descendants. The class we choose as the parent depends on what situa-
tion or condition the new exception represents.

 The program in Listing 11.5 instantiates an exception object and
throws it. The exception is created from the OutOfRangeException
class, which is shown in Listing 11.6 . Note that this exception is not
part of the Java standard class library. It was created to represent the
situation in which a value is outside a particular valid range.

 KEY CONCEPT
 A new exception is defined by deriv-
ing a new class from the Exception
class or one of its descendants.

//**
// CreatingExceptions.java Author: Lewis/Loftus
//
// Demonstrates the ability to define an exception via inheritance.
//**

import java.util.Scanner;

public class CreatingExceptions
 {
 //---
 // Creates an exception object and possibly throws it.
 //---
 public static void main (String[] args) throws OutOfRangeException
 {
 final int MIN = 25, MAX = 40;

 Scanner scan = new Scanner (System.in);

 OutOfRangeException problem =
 new OutOfRangeException ("Input value is out of range.");

 System.out.print ("Enter an integer value between " + MIN +
 " and " + MAX + ", inclusive: ");
 int value = scan.nextInt();

 // Determine if the exception should be thrown
 if (value < MIN || value > MAX)
 throw problem;

 System.out.println ("End of main method."); // may never reach
 }
 }

 L I S T I N G 1 1 . 5

 11.5 The Exception Class Hierarchy 551

O U T P U T

Enter an integer value between 25 and 40, inclusive: 69
Exception in thread "main" OutOfRangeException:
 Input value is out of range.
 at CreatingExceptions.main(CreatingExceptions.java:20)

L I S T I N G 1 1 . 5 continued

//**
// OutOfRangeException.java Author: Lewis/Loftus
//
// Represents an exceptional condition in which a value is out of
// some particular range.
//**

public class OutOfRangeException extends Exception
{
 //---
 // Sets up the exception object with a particular message.
 //---
 OutOfRangeException (String message)
 {
 super (message);
 }
}

L I S T I N G 1 1 . 6

After reading in an input value, the main method evaluates it to see whether it
is in the valid range. If not, the throw statement is executed. A throw statement
is used to begin exception propagation. Because the main method does not catch
and handle the exception, the program will terminate if the exception is thrown,
printing the message associated with the exception.

We create the OutOfRangeException class by extending the Exception class.
Often, a new exception is nothing more than what you see in this example:

552 CHAPTER 11 Exceptions

an extension of some existing exception class that stores a particular message
describing the situation it represents. The important point is that the class is ulti-
mately a descendant of the Exception class and the Throwable class, which gives
it the ability to be thrown using a throw statement.

 The type of situation handled by this program, in which a value is out of range,
does not need to be represented as an exception. We’ve previously handled such
situations using conditionals or loops. Whether you handle a situation using an
exception or whether you take care of it in the normal flow of your program is
an important design decision.

 Checked and Unchecked Exceptions
 Some exceptions are checked, whereas others are unchecked. A checked excep-
tion must either be caught by a method or it must be listed in the throws clause
of any method that may throw or propagate it. A throws clause is appended to
the header of a method definition to formally acknowledge that the method will
throw or propagate a particular exception if it occurs. An unchecked exception
requires no throws clause.

 The only unchecked exceptions in Java are objects of type
 RuntimeException or any of its descendants. All other excep-
tions are considered checked exceptions. The main method of the
 CreatingExceptions program has a throws clause, indicating that it
may throw an OutOfRangeException . This throws clause is required
because the OutOfRangeException was derived from the Exception
class, making it a checked exception.

 SELF-REVIEW QUESTIONS (see answers in Appendix N)

 SR 11.10 What is a checked exception?

 SR 11.11 True or False? Explain.

 a. An ArithmeticException is an Exception .
 b. An ArithmeticException is Throwable .
 c. An ArithmeticException is a checked exception.
 d. A NoSuchMethodException is a checked exception.
 e. We can create our own exceptions by extending the Exception

class.
 f. A throws clause must be appended to the header of a

method definition if the method may potentially throw an
 ArithmeticException .

 SR 11.12 What happens if the input to the CreatingExceptions program is
42? What if it is −3?

 KEY CONCEPT
 The throws clause on a method
header must be included for checked
exceptions that are not caught and
handled in the method.

11.6 I/O Exceptions 553

11.6 I/O Exceptions

 Processing input and output is a task that often produces unforeseeable situa-
tions, leading to exceptions being thrown. Let’s explore some I/O issues and the
problems that may arise.

 A stream is an ordered sequence of bytes. The term stream comes
from the analogy that as we read and write information, the data
flows from a source to a destination (or sink) as water flows down
a stream. The source of the information is like a spring filling the
stream, and the destination is like a cave into which the stream flows.

 In a program, we treat a stream as either an input stream , from which we read
information, or as an output stream , to which we write information. That is, a
program serves either as the spring filling the stream or as the cave receiving the
stream. A program can deal with multiple input and output streams at one time.
A particular store of data, such as a file, can serve either as an input stream or as
an output stream to a program, but it generally cannot be both at the same time.

 There are three streams that are referred to as the standard I/O
streams . They are listed in Figure 11.2 . The System class contains
three object reference variables (in , out , and err) that represent the
three standard I/O streams. These references are declared as both
public and static, which allows them to be accessed directly through
the System class.

 We’ve been using the standard output stream, with calls to System.out.
println for instance, in examples throughout this book. We’ve also used the
standard input stream to create a Scanner object when we want to process
input read interactively from the user. The Scanner class manages the input
read from the standard input stream in various ways that makes our program-
ming tasks easier. It also processes various I/O exceptions internally, creating an
 InputMismatchException when needed.

 The standard I/O streams, by default, represent particular I/O devices. System.in
typically represents keyboard input, whereas System.out and System.err typi-

 KEY CONCEPT
 A stream is a sequential sequence of
bytes; it can be used as a source of
input or a destination for output.

 KEY CONCEPT
 Three public reference variables in
the System class represent the stan-
dard I/O streams.

System.in Standard input stream.

Standard output stream.

Standard error stream (output for error messages)

System.out

System.err

Standard I/O Stream Description

FIGURE 11.2 Standard I/O streams

554 CHAPTER 11 Exceptions

cally represent a particular window on the monitor screen. The System.out and
System.err streams write output to the same window by default (usually the one
in which the program was executed), though they could be set up to write to dif-
ferent places. The System.err stream is usually where error messages are sent.

 In addition to the standard input streams, the java.io package of the Java
standard class library provides many classes that let us define streams with par-
ticular characteristics. Some of the classes deal with files, others with memory,
and others with strings. Some classes assume that the data they handle consists
of characters, whereas others assume the data consists of raw bytes of binary

information. Some classes provide the means to manipulate the
data in the stream in some way, such as buffering the information
or numbering it. By combining classes in appropriate ways, we can
create objects that represent a stream of information that has the
exact characteristics we want for a particular situation.

 The broad topic of Java I/O, along with the sheer number of classes in the
 java.io package, prohibits us from covering it in detail in this book. Our focus
for the moment is on I/O exceptions.

 Many operations performed by I/O classes can potentially throw an
 IOException . The IOException class is the parent of several exception classes
that represent problems when trying to perform I/O.

 An IOException is a checked exception. As described earlier in this chapter,
that means that either the exception must be caught, or all methods that propa-
gate it must list it in a throws clause of the method header.

 Because I/O often deals with external resources, many problems can arise in
programs that attempt to perform I/O operations. For example, a file from which
we want to read might not exist; when we attempt to open the file, an exception
will be thrown, because that file can’t be found. In general, we should try to
design programs to be as robust as possible when dealing with potential problems.

 We’ve seen in previous examples how we can use the Scanner class to read and
process input read from a text file. Now let’s explore an example that writes data
to a text output file. Writing output to a text file requires simply that we use the
appropriate classes to create the output stream, then call the appropriate methods
to write the data.

 Suppose we want to test a program we are writing, but don’t have the real data
available. We could write a program that generates a test data file that contains
random values. The program shown in Listing 11.7 generates a file that contains
random integer values within a particular range. It also writes one line of standard
output, confirming that the data file has been written.

 KEY CONCEPT
 The Java class library contains many
classes for defining I/O streams with
various characteristics.

 11.6 I/O Exceptions 555

//**
// TestData.java Author: Lewis/Loftus
//
// Demonstrates I/O exceptions and the use of a character file
// output stream.
//**

import java.util.Random;
import java.io.*;

public class TestData
{
 //---
 // Creates a file of test data that consists of ten lines each
 // containing ten integer values in the range 10 to 99.
 //---
 public static void main (String[] args) throws IOException
 {
 final int MAX = 10;

 int value;
 String file = "test.dat";

 Random rand = new Random();

 FileWriter fw = new FileWriter (file);
 BufferedWriter bw = new BufferedWriter (fw);
 PrintWriter outFile = new PrintWriter (bw);

 for (int line=1; line <= MAX; line++)
 {
 for (int num=1; num <= MAX; num++)
 {
 value = rand.nextInt (90) + 10;
 outFile.print (value + " ");
 }
 outFile.println ();
 }

L I S T I N G 1 1 . 7

556 CHAPTER 11 Exceptions

The FileWriter class represents a text output file, but has minimal method
support for manipulating data. The PrintWriter class provides print and
println methods similar to the standard I/O PrintStream class.

The data that is contained in the file test.dat after the TestData program is
run might look like this:

85 90 93 15 82 79 52 71 70 98

74 57 41 66 22 16 67 65 24 84

86 61 91 79 18 81 64 41 68 81

98 47 28 40 69 10 85 82 64 41

23 61 27 10 59 89 88 26 24 76

33 89 73 36 54 91 42 73 95 58

19 41 18 14 63 80 96 30 17 28

24 37 40 64 94 23 98 10 78 50

89 28 64 54 59 23 61 15 80 88

51 28 44 48 73 21 41 52 35 38

Although we do not need to do so for the program to work, we have added a
layer in the file stream configuration to include a BufferedWriter. This addition
simply gives the output stream buffering capabilities, which makes the processing
more efficient. While buffering is not crucial in this situation, it is usually a good
idea when writing text files.

Note that in the TestData program, we have eliminated explicit exception
handling. That is, if something goes wrong, we simply allow the program to
terminate instead of specifically catching and handling the problem. Because all
IOExceptions are checked exceptions, we must include the throws clause on the
method header to indicate that they may be thrown. For each program, we must
carefully consider how best to handle the exceptions that may be thrown. This
requirement is especially important when dealing with I/O, which is fraught with
potential problems that cannot always be foreseen.

 outFile.close();
 System.out.println ("Output file has been created: " + file);
 }
}

O U T P U T

Output file has been created: test.dat

L I S T I N G 1 1 . 7 continued

11.7 Tool Tips and Mnemonics 557

 The TestData program uses nested for loops to compute random values and
write them to the output file. After all values are printed, the file is closed. Output
files must be closed explicitly to ensure that the data is retained. In general, it is
good practice to close all file streams explicitly when they are no longer needed.

 SELF-REVIEW QUESTIONS (see answers in Appendix N)

 SR 11.13 What is a stream?

 SR 11.14 What are the standard I/O streams?

 SR 11.15 What Stream class object have we been using explicitly throughout
this book?

 SR 11.16 An I/O exception, the InputMismatchException , will occur during
the main method of the CreatingExceptions program (see Listing
11.5) if the user enters an alphabetic character. Why doesn’t the
 main method definition include a throws InputMismatchException
clause?

SR 11.17 An I/O exception, the FileNotFoundException , will occur during
the main method of the TestData program if the test.dat is not
writable. Why doesn’t the main method definition include a throws
FileNotFoundException clause?

SR 11.18 What happens if the PrintWriter constructor of the TestDate class
is passed the fw object instead of the bw object?

11.7 Tool Tips and Mnemonics

 Let’s take a look at a some special features that can be used with any Swing com-
ponent. Appropriate application of these features can enhance the user interface
and facilitate the use of the components. This section describes the use of tool tips
and mnemonics, as well as the ability to disable components, then explores an
example that uses these features.

 Any Swing component can be assigned a tool tip, which is
a short line of text that will appear when the cursor is rested
momentarily on top of the component. Tool tips are usually
used to inform the user about the component, such as the
purpose of a button.

 A tool tip can be assigned using the setToolTipText method of a Swing com-
ponent. For example:

 JButton button = new JButton ("Compute");
 button.setToolTipText ("Calculates the area under the curve.");

 KEY CONCEPT
 Tool tips and mnemonics can
enhance the functionality of a
graphical user interface.

 When the button is added to a container and displayed, it appears normally.
When the user rolls the mouse pointer over the button, hovering there momen-
tarily, the tool tip text pops up. When the user moves the mouse pointer off of the
button, the tool tip text disappears.

 A mnemonic is a character that allows the user to push a button or make a
menu choice using the keyboard in addition to the mouse. For example, when a
mnemonic has been defined for a button, the user can hold down the ALT key
and press the mnemonic character to activate the button. Using a mnemonic to
activate the button causes the system to behave just as it would if the user had
used the mouse to press the button.

 A mnemonic character should be chosen from the label on a button or menu
item. Once the mnemonic has been established using the setMnemonic method, the
character in the label will be underlined to indicate that it can be used as a shortcut.
If a letter is chosen that is not in the label, nothing will be underlined and the user
won’t know how to use the shortcut. You can set a mnemonic as follows:

 JButton button = new JButton ("Calculate");
 button.setMnemonic ('C');

 When the button is displayed, the letter C in Calculate is underlined on the but-
ton label. When the user presses ALT-C, the button is activated as if the user had
pressed it with the mouse.

 Some components can be disabled if they should not be used. A disabled com-
ponent will appear “grayed out,” and nothing will happen if the user attempts to
interact with it. To disable and enable components, we invoke the setEnabled
method of the component, passing it a boolean value to indicate whether the
component should be disabled (false) or enabled (true). For example:

 JButton button = new JButton ("Do It");
 button.setEnabled (false);

 Disabling components is a good idea when users should not be allowed to use
the functionality of a component. The grayed appearance of the disabled com-
ponent is an indication that using the component is inappropriate (and, in fact,
impossible) at the current time. Disabled components not only convey to the user
which actions are appropriate and which aren’t, they also prevent erroneous situ-
ations from occurring.

 Let’s look at an example that uses tool tips, mnemon-
ics, and disabled components. The program in Listing 11.8
presents the image of a light bulb and provides a button to
turn the light bulb on and a button to turn the light bulb off.

 KEY CONCEPT
 Components should be disabled
when their use is inappropriate.

558 CHAPTER 11 Exceptions

There are actually two images of the light bulb: one showing it turned on and
one showing it turned off. These images are brought in as ImageIcon objects. The
setIcon method of the label that displays the image is used to set the appropri-
ate image, depending on the current status. This processing is controlled in the
LightBulbPanel class shown in Listing 11.9.

//**
// LightBulb.java Author: Lewis/Loftus
//
// Demonstrates mnemonics and tool tips.
//**

import javax.swing.*;
import java.awt.*;

public class LightBulb
{
 //---
 // Sets up a frame that displays a light bulb image that can be
 // turned on and off.
 //---
 public static void main (String[] args)
 {
 JFrame frame = new JFrame ("Light Bulb");
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

 LightBulbPanel bulb = new LightBulbPanel();
 LightBulbControls controls = new LightBulbControls (bulb);

 JPanel panel = new JPanel();
 panel.setBackground (Color.black);
 panel.setLayout (new BoxLayout(panel, BoxLayout.Y_AXIS));
 panel.add (Box.createRigidArea (new Dimension (0, 20)));
 panel.add (bulb);
 panel.add (Box.createRigidArea (new Dimension (0, 10)));
 panel.add (controls);
 panel.add (Box.createRigidArea (new Dimension (0, 10)));

 frame.getContentPane().add(panel);
 frame.pack();
 frame.setVisible(true);
 }
}

L I S T I N G 1 1 . 8

 11.7 Tool Tips and Mnemonics 559

D I S P L A Y

L I S T I N G 1 1 . 8 continued

560 CHAPTER 11 Exceptions

//**
// LightBulbPanel.java Author: Lewis/Loftus
//
// Represents the image for the LightBulb program.
//**

import javax.swing.*;
import java.awt.*;

public class LightBulbPanel extends JPanel
{
 private boolean on;
 private ImageIcon lightOn, lightOff;
 private JLabel imageLabel;

 //---
 // Constructor: Sets up the images and the initial state.
 //---

L I S T I N G 1 1 . 9

The LightBulbControls class shown in Listing 11.10 is a panel that contains
the on and off buttons. Both of these buttons have tool tips assigned to them,
and both use mnemonics. Also, when one of the buttons is enabled, the other is
disabled, and vice versa. When the light bulb is on, there is no reason for the On
button to be enabled. Likewise, when the light bulb is off, there is no reason for
the Off button to be enabled.

 public LightBulbPanel()
 {
 lightOn = new ImageIcon ("lightBulbOn.gif");
 lightOff = new ImageIcon ("lightBulbOff.gif");

 setBackground (Color.black);

 on = true;
 imageLabel = new JLabel (lightOff);
 add (imageLabel);
 }

 //---
 // Paints the panel using the appropriate image.
 //---
 public void paintComponent (Graphics page)
 {
 super.paintComponent(page);

 if (on)
 imageLabel.setIcon (lightOn);
 else
 imageLabel.setIcon (lightOff);
 }

 //---
 // Sets the status of the light bulb.
 //---
 public void setOn (boolean lightBulbOn)
 {
 on = lightBulbOn;
 }
}

L I S T I N G 1 1 . 9 continued

 11.7 Tool Tips and Mnemonics 561

Exploring GUI
design details.

VideoNote

562 CHAPTER 11 Exceptions

//**
// LightBulbControls.java Author: Lewis/Loftus
//
// Represents the control panel for the LightBulb program.
//**

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class LightBulbControls extends JPanel
{
 private LightBulbPanel bulb;
 private JButton onButton, offButton;

 //---
 // Sets up the lightbulb control panel.
 //---
 public LightBulbControls (LightBulbPanel bulbPanel)
 {
 bulb = bulbPanel;

 onButton = new JButton ("On");
 onButton.setEnabled (false);
 onButton.setMnemonic ('n');
 onButton.setToolTipText ("Turn it on!");
 onButton.addActionListener (new OnListener());

 offButton = new JButton ("Off");
 offButton.setEnabled (true);
 offButton.setMnemonic ('f');
 offButton.setToolTipText ("Turn it off!");
 offButton.addActionListener (new OffListener());

 setBackground (Color.black);
 add (onButton);
 add (offButton);
 }

 //***
 // Represents the listener for the On button.
 //***
 private class OnListener implements ActionListener
 {

L I S T I N G 1 1 . 1 0

Each button has its own listener class. The actionPerformed method of each
sets the bulb’s status, toggles the enabled state of both buttons, and causes the
panel with the image to repaint itself.

Note that the mnemonic characters used for each button are underlined in the
display. When you run the program, note that the tool tips automatically include
an indication of the mnemonic that can be used for the button.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 11.19 What is a tool tip?

SR 11.20 What is a mnemonic and how is it used?

SR 11.21 Why might you want to disable a component?

 //--
 // Turns the bulb on and repaints the bulb panel.
 //--
 public void actionPerformed (ActionEvent event)
 {
 bulb.setOn (true);
 onButton.setEnabled (false);
 offButton.setEnabled (true);
 bulb.repaint();
 }
 }

 //***
 // Represents the listener for the Off button.
 //***
 private class OffListener implements ActionListener
 {
 //--
 // Turns the bulb off and repaints the bulb panel.
 //--
 public void actionPerformed (ActionEvent event)
 {
 bulb.setOn (false);
 onButton.setEnabled (true);
 offButton.setEnabled (false);
 bulb.repaint();
 }
 }
}

L I S T I N G 1 1 . 1 0 continued

 11.7 Tool Tips and Mnemonics 563

564 CHAPTER 11 Exceptions

SR 11.22 Identify the class(es) and the line(s) of code from the class(es) that
provide each of the following for the Lightbulb program.

 a. The background is black.
 b. The message "Turn it off!" appears when you put the mouse

over the off button.
 c. An off bulb will turn on if the user enters ALT-n.
 d. The on button is grayed out when the bulb is turned on.
 e. Originally the bulb is on.

11.8 Combo Boxes

 A combo box allows the user to select one of several options
from a “drop down” menu. When the user presses a combo
box using the mouse, a list of options is displayed from
which the user can choose. The current choice is displayed in

the combo box. A combo box is defined by the JComboBox class.

 A combo box can be either editable or uneditable. By default, a combo box is
uneditable. Changing the value of an uneditable combo box can be accomplished
only by selecting an item from the list. If the combo box is editable, however, the
user can change the value either by selecting an item from the list or by typing a
particular value into the combo box area.

 The options in a combo box list can be established in one of two ways. We
can create an array of strings and pass it into the constructor of the JComboBox
class. Alternatively, we can use the addItem method to add an item to the combo
box after it has been created. A JComboBox can also display ImageIcon objects as
options as well.

 The JukeBox program shown in Listing 11.11 demonstrates the use of a combo
box. The user chooses a song to play using the combo box and then presses the Play
button to begin playing the song. The Stop button can be pressed at any time to
stop the song. Selecting a new song while one is playing also stops the current song.

 The JukeBoxControls class shown in Listing 11.12 is a panel that contains
the components that make up the jukebox GUI. The constructor of the class also
loads the audio clips that will be played. An audio clip is obtained first by creating
a URL object that corresponds to the wav or au file that defines the clip. The first
two parameters to the URL constructor should be "file" and "localhost" , respec-
tively, if the audio clip is stored on the same machine on which the program is exe-
cuting. Creating URL objects can potentially throw a checked exception; therefore
they are created in a try block. However, this program assumes the audio clips
will be loaded successfully and therefore does nothing if an exception is thrown.

 KEY CONCEPT
 A combo box provides a drop down
menu of options for the user.

Once created, the URL objects are used to create AudioClip objects using the static
newAudioClip method of the JApplet class. The audio clips are stored in an array.
The first entry in the array, at index 0, is set to null. This entry corresponds to the
initial combo box option, which simply encourages the user to make a selection.

//**
// JukeBox.java Author: Lewis/Loftus
//
// Demonstrates the use of a combo box.
//**

import javax.swing.*;

public class JukeBox
{
 //---
 // Creates and displays the controls for a juke box.
 //---
 public static void main (String[] args)
 {
 JFrame frame = new JFrame ("Java Juke Box");
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

 JukeBoxControls controlPanel = new JukeBoxControls();

 frame.getContentPane().add(controlPanel);
 frame.pack();
 frame.setVisible(true);
 }
}

D I S P L A Y

L I S T I N G 1 1 . 1 1

 11.8 Combo Boxes 565

566 CHAPTER 11 Exceptions

//**
// JukeBoxControls.java Author: Lewis and Loftus
//
// Represents the control panel for the juke box.
//**

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.applet.AudioClip;
import java.net.URL;

public class JukeBoxControls extends JPanel
{
 private JComboBox musicCombo;
 private JButton stopButton, playButton;
 private AudioClip[] music;
 private AudioClip current;

 //---
 // Sets up the GUI for the juke box.
 //---
 public JukeBoxControls()
 {
 URL url1, url2, url3, url4, url5, url6;
 url1 = url2 = url3 = url4 = url5 = url6 = null;

 // Obtain and store the audio clips to play
 try
 {
 url1 = new URL ("file", "localhost", "westernBeat.wav");
 url2 = new URL ("file", "localhost", "classical.wav");
 url3 = new URL ("file", "localhost", "jeopardy.au");
 url4 = new URL ("file", "localhost", "newAgeRythm.wav");
 url5 = new URL ("file", "localhost", "eightiesJam.wav");
 url6 = new URL ("file", "localhost", "hitchcock.wav");
 }
 catch (Exception exception) {}

 music = new AudioClip[7];
 music[0] = null; // Corresponds to "Make a Selection..."
 music[1] = JApplet.newAudioClip (url1);
 music[2] = JApplet.newAudioClip (url2);
 music[3] = JApplet.newAudioClip (url3);

L I S T I N G 1 1 . 1 2

 music[4] = JApplet.newAudioClip (url4);
 music[5] = JApplet.newAudioClip (url5);
 music[6] = JApplet.newAudioClip (url6);

 JLabel titleLabel = new JLabel ("Java Juke Box");
 titleLabel.setAlignmentX (Component.CENTER_ALIGNMENT);

 // Create the list of strings for the combo box options
 String[] musicNames = {"Make A Selection...", "Western Beat",
 "Classical Melody", "Jeopardy Theme", "New Age Rythm",
 "Eighties Jam", "Alfred Hitchcock's Theme"};

 musicCombo = new JComboBox (musicNames);
 musicCombo.setAlignmentX (Component.CENTER_ALIGNMENT);

 // Set up the buttons
 playButton = new JButton ("Play", new ImageIcon ("play.gif"));
 playButton.setBackground (Color.white);
 playButton.setMnemonic ('p');
 stopButton = new JButton ("Stop", new ImageIcon ("stop.gif"));
 stopButton.setBackground (Color.white);
 stopButton.setMnemonic ('s');

 JPanel buttons = new JPanel();
 buttons.setLayout (new BoxLayout (buttons, BoxLayout.X_AXIS));
 buttons.add (playButton);
 buttons.add (Box.createRigidArea (new Dimension(5,0)));
 buttons.add (stopButton);
 buttons.setBackground (Color.cyan);

 // Set up this panel
 setPreferredSize (new Dimension (300, 100));
 setBackground (Color.cyan);
 setLayout (new BoxLayout (this, BoxLayout.Y_AXIS));
 add (Box.createRigidArea (new Dimension(0,5)));
 add (titleLabel);
 add (Box.createRigidArea (new Dimension(0,5)));
 add (musicCombo);
 add (Box.createRigidArea (new Dimension(0,5)));
 add (buttons);
 add (Box.createRigidArea (new Dimension(0,5)));

 musicCombo.addActionListener (new ComboListener());
 stopButton.addActionListener (new ButtonListener());

L I S T I N G 1 1 . 1 2 continued

 11.8 Combo Boxes 567

 playButton.addActionListener (new ButtonListener());

 current = null;
 }

 //***
 // Represents the action listener for the combo box.
 //***
 private class ComboListener implements ActionListener
 {
 //--
 // Stops playing the current selection (if any) and resets
 // the current selection to the one chosen.
 //--
 public void actionPerformed (ActionEvent event)
 {
 if (current != null)
 current.stop();

 current = music[musicCombo.getSelectedIndex()];
 }
 }

 //***
 // Represents the action listener for both control buttons.
 //***
 private class ButtonListener implements ActionListener
 {
 //--
 // Stops the current selection (if any) in either case. If
 // the play button was pressed, start playing it again.
 //--
 public void actionPerformed (ActionEvent event)
 {
 if (current != null)
 current.stop();

 if (event.getSource() == playButton)
 if (current != null)
 current.play();
 }
 }

L I S T I N G 1 1 . 1 2 continued

568 CHAPTER 11 Exceptions

The list of songs that is displayed in the combo box is defined in an array of
strings. The first entry of the array will appear in the combo box by default and is
often used to direct the user. We must take care that the rest of the program does
not try to use that option as a valid song.

The play and stop buttons are displayed with both a text label and an image
icon. They are also given mnemonics so that the jukebox can be controlled par-
tially from the keyboard.

A combo box generates an action event whenever the user makes a selection
from it. The JukeBox program uses one action listener class for the combo box
and another for both of the push buttons. They could have been combined, using
code to distinguish which component fired the event.

The actionPerformed method of the ComboListener class is executed when a
selection is made from the combo box. The current audio selection that is playing,
if any, is stopped. The current clip is then updated to reflect the new selection.
Note that the audio clip is not immediately played at that point. The way this
program is designed, the user must press the play button to hear the new selection.

The actionPerformed method of the ButtonListener class is executed when
either of the buttons is pushed. The current audio selection that is playing, if any, is
stopped. If it was the stop button that was pressed, the task is complete. If the play
button was pressed, the current audio selection is played again from the beginning.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 11.23 What is a combo box?

SR 11.24 How does the JukeBox program ensure that it doesn’t try to play
a song associated with the "Make a Selection. . ." combo box
option?

SR 11.25 How many action listeners are defined in the JukeBox program, and
what do they each listen for?

SR 11.26 Describe in detail how the JukeBox program associates the combo
box selection made by the user with a specific audio clip.

11.9 Scroll Panes

Sometimes we need to deal with images or information that is too large to fit in
a reasonable area. A scroll pane is often helpful in these situations. A scroll pane
is a container that offers a limited view of a component, and provides vertical or
horizontal scroll bars to change that view. At any point, only part of the underly-
ing component can be seen, but the scroll bars allow the user to navigate to any

 11.9 Scroll Panes 569

part of the component. Scroll bars are useful when space within a GUI is limited
or when the component being viewed is large or can change in size dynamically.

 The program in Listing 11.13 presents a frame that con-
tains a single scroll pane. The scroll pane is used to view
an image of a fairly large subway map for Philadelphia and
the surrounding areas. The image is put into a label, and
the label is added to the scroll pane using the JScrollPane
constructor.

 KEY CONCEPT
 A scroll pane is useful for viewing
large objects or large amounts of
data.

//**
// TransitMap.java Author: Lewis/Loftus
//
// Demonstrates the use of a scroll pane.
//**

import java.awt.*;
import javax.swing.*;

public class TransitMap
 {
 //---
 // Presents a frame containing a scroll pane used to view a large
 // map of the Philadelphia subway system.
 //---
 public static void main (String[] args)
 {
 // SEPTA = SouthEast Pennsylvania Transit Authority
 JFrame frame = new JFrame ("SEPTA Transit Map");

 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

 ImageIcon image = new ImageIcon ("septa.jpg");
 JLabel imageLabel = new JLabel (image);

 JScrollPane sp = new JScrollPane (imageLabel);
 sp.setPreferredSize (new Dimension (450, 400));
 frame.getContentPane().add (sp);
 frame.pack();
 frame.setVisible(true);
 }
 }

 L I S T I N G 1 1 . 1 3

570 CHAPTER 11 Exceptions

A scroll pane can have a vertical scroll bar on the right of the container as
well as a horizontal scroll bar at the bottom of the container. For each of these,
the programmer can specify that the scroll bars are always used, never used, or
used as needed to view the underlying component. By default, both the vertical
and horizontal scroll bars are used as needed. The TransitMap program relies on
these defaults, and both scroll bars appear because the image is too large in both
height and width.

D I S P L A Y

L I S T I N G 1 1 . 1 3 continued

 11.9 Scroll Panes 571

To move a scroll bar, the user can click on and drag the box, called the knob,
in the scroll bar that indicates its current location (in that dimension: up/down
or right/left). Alternatively, the user can click in the bar to the right or left of the
knob, or on the arrows at either end of the scroll bar, to adjust the location. The
programmer can determine how much each of these actions changes the viewing
area.

Note that no event listeners need to be set up to use a scroll pane in this
manner. A scroll pane responds automatically to the adjustments of its scroll bars.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 11.27 Describe the use of scroll bars on a scroll pane.

SR 11.28 What happens if you change the first parameter passed to the
Dimension constructor within the TransitMap program to 1000?
Explain.

Left
Component

Right
Component

Moveable
Divider Bar

Top Component

Bottom Component

FIGURE 11.3 The configurations of a split pane

572 CHAPTER 11 Exceptions

11.10 Split Panes

A split pane is a container that displays two components separated by a moveable
divider bar. Depending on how the split pane is set up, the two components are
displayed either side by side or one on top of the other, as shown in Figure 11.3.
In Java, we can create a split pane using the JSplitPane class.

 The orientation of a split pane is set using constants in the
JSplitPane class and can be set when the container is cre-
ated or explicitly later on. The constant HORIZONTAL_SPLIT
specifies that the components be displayed side by side. In
contrast, VERTICAL_SPLIT specifies that the components be
displayed one on top of the other.

 The location of the divider bar determines how much visible area is devoted
to each component in the split pane. The divider bar can be dragged across the
container area using the mouse. As it moves, the visible space is increased for one
component and decreased for the other. The total space allotted for both compo-
nents changes only if the size of the entire split pane changes.

 A JSplitPane respects the minimum size set for the components it displays.
Therefore, the divider bar may not allow a section to be reduced in size beyond
a particular point. To adjust this aspect, the minimum sizes of the components
displayed can be changed.

 The divider bar of a JSplitPane object can be set so that it can be expanded,
one direction or the other, with one click of the mouse. By default, the divider bar
does not have this feature and can be moved only by dragging it. If this feature
is turned on, the divider bar appears with two small arrows pointing in opposite
directions. Clicking either of these arrows causes the divider bar to move fully
in that direction, maximizing the space allotted to one of the components. This
feature is set using the setOneTouchExpandable method, which takes a boolean
parameter. The size of the divider bar and the initial location of the divider bar
can be set explicitly as well.

 Another feature that can be set on a JSplitPane is whether or not the components
are continuously adjusted and repainted as the divider bar is being moved. If this
feature is not set, the components’ layout managers will be consulted only after the
divider bar stops moving. This feature is off by default and can be turned on when
the JSplitPane object is created or by using the setContinuousLayout method.

 Split panes can be nested by putting a split pane into one or both sides of
another split pane. For example, we could divide a container into three sections
by putting a split pane into the top component of another split pane. There would
then be two divider bars, one that separates the total area into two main sections
and another that separates one of those sections into two others. How much vis-
ible area is shown in each would depend on where the divider bars are placed.

 The program shown in Listing 11.14 presents a list of image file names to the
user. When one of the file names is selected, the corresponding image is displayed
in the right side of the split pane.

 The split pane is created in the main method and added to the frame to be
displayed. The split pane is oriented, using the HORIZONTAL_SPLIT constant, such

 KEY CONCEPT
 A split pane displays two compo-
nents side by side or one on top of
the other.

11.10 Split Panes 573

that the panel containing the list and the label containing the image to be dis-
played are side by side. The call to the setOneTouchExpandable method causes
the divider bar of the split pane to display the arrows that permit the user to
expand the panes one way or the other with one click of the mouse.

//**
// PickImage.java Author: Lewis/Loftus
//
// Demonstrates the use of a split pane and a list.
//**

import java.awt.*;
import javax.swing.*;

public class PickImage
{
 //---
 // Creates and displays a frame containing a split pane. The
 // user selects an image name from the list to be displayed.
 //---
 public static void main (String[] args)
 {
 JFrame frame = new JFrame ("Pick Image");
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

 JLabel imageLabel = new JLabel();
 JPanel imagePanel = new JPanel();
 imagePanel.add (imageLabel);
 imagePanel.setBackground (Color.white);

 ListPanel imageList = new ListPanel (imageLabel);

 JSplitPane sp = new JSplitPane(JSplitPane.HORIZONTAL_SPLIT,
 imageList, imagePanel);

 sp.setOneTouchExpandable (true);

 frame.getContentPane().add (sp);
 frame.pack();
 frame.setVisible(true);
 }
}

L I S T I N G 1 1 . 1 4

574 CHAPTER 11 Exceptions

The ListPanel class shown in Listing 11.15 defines the panel that contains the
list of file names. We use a list component, defined by the JList class, to display
the list of file names. The list contents are set up as an array of String objects,
which are passed into the JList constructor.

D I S P L A Y

L I S T I N G 1 1 . 1 4 continued

//**
// ListPanel.java Author: Lewis/Loftus
//
// Represents the list of images for the PickImage program.
//**

import java.awt.*;
import javax.swing.*;
import javax.swing.event.*;

public class ListPanel extends JPanel
{
 private JLabel label;

L I S T I N G 1 1 . 1 5

 11.10 Split Panes 575

 private JList list;

 //---
 // Loads the list of image names into the list.
 //---
 public ListPanel (JLabel imageLabel)
 {
 label = imageLabel;

 String[] fileNames = { "circuit.gif",
 "duke.gif",
 "hammock.gif",
 "justin.jpg",
 "kayla.jpg",
 "tiger.jpg",
 "toucan.gif",
 "worldmap.gif" };

 list = new JList (fileNames);
 list.addListSelectionListener (new ListListener());
 list.setSelectionMode (ListSelectionModel.SINGLE_SELECTION);

 add (list);
 setBackground (Color.white);
 }

 //***
 // Represents the listener for the list of images.
 //***
 private class ListListener implements ListSelectionListener
 {
 public void valueChanged (ListSelectionEvent event)
 {
 if (list.isSelectionEmpty())
 label.setIcon (null);
 else
 {
 String fileName = (String)list.getSelectedValue();
 ImageIcon image = new ImageIcon (fileName);
 label.setIcon (image);
 }
 }
 }
}

L I S T I N G 1 1 . 1 5 continued

576 CHAPTER 11 Exceptions

In general, all of the options in a JList component are visible. When the user
selects an item using the mouse, it is highlighted. When a new item is selected, the
previously selected item is automatically unhighlighted.

The contents of a JList can be specified using an array of objects passed into
the constructor. Methods of the JList class are used to manage the list in various
ways, including retrieving the currently selected item.

Note the similarities and differences between a combo box (described in
Section 11.8) and a JList object. Both allow the user to select an item from a set
of choices. However, the choices on a list are always displayed, with the current
choice highlighted, whereas a combo box presents its options only when the user
presses it with the mouse. The only item displayed all the time in a combo box is
the current selection.

A JList object generates a list selection event whenever the current selection
of the list changes. The ListSelectionListener interface contains one method
called valueChanged. In this program, the private inner class called ListListener
defines the listener for the list of file names.

The valueChanged method of the listener calls the isSelectionEmpty method
of the JList object to determine if there is any value currently selected. If not,
the icon of the label is set to null. If so, the file name is obtained using the
getSelectedValue method. Then the corresponding image icon is created and
displayed in the label.

A JList object can be set so that multiple items can be selected at the same
time. The list selection mode can be one of three options, as shown in the table
in Figure 11.4.

The list selection mode is defined by a ListSelectionModel object. By default,
a list allows multiple interval selection. A call to the setSelectionMode method,
using a constant defined in the ListSelectionModel class, will explicitly set the
list selection mode.

In the PickImage program, we set the list selection mode to single selection
because only one image can be displayed at a time. However, even if multiple

Single Selection Only one item can be selected at a time.

Any combination of items can be selected.

Multiple, contiguous items can be selected at a time. Single Interval Selection

Multiple Interval Selection

List Selection Mode Description

FIGURE 11.4 List selection modes

 11.10 Split Panes 577

selections were allowed in this program, the getSelectedValue method returns
the first item selected, so that would be the image displayed. A similar method
called getSelectedValues returns an array of objects representing the items
selected when multiple selections are permitted.

Instead of an array of String objects, the JList constructor could be passed
an array of ImageIcon objects instead. In that case, the images would be displayed
in the list.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 11.29 Describe the use of the divider bar on a split pane.

SR 11.30 What is the difference between how a combo box (Section 11.8) is
displayed and how a JList object is displayed?

578 CHAPTER 11 Exceptions

 Summary of Key Concepts 579

■ Errors and exceptions are objects that represent unusual or invalid
processing.

■ The messages printed when an exception is thrown provide a method call
stack trace.

■ Each catch clause handles a particular kind of exception that may be
thrown within the try block.

■ The finally clause is executed whether the try block is exited normally
or because of a thrown exception.

■ If an exception is not caught and handled where it occurs, it is propagated
to the calling method.

■ A programmer must carefully consider how and where exceptions should
be handled, if at all.

■ A new exception is defined by deriving a new class from the Exception
class or one of its descendants.

■ The throws clause on a method header must be included for checked
exceptions that are not caught and handled in the method.

■ A stream is a sequential sequence of bytes; it can be used as a source of
input or a destination for output.

■ Three public reference variables in the System class represent the standard
I/O streams.

■ Output file streams should be explicitly closed or they may not correctly
retain the data written to them.

■ The Java class library contains many classes for defining I/O streams with
various characteristics.

■ Tool tips and mnemonics can enhance the functionality of a graphical user
interface.

■ Components should be disabled when their use is inappropriate.

■ A combo box provides a drop down menu of options for the user.

■ A scroll pane is useful for viewing large objects or large amounts of data.

■ A split pane displays two components side by side or one on top of the
other.

Summary of Key Concepts

Exercises
Visit www.myprogramminglab.com to complete many of these Exercises
online and get instant feedback.

EX 11.1 Create a UML class diagram for the ProductCodes program.

EX 11.2 What would happen if the try statement were removed from the
level1 method of the ExceptionScope class in the Propagation
program?

EX 11.3 What would happen if the try statement described in the previ-
ous exercise were moved to the level2 method?

EX 11.4 Look up the following exception classes in the online Java API
documentation and describe their purpose:

a. ArithmeticException
b. NullPointerException
c. NumberFormatException
d. PatternSyntaxException

EX 11.5 Draw the containment hierarchy tree for the LightBulb program.

EX 11.6 Draw the containment hierarchy tree for the PickImage program.

EX 11.7 Draw the containment hierarchy tree for the JukeBox program.

EX 11.8 What effect would removing the call to setSelectionMode in the
ListPanel class have? Make the change to test your answer.

Programming Projects
Visit www.myprogramminglab.com to complete many of these Programming
Projects online and get instant feedback.

PP 11.1 Design and implement a program that creates an exception class
called StringTooLongException, designed to be thrown when
a string is discovered that has too many characters in it. In the
main driver of the program, read strings from the user until the
user enters "DONE". If a string is entered that has too many char-
acters (say 20), throw the exception. Allow the thrown exception
to terminate the program.

PP 11.2 Modify the solution to PP 11.1 such that it catches and handles
the exception if it is thrown. Handle the exception by printing an
appropriate message, and then continue processing more strings.

Developing a solution
of PP 11.1.

VideoNote

580 CHAPTER 11 Exceptions

www.myprogramminglab.com
www.myprogramminglab.com

PP 11.3 Design and implement a program that creates an exception class
called InvalidDocumentCodeException, designed to be thrown
when an improper designation for a document is encountered
during processing. Suppose in a particular business all documents
are given a two-character designation starting with either U, C,
or P, standing for unclassified, confidential, or proprietary. If a
document designation is encountered that doesn’t fit that descrip-
tion, the exception is thrown. Create a driver program to test the
exception, allowing it to terminate the program.

PP 11.4 Modify the solution to PP 11.3 such that it catches and handles
the exception if it is thrown. Handle the exception by printing an
appropriate message, and then continue processing.

PP 11.5 Modify the DisplayFile program from Chapter 10 to add a but-
ton labeled Save above the text area. When the button is pushed,
write the contents back out to the file.

PP 11.6 Modify the JukeBox program such that it plays a song immedi-
ately after it has been selected using the combo box. Combine
the two listeners into one.

PP 11.7 Modify the StyleOptions program from Chapter 5 so that it
uses a split pane. Orient the split pane such that the label is on
the top and the style check boxes are in the bottom. Add tool
tips to the check boxes to explain their purpose.

PP 11.8 Modify the PickImage program so that it presents several addi-
tional image options. Display the list within a scroll pane with a
vertical scroll bar that is always displayed. Display the image in a
scroll pane that uses both horizontal and vertical scroll bars, but
only when necessary.

PP 11.9 Design and implement an application that performs flashcard
testing of simple mathematical problems. Allow the user to pick
the category. Repetitively display a problem and get the user’s
answer. Indicate whether the user’s answer is right or wrong for
each problem, and display an ongoing score.

 Programming Projects 581

This page intentionally left blank

583

C H A P T E R O B J E C T I V E S
● Explain the underlying concepts of recursion.

● Explore examples that promote recursive thinking.

● Examine recursive methods and unravel their processing steps.

● Define infinite recursion and discuss ways to avoid it.

● Explain when recursion should and should not be used.

● Demonstrate the use of recursion to solve problems.

● Explore the use of recursion in graphics-based programs.

● Define the concept of a fractal and its relationship to recursion.

Recursion is a powerful programming technique that provides

elegant solutions to certain problems. This chapter provides an

introduction to recursive processing. It contains an explanation of

the basic concepts underlying recursion and then explores the use of

recursion in programming. Several specific problems are solved using

recursion, demonstrating its versatility, simplicity, and elegance.

Recursion 12

584 CHAPTER 12 Recursion

12.1 Recursive Thinking

 We’ve seen many times in previous examples that one method can
call another method to accomplish a goal. What we haven’t seen yet,
however, is that a method can call itself. Recursion is a program-
ming technique in which a method calls itself in order to fulfill its
purpose. But before we get into the details of how we use recursion
in a program, we need to explore the general concept of recursion.
The ability to think recursively is essential to being able to use recur-

sion as a programming technique.

 In general, recursion is the process of defining something in terms of itself. For
example, consider the following definition of the word decoration :

decoration : n. any ornament or adornment used to decorate something

 The word decorate is used to define the word decoration . You may recall your
grade school teacher telling you to avoid such recursive definitions when explain-
ing the meaning of a word. However, in many situations, recursion is an appro-
priate way to express an idea or definition. For example, suppose we wanted
to formally define a list of one or more numbers, separated by commas. Such a
list can be defined recursively as either a number or as a number followed by a
comma followed by a list. This definition can be expressed as follows:

 A List is a: number
 or a: number comma List

 This recursive definition of List defines each of the following lists of numbers:

 24, 88, 40, 37
 96, 43
 14, 64, 21, 69, 32, 93, 47, 81, 28, 45, 81, 52, 69
 70

 No matter how long a list is, the recursive definition describes it. A list of one
element, such as in the last example, is defined completely by the first (non-recur-
sive) part of the definition. For any list longer than one element, the recursive part
of the definition (the part which refers to itself) is used as many times as necessary
until the last element is reached. The last element in the list is always defined by
the non-recursive part of the definition. Figure 12.1 shows how one particular list
of numbers corresponds to the recursive definition of List .

 Infinite Recursion
 Note that the definition of List contains one option that is recursive and one
option that is not. The part of the definition that is not recursive is called the base

 KEY CONCEPT
 Recursion is a programming tech-
nique in which a method calls itself.
The key to being able to program
recursively is to be able to think
recursively.

12.1 Recursive Thinking 585

case. If all options had a recursive component, the recursion would
never end. For example, if the definition of List was simply “a num-
ber followed by a comma followed by a List ,” no list could ever end.
This problem is called infinite recursion. It is similar to an infinite
loop except that the “loop” occurs in the definition itself.

 As in the infinite loop problem, a programmer must be careful to
design algorithms so that they avoid infinite recursion. Any recursive definition
must have a base case that does not result in a recursive option. The base case of
the List definition is a single number that is not followed by anything. In other
words, when the last number in the list is reached, the base case option terminates
the recursive path.

 Recursion in Math
 Let’s look at an example of recursion in mathematics. The value referred to as N !
(pronounced N factorial) is defined for any positive integer N as the product of
all integers between 1 and N inclusive. Therefore, 3! is defined as:

 3! = 3*2*1 = 6

 and 5! is defined as:

 5! = 5*4*3*2*1 = 120.

 Mathematical formulas are often expressed recursively. The definition of N !
can be expressed recursively as:

 1! = 1
 N! = N * (N-1)! for N > 1

LIST: number comma LIST

number comma LIST

number comma LIST

number

24 3788,

88

40,

37

37

37

40,

40

,

,

,

 FIGURE 12.1 Tracing the recursive definition of List

 KEY CONCEPT
 Any recursive definition must have
a non-recursive part, called the base
case, which permits the recursion to
eventually end.

586 CHAPTER 12 Recursion

 The base case of this definition is 1!, which is defined as 1. All other
values of N ! (for N > 1) are defined recursively as N times the value
(N −1)!. The recursion is that the factorial function is defined in
terms of the factorial function.

 Using this definition, 50! is equal to 50 * 49!. And 49! is equal to 49 * 48!.
And 48! is equal to 48 * 47!. This process continues until we get to the base case
of 1. Because N ! is defined only for positive integers, this definition is complete
and will always conclude with the base case.

 The next section describes how recursion is accomplished in programs.

 SELF-REVIEW QUESTIONS (see answers in Appendix N)

 SR 12.1 What is recursion?

 SR 12.2 How many times is the recursive part of the definition of a List used
to define a list of 10 numbers? How many times is the base case used?

 SR 12.3 What is infinite recursion?

 SR 12.4 When is a base case needed for recursive processing?

 SR 12.5 Write a recursive definition of 5 * n (integer multiplication), where
n > 0. Define the multiplication process in terms of integer addition.
For example, 5 * 7 is equal to 5 added to itself 7 times.

 12.2 Recursive Programming

 Let’s use a simple mathematical operation to demonstrate the concept of recur-
sive programming. Consider the process of summing the values between 1 and N
inclusive, where N is any positive integer. The sum of the values from 1 to N can
be expressed as N plus the sum of the values from 1 to N −1. That sum can be
expressed similarly, as shown in Figure 12.2 .

∑
N

i

i = 1
∑

N–1

N – 1

N – 1 N – 2

i

i = 1

= =+ + +N

=

=

+ + +

+ + +

N

N – 1 N – 2 2 1+ +N

N ∑
N–2

i

i = 1

∑
N–3

i

i = 1...

. . .

FIGURE 12.2 The sum of the numbers 1 through N , defined recursively

 KEY CONCEPT
 Mathematical problems and formulas
are often expressed recursively.

12.2 Recursive Programming 587

 For example, the sum of the values between 1 and 20 is equal to 20 plus the
sum of the values between 1 and 19. Continuing this approach, the sum of the val-
ues between 1 and 19 is equal to 19 plus the sum of the values between 1 and 18.
This may sound like a strange way to think about this problem, but it is a straight-
forward example that can be used to demonstrate how recursion is programmed.

 As we mentioned earlier, in Java, as in many other programming languages, a
method can call itself. Each call to the method creates a new environment in which
to work. That is, all local variables and parameters are newly defined with their
own unique data space every time the method is called. Each parame-
ter is given an initial value based on the new call. Each time a method
terminates, processing returns to the method that called it (which may
be an earlier invocation of the same method). These rules are no dif-
ferent from those governing any “regular” method invocation.

 A recursive solution to the summation problem is defined by the following
recursive method called sum :

// This method returns the sum of 1 to num
public int sum (int num)
 {
 int result;
 if (num == 1)
 result = 1;
 else
 result = num + sum (num-1);
 return result;
 }

 Note that this method essentially embodies our recursive definition that the
sum of the numbers between 1 and N is equal to N plus the sum of the numbers
between 1 and N −1. The sum method is recursive, because sum calls itself. The
parameter passed to sum is decremented each time sum is called until it reaches
the base case of 1. Recursive methods invariably contain an if-else statement,
with one of the branches, usually the first one, representing the base case, as in
this example.

 Suppose the main method calls sum , passing it an initial value of 1, which is
stored in the parameter num . Since num is equal to 1, the result of 1 is returned to
 main and no recursion occurs.

 Now let’s trace the execution of the sum method when it is passed an initial
value of 2. Since num does not equal 1, sum is called again with an argument of
 num�1 , or 1. This is a new call to the method sum , with a new parameter num and a
new local variable result . Since this num is equal to 1 in this invocation, the result
of 1 is returned without further recursive calls. Control returns to the first version

 KEY CONCEPT
 Each recursive call to a method
creates new local variables and
parameters.

588 CHAPTER 12 Recursion

of sum that was invoked. The return value of 1 is added to the ini-
tial value of num in that call to sum , which is 2. Therefore, result
is assigned the value 3, which is returned to the main method. The
method called from main correctly calculates the sum of the integers
from 1 to 2 and returns the result of 3.

 The base case in the summation example is when N equals 1, at which point
no further recursive calls are made. The recursion begins to fold back into the
earlier versions of the sum method, returning the appropriate value each time.
Each return value contributes to the computation of the sum at the higher level.
Without the base case, infinite recursion would result. Each call to a method
requires additional memory space; therefore infinite recursion often results in a
run-time error indicating that memory has been exhausted.

 Trace the sum function with different initial values of num until this processing
becomes familiar. Figure 12.3 illustrates the recursive calls when main invokes
sum to determine the sum of the integers from 1 to 4. Each box represents a copy
of the method as it is invoked, indicating the allocation of space to store the
formal parameters and any local variables. Invocations are shown as solid lines,

main

sum

sum

sum

sum

result = 10

result = 6

result =3

result =1

sum(4)

sum(3)

sum(2)

sum(1)

FIGURE 12.3 Recursive calls to the sum method

 KEY CONCEPT
 A careful trace of recursive process-
ing can provide insight into the way
it is used to solve a problem.

12.2 Recursive Programming 589

and returns as dotted lines. The return value result is shown at each step. The
recursive path is followed completely until the base case is reached; the calls then
begin to return their result up through the chain.

 Recursion vs. Iteration
 Of course, there is a non-recursive solution to the summation prob-
lem we just explored. One way to compute the sum of the numbers
between 1 and num inclusive in an iterative manner is as follows:

 sum = 0;
 for (int number = 1; number <= num; number++)
 sum += number;

 This solution is certainly more straightforward than the recursive version. We
used the summation problem to demonstrate recursion because it is simple, not
because you would use recursion to solve it under normal conditions. Recursion
has the overhead of multiple method invocations and, in this case, presents a more
complicated solution than its iterative counterpart.

 A programmer must learn when to use recursion and when not to use it.
Determining which approach is best depends on the problem being solved. All
problems can be solved in an iterative manner, but in some cases the iterative ver-
sion is much more complicated. Recursion, for some problems, allows us to create
relatively short, elegant programs.

 Direct vs. Indirect Recursion
 Direct recursion occurs when a method invokes itself, such as when sum calls sum .
Indirect recursion occurs when a method invokes another method, eventually
resulting in the original method being invoked again. For example, if method m1
invokes method m2 , and m2 invokes method m1 , we can say that m1 is indirectly
recursive. The amount of indirection could be several levels deep, as when m1
invokes m2 , which invokes m3 , which invokes m4 , which invokes m1 . Figure 12.4
depicts a situation with indirect recursion. Method invocations are shown with
solid lines, and returns are shown with dotted lines. The entire invocation path is
followed, and then the recursion unravels following the return path.

 Indirect recursion requires all of the same attention to base cases that direct
recursion requires. Furthermore, indirect recursion can be more difficult to trace
because of the intervening method calls. Therefore extra care is warranted when
designing or evaluating indirectly recursive methods. Ensure that the indirection
is truly necessary and clearly explained in documentation.

 KEY CONCEPT
 Recursion is the most elegant and
appropriate way to solve some
problems, but for others it is less
intuitive than an iterative solution.

590 CHAPTER 12 Recursion

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 12.6 Is recursion necessary?

SR 12.7 When should recursion be avoided?

SR 12.8 Describe what is returned by the following recursive method.

private static int exercise (int n)
{
 if (n < 0)
 return –1;
 else
 if (n < 10)
 return 1;
 else
 return 1 + exercise (n/10);
}

SR 12.9 Write a recursive method that returns the value of 5 * n, where
n > 0. See Self-Review Question 12.5. Explain why you would not
normally use recursion to solve this problem.

SR 12.10 What is indirect recursion?

12.3 Using Recursion

Each of the following sections describes a particular recursive problem. For each
one, we examine exactly how recursion plays a role in the solution and how a
base case is used to terminate the recursion. As you examine these examples,
consider how complicated a non-recursive solution for each problem would be.

m1 m2 m3

m1 m2 m3

m1 m2 m3

FIGURE 12.4 Indirect recursion

 12.3 Using Recursion 591

Traversing a Maze
Solving a maze involves a great deal of trial and error: following a path, back-
tracking when you cannot go farther, and trying other untried options. Such activ-
ities often are handled nicely using recursion. The program shown in Listing 12.1
creates a Maze object and attempts to traverse it.

//**
// MazeSearch.java Author: Lewis/Loftus
//
// Demonstrates recursion.
//**
public class MazeSearch
{
 //---
 // Creates a new maze, prints its original form, attempts to
 // solve it, and prints out its final form.
 //---
 public static void main (String[] args)
 {
 Maze labyrinth = new Maze();

 System.out.println (labyrinth);

 if (labyrinth.traverse (0, 0))
 System.out.println ("The maze was successfully traversed!");
 else
 System.out.println ("There is no possible path.");

 System.out.println (labyrinth);
 }
}

O U T P U T

1110110001111
1011101111001
0000101010100
1110111010111
1010000111001
1011111101111
1000000000000
1111111111111

L I S T I N G 1 2 . 1

592 CHAPTER 12 Recursion

The maze was successfully traversed!

7770110001111
3077707771001
0000707070300
7770777070333
7070000773003
7077777703333
7000000000000
7777777777777

L I S T I N G 1 2 . 1 continued

The Maze class shown in Listing 12.2 uses a two-dimensional array of integers
to represent the maze. The goal is to move from the top-left corner (the entry
point) to the bottom-right corner (the exit point). Initially, a 1 indicates a clear
path and a 0 indicates a blocked path. As the maze is solved, these array elements
are changed to other values to indicate attempted paths and ultimately a success-
ful path through the maze if one exists.

//**
// Maze.java Author: Lewis/Loftus
//
// Represents a maze of characters. The goal is to get from the
// top left corner to the bottom right, following a path of 1s.
//**

public class Maze
{
 private final int TRIED = 3;
 private final int PATH = 7;

 private int[][] grid = { {1,1,1,0,1,1,0,0,0,1,1,1,1},
 {1,0,1,1,1,0,1,1,1,1,0,0,1},
 {0,0,0,0,1,0,1,0,1,0,1,0,0},
 {1,1,1,0,1,1,1,0,1,0,1,1,1},

L I S T I N G 1 2 . 2

 12.3 Using Recursion 593

 {1,0,1,0,0,0,0,1,1,1,0,0,1},
 {1,0,1,1,1,1,1,1,0,1,1,1,1},
 {1,0,0,0,0,0,0,0,0,0,0,0,0},
 {1,1,1,1,1,1,1,1,1,1,1,1,1} };

 //---
 // Attempts to recursively traverse the maze. Inserts special
 // characters indicating locations that have been tried and that
 // eventually become part of the solution.
 //---
 public boolean traverse (int row, int column)
 {
 boolean done = false;

 if (valid (row, column))
 {
 grid[row][column] = TRIED; // this cell has been tried

 if (row == grid.length-1 && column == grid[0].length-1)

 done = true; // the maze is solved
 else
 {
 done = traverse (row+1, column); // down
 if (!done)
 done = traverse (row, column+1); // right
 if (!done)
 done = traverse (row-1, column); // up
 if (!done)
 done = traverse (row, column-1); // left
 }

 if (done) // this location is part of the final path
 grid[row][column] = PATH;
 }
 return done;
 }

 //---
 // Determines if a specific location is valid.
 //---
 private boolean valid (int row, int column)
 {
 boolean result = false;

L I S T I N G 1 2 . 2 continued

594 CHAPTER 12 Recursion

The only valid moves through the maze are in the four primary directions:
down, right, up, and left. No diagonal moves are allowed. In this example, the
maze is 8 rows by 13 columns, although the code is designed to handle a maze
of any size.

Let’s think this through recursively. The maze can be traversed successfully if
it can be traversed successfully from position (0, 0). Therefore, the maze can be
traversed successfully if it can be traversed successfully from any positions adja-
cent to (0, 0), namely position (1, 0), position (0, 1), position (–1, 0), or position
(0, −1). Picking a potential next step, say (1, 0), we find ourselves in the same type
of situation we did before. To successfully traverse the maze from the new current
position, we must successfully traverse it from an adjacent position. At any point,

 // check if cell is in the bounds of the matrix
 if (row >= 0 && row < grid.length &&
 column >= 0 && column < grid[row].length)

 // check if cell is not blocked and not previously tried
 if (grid[row][column] == 1)
 result = true;

 return result;
 }

 //---
 // Returns the maze as a string.
 //---
 public String toString ()
 {
 String result = "\n";
 for (int row=0; row < grid.length; row++)
 {
 for (int column=0; column < grid[row].length; column++)
 result += grid[row][column] + "";
 result += "\n";
 }

 return result;
 }
}

L I S T I N G 1 2 . 2 continued

Tracing the
MazeSearch program.

VideoNote

 12.3 Using Recursion 595

some of the adjacent positions may be invalid, may be blocked, or may represent
a possible successful path. We continue this process recursively. If the base case,
position (7, 12) is reached, the maze has been traversed successfully.

The recursive method in the Maze class is called traverse. It returns a boolean
value that indicates whether a solution was found. First the method determines
whether a move to the specified row and column is valid. A move is considered
valid if it stays within the grid boundaries and if the grid contains a 1 in that
location, indicating that a move in that direction is not blocked. The initial call to
traverse passes in the upper-left location (0, 0).

If the move is valid, the grid entry is changed from a 1 to a 3, marking this
location as visited so that later we don’t retrace our steps. The traverse method
then determines whether the maze has been completed by having reached the
bottom-right location. Therefore, there are actually three possibilities of the base
case for this problem that will terminate any particular recursive path:

■ an invalid move because the move is out of bounds

■ an invalid move because the move has been tried before

■ a move that arrives at the final location

If the current location is not the bottom-right corner, we search for a solution
in each of the primary directions, if necessary. First, we look down by recursively
calling the traverse method and passing in the new location. The logic of the
traverse method starts all over again using this new position. A solution is either
ultimately found by first attempting to move down from the current location,
or it’s not found. If it’s not found, we try moving right. If that fails, we try up.
Finally, if no other direction has yielded a correct path, we try left. If no direction
from the current location yields a correct solution, then there is no path from this
location, and traverse returns false.

If a solution is found from the current location, the grid entry is changed to
a 7. The first 7 is placed in the bottom-right corner. The next 7 is placed in the
location that led to the bottom-right corner, and so on until the final 7 is placed
in the upper-left corner. Therefore, when the final maze is printed, the zeros still
indicate a blocked path, a 1 indicates an open path that was never tried, a 3 indi-
cates a path that was tried but failed to yield a correct solution, and a 7 indicates
a part of the final solution of the maze.

Note that there are several opportunities for recursion in each call to the tra-
verse method. Any or all of them might be followed, depending on the maze
configuration. Although there may be many paths through the maze, the recur-
sion terminates when a path is found. Carefully trace the execution of this code
while following the maze array to see how the recursion solves the problem. Then
consider the difficulty of producing a non-recursive solution.

596 CHAPTER 12 Recursion

FIGURE 12.5 The Towers of Hanoi puzzle

The Towers of Hanoi
The Towers of Hanoi puzzle was invented in the 1880s by Edouard Lucas, a
French mathematician. It has become a favorite among computer scientists,
because its solution is an excellent demonstration of recursive elegance.

The puzzle consists of three upright pegs and a set of disks with holes in
the middle so that they slide onto the pegs. Each disk has a different diameter.
Initially, all of the disks are stacked on one peg in order of size such that the larg-
est disk is on the bottom, as shown in Figure 12.5.

The goal of the puzzle is to move all of the disks from their original (first) peg
to the destination (third) peg. We can use the “extra” peg as a temporary place to
put disks, but we must obey the following three rules:

■ We can move only one disk at a time.

■ We cannot place a larger disk on top of a smaller disk.

■ All disks must be on some peg except for the disk in transit between pegs.

These rules imply that we must move smaller disks “out of the way” in order to
move a larger disk from one peg to another. Figure 12.6 shows the step-by-step
solution for the Towers of Hanoi puzzle using three disks. In order to ultimately
move all three disks from the first peg to the third peg, we first have to get to the
point where the smaller two disks are out of the way on the second peg so that
the largest disk can be moved from the first peg to the third peg.

The first three moves shown in Figure 12.6 can be thought of as moving the
smaller disks out of the way. The fourth move puts the largest disk in its final
place. The last three moves then put the smaller disks to their final place on top
of the largest one.

Let’s use this idea to form a general strategy. To move a stack of N disks from
the original peg to the destination peg:

■ Move the topmost N−1 disks from the original peg to the extra peg.

■ Move the largest disk from the original peg to the destination peg.

■ Move the N−1 disks from the extra peg to the destination peg.

 12.3 Using Recursion 597

This strategy lends itself nicely to a recursive solution. The step to move the N−1
disks out of the way is the same problem all over again: moving a stack of disks.
For this subtask, though, there is one less disk, and our destination peg is what
we were originally calling the extra peg. An analogous situation occurs after we’ve
moved the largest disk and we have to move the original N−1 disks again.

The base case for this problem occurs when we want to move a “stack” that
consists of only one disk. That step can be accomplished directly and without
recursion.

The program in Listing 12.3 creates a TowersOfHanoi object and invokes its
solve method. The output is a step-by-step list of instructions that describe how
the disks should be moved to solve the puzzle. This example uses four disks,
which is specified by a parameter to the TowersOfHanoi constructor.

The TowersOfHanoi class shown in Listing 12.4 uses the solve method to make
an initial call to moveTower, the recursive method. The initial call indicates that
all of the disks should be moved from peg 1 to peg 3, using peg 2 as the extra
position.

The moveTower method first considers the base case (a “stack” of one disk).
When that occurs, it calls the moveOneDisk method that prints a single line

Original Configuration

First Move

Second Move

Third Move

Fourth Move

Fifth Move

Sixth Move

Seventh (last) Move

FIGURE 12.6 A solution to the three-disk Towers of Hanoi puzzle

Exploring the Towers of
Hanoi.

VideoNote

598 CHAPTER 12 Recursion

describing that particular move. If the stack contains more than one disk, we
call moveTower again to get the N−1 disks out of the way, then move the largest
disk, then move the N−1 disks to their final destination with yet another call to
moveTower.

//**
// SolveTowers.java Author: Lewis/Loftus
//
// Demonstrates recursion.
//**

public class SolveTowers
{
 //---
 // Creates a TowersOfHanoi puzzle and solves it.
 //---
 public static void main (String[] args)
 {
 TowersOfHanoi towers = new TowersOfHanoi (4);

 towers.solve();
 }
}

O U T P U T

Move one disk from 1 to 2
Move one disk from 1 to 3
Move one disk from 2 to 3
Move one disk from 1 to 2
Move one disk from 3 to 1
Move one disk from 3 to 2
Move one disk from 1 to 2
Move one disk from 1 to 3
Move one disk from 2 to 3
Move one disk from 2 to 1
Move one disk from 3 to 1
Move one disk from 2 to 3
Move one disk from 1 to 2
Move one disk from 1 to 3
Move one disk from 2 to 3

L I S T I N G 1 2 . 3

 12.3 Using Recursion 599

//**
// TowersOfHanoi.java Author: Lewis/Loftus
//
// Represents the classic Towers of Hanoi puzzle.
//**

public class TowersOfHanoi
{
 private int totalDisks;

 //---
 // Sets up the puzzle with the specified number of disks.
 //---
 public TowersOfHanoi (int disks)
 {
 totalDisks = disks;
 }

 //---
 // Performs the initial call to moveTower to solve the puzzle.
 // Moves the disks from tower 1 to tower 3 using tower 2.
 //---
 public void solve ()
 {
 moveTower (totalDisks, 1, 3, 2);
 }

 //---
 // Moves the specified number of disks from one tower to another
 // by moving a subtower of n-1 disks out of the way, moving one
 // disk, then moving the subtower back. Base case of 1 disk.
 //---
 private void moveTower (int numDisks, int start, int end, int temp)
 {
 if (numDisks == 1)
 moveOneDisk (start, end);
 else
 {
 moveTower (numDisks-1, start, temp, end);
 moveOneDisk (start, end);
 moveTower (numDisks-1, temp, end, start);
 }
 }

L I S T I N G 1 2 . 4

600 CHAPTER 12 Recursion

 Note that the parameters to moveTower describing the pegs are switched around
as needed to move the partial stacks. This code follows our general strategy and
uses the moveTower method to move all partial stacks. Trace the code carefully
for a stack of three disks to understand the processing. Compare the processing

steps to Figure 12.6 .

 Contrary to its short and elegant implementation, the solution
to the Towers of Hanoi puzzle is terribly inefficient. To solve the
puzzle with a stack of N disks, we have to make 2 N −1 individual
disk moves. This situation is an example of exponential complex-
ity. As the number of disks increases, the number of required moves
increases exponentially.

 Legend has it that priests of Brahma are working on this puzzle in a temple at
the center of the world. They are using 64 gold disks, moving them between pegs
of pure diamond. The downside is that when the priests finish the puzzle, the
world will end. The upside is that even if they move one disk every second of every
day, it will take them over 584 billion years to complete it. That’s with a puzzle
of only 64 disks! It is certainly an indication of just how intractable exponential
algorithmic complexity is.

 SELF-REVIEW QUESTIONS (see answers in Appendix N)

 SR 12.11 Under what conditions does the recursion stop in the MazeSearch
program?

 SR 12.12 Identify where in the MazeSearch program each of the following is
provided.

 //---
 // Prints instructions to move one disk from the specified start
 // tower to the specified end tower.
 //---
 private void moveOneDisk (int start, int end)
 {
 System.out.println ("Move one disk from " + start + " to " +
 end);
 }
 }

 L I S T I N G 1 2 . 4 continued

 KEY CONCEPT
 The Towers of Hanoi solution has
exponential complexity, which is
very inefficient. Yet the implemen-
tation of the solution is incredibly
short and elegant.

c. 1 1

 1 0

b. 0 0

 0 0

 12.4 Recursion in Graphics 601

a. The original maze is defined.
b. A test to see if we have arrived at the goal occurs.
c. A location is marked as having been tried.
d. A test to see if we already tried a location occurs.

SR 12.13 Trace the MazeSearch program to determine the series of calls to
the method valid (including the values of the parameters that are
passed) that would occur if the original maze is as shown.

a. 1 1

 1 1

SR 12.14 Explain the general approach to solving the Towers of Hanoi puzzle.
How does it relate to recursion?

SR 12.15 Trace the SolveTowers code for an initial stack of 1 disk. How many
calls to the moveTower method are made? How many calls are made
for an initial stack of 2 disks? How many for 3 disks? Describe a
pattern related to the number of calls made to the moveTower method
as the number of disks increases.

12.4 Recursion in Graphics

The concept of recursion has several uses in images and graphics. The following
section explores some image and graphics-based recursion examples.

Tiled Pictures
Carefully examine the display for the TiledPictures applet shown in Listing 12.5.
There are actually three unique images among the menagerie. The entire area is
divided into four equal quadrants. A picture of the world (with a circle indicat-
ing the Himalayan mountain region) is shown in the bottom-right quadrant. The
bottom-left quadrant contains a picture of Mt. Everest. In the top-right quadrant
is a picture of a mountain goat.

The interesting part of the picture is the top-left quadrant. It contains a copy
of the entire collage, including itself. In this smaller version you can see the three
simple pictures in their three quadrants. And again, in the top-left corner, the
picture is repeated (including itself). This repetition continues for several levels. It
is similar to the effect you can create when looking at a mirror in the reflection
of another mirror.

//**
// TiledPictures.java Author: Lewis/Loftus
//
// Demonstrates the use of recursion.
//**

import java.awt.*;
import javax.swing.JApplet;

public class TiledPictures extends JApplet
{
 private final int APPLET_WIDTH = 320;
 private final int APPLET_HEIGHT = 320;
 private final int MIN = 20; // smallest picture size

 private Image world, everest, goat;

 //---
 // Loads the images.
 //---
 public void init()
 {
 world = getImage (getDocumentBase(), "world.gif");
 everest = getImage (getDocumentBase(), "everest.gif");
 goat = getImage (getDocumentBase(), "goat.gif");

 setSize (APPLET_WIDTH, APPLET_HEIGHT);
 }

 //---
 // Draws the three images, then calls itself recursively.
 //---
 public void drawPictures (int size, Graphics page)
 {
 page.drawImage (everest, 0, size/2, size/2, size/2, this);
 page.drawImage (goat, size/2, 0, size/2, size/2, this);
 page.drawImage (world, size/2, size/2, size/2, size/2, this);

 if (size > MIN)
 drawPictures (size/2, page);
 }

 //---
 // Performs the initial call to the drawPictures method.
 //---

L I S T I N G 1 2 . 5

602 CHAPTER 12 Recursion

This visual effect is created quite easily using recursion. The applet’s init
method initially loads the three images. The paint method then invokes the
drawPictures method, which accepts a parameter that defines the size of the area
in which pictures are displayed. It draws the three images using the drawImage

 public void paint (Graphics page)
 {
 drawPictures (APPLET_WIDTH, page);
 }
}

D I S P L A Y

L I S T I N G 1 2 . 5 continued

 12.4 Recursion in Graphics 603

method, with parameters that scale the picture to the correct size and location.
The drawPictures method is then called recursively to draw the upper-left
quadrant.

 On each invocation, if the drawing area is large enough, the drawPictures
method is invoked again, using a smaller drawing area. Eventually, the drawing
area becomes so small that the recursive call is not performed. Note that draw-
Pictures assumes the origin (0, 0) coordinate as the relative location of the new
images, no matter what their size is.

 The base case of the recursion in this problem specifies a minimum size for the
drawing area. Because the size is decreased each time, the base case eventually is
reached and the recursion stops. This is why the upper-left corner is empty in the
smallest version of the collage.

 Fractals
 A fractal is a geometric shape that can be made up of the
same pattern repeated at different scales and orientations.
The nature of a fractal lends itself to a recursive definition.
Interest in fractals has grown immensely in recent years,
largely due to Benoit Mandelbrot, a Polish mathematician
born in 1924. He demonstrated that fractals occur in many

places in mathematics and nature. Computers have made fractals much easier to
generate and investigate. Over the past quarter century, the bright, interesting
images that can be created with fractals have come to be considered as much an
art form as a mathematical interest.

 One particular example of a fractal is called the Koch snowflake, named after
Helge von Koch, a Swedish mathematician. It begins with an equilateral triangle,
which is considered to be the Koch fractal of order 1. Koch fractals of higher
orders are constructed by repeatedly modifying all of the line segments in the
shape.

 To create the next higher order Koch fractal, each line segment in the shape is
modified by replacing its middle third with a sharp protrusion made of two line
segments, each having the same length as the replaced part. Relative to the entire
shape, the protrusion on any line segment always points outward. Figure 12.7
shows several orders of Koch fractals. As the order increases, the shape begins to
look like a snowflake.

 The applet shown in Listing 12.6 draws a Koch snowflake of several differ-
ent orders. The buttons at the top of the applet allow the user to increase and
decrease the order of the fractal. Each time a button is pressed, the fractal image
is redrawn. The applet serves as the listener for the buttons.

 KEY CONCEPT
 A fractal is a geometric shape that
is defined naturally in a recursive
manner.

604 CHAPTER 12 Recursion

FIGURE 12.7 Several orders of the Koch snowflake

//**
// KochSnowflake.java Author: Lewis/Loftus
//
// Demonstrates the use of recursion.
//**

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class KochSnowflake extends JApplet implements ActionListener
{
 private final int APPLET_WIDTH = 400;
 private final int APPLET_HEIGHT = 440;

 private final int MIN = 1, MAX = 9;

 private JButton increase, decrease;
 private JLabel titleLabel, orderLabel;
 private KochPanel drawing;
 private JPanel appletPanel, tools;

 //---
 // Sets up the components for the applet.
 //---
 public void init()
 {
 tools = new JPanel ();
 tools.setLayout (new BoxLayout(tools, BoxLayout.X_AXIS));
 tools.setBackground (Color.yellow);
 tools.setOpaque (true);

L I S T I N G 1 2 . 6

 12.4 Recursion in Graphics 605

 titleLabel = new JLabel ("The Koch Snowflake");
 titleLabel.setForeground (Color.black);

 increase = new JButton (new ImageIcon ("increase.gif"));
 increase.setPressedIcon (new ImageIcon ("increasePressed.gif"));
 increase.setMargin (new Insets (0, 0, 0, 0));
 increase.addActionListener (this);
 decrease = new JButton (new ImageIcon ("decrease.gif"));
 decrease.setPressedIcon (new ImageIcon ("decreasePressed.gif"));
 decrease.setMargin (new Insets (0, 0, 0, 0));
 decrease.addActionListener (this);

 orderLabel = new JLabel ("Order: 1");
 orderLabel.setForeground (Color.black);

 tools.add (titleLabel);
 tools.add (Box.createHorizontalStrut (20));
 tools.add (decrease);
 tools.add (increase);
 tools.add (Box.createHorizontalStrut (20));
 tools.add (orderLabel);

 drawing = new KochPanel (1);

 appletPanel = new JPanel();
 appletPanel.add (tools);
 appletPanel.add (drawing);

 getContentPane().add (appletPanel);

 setSize (APPLET_WIDTH, APPLET_HEIGHT);
 }

 //---
 // Determines which button was pushed, and sets the new order
 // if it is in range.
 //---
 public void actionPerformed (ActionEvent event)
 {
 int order = drawing.getOrder();

 if (event.getSource() == increase)
 order++;
 else
 order--;

L I S T I N G 1 2 . 6 continued

606 CHAPTER 12 Recursion

 if (order >= MIN && order <= MAX)
 {
 orderLabel.setText ("Order: " + order);
 drawing.setOrder (order);
 repaint();
 }
 }
}

D I S P L A Y

L I S T I N G 1 2 . 6 continued

 12.4 Recursion in Graphics 607

The fractal image is drawn on a canvas defined by the KochPanel class shown
in Listing 12.7. The paint method makes the initial calls to the recursive method
drawFractal. The three calls to drawFractal in the paint method represent the
original three sides of the equilateral triangle that make up a Koch fractal of
order 1.

//**
// KochPanel.java Author: Lewis/Loftus
//
// Represents a drawing surface on which to paint a Koch Snowflake.
//**

import java.awt.*;
import javax.swing.JPanel;

public class KochPanel extends JPanel
{
 private final int PANEL_WIDTH = 400;
 private final int PANEL_HEIGHT = 400;

 private final double SQ = Math.sqrt(3.0) / 6;

 private final int TOPX = 200, TOPY = 20;
 private final int LEFTX = 60, LEFTY = 300;
 private final int RIGHTX = 340, RIGHTY = 300;

 private int current; // current order

 //---
 // Sets the initial fractal order to the value specified.
 //---
 public KochPanel (int currentOrder)
 {
 current = currentOrder;
 setBackground (Color.black);
 setPreferredSize (new Dimension(PANEL_WIDTH, PANEL_HEIGHT));
 }

 //---
 // Draws the fractal recursively. Base case is an order of 1 for
 // which a simple straight line is drawn. Otherwise three

L I S T I N G 1 2 . 7

608 CHAPTER 12 Recursion

 // intermediate points are computed, and each line segment is
 // drawn as a fractal.
 //---
 public void drawFractal (int order, int x1, int y1, int x5, int y5,
 Graphics page)
 {
 int deltaX, deltaY, x2, y2, x3, y3, x4, y4;

 if (order == 1)
 page.drawLine (x1, y1, x5, y5);
 else
 {
 deltaX = x5 - x1; // distance between end points
 deltaY = y5 - y1;

 x2 = x1 + deltaX / 3; // one third
 y2 = y1 + deltaY / 3;

 x3 = (int) ((x1+x5)/2 + SQ * (y1-y5)); // tip of projection
 y3 = (int) ((y1+y5)/2 + SQ * (x5-x1));

 x4 = x1 + deltaX * 2/3; // two thirds
 y4 = y1 + deltaY * 2/3;

 drawFractal (order-1, x1, y1, x2, y2, page);
 drawFractal (order-1, x2, y2, x3, y3, page);
 drawFractal (order-1, x3, y3, x4, y4, page);
 drawFractal (order-1, x4, y4, x5, y5, page);
 }
 }

 //---
 // Performs the initial calls to the drawFractal method.
 //---
 public void paintComponent (Graphics page)
 {
 super.paintComponent (page);

 page.setColor (Color.green);

 drawFractal (current, TOPX, TOPY, LEFTX, LEFTY, page);
 drawFractal (current, LEFTX, LEFTY, RIGHTX, RIGHTY, page);
 drawFractal (current, RIGHTX, RIGHTY, TOPX, TOPY, page);
 }

L I S T I N G 1 2 . 7 continued

 12.4 Recursion in Graphics 609

The variable current represents the order of the fractal to be drawn. Each
recursive call to drawFractal decrements the order by 1. The base case of the
recursion occurs when the order of the fractal is 1, which results in a simple line
segment between the coordinates specified by the parameters.

If the order of the fractal is higher than 1, three additional points are computed.
In conjunction with the parameters, these points form the four line segments of
the modified fractal. Figure 12.8 shows the transformation.

Based on the position of the two end points of the original line segment, a point
one-third of the way and a point two-thirds of the way between them are com-
puted. The calculation of <x3, y3>, the point at the tip of the protrusion, is more
convoluted and uses a simplifying constant that incorporates multiple geometric
relationships. The calculations to determine the three new points actually have
nothing to do with the recursive technique used to draw the fractal, and so we
won’t discuss the details of these computations here.

An interesting mathematical feature of a Koch snowflake is that it has an infi-
nite perimeter but a finite area. As the order of the fractal increases, the perimeter
grows exponentially larger, with a mathematical limit of infinity. However, a rect-
angle large enough to surround the second-order fractal for the Koch snowflake
is large enough to contain all higher-order fractals. The shape is restricted forever
in area, but its perimeter gets infinitely longer.

 //---
 // Sets the fractal order to the value specified.
 //---
 public void setOrder (int order)
 {
 current = order;
 }

 //---
 // Returns the current order.
 //---
 public int getOrder ()
 {
 return current;
 }
}

L I S T I N G 1 2 . 7 continued

610 CHAPTER 12 Recursion

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 12.16 What is the base case for the TiledPictures program?

SR 12.17 What is a fractal? What does it have to do with recursion?

becomes

<x1, y1><x1, y1>

<x5, y5><x5, y5>

<x3, y3>

<x4, y4>

<x2, y2>

FIGURE 12.8 The transformation of each line segment of a Koch snowflake

 12.4 Recursion in Graphics 611

■ Recursion is a programming technique in which a method calls itself. A
key to being able to program recursively is to be able to think recursively.

■ Any recursive definition must have a non-recursive part, called the base
case, which permits the recursion to eventually end.

■ Mathematical problems and formulas are often expressed recursively.

■ Each recursive call to a method creates new local variables and
parameters.

■ A careful trace of recursive processing can provide insight into the way it
is used to solve a problem.

■ Recursion is the most elegant and appropriate way to solve some
problems, but for others it is less intuitive than an iterative solution.

■ The Towers of Hanoi solution has exponential complexity, which is very
inefficient. Yet the implementation of the solution is incredibly short and
elegant.

■ A fractal is a geometric shape that is defined naturally in a recursive manner.

Exercises
Visit www.myprogramminglab.com to complete many of these Exercises
online and get instant feedback.

EX 12.1 Write a recursive definition of a valid Java identifier (see
Chapter 1).

EX 12.2 Write a recursive definition of xy (x raised to the power y),
where x and y are integers and y > 0.

EX 12.3 Write a recursive definition of i * j (integer multiplication),
where i > 0. Define the multiplication process in terms of integer
addition. For example, 4 * 7 is equal to 7 added to itself 4 times.

EX 12.4 Write a recursive definition of the Fibonacci numbers. The
Fibonacci numbers are a sequence of integers, each of which is
the sum of the previous two numbers. The first two numbers in
the sequence are 0 and 1. Explain why you would not normally
use recursion to solve this problem.

Summary of Key Concepts

612 CHAPTER 12 Recursion

www.myprogramminglab.com

EX 12.5 Modify the method that calculates the sum of the integers
between 1 and N shown in this chapter. Have the new version
match the following recursive definition: The sum of 1 to N
is the sum of 1 to (N/2) plus the sum of (N/2 + 1) to N. Trace
your solution using an N of 7.

EX 12.6 Write a recursive method that returns the value of N! (N
factorial) using the definition given in this chapter. Explain why
you would not normally use recursion to solve this problem.

EX 12.7 Write a recursive method to reverse a string. Explain why you
would not normally use recursion to solve this problem.

EX 12.8 Design or generate a new maze for the MazeSearch program in
this chapter and rerun the program. Explain the processing in
terms of your new maze, giving examples of a path that was
tried but failed, a path that was never tried, and the ultimate
solution.

EX 12.9 Annotate the lines of output of the SolveTowers program in
this chapter to show the recursive steps.

EX 12.10 Produce a chart showing the number of moves required to solve
the Towers of Hanoi puzzle using the following number of
disks: 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, and 25.

EX 12.11 How many line segments are used to construct a Koch
snowflake of order N? Produce a chart showing the number
of line segments that make up a Koch snowflake for orders 1
through 9.

Programming Projects
Visit www.myprogramminglab.com to complete many of these
Programming Projects online and get instant feedback.

PP 12.1 Design and implement a recursive version of the
PalindromeTester program from Chapter 5.

PP 12.2 Design and implement a program that implements Euclid’s
algorithm for finding the greatest common divisor of two
positive integers. The greatest common divisor is the largest
integer that divides both values without producing a

Developing a
solution of PP 12.1.

VideoNote

 Programming Projects 613

www.myprogramminglab.com

remainder. An iterative version of this method was part of the
RationalNumber class presented in Chapter 7. In a class
called DivisorCalc, define a static method called gcd
that accepts two integers, num1 and num2. Create a driver
to test your implementation. The recursive algorithm is
defined as follows:

■ gcd (num1, num2) is num2 if num2 <= num1 and num2
divides num1

■ gcd (num1, num2) is gcd (num2, num1) if num1 < num2

■ gcd (num1, num2) is gcd (num2, num1%num2) otherwise

PP 12.3 Modify the Maze class so that it prints out the path of the final
solution as it is discovered without storing it.

PP 12.4 Design and implement a program that traverses a 3D maze.

PP 12.5 Modify the TiledPictures program so that the repeated images
appear in the lower-right quadrant.

PP 12.6 Design and implement a recursive program that solves the Non-
Attacking Queens problem. That is, write a program to deter-
mine how eight queens can be positioned on an eight-by-eight
chessboard so that none of them are in the same row, column, or
diagonal as any other queen. There are no other chess pieces on
the board.

PP 12.7 In the language of an alien race, all words take the form of
Blurbs. A Blurb is a Whoozit followed by one or more Whatzits.
A Whoozit is the character ‘x’ followed by zero or more ‘y’s. A
Whatzit is a ‘q’ followed by either a ‘z’ or a ‘d’, followed by a
Whoozit. Design and implement a recursive program that gener-
ates random Blurbs in this alien language.

PP 12.8 Design and implement a recursive program to determine whether
a string is a valid Blurb as defined in PP12.7.

PP 12.9 Design and implement a recursive program to determine and
print the Nth line of Pascal’s Triangle, as shown below. Each
interior value is the sum of the two values above it. Hint: use an
array to store the values on each line.

614 CHAPTER 12 Recursion

 1

 1 1

 1 2 1

 1 3 3 1

 1 4 6 4 1

 1 5 10 10 5 1

 1 6 15 20 15 6 1

 1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

PP 12.10 Design and implement an applet that generalizes the
KochSnowflake program. Allow the user to choose a fractal
design from a menu item and to pick the background and draw-
ing colors. The buttons to increase and decrease the order of
the fractal will apply to whichever fractal design is chosen. In
addition to the Koch snowflake, include a C-curve fractal whose
order 1 is a straight line. Each successive order is created by
replacing all line segments by two line segments, both half of the
size of the original, and which meet at a right angle. Specifically,
a C-curve of order N from 6x1, y17 to 6x3, y37 is replaced by
two C-curves from to and from 6x2, y27 to 6x3, y37 where:

■ x2 = (x1 + x3 + y1 - y3) √ 2;

■ y2 = (x3 + y1 + y3 - x1) √ 2;

PP 12.11 Design and implement a graphic version of the Towers of
Hanoi puzzle. Allow the user to set the number of disks used in
the puzzle. The user should be able to interact with the puzzle
in two main ways. The user can move the disks from one peg
to another using the mouse, in which case the program should
ensure that each move is legal. The user can also watch a solu-
tion take place as an animation, with pause/resume buttons.
Permit the user to control the speed of the animation.

PP 12.12 Write a program that implements a recursive search of a sorted
list of strings. Your program should include a recursive method

 Programming Projects 615

that determines whether or not a given String is present within
a sorted array (or, if you choose, an ArrayList) by searching
successively smaller segments of the list.

Include a test driver that prompts the user for strings to be
searched. The user should enter one string per line, with an
empty line indicating the end of the series. After the sorted list
of strings has been entered, the program should prompt the
user for a search string. The program should then print a mes-
sage stating whether or not the search string was found in the
list, the total number of strings in the list, and the number of
comparisons made while looking for the search string.

PP 12.13 Write a program that prompts the user for a list of cities, where
each city has a name and x and y coordinates. After all cities
have been entered, the program should use a recursive algo-
rithm to print the length of all possible routes that start at the
first city entered, end at the last city entered, and visit every city
in the list. For each route, the program should print the name
of each city visited, followed by length of the route.

PP 12.14 A Sierpinski Triangle is a fractal formed by drawing a triangle,
and then using the midpoints of each side of triangle to form
another triangle. This inner triangle is then removed. The result
is three smaller triangles (one at the top and one in each corner)
on which the process is repeated. After iteration N, the image
will contain 3N triangles, each of which is similar to the origi-
nal triangle.

Write a program that implements a recursive algorithm for
drawing a Sierpinski Triangle. The user interface for the pro-
gram should include a JSlider that allows the user to select a
value for N. The slider should allow the user to pick a value
for N between 0 and the maximum value of N possible based
on the size of the program window. The maximum slider value
should change as appropriate when the window is resized.

616 CHAPTER 12 Recursion

617

C H A P T E R O B J E C T I V E S
● Explore the concept of a collection.

● Stress the importance of separating the interface from the
implementation.

● Examine the difference between fixed and dynamic implementations.

● Define and use dynamically linked lists.

● Introduce classic linear data such as queues and stacks.

● Introduce classic nonlinear data structures such as trees and graphs.

● Discuss the Java Collections API.

● Define the use of generic types and their use in collection classes.

Problem solving often requires techniques for organizing and man-

aging information. This chapter explores objects that store informa-

tion, called collections, as well as various ways to implement them.

Many collections have been developed over the years, and some of

them have become classics. This chapter explains how collections can

be implemented using references to link one object to another.

Collections 13

618 CHAPTER 13 Collections

13.1 Collections and Data Structures

 A collection is an object that serves as a repository for other objects. It is a generic
term that can be applied to many situations, but we usually use it when discussing
an object whose specific role is to provide services to add, remove, and otherwise
manage the elements that are contained within. For example, the ArrayList class
(discussed in Chapter 5) represents a collection. It provides methods to add ele-
ments to the end of a list or to a particular location in the list based on an index
value. It provides methods to remove specific elements as needed.

 Some collections maintain their elements in a specific order, while others do not.
Some collections are homogeneous, meaning that they can contain all of the same
type of object; other collections are heterogeneous, which means they can contain
objects of various types. An ArrayList that doesn’t specify an explicit element type
can be thought of as heterogeneous because it can hold an object of any type. Its
heterogeneous nature comes from the fact that an ArrayList stores Object refer-
ences, which means it can store any object because of inheritance and polymorphism.

 Separating Interface from Implementation
 A crucial aspect of collections is that they can be implemented in a variety of ways.
That is, the underlying data structure that stores the objects can be implemented
using various techniques. The ArrayList class from the Java standard library,
for instance, is implemented using an array. All operations on an ArrayList are
accomplished by invoking methods that perform the appropriate operations on
the underlying array.

 An abstract data type (ADT) is a collection of data and the particular opera-
tions that are allowed on that data. An ADT has a name, a domain of values, and
a set of operations that can be performed. An ADT is considered abstract, because
the operations you can perform on it are separated from the underlying imple-
mentation. That is, the details of how an ADT stores its data and accomplishes
its methods are separate from the concept that it embodies. Essentially, the terms
collection and abstract data type are interchangeable.

 Objects are perfectly suited for defining collections. An object, by definition,
has a well-defined interface whose implementation is hidden in the
class. The way the data is represented, and the operations that man-
age the data, are encapsulated inside the object. This type of object
is reusable and reliable, because its interaction with the rest of the
system is controlled.

 KEY CONCEPT
 An object, with its well-defined
interface, is a perfect mechanism for
implementing a collection.

13.2 Dynamic Representations 619

 SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 13.1 What is a collection?

SR 13.2 Does the ArrayList class provide an abstract data type?

SR 13.3 Why are objects particularly well suited for implementing abstract
data types?

13.2 Dynamic Representations

 An array is only one way in which a list can be represented. Arrays are limited
in one sense, because they have a fixed size throughout their existence. Sometimes
we don’t know how big to make an array, because we don’t know how much
information we will store. The ArrayList class handles this by creating a larger
array and copying everything over whenever necessary. This is not necessarily an
efficient implementation.

 A dynamic data structure is implemented using links. Using ref-
erences as links between objects, we can create whatever type of
structure is appropriate for the situation. If implemented carefully,
the structure can be quite efficient to search and modify. Structures
created this way are considered to be dynamic, because their size is determined
dynamically, as they are used, and not by their declaration.

 Dynamic Structures
 Recall that the variable used to keep track of an object is actually a reference to
the object, meaning that it stores the address of the object. A declaration such as

 House home = new House ("602 Greenbriar Court");

 actually accomplishes two things: it declares home to be a reference to a House
object, and it instantiates an object of class House . Now consider an object that
contains a reference to another object of the same type. For example:

class Node
 {
 int info;
 Node next;
 }

 Two objects of this class can be instantiated and chained together by having
the next reference of one Node object refer to the other Node object. The second

 KEY CONCEPT
 The size of a dynamic data structure
grows and shrinks as needed.

620 CHAPTER 13 Collections

object’s next reference can refer to a third Node object, and so on,
creating a linked list. The first node in the list could be referenced
using a separate variable. The last node in the list would have a
 next reference that is null , indicating the end of the list. Figure 13.1
depicts this situation.

 In this example, the information stored in each Node class is a simple integer,
but keep in mind that we could define a class to contain any amount of informa-
tion of any type.

 A Dynamically Linked List
 The program in Listing 13.1 sets up a list of Magazine objects and then prints the
list. The list of magazines is encapsulated inside the MagazineList class shown in
 Listing 13.2 and is maintained as a dynamically linked list.

 The MagazineList class represents the list of magazines. From outside of the
class (an external view), we do not focus on how the list is implemented. We
don’t know, for instance, whether the list of magazines is stored in an array or
in a linked list. The MagazineList class provides a set of methods that allows the
user to maintain the list of magazines. That set of methods, specifically add and
toString , defines the operations to the MagazineList ADT.

 The MagazineList class uses an inner class called MagazineNode to represent
a node in the linked list. Each node contains a reference to one magazine and a
reference to the next node in the list. Because MagazineNode is an inner class, it is
reasonable to allow the data values in the class to be public. Therefore, the code
in the MagazineList class refers to those data values directly.

 The Magazine class shown in Listing 13.3 is well encapsulated, with all data
declared as private and methods provided to accomplish any updates necessary.
Note that because we use a separate class to represent a node in the list, the Magazine
class itself does not need to contain a link to the next Magazine in the list. That
allows the Magazine class to be free of any issues regarding its containment in a list.

list

info

next

info

next

info

next

info

next

 FIGURE 13.1 A linked list

 KEY CONCEPT
 A dynamically linked list is managed
by storing and updating references
to objects.

 Example using a
linked list.

VideoNote

13.2 Dynamic Representations 621

//***
// MagazineRack.java Author: Lewis/Loftus
//
// Driver to exercise the MagazineList collection.
//***

public class MagazineRack
 {
 //--
 // Creates a MagazineList object, adds several magazines to the
 // list, then prints it.
 //--
 public static void main (String[] args)
 {
 MagazineList rack = new MagazineList();

 rack.add (new Magazine("Time"));
 rack.add (new Magazine("Woodworking Today"));
 rack.add (new Magazine("Communications of the ACM"));
 rack.add (new Magazine("House and Garden"));
 rack.add (new Magazine("GQ"));

 System.out.println (rack);
 }
 }

 O U T P U T

 Time
 Woodworking Today
 Communications of the ACM
 House and Garden
 GQ

 L I S T I N G 1 3 . 1

 Other methods could be included in the MagazineList ADT. For example, in
addition to the add method provided, which always adds a new magazine to the
end of the list, another method called insert could be defined to add
a node anywhere in the list (to keep it sorted, for instance). A param-
eter to insert could indicate the value of the node after which the
new node should be inserted. Figure 13.2 shows how the references
would be updated to insert a new node.

 KEY CONCEPT
 Insert and delete operations can be
implemented by carefully manipulat-
ing object references.

622 CHAPTER 13 Collections

//***
// MagazineList.java Author: Lewis/Loftus
//
// Represents a collection of magazines.
//***

public class MagazineList
{
 private MagazineNode list;

 //--
 // Sets up an initially empty list of magazines.
 //--
 public MagazineList()
 {
 list = null;
 }

 //--
 // Creates a new MagazineNode object and adds it to the end of
 // the linked list.
 //--
 public void add (Magazine mag)
 {

 MagazineNode node = new MagazineNode (mag);
 MagazineNode current;

 if (list == null)
 list = node;
 else
 {
 current = list;
 while (current.next != null)
 current = current.next;
 current.next = node;
 }
 }

 //--
 // Returns this list of magazines as a string.
 //--
 public String toString ()

L I S T I N G 1 3 . 2

 13.2 Dynamic Representations 623

 {
 String result = "";

 MagazineNode current = list;

 while (current != null)
 {
 result += current.magazine + "\n";
 current = current.next;
 }

 return result;
 }

 //***
 // An inner class that represents a node in the magazine list.
 // The public variables are accessed by the MagazineList class.
 //***
 private class MagazineNode
 {
 public Magazine magazine;
 public MagazineNode next;

 //--
 // Sets up the node
 //--
 public MagazineNode (Magazine mag)
 {
 magazine = mag;
 next = null;
 }
 }
}

L I S T I N G 1 3 . 2 continued

624 CHAPTER 13 Collections

//**
// Magazine.java Author: Lewis/Loftus
//
// Represents a single magazine.
//**

public class Magazine
{
 private String title;

 //---
 // Sets up the new magazine with its title.
 //---
 public Magazine (String newTitle)
 {
 title = newTitle;
 }

 //---
 // Returns this magazine as a string.
 //---
 public String toString ()
 {
 return title;
 }
}

L I S T I N G 1 3 . 3

list info

next

info

next

newNode
info

next

info

next

info

next

FIGURE 13.2 Inserting a node into the middle of a list

13.2 Dynamic Representations 625

 Another operation that would be helpful in the list ADT would be a delete
method to remove a particular node. Recall from our discussion in Chapter 3 that
by removing all references to an object, it becomes a candidate for garbage collec-
tion. Figure 13.3 shows how references would be updated to delete a node from
a list. Care must be taken to accomplish the modifications to the references in the
proper order to ensure that other nodes are not lost and that references continue
to refer to valid, appropriate nodes in the list.

 Other Dynamic List Representations
 You can use different list implementations, depending on the specific
needs of the program you are designing. For example, in some situ-
ations it may make processing easier to implement a doubly linked
list in which each node has not only a reference to the next node in
the list but another reference to the previous node in the list. Our
generic Node class might be declared as follows:

 class Node
 {
 int info;
 Node next, prev;
 }

 Figure 13.4 shows a doubly linked list. Note that, like a single linked list, the
 next reference of the last node is null . Similarly, the previous node of the first
node is null since there is no node that comes before the first one. This type of
structure makes it easy to move back and forth between nodes in the list but
requires more effort to set up and modify.

list info

next

info

next

info

next

info

next

 FIGURE 13.3 Deleting a node from a list

 KEY CONCEPT
 Many variations on the implementa-
tion of dynamically linked lists can
be defined.

list info

next
prev prev prev prev

info

next

info

next

info

next

 FIGURE 13.4 A doubly linked list

626 CHAPTER 13 Collections

Another implementation of a linked list could include a header node for the list
that has a reference to the front of the list and another reference to the rear of the
list. A rear reference makes it easier to add new nodes to the end of the list. The
header node could contain other information, such as a count of the number of
nodes currently in the list. The declaration of the header node would be similar
to the following:

class ListHeader
{
 int count;
 Node front, rear;
}

Note that the header node is not of the same class as the Node class to which it
refers. Figure 13.5 depicts a linked list that is implemented using a header node.

Still other linked list implementations can be created. For instance, the use of
a header can be combined with a doubly linked list, or the list can be maintained
in sorted order. The implementation should cater to the type of processing that
is required. Some extra effort to maintain a more complex data structure may be
worthwhile if it makes common operations on the structure more efficient.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 13.4 What is a dynamic data structure?

SR 13.5 Describe the steps depicted in Figure 13.2 to insert a node into a list.
What special cases exist?

SR 13.6 Describe the steps depicted in Figure 13.3 to delete a node from a list.
What special cases exist?

list count:4

front

rear

info

next

info

next

info

next

info

next

FIGURE 13.5 A list with front and rear references

13.3 Linear Data Structures 627

SR 13.7 Suppose first is a reference to a Node object, and that it refers to the
first node in a linked list. Show, in pseudocode, the steps that would
count and return the number of nodes on the list.

 SR 13.8 What is a doubly linked list?

 SR 13.9 What is a header node for a linked list?

 13.3 Linear Data Structures

 In addition to lists, some data structures have become classic in that they repre-
sent important generic situations that commonly occur in computing. Like lists, a
queue and a stack are linear data structures , meaning that the data they represent
is organized in a linear fashion. This section explores some linear data structures
in more detail.

 Queues
 A queue is similar to a list except that it has restrictions on the way
you put items in and take items out. Specifically, a queue uses first-
in, first-out (FIFO) processing. That is, the first item put in the list is
the first item that comes out of the list. Figure 13.6 depicts the FIFO
processing of a queue.

 Any waiting line is a queue. Think about a line of people waiting for a teller
at a bank. A customer enters the queue at the back and moves forward as earlier
customers are serviced. Eventually, each customer comes to the front of the queue
to be processed.

 Note that the processing of a queue is conceptual. We may speak in terms of
people moving forward until they reach the front of the queue, but the reality
might be that the front of the queue moves as elements come off. That is, we are

Items go on the queue
at the rear (enqueue)

Items come off the queue
at the front (dequeue)

 FIGURE 13.6 A queue data structure

 KEY CONCEPT
 A queue is a linear data structure
that manages data in a first-in, first-
out manner.

628 CHAPTER 13 Collections

not concerned at this point with whether the queue of customers moves toward
the teller, or remains stationary as the teller moves when customers are serviced.

 A queue data structure typically has the following operations:

■ enqueue—adds an item to the rear of the queue

■ dequeue—removes an item from the front of the queue

■ empty—returns true if the queue is empty

 Stacks
 A stack is similar to a queue except that its elements go on and come
off at the same end. The last item to go on a stack is the first item
to come off, like a stack of plates in the cupboard or a stack of hay
bales in the barn. A stack, therefore, processes information in a last-
in, first-out (LIFO) manner, as shown in Figure 13.7 .

 A typical stack ADT contains the following operations:

 ■ push—pushes an item onto the top of the stack

 ■ pop—removes an item from the top of the stack

 ■ peek—retrieves information from the top item of the stack without remov-
ing it

 ■ empty—returns true if the stack is empty

 The java.util package of the API contains a class called Stack that imple-
ments a stack data structure. It contains methods that correspond to the standard
stack operations, plus a method that searches for a particular object in the stack.

 The Stack class has a search method that returns an integer corresponding
to the position in the stack of the particular object. This type of searching is not
usually considered to be part of the classic stack ADT.

 Implementing a queue.

VideoNote

The last item to go
on the stack (push)

must be the first item
to come off (pop)

 FIGURE 13.7 A stack data structure

 KEY CONCEPT
 A stack is a linear data structure that
manages data in a last-in, first-out
manner.

 13.3 Linear Data Structures 629

Like ArrayList operations, the Stack operations operate on Object references.
Because all objects are derived from the Object class, any object can be pushed
onto a stack. If primitive types are to be stored, they must be treated as objects
using the corresponding wrapper class. Unlike the Stack class, no class imple-
menting a queue is defined in the Java API.

Let’s look at an example that uses a stack to solve a problem. The program in
Listing 13.4 accepts a string of characters that represents a secret message. The
program decodes and prints the message.

//**
// Decode.java Author: Lewis/Loftus
//
// Demonstrates the use of the Stack class.
//**

import java.util.*;

public class Decode
{
 //---
 // Decodes a message by reversing each word in a string.
 //---
 public static void main (String[] args)
 {
 Scanner scan = new Scanner (System.in);

 Stack word = new Stack();

 String message;
 int index = 0;

 System.out.println ("Enter the coded message:");
 message = scan.nextLine();
 System.out.println ("The decoded message is:");

 while (index < message.length())
 {
 // Push word onto stack
 while (index < message.length() && message.charAt(index) != ' ')
 {
 word.push (new Character(message.charAt(index)));
 index++;
 }

L I S T I N G 1 3 . 4

630 CHAPTER 13 Collections

A message that has been encoded has each individual word in the message
reversed. Words in the message are separated by a single space. The program uses
the Stack class to push the characters of each word on the stack. When an entire
word has been read, each character appears in reverse order as it is popped off
the stack and printed.

SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 13.10 How is a queue different from a list?

SR 13.11 Show the contents of a queue after the following operations are per-
formed. Assume the queue is initially empty.

enqueue (5);
enqueue (21);
dequeue();
enqueue (72);
enqueue (37);
enqueue (15);
dequeue();

 // Print word in reverse
 while (!word.empty())
 System.out.print (((Character)word.pop()).charValue());
 System.out.print (" ");
 index++;
 }

 System.out.println();
 }
}

O U T P U T

Enter the coded message:
artxE eseehc esaelp
The decoded message is:
Extra cheese please

L I S T I N G 1 3 . 4 continued

13.4 Non-Linear Data Structures 631

SR 13.12 What is a stack?

SR 13.13 Show the contents of a stack after the following operations are per-
formed. Assume the stack is initially empty.

push (5);
 push (21);
 pop();
 push (72);
 push (37);
 push (15);
 pop();

SR 13.14 What is the Stack class?

13.4 Non-Linear Data Structures

 Some data structures are considered to be non-linear data structures , because
their data is not organized linearly. This section examines two types of non-linear
structures: trees and graphs.

 Trees
 A tree is a non-linear data structure that consists of a root node and
potentially many levels of additional nodes that form a hierarchy. All
nodes other than the root are called internal nodes . Nodes that have no
children are called leaf nodes . Figure 13.8 depicts a tree. Note that we
draw a tree "upside down," with the root at the top and the leaves at
the bottom.

 In a general tree like the one in Figure 13.8 , each node could have many child
nodes. As we mentioned in Chapter 9 , the inheritance relationships among classes
can be depicted using a general tree structure.

 In a binary tree , each node can have no more than two child nodes. Binary trees
are useful in various programming situations and usually are easier to implement
than general trees. Technically, binary trees are a subset of general trees, but they
are so important in the computing world that they usually are thought of as their
own data structure.

 The operations on trees and binary trees vary, but minimally include adding
and removing nodes from the tree or binary tree. Because of their non-linear
nature, trees and binary trees are implemented nicely using references as dynamic
links. However, it is possible to implement a tree data structure using a fixed
representation such as an array.

 KEY CONCEPT
 A tree is a non-linear data structure
that organizes data into a hierarchy.

632 CHAPTER 13 Collections

 Graphs
 Like a tree, a graph is a non-linear data structure. Unlike a tree, a
graph does not have a primary entry point like the tree’s root node.
In a graph, a node is linked to another node by a connection called
an edge . Generally there are no restrictions on the number of edges
that can be made between nodes in a graph. Figure 13.9 presents a
graph data structure.

 Graphs are useful when representing relationships for which linear paths and
strict hierarchies do not suffice. For instance, the highway system connecting cit-
ies on a map and airline connections between airports are better represented as
graphs than by any other data structure discussed so far.

 In a general graph, the edges are bi-directional, meaning that the edge con-
necting nodes A and B can be followed from A to B and also from B to A. In a
directed graph , or digraph , each edge has a specific direction. Figure 13.10 shows
a digraph, in which each edge indicates the direction using an arrowhead.

 A digraph might be used, for instance, to represent airline flights between
airports. Unlike highway systems, which are in almost all cases bi-directional,
having a flight from one city to another does not necessarily mean there is a

leaf nodes

root node

 FIGURE 13.8 A tree data structure

 KEY CONCEPT
 A graph is a non-linear data structure
that connects nodes using generic
edges.

 13.4 Non-Linear Data Structures 633

FIGURE 13.9 A graph data structure

FIGURE 13.10 A directed graph

634 CHAPTER 13 Collections

corresponding flight going the other way. Or, if there is, we may want to associate
different information with it, such as cost.

 Like trees, graphs often are implemented using dynamic links, although they
can be implemented using arrays as well.

 SELF-REVIEW QUESTIONS (see answers in Appendix N)

SR 13.15 What do trees and graphs have in common?

SR 13.16 Which structure (a tree or a graph) would be a good choice to repre-
sent each of the following.

 a. The directories and files on a computer system.
 b. Airplane routes.
 c. An “is a friend of” relationship among a group of people.
 d. An “is a boss of” relationship in a company.

13.5 The Java Collections API

 The Java standard class library contains several classes that represent collec-
tions of various types. These are often referred to as the Java Collections API
(Application Programming Interface).

 Most of the names of the classes in this set indicate both the col-
lection type and the underlying implementation. One example is the
 ArrayList class, which is discussed in some detail in Chapter 5 . It
represents a list collection, implemented using an underlying array.
Similarly, the LinkedList class represents a list collection with a
dynamically linked internal implementation.

 The Vector class and the Stack class are carried over from earlier Java incarna-
tions, which is why their names aren’t consistent with the newer collection classes.

 Several interfaces are used to define the collection operations themselves. These
interfaces include List , Set , SortedSet , Map , and SortedMap . A Set is consistent
with its normal interpretation as a collection of elements without duplicates. A
Map is a group of elements that can be referenced by a key value.

 Generics
 As we mentioned in Chapter 5 during the discussion of the ArrayList class, the
classes in the Java Collections API are implemented as generic types , meaning

 KEY CONCEPT
 The Java Collections API defines sev-
eral collection classes implemented
in various ways.

13.5 The Java Collections API 635

that the type of object that the collection manages can be established
when an object of that collection type is instantiated.

 For example, to create a LinkedList of String objects, we would
instantiate a collection object in the following way:

 LinkedList<String> myStringList = new LinkedList<String>();

 Similarly, to create a LinkedList of Book objects, we would instantiate the col-
lection as follows:

 LinkedList<Book> myBookList = new LinkedList<Book>();

 By specifying the type stored in the collection, we gain two advantages:

 ■ Only objects of the appropriate type can be added to the collection.

 ■ When an object is removed from the collection, its type is already estab-
lished, avoiding the need to cast it to an appropriate type.

 The myStringList object can store only String objects, and the
myBookList collection can store only Book objects. Keep in mind that
these include objects related to the specified type by inheritance. For
example, if a Dictionary class is derived from Book , then we could
store a Dictionary object in the myBookList collection. After all, if
we’re using inheritance correctly, a Dictionary is-a Book .

 If no specific type is specified when the collection object is created, the collec-
tion is defined as containing references of the Object class, which means they can
store any type of object. This makes the use of the collections classes consistent
with earlier versions of Java that did not include generic specifications.

 The details of the collection classes and the techniques for defining a generic
class go beyond the scope of this book and so are not explored further here.

 SELF-REVIEW QUESTIONS (see answers in Appendix N)

 SR 13.17 What is the Java Collections API?

 SR 13.18 What is a generic type, and how does it relate to the Java Collections
API?

 KEY CONCEPT
 The classes of the Java Collections
API are implemented as generic
types.

 KEY CONCEPT
 Generic classes ensure type
compatibility among the objects
stored by the collection.

636 CHAPTER 13 Collections

Summary of Key Concepts
■ An object, with its well-defined interface, is a perfect mechanism for imple-

menting a collection.

■ The size of a dynamic data structure grows and shrinks as needed.

■ A dynamically linked list is managed by storing and updating references to
objects.

■ Insert and delete operations can be implemented by carefully manipulating
object references.

■ Many variations on the implementation of dynamically linked lists can be
defined.

■ A queue is a linear data structure that manages data in a first-in, first-out
manner.

■ A stack is a linear data structure that manages data in a last-in, first-out
manner.

■ A tree is a non-linear data structure that organizes data into a hierarchy.

■ A graph is a non-linear data structure that connects nodes using generic
edges.

■ The Java Collections API defines several collection classes implemented in
various ways.

■ The classes of the Java Collections API are implemented as generic types.

■ Generic classes ensure type compatibility among the objects stored by the
collection.

Exercises
Visit www.myprogramminglab.com to complete many of these Exercises
online and get instant feedback.

EX 13.1 Suppose current is a reference to a Node object and that it
currently refers to a specific node in a linked list. Show, in
pseudocode, the steps that would delete the node following
current from the list. Carefully consider the cases in which
current is referring to the first and last nodes in the list.

EX 13.2 Modify your answer to Exercise 13.1 assuming that the list was
set up as a doubly linked list, with both next and prev references.

EX 13.3 Suppose current and newNode are references to Node objects.
Assume current currently refers to a specific node in a linked

www.myprogramminglab.com

 Exercises 637

list and newNode refers to an unattached Node object. Show, in
pseudocode, the steps that would insert newNode behind cur-
rent in the list. Carefully consider the cases in which current
is referring to the first and last nodes in the list.

EX 13.4 Modify your answer to Exercise 13.3 assuming that the list was
set up as a doubly linked list, with both next and prev references.

EX 13.5 Would the front and rear references in the header node of a
linked list ever refer to the same node? Would they ever both
be null? Would one ever be null if the other was not? Explain
your answers using examples.

EX 13.6 Show the contents of a queue after the following operations are
performed. Assume the queue is initially empty.

enqueue (45);
enqueue (12);
enqueue (28);
dequeue();
dequeue();
enqueue (69);
enqueue (27);
enqueue (99);
dequeue();
enqueue (24);
enqueue (85);
enqueue (16);
dequeue();

EX 13.7 In terms of the final state of a queue, does it matter how
dequeue operations are intermixed with enqueue operations?
Does it matter how the enqueue operations are intermixed
among themselves? Explain using examples.

EX 13.8 Show the contents of a stack after the following operations are
performed. Assume the stack is initially empty.

push (45);
push (12);
push (28);
pop();
pop();

push (69);
push (27);
push (99);
pop();

638 CHAPTER 13 Collections

push (24);
push (85);
push (16);
pop();

EX 13.9 In terms of the final state of a stack, does it matter how the
pop operations are intermixed with the push operations? Does
it matter how the push operations are intermixed among them-
selves? Explain using examples.

EX 13.10 Would a tree data structure be a good choice to represent a
family tree that shows lineage? Why or why not? Would a
binary tree be a better choice? Why or why not?

EX 13.11 What data structure would be a good choice to represent the
links between various Web sites? Give an example.

Programming Projects
Visit www.myprogramminglab.com to complete many of these Programming
Projects online and get instant feedback.

PP 13.1 Consistent with the example from Chapter 8, design and imple-
ment an application that maintains a collection of DVDs using
a linked list. In the main method of the driver class, add various
DVDs to the collection and print the list when complete.

PP 13.2 Modify the MagazineRack program presented in this chapter
by adding delete and insert operations into the MagazineList
class. Have the Magazine class implement the Comparable
interface, and base the processing of the insert method on
calls to the compareTo method in the Magazine class that deter-
mines whether one Magazine title comes before another alpha-
betically. In the driver, exercise various insertion and deletion
operations. Print the list of magazines when complete.

PP 13.3 Design and implement a version of selection sort (from
Chapter 10) that operates on a linked list of nodes that each
contain an integer.

PP 13.4 Design and implement a version of insertion sort (from
Chapter 10) that operates on a linked list of nodes that each
contain an integer.

PP 13.5 Design and implement an application that simulates the cus-
tomers waiting in line at a bank. Use a queue data structure to
represent the line. As customers arrive at the bank, customer

Developing a solution of
PP 13.3.

VideoNote

www.myprogramminglab.com

 Programming Projects 639

objects are put in the rear of the queue with an enqueue opera-
tion. When the teller is ready to service another customer, the
customer object is removed from the front of the queue with
a dequeue operation. Randomly determine when new custom-
ers arrive at the bank and when current customers are finished
at the teller window. Print a message each time an operation
occurs during the simulation.

PP 13.6 Modify the solution to the PP 13.5 so that it represents eight
tellers and therefore eight customer queues. Have new custom-
ers go to the shortest queue. Determine which queue had the
shortest waiting time per customer on average.

PP 13.7 Design and implement an application that evaluates a postfix
expression that operates on integer operands using the arith-
metic operators +, −, *, /, and %. We are already familiar with
infix expressions, in which an operator is positioned between
its two operands. A postfix expression puts the operators after
its operands. Keep in mind that an operand could be the result
of another operation. This eliminates the need for parentheses
to force precedence. For example, the following infix expres-
sion:

(5 + 2) * (8 − 5)

 is equivalent to the following postfix expression.

5 2 + 8 5 − *

 The evaluation of a postfix expression is facilitated by using a
stack. As you process a postfix expression from left to right,
you encounter operands and operators. If you encounter an
operand, push it on the stack. If you encounter an operator,
pop two operands off the stack, perform the operation, and
push the result back on the stack. When you have processed
the entire expression, there will be one value on the stack,
which is the result of the entire expression.

 You may want to use a StringTokenizer object to assist in the
parsing of the expression. You can assume the expression will
be in valid postfix form.

PP 13.8 Design and implement a program that prompts the user
to enter a string and then performs two palindrome tests.
The first should use a single stack to test whether the string
is a palindrome. The second should use two stacks to test
whether the string is a palindrome when capitalization, spaces,

640 CHAPTER 13 Collections

punctuation, and other non-alphanumeric characters are
ignored. The program should print the results of both tests.

PP 13.9 Design and implement a class named StringTree, a binary
tree for storing String objects in alphabetic order. Each node
in the tree should be represented by a Node class, which stores
the string value and pointers to the right and left child nodes.
For any node value in the tree, the value of its left child should
come before that value, and the value of its right child should
come after that value. The StringTree class should contain
both a method for adding strings to the tree and a method for
printing the tree’s value in alphabetic order. Write a driver
program that prompts the user for strings and adds them to
the tree. After processing the input, print the tree values.

PP 13.10 Design and implement an application to support a moder-
ated question-and-answer session in which audience members
submit questions to a queue. The question at the front of the
queue may be answered by the speaker or panel, and a list of
answered or unanswered questions may be retrieved at any
time.

 The program should accept the following simple commands:
‘Q’ will allow an audience member to submit a question, along
with their name; ‘A’ will allow the speaker to enter an answer
to the question currently at the top of the queue; ‘P’ will allow
the speaker to pass on a question, moving it from the front of
the queue to the end of the queue; ‘R’ will allow the speaker to
mark a question as rejected, removing it from the queue; ‘LA’
will print a numbered list of answered questions, along with
the answers; ‘LU’ will print a numbered list of unanswered
questions; finally, ‘X’ will print numbered lists of answered
and unanswered questions, then exit the program.

 You should create a Question class to store each question,
its answer, and any other question state information. The
answered and unanswered queues should be implemented
using the java.util.LinkedList class. You must use only the
methods in the class that provide Queue functionality: remove
the first element, append an element to the end, retrieve the
queue size, and iterate over the list.

Glossary

abstract—A Java reserved word that serves as
a modifier for classes, interfaces, and methods.
An abstract class cannot be instantiated and
is used to specify bodiless abstract methods
that are given definitions by derived classes.
Interfaces are inherently abstract.

abstract class—See abstract.

abstract data type (ADT)—A collection of data
and the operations that are defined on that
data. An abstract data type might be imple-
mented in a variety of ways, but the interface
operations are consistent.

abstract method—See abstract.

Abstract Windowing Toolkit (AWT)—The
package in the Java API (java.awt) that con-
tains classes related to graphics and graphical
user interfaces. See also Swing.

abstraction—The concept of hiding details. If
the right details are hidden at the right times,
abstraction can significantly help control com-
plexity and focus attention on appropriate
issues.

access—The ability to reference a variable
or invoke a method from outside the class in
which it is declared. Controlled by the vis-
ibility modifier used to declare the variable or
method. Also called the level of encapsulation.
See also visibility modifier.

access modifier—See visibility modifier.

actual parameter—The value passed to a method
as a parameter. See also formal parameter.

adaptor class—See listener adaptor class.

address—(1) A numeric value that uniquely
identifies a particular memory location in a
computer’s main memory. (2) A designation
that uniquely identifies a computer among all
others on a network.

ADT—See abstract data type.

aggregate object—An object that contains vari-
ables that are references to other objects. See
also has-a relationship.

aggregation—Something that is composed, at
least in part, of other things. See also aggregate
object.

algorithm—A step-by-step process for solving
a problem. A program is based on one or more
algorithms.

alias—A reference to an object that is currently
also referred to by another reference. Each ref-
erence is an alias of the other.

analog—A representation that is in direct pro-
portion to the source of the information. See
also digital.

animation—A series of images or drawings
that give the appearance of movement when
displayed in order at a particular speed.

API—See Application Programming Interface.

applet—A Java program that is linked into an
HTML document, then retrieved and executed
using a Web browser, as opposed to a stand-
alone Java application.

A

641

642 APPENDIX A Glossary

appletviewer—A software tool that interprets
and displays Java applets through links in
HTML documents. Part of the Java Develop-
ment Kit.

application—(1) A generic term for any pro-
gram. (2) A Java program that can be run
without the use of a Web browser, as opposed
to a Java applet.

Application Programming Interface (API)—A
set of classes that defines services for a pro-
grammer. Not part of the language itself, but
often relied on to perform even basic tasks. See
also class library.

arc angle—When defining an arc, the radial
distance that defines the arc’s length. See also
start angle.

architectural design—A high-level design that
identifies the large portions of a software sys-
tem and key data structures. See also detailed
design.

architecture—See computer architecture.

architecture neutral—Not specific to any par-
ticular hardware platform. Java code is consid-
ered architecture neutral because it is compiled
into bytecode and then interpreted on any
machine with a Java interpreter.

arithmetic operator—An operator that per-
forms a basic arithmetic computation, such as
addition or multiplication.

arithmetic promotion—The act of promoting
the type of a numeric operand to be consistent
with the other operand.

array—A programming language construct
used to store an ordered list of primitive values
or objects. Each element in the array is refer-
enced using a numerical index from 0 to N−1,
where N is the size of the array.

array element—A value or object that is stored
in an array.

array element type—The type of the values or
objects that are stored in an array.

ASCII—A popular character set used by
many programming languages. ASCII stands
for American Standard Code for Information
Interchange. It is a subset of the Unicode char-
acter set, which is used by Java.

assembly language—A low-level language
that uses mnemonics to represent program
commands.

assignment conversion—Some data types can
be converted to another in an assignment state-
ment. See widening conversion.

assignment operator—An operator that results
in an assignment to a variable. The = operator
performs basic assignment. Many other assign-
ment operators perform additional opera-
tions prior to the assignment, such as the *=
operator.

association—A relationship between two
classes in which one uses the other or relates to
it in some way. See also operator association,
use relationship.

AWT—See Abstract Windowing Toolkit.

background color—(1) The color of the back-
ground of a graphical user interface compo-
nent. (2) The color of the background of an
HTML page. See also foreground color.

base—The numerical value on which a par-
ticular number system is based. It determines
the number of digits available in that number
system and the place value of each digit in a
number. See also binary, decimal, hexadecimal,
octal, place value.

base 2—See binary.

base 8—See octal.

base 10—See decimal.

base 16—See hexadecimal.

APPENDIX A Glossary 643

base case—The situation that terminates recur-
sive processing, allowing the active recursive
methods to begin returning to their point of
invocation.

base class—See superclass.

behavior—The functional characteristics of an
object, defined by its methods. See also identity,
state.

binary—The base-2 number system. Modern
computer systems store information as strings
of binary digits (bits).

binary operator—An operator that uses two
operands.

binary search—A searching algorithm that
requires that the list be sorted. It repetitively
compares the “middle” element of the list to
the target value, narrowing the scope of the
search each time. See also linear search.

binary string—A series of binary digits (bits).

binary tree—A tree data structure in which each
node can have no more than two child nodes.

binding—The process of associating an identi-
fier with the construct that it represents. For
example, the process of binding a method name
to the specific definition that it invokes.

bit—A binary digit, either 0 or 1.

bit shifting—The act of shifting the bits of a
data value to the left or right, losing bits on one
end and inserting bits on the other.

bits per second (bps)—A measurement rate for
data transfer devices.

bitwise operator—An operator that manipu-
lates individual bits of a value, either by calcu-
lation or by shifting.

black-box testing—Producing and evaluating
test cases based on the input and expected
output of a software component. The test cases
focus on covering the equivalence categories

and boundary values of the input. See also
white-box testing.

block—A group of programming statements
and declarations delimited by braces ({}).

boolean—A Java reserved word representing a
logical primitive data type that can only take
the values true or false.

boolean expression—An expression that evalu-
ates to a true or false result, primarily used
as conditions in selection and repetition
statements.

boolean operator—Any of the bitwise opera-
tors AND (&), OR (|), or XOR (^) when
applied to boolean operands. The results are
equivalent to their logical counterparts, except
that boolean operators are not short-circuited.

border—A graphical edge around a graphi-
cal user interface component to enhance its
appearance or to group components visually.
An empty border creates a buffer of space
around a component.

bounding rectangle—A rectangle that delin-
eates a region in which an oval or arc is defined.

boundary values—The input values corre-
sponding to the edges of equivalence categories.
Used in black-box testing.

bounds checking—The process of determin-
ing whether an array index is in bounds, given
the size of the array. Java performs automatic
bounds checking.

bps—See bits per second.

break—A Java reserved word used to interrupt
the flow of control by breaking out of the cur-
rent loop or switch statement.

browser—Software that retrieves HTML doc-
uments and other resources across a network
and formats them for viewing. A browser is
the primary vehicle for accessing the World
Wide Web.

644 APPENDIX A Glossary

bug—A slang term for a defect or error in a
computer program.

build-and-fix approach—An approach to soft-
ware development in which a program is
created without any significant planning or
design, then modified until it reaches some level
of acceptance. It is a prevalent, but unwise,
approach.

bus—A group of wires in the computer that
carry data between components such as the
CPU and main memory.

button—A graphical user interface component
that allows the user to initiate an action, set a
condition, or choose an option with a mouse
click. There are several kinds of GUI buttons.
See also check box, push button, radio button.

byte—(1) A unit of binary storage equal to
eight bits. (2) A Java reserved word that repre-
sents a primitive integer type, stored using eight
bits in two’s complement format.

byte stream—An I/O stream that manages 8-bit
bytes of raw binary data. See also character
stream.

bytecode—The low-level format into which the
Java compiler translates Java source code. The
bytecodes are interpreted and executed by the
Java interpreter, perhaps after transportation
over the Internet.

capacity—See storage capacity.

case—(1) A Java reserved word that is used
to identify each unique option in a switch
statement. (2) The orientation of an alphabetic
character (uppercase or lowercase).

case sensitive—Differentiating between the
uppercase and lowercase versions of an alpha-
betic letter. Java is case sensitive; therefore the
identifier total and the identifier Total are con-
sidered to be different identifiers.

cast—A Java operation expressed using a type
or class name in parentheses to explicitly

convert and return a value of one data type into
another.

catch—A Java reserved word that is used to
specify an exception handler, defined after a
try block.

CD-Recordable (CD-R)—A compact disc on
which information can be stored once using a
home computer with an appropriate drive. See
also CD-Rewritable, CD-ROM.

CD-Rewritable (CD-RW)—A compact disc on
which information can be stored and rewritten
multiple times using a home computer with
an appropriate drive. See also CD-Recordable,
CD-ROM.

CD-ROM—An optical secondary memory
medium that stores binary information in a
manner similar to a musical compact disc.

central processing unit (CPU)—The hardware
component that controls the main activity of
a computer, including the flow of information
and the execution of commands.

char—A Java reserved word that represents the
primitive character type. All Java characters are
members of the Unicode character set and are
stored using 16 bits.

character font—A specification that defines the
distinct look of a character when it is printed
or drawn.

character set—An ordered list of characters,
such as the ASCII or Unicode character sets.
Each character corresponds to a specific, unique
numeric value within a given character set.
A programming language adopts a particular
character set to use for character representation
and management.

character stream—An I/O stream that manages
16-bit Unicode characters. See also byte stream.

character string—A series of ordered charac-
ters. Represented in Java using the String class
and string literals such as "hello".

APPENDIX A Glossary 645

check box—A graphical user interface compo-
nent that allows the user to set a boolean con-
dition with a mouse click. A check box can be
used alone or independently among other check
boxes. See also radio button.

checked exception—A Java exception that must
be either caught or explicitly thrown to the call-
ing method. See also unchecked exception.

child class—See subclass.

class—(1) A Java reserved word used to define
a class. (2) The blueprint of an object—the
model that defines the variables and methods
an object will contain when instantiated.

class diagram—A diagram that shows the
relationships between classes, including inheri-
tance and use relationships. See also Unified
Modeling Language.

class hierarchy—A tree-like structure created
when classes are derived from other classes
through inheritance. See also interface hierarchy.

class library—A set of classes that define useful
services for a programmer. See also Application
Programming Interface.

class method—A method that can be invoked
using only the class name. An instantiated
object is not required as it is with instance
methods. Defined in a Java program by using
the static reserved word.

CLASSPATH—An operating system setting
that determines where the Java interpreter
searches for class files.

class variable—A variable that is shared among
all objects of a class. It can also be referenced
through the class name, without instantiating
any object of that class. Defined in a Java pro-
gram by using the static reserved word.

client-server model—A manner in which to
construct a software design based on objects
(clients) making use of the services provided by
other objects (servers).

coding guidelines—A series of conventions that
describe how programs should be constructed.
They make programs easier to read, exchange,
and integrate. Sometimes referred to as coding
standards, especially when they are enforced.

coding standard—See coding guidelines.

cohesion—The strength of the relationship
among the parts within a software component.
See also coupling.

collision—The process of two hash values pro-
ducing the same hash code. See also hash code,
hashing.

color chooser—A graphical user interface com-
ponent, often displayed as a dialog box, that
allows the user to select or specify a color.

combo box—A graphical user interface compo-
nent that allows the user to select one of several
options. A combo box displays the most recent
selection. See also list.

command-line arguments—The values that fol-
low the program name on the command line.
Accessed within a Java program through the
String array parameter to the main method.

comment—A programming language construct
that allows a programmer to embed human-
readable annotations into the source code. See
also documentation.

compiler—A program that translates code from
one language to equivalent code in another lan-
guage. The Java compiler translates Java source
code into Java bytecode. See also interpreter.

compile-time error—Any error that occurs
during the compilation process, often indicat-
ing that a program does not conform to the
language syntax or that an operation was
attempted on an inappropriate data type. See
also logical error, run-time error, syntax error.

component—Any portion of a software system
that performs a specific task, transforming
input to output. See also GUI component.

646 APPENDIX A Glossary

computer architecture—The structure and
interaction of the hardware components of a
computer.

concatenation—See string concatenation.

condition—A boolean expression used to
determine whether the body of a selection or
repetition statement should be executed.

conditional coverage—A strategy used in
white-box testing in which all conditions in a
program are executed, producing both true
and false results. See also statement coverage.

conditional operator—A Java ternary operator
that evaluates one of two expressions based on
a condition.

conditional statement—See selection statement.

const—A Java reserved word that is not cur-
rently used.

constant—An identifier that contains a value
that cannot be modified. Used to make code
more readable and to facilitate changes. Defined
in Java using the final modifier.

constructor—A special method in a class that is
invoked when an object is instantiated from the
class. Used to initialize the object.

container—A Java graphical user interface
component that can hold other components.
See also containment hierarchy.

containment hierarchy—The relationships
among graphical components of a user inter-
face. See also container.

content pane—The part of a top-level container
to which components are added.

control characters—See nonprintable characters.

controller—Hardware devices that control the
interaction between a computer system and a
particular kind of peripheral.

coupling—The strength of the relationship
between two software components. See also
cohesion.

CPU—See central processing unit.

data stream—An I/O stream that represents a
particular source or destination for data, such
as a file. See also processing stream.

data structure—Any programming construct,
either defined in the language or by a program-
mer, used to organize data into a format to
facilitate access and processing. Arrays, linked
lists, and stacks can all be considered data
structures.

data type—A designation that specifies a set of
values (which may be infinite). For example,
each variable has a data type that specifies the
kinds of values that can be stored in it.

data transfer device—A hardware component
that allows information to be sent between
computers, such as a modem.

debugger—A software tool that allows a pro-
grammer to step through an executing program
and examine the value of variables at any point.
See also jdb.

decimal—The base-10 number system, which
humans use in everyday life. See also binary.

default—A Java reserved word that is used to
indicate the default case of a switch statement,
used if no other cases match.

default visibility—The level of access desig-
nated when no explicit visibility modifier is
used to declare a class, interface, method, or
variable. Sometimes referred to as package
visibility. Anything declared with default vis-
ibility is visible only to classes in the same
package.

defect testing—Testing designed to uncover
errors in a program.

delimiter—Any symbol or word used to set the
boundaries of a programming language con-
struct, such as the braces ({}) used to define a
Java block.

APPENDIX A Glossary 647

deprecated—Something, such as a particular
method in the Java API, that is considered out-
of-favor and should not be used.

derived class—See subclass.

design—(1) The plan for implementing a pro-
gram, which includes a specification of the
classes and objects used and an expression of
the important program algorithms. (2) The
process of creating a program design.

desk check—A type of review in which a devel-
oper carefully examines a design or program to
find errors.

detailed design—(1) The low-level algorith-
mic steps of a method. (2) The development
stage at which low-level algorithmic steps are
determined.

development stage—The software life-cycle
stage in which a software system is first cre-
ated, preceding use, maintenance, and eventual
retirement.

dialog box—A graphical window that pops up
to allow brief, specific user interaction.

digital—A representation that breaks infor-
mation down into pieces, which are in turn
represented as numbers. All modern computer
systems are digital.

digitize—The act of converting an analog rep-
resentation into a digital one by breaking it
down into pieces.

digraph—A graph data structure in which each
edge has a specific direction.

dimension—The number of index levels of a
particular array.

direct recursion—The process of a method
invoking itself. See also indirect recursion.

disable—Make a graphical user interface com-
ponent inactive so that it cannot be used. A
disabled component is grayed to indicate its
disabled status. See also enable.

DNS—See Domain Name System.

do—A Java reserved word that represents a
repetition construct. A do statement is executed
one or more times. See also for, while.

documentation—Supplemental information
about a program, including comments in a
program’s source code and printed reports such
as a user’s guide.

domain name—The portion of an Internet
address that specifies the organization to which
the computer belongs.

Domain Name System (DNS)—Software that
translates an Internet address into an IP address
using a domain server.

domain server—A file server that maintains a
list of Internet addresses and their correspond-
ing IP addresses.
double—A Java reserved word that represents
a primitive floating point numeric type, stored
using 64 bits in IEEE 754 format.

doubly linked list—A linked list with two refer-
ences in each node: one that refers to the next
node in the list and one that refers to the previ-
ous node in the list.

dynamic binding—The process of associating
an identifier with its definition during run time.
See also binding.
dynamic data structure—A set of objects that
are linked using references, which can be modi-
fied as needed during program execution.
editor—A software tool that allows the user to
enter and store a file of characters on a com-
puter. Often used by programmers to enter the
source code of a program.
efficiency—The characteristic of an algorithm
that specifies the required number of a particu-
lar operation in order to complete its task. For
example, the efficiency of a sort can be mea-
sured by the number of comparisons required
to sort a list. See also order.

648 APPENDIX A Glossary

element—A value or object stored in another
object such as an array.

element type—See array element type.

else—A Java reserved word that designates the
portion of code in an if statement that will be
executed if the condition is false.

enable—Make a graphical user interface compo-
nent active so that it can be used. See also disable.

encapsulation—The characteristic of an object
that limits access to the variables and methods
contained in it. All interaction with an object
occurs through a well-defined interface that
supports a modular design.

equality operator—One of two Java operators
that returns a boolean result based on whether
two values are equal (==) or not equal (!=).

equivalence category—A range of function-
ally equivalent input values as specified by the
requirements of the software component. Used
when developing black-box test cases.

error—(1) Any defect in a design or program.
(2) An object that can be thrown and processed
by special catch blocks, though usually errors
should not be caught. See also compile-time
error, exception, logical error, run-time error,
syntax error.

escape sequence—In Java, a sequence of char-
acters beginning with the backslash charac-
ter (\), used to indicate a special situation
when printing values. For example, the escape
sequence \t specifies that a horizontal tab
should be printed.

exception—(1) A situation that arises during
program execution that is erroneous or out of the
ordinary. (2) An object that can be thrown and
processed by special catch blocks. See also error.

exception handler—The code in a catch clause
of a try statement, executed when a particular
type of exception is thrown.

exception propagation—The process that
occurs when an exception is thrown: control
returns to each calling method in the stack
trace until the exception is caught and handled
or until the exception is thrown from the main
method, terminating the program.

exponent—The portion of a floating point
value’s internal representation that specifies
how far the decimal point is shifted. See also
mantissa.

expression—A combination of operators and
operands that produce a result.

extends—A Java reserved word used to specify
the parent class in the definition of a child class.

event—(1) A user action, such as a mouse click
or key press. (2) An object that represents a
user action, to which the program can respond.
See also event-driven programming.

event-driven programming—An approach to
software development in which the program
is designed to acknowledge that an event has
occurred and to act accordingly. See also event.

false—A Java reserved word that serves as one
of the two boolean literals (true and false).

fetch-decode-execute—The cycle through
which the CPU continually obtains instructions
from main memory and executes them.

FIFO—See first-in, first-out.

file—A named collection of data stored on a
secondary storage device such as a disk. See
also text file.

file chooser—A graphical user interface com-
ponent, usually displayed as a dialog box, that
allows the user to select a file from a storage
device.

file server—A computer in a network, usually
with a large secondary storage capacity, that is
dedicated to storing software needed by many
network users.

APPENDIX A Glossary 649

filtering stream—See processing stream.

final—A Java reserved word that serves as a
modifier for classes, methods, and variables.
A final class cannot be used to derive a new
class. A final method cannot be overridden. A
final variable is a constant.

finalize—A Java method defined in the Object
class that can be overridden in any other class.
It is called after the object becomes a candi-
date for garbage collection and before it is
destroyed. It can be used to perform “clean-up”
activity that is not performed automatically by
the garbage collector.

finalizer method—A Java method, called final-
ize, that is called before an object is destroyed.
See also finalize.

finally—A Java reserved word that designates a
block of code to be executed when an exception
is thrown, after any appropriate catch handler
is processed.

first-in, first-out (FIFO)—A data management
technique in which the first value that is stored
in a data structure is the first value that comes
out. See also last-in, first-out; queue.

float—A Java reserved word that represents a
primitive floating point numeric type, stored
using 32 bits in IEEE 754 format.

flushing—The process of forcing the contents
of the output buffer to be displayed on the
output device.

font—See character font.

for—A Java reserved word that represents
a repetition construct. A for statement is
executed zero or more times and is usually
used when a precise number of iterations is
known.

foreground color—The color in which any cur-
rent drawing will be rendered. See also back-
ground color.

formal parameter—An identifier that serves as
a parameter name in a method. It receives its
initial value from the actual parameter passed
to it. See also actual parameter.

fourth-generation language—A high-level lan-
guage that provides built-in functionality such
as automatic report generation or database
management, beyond that of traditional high-
level languages.

function—A named group of declarations and
programming statements that can be invoked
(executed) when needed. A function that is part
of a class is called a method. Java has no func-
tions because all code is part of a class.

garbage—(1) An unspecified or uninitialized
value in a memory location. (2) An object that
cannot be accessed anymore because all refer-
ences to it have been lost.

garbage collection—The process of reclaim-
ing unneeded, dynamically allocated memory.
Java performs automatic garbage collection of
objects that no longer have any valid references
to them.

gigabyte (GB)—A unit of binary storage, equal
to 230 (approximately 1 billion) bytes.

goto—(1) A Java reserved word that is not cur-
rently used. (2) An unconditional branch.

grammar—A representation of language syntax
that specifies how reserved words, symbols,
and identifiers can be combined into valid
programs.

graph—A nonlinear data structure made up of
nodes and edges that connect the nodes. See
also digraph.

graphical user interface (GUI)—Software that
provides the means to interact with a program
or operating system by making use of graphical
images and point-and-click mechanisms, such
as buttons and text fields.

650 APPENDIX A Glossary

graphics context—The drawing surface and
related coordinate system on which a drawing
is rendered or graphical user interface compo-
nents are placed.

GUI component—A visual element, such as a
button or text field, that is used to make up a
graphical user interface (GUI).

hardware—The tangible components of a com-
puter system, such as the keyboard, monitor,
and circuit boards.

has-a relationship—The relationship between
two objects in which one is composed, at least
in part, of one or more of the other. See also
aggregate object, is-a relationship.

hash code—An integer value calculated from
any given data value or object, used to deter-
mine where a value should be stored in a
hash table. Also called a hash value. See also
hashing.

hash method—A method that calculates a hash
code from a data value or object. The same
data value or object will always produce the
same hash code. Also called a hash function.
See also hashing.

hash table—A data structure in which val-
ues are stored for efficient retrieval. See also
hashing.

hashing—A technique for storing items so that
they can be found efficiently. Items are stored
in a hash table at a position specified by a cal-
culated hash code. See also hash method.

hexadecimal—The base-16 number system,
often used as an abbreviated representation of
binary strings.

hierarchy—An organizational technique in
which items are layered or grouped to reduce
complexity.

high-level language—A programming lan-
guage in which each statement represents many
machine-level instructions.

HTML—See HyperText Markup Language.

hybrid object-oriented language—A program-
ming language that can be used to implement a
program in a procedural manner or an object-
oriented manner, at the programmer’s discre-
tion. See also pure object-oriented language.

hypermedia—The concept of hypertext
extended to include other media types such as
graphics, audio, video, and programs.

hypertext—A document representation that
allows a user to easily navigate through it in
other than a linear fashion. Links to other parts
of the document are embedded at the appro-
priate places to allow the user to jump from
one part of the document to another. See also
hypermedia.

HyperText Markup Language (HTML)—The
notation used to define Web pages. See also
browser, World Wide Web.

icon—A small, fixed-sized picture, often used
to decorate a graphical interface. See also
image.

identifier—Any name that a programmer makes
up to use in a program, such as a class name or
variable name.

identity—The designation of an object, which,
in Java, is an object’s reference name. See also
state, behavior.

IEEE 754—A standard for representing float-
ing point values. Used by Java to represent
float and double data types.

if—A Java reserved word that specifies a simple
conditional construct. See also else.

image—A picture, often specified using the
GIF, JPEG, or PING formats. See also icon.

immutable—The characteristic of something
that does not change. For example, the contents
of a Java character string are immutable once
the string has been defined.

APPENDIX A Glossary 651

implementation—(1) The process of translating
a design into source code. (2) The source code
that defines a method, class, abstract data type,
or other programming entity.

implements—A Java reserved word that is used
in a class declaration to specify that the class
implements the methods specified in a particu-
lar interface.

import—A Java reserved word that is used to
specify the packages and classes that are used
in a particular Java source code file.

index—The integer value used to specify a par-
ticular element in an array.

index operator—The brackets ([]) in which an
array index is specified.

indirect recursion—The process of a method
invoking another method, which eventually
results in the original method being invoked
again. See also direct recursion.

infinite loop—A loop that does not terminate
because the condition controlling the loop
never becomes false.

infinite recursion—A recursive series of invoca-
tions that does not terminate because the base
case is never reached.

infix expression—An expression in which the
operators are positioned between the operands
on which they work. See also postfix expression.

inheritance—The ability to derive a new class
from an existing one. Inherited variables and
methods of the original (parent) class are avail-
able in the new (child) class as if they were
declared locally.

initialize—To give an initial value to a variable.

initializer list—A comma-separated list of val-
ues, delimited by braces ({}), used to initialize
and specify the size of an array.

inline documentation—Comments that are
included in the source code of a program.

inner class—A nonstatic, nested class.

input/output buffer—A storage location for
data on its way from the user to the computer
(input buffer) or from the computer to the user
(output buffer).

input/output devices—Hardware components
that allow the human user to interact with the
computer, such as a keyboard, mouse, and
monitor.

input/output stream—A sequence of bytes that
represents a source of data (input stream) or a
destination for data (output stream).

insertion sort—A sorting algorithm in which
each value, one at a time, is inserted into a
sorted subset of the entire list. See also selec-
tion sort.

inspection—See walkthrough.

instance—An object created from a class.
Multiple objects can be instantiated from a
single class.

instance method—A method that must be
invoked through a particular instance of a class,
as opposed to a class method.

instance variable—A variable that must be ref-
erenced through a particular instance of a class,
as opposed to a class variable.

instanceof—A Java reserved word that is also
an operator, used to determine the class or type
of a variable.

instantiation—The act of creating an object
from a class.

int—A Java reserved word that represents a
primitive integer type, stored using 32 bits in
two’s complement format.

integration test—The process of testing soft-
ware components that are made up of other
interacting components. Stresses the commu-
nication between components rather than the
functionality of individual components.

652 APPENDIX A Glossary

interface—(1) A Java reserved word that is used
to define a set of abstract methods that will
be implemented by particular classes. (2) The
set of messages to which an object responds,
defined by the methods that can be invoked
from outside of the object. (3) The techniques
through which a human user interacts with a
program, often graphically. See also graphical
user interface.

interface hierarchy—A tree-like structure created
when interfaces are derived from other interfaces
through inheritance. See also class hierarchy.

interpreter—A program that translates and
executes code on a particular machine. The
Java interpreter translates and executes Java
bytecode. See also compiler.

Internet—The most pervasive wide-area network
in the world; it has become the primary vehicle
for computer-to-computer communication.

Internet address—A designation that uniquely
identifies a particular computer or device on
the Internet.

invisible component—A graphical user inter-
face component that can be added to a con-
tainer to provide buffering space between other
components.

invocation—See method invocation.

I/O devices—See input/output devices.

IP address—A series of several integer values,
separated by periods (.), that uniquely identifies
a particular computer or device on the Internet.
Each Internet address has a corresponding IP
address.

is-a relationship—The relationship created
through properly derived classes via inheri-
tance. The subclass is-a more specific version
of the superclass. See also has-a relationship.

ISO-Latin-1—A 128-character extension to the
ASCII character set defined by the International

Standards Organization (ISO). The characters
correspond to the numeric values 128 through
255 in both ASCII and Unicode.

iteration—(1) One execution of the body of a
repetition statement. (2) One pass through a
cyclic process, such as an iterative development
process.

iteration statement—See repetition statement.

iterative development process—A step-by-step
approach for creating software, which contains
a series of stages that are performed repetitively.

Java Virtual Machine (JVM)—The conceptual
device, implemented in software, on which
Java bytecode is executed. Bytecode, which is
architecture neutral, does not run on a particu-
lar hardware platform; instead, it runs on the
JVM.

java—The Java command-line interpreter,
which translates and executes Java bytecode.
Part of the Java Development Kit.

Java—The programming language used
throughout this text to demonstrate software
development concepts. Described by its devel-
opers as object oriented, robust, secure, archi-
tecture neutral, portable, high-performance,
interpreted, threaded, and dynamic.

Java API—See Application Programming
Interface.

Java Development Kit (JDK)—A collection of
basic software tools, including a compiler and
interpreter, for developing Java software. See
also Software Development Kit.

javac—The Java command-line compiler, which
translates Java source code into Java bytecode.
Part of the Java Development Kit.

javadoc—A software tool that creates external
documentation in HTML format about the
contents and structure of a Java software sys-
tem. Part of the Java Development Kit.

APPENDIX A Glossary 653

javah—A software tool that generates C header
and source files, used for implementing native
methods. Part of the Java Development Kit.

javap—A software tool that disassembles a
Java class file, containing unreadable bytecode,
into a human-readable version. Part of the Java
Development Kit.

jdb—The Java command-line debugger. Part of
the Java Development Kit.

JDK—See Java Development Kit.

JVM—See Java Virtual Machine.

kilobit (Kb)—A unit of binary storage, equal to
210, or 1024 bits.

kilobyte (K or KB)—A unit of binary storage,
equal to 210, or 1024 bytes.

label—(1) A graphical user interface compo-
nent that displays text, an image, or both. (2)
An identifier in Java used to specify a particular
line of code. The break and continue state-
ments can jump to a specific, labeled line in the
program.

LAN—See local-area network.

last-in, first-out (LIFO)—A data management
technique in which the last value that is stored
in a data structure is the first value that comes
out. See also first-in, first-out; stack.

layout manager—An object that specifies the
presentation of graphical user interface compo-
nents. Each container is governed by a particu-
lar layout manager.

lexicographic ordering—The ordering of char-
acters and strings based on a particular charac-
ter set such as Unicode.

life cycle—The stages through which a software
product is developed and used.

LIFO—See last-in, first-out.

linear search—A search algorithm in which
each item in the list is compared to the target

value until the target is found or the list is
exhausted. See also binary search.

link—(1) A designation in a hypertext docu-
ment that “jumps” to a new document (or to
a new part of the same document) when fol-
lowed. (2) A connection between two items in
a dynamically linked structure, represented as
an object reference.

linked list—A dynamic data structure in which
objects are linked using references.

list—A graphical user interface component that
presents a list of items from which the user can
choose. The current selection is highlighted in
the list. See also combo box.

listener—An object that is set up to respond to
an event when it occurs.

listener adaptor class—A class defined with
empty methods corresponding to the methods
invoked when particular events occur. A lis-
tener object can be derived from an adaptor
class. See also listener interface.

listener interface—A Java interface that defines
the methods invoked when particular events
occur. A listener object can be created by imple-
menting a listener interface. See also listener
adaptor class.

literal—A primitive value used explicitly in a
program, such as the numeric literal 147 or the
string literal “hello”.

local-area network (LAN)—A computer net-
work designed to span short distances and con-
nect a relatively small number of computers.
See also wide-area network.

local variable—A variable defined within a
method, which does not exist except during the
execution of the method.

logical error—A problem stemming from inap-
propriate processing in the code. It does not
cause an abnormal termination of the program,

654 APPENDIX A Glossary

but it produces incorrect results. See also com-
pile-time error, run-time error, syntax error.

logical line of code—A logical programming
statement in a source code program, which may
extend over multiple physical lines. See also
physical line of code.

logical operator—One of the operators that
perform a logical NOT (!), AND (&&), or OR
(||), returning a boolean result. The logical
operators are short-circuited, meaning that if
their left operand is sufficient to determine the
result, the right operand is not evaluated.

long—A Java reserved word that represents a
primitive integer type, stored using 64 bits in
two’s complement format.

loop—See repetition statement.

loop control variable—A variable whose value
specifically determines how many times a loop
body is executed.

low-level language—Either machine language
or assembly language, which are not as con-
venient to construct software in as high-level
languages are.

machine language—The native language of
a particular CPU. Any software that runs on
a particular CPU must be translated into its
machine language.

main memory—The volatile hardware storage
device where programs and data are held when
they are actively needed by the CPU. See also
secondary memory.

maintenance—(1) The process of fixing errors
in or making enhancements to a released soft-
ware product. (2) The software life-cycle phase
in which the software is in use and changes are
made to it as needed.

mantissa—The portion of a floating point
value’s internal representation that specifies the
magnitude of the number. See also exponent.

megabyte (MB)—A unit of binary storage,
equal to 220 (approximately 1 million) bytes.

member—A variable or method in an object
or class.

memory—Hardware devices that store pro-
grams and data. See also main memory, sec-
ondary memory.

memory location—An individual, addressable
cell inside main memory into which data can
be stored.

memory management—The process of control-
ling dynamically allocated portions of main
memory, especially the act of returning allo-
cated memory when it is no longer required.
See also garbage collection.

method—A named group of declarations and
programming statements that can be invoked
(executed) when needed. A method is part of
a class.

method call conversion—The automatic wid-
ening conversion that can occur when a value
of one type is passed to a formal parameter of
another type.

method definition—The specification of the
code that gets executed when the method is
invoked. The definition includes declarations of
local variables and formal parameters.

method invocation—A line of code that causes
a method to be executed. It specifies any values
that are passed to the method as parameters.

method overloading—See overloading.

mnemonic—(1) A word or identifier that speci-
fies a command or data value in an assembly
language. (2) A keyboard character used as a
alternative means to activate a graphical user
interface component such as a button.

modal—Having multiple modes (such as a
dialog box).

modem—A data transfer device that allows
information to be sent along a telephone line.

APPENDIX A Glossary 655

modifier—A designation used in a Java declara-
tion that specifies particular characteristics to
the construct being declared.

monitor—The screen in the computer system
that serves as an output device.

multidimensional array—An array that uses more
than one index to specify a value stored in it.

multiple inheritance—Deriving a class from
more than one parent, inheriting methods and
variables from each. Multiple inheritance is not
supported in Java.

multiplicity—The numeric relationship between
two objects, often shown in class diagrams.

NaN—An abbreviation that stands for “not a
number,” which is the designation for an inap-
propriate or undefined numeric value.

narrowing conversion—A conversion between
two values of different but compatible data
types. Narrowing conversions could lose infor-
mation because the converted type usually has
an internal representation smaller than the origi-
nal storage space. See also widening conversion.

native—A Java reserved word that serves as a
modifier for methods. A native method is imple-
mented in another programming language.

natural language—A language that humans use
to communicate, such as English or French.

negative infinity—A special floating point value
that represents the “lowest possible” value. See
also positive infinity.

nested class—A class declared within another
class in order to facilitate implementation and
restrict access.

nested if statement—An if statement that has
as its body another if statement.

network—Two or more computers connected
together so that they can exchange data and
share resources.

network address—See address.

new—A Java reserved word that is also an
operator, used to instantiate an object from a
class.

newline character—A nonprintable character
that indicates the end of a line.

nonprintable characters—Any character, such
as escape or newline, that does not have a
symbolic representation that can be displayed
on a monitor or printed by a printer. See also
printable characters.

nonvolatile—The characteristic of a memory
device that retains its stored information even
after the power supply is turned off. Secondary
memory devices are nonvolatile. See also
volatile.

null—A Java reserved word that is a reference
literal, used to indicate that a reference does not
currently refer to any object.

number system—A set of values and operations
defined by a particular base value that deter-
mines the number of digits available and the
place value of each digit.

object—(1) The primary software construct in
the object-oriented paradigm. (2) An encapsu-
lated collection of data variables and methods.
(3) An instance of a class.

object diagram—A visual representation of the
objects in a program at a given point in time,
often showing the status of instance data.

object-oriented programming—An approach
to software design and implementation that is
centered around objects and classes. See also
procedural programming.

octal—The base-8 number system, sometimes
used to abbreviate binary strings. See also
binary, hexadecimal.

off-by-one error—An error caused by a calcu-
lation or condition being off by one, such as
when a loop is set up to access one too many
array elements.

656 APPENDIX A Glossary

operand—A value on which an operator per-
forms its function. For example, in the expres-
sion 5 + 2, the values 5 and 2 are operands.

operating system—The collection of programs
that provide the primary user interface to a
computer and manage its resources, such as
memory and the CPU.

operator—A symbol that represents a particu-
lar operation in a programming language, such
as the addition operator (+).

operator association—The order in which
operators within the same precedence level are
evaluated, either right to left or left to right. See
also operator precedence.

operator overloading—Assigning additional
meaning to an operator. Operator overload-
ing is not supported in Java, though method
overloading is.

operator precedence—The order in which oper-
ators are evaluated in an expression as specified
by a well- defined hierarchy.

order—The dominant term in an equation that
specifies the efficiency of an algorithm. For
example, selection sort is of order n2.

overflow—A problem that occurs when a data
value grows too large for its storage size, which
can result in inaccurate arithmetic processing.
See also underflow.

overloading—Assigning additional meaning to
a programming language construct, such as a
method or operator. Method overloading is sup-
ported by Java, but operator overloading is not.

overriding—The process of modifying the defi-
nition of an inherited method to suit the
purposes of the subclass. See also shadowing
variables.

package—A Java reserved word that is used to
specify a group of related classes.

package visibility—See default visibility.

panel—A graphical user interface (GUI) con-
tainer that holds and organizes other GUI
components.

parameter—(1) A value passed from a method
invocation to its definition. (2) The identifier
in a method definition that accepts the value
passed to it when the method is invoked. See
also actual parameter, formal parameter.

parameter list—The list of actual or formal
parameters to a method.

parent class—See superclass.

pass by reference—The process of passing a ref-
erence to a value into a method as the param-
eter. In Java, all objects are managed using
references, so an object’s formal parameter is
an alias to the original. See also pass by value.

pass by value—The process of making a copy
of a value and passing the copy into a method.
Therefore, any change made to the value inside
the method is not reflected in the original value.
All Java primitive types are passed by value.

PDL—See Program Design Language.

peripheral—Any hardware device other than
the CPU or main memory.

persistence—The ability of an object to stay in
existence after the executing program that cre-
ates it terminates. See also serialize.

physical line of code—A line in a source code
file, terminated by a newline or similar charac-
ter. See also logical line of code.

pixel—A picture element. A digitized picture is
made up of many pixels.

place value—The value of each digit position
in a number, which determines the overall
contribution of that digit to the value. See also
number system.

pointer—A variable that can hold a memory
address. Instead of pointers, Java uses ref-
erences, which provide essentially the same

APPENDIX A Glossary 657

functionality as pointers but without the need
for explicit dereferencing.

point-to-point connection—The link between
two networked devices that are connected
directly by a wire.

polyline—A shape made up of a series of con-
nected line segments. A polyline is similar to a
polygon, but the shape is not closed.

polymorphism—An object-oriented technique
by which a reference that is used to invoke a
method can result in different methods being
invoked at different times. All Java method
invocations are potentially polymorphic in that
they invoke the method of the object type, not
the reference type.

portability—The ability of a program to be
moved from one hardware platform to another
without having to change it. Because Java byte-
code is not related to any particular hardware
environment, Java programs are considered
portable. See also architecture neutral.

positive infinity—A special floating point value
that represents the “highest possible” value. See
also negative infinity.

postfix expression—An expression in which an
operator is positioned after the operands on
which it works. See also infix expression.

postfix operator—In Java, an operator that is
positioned behind its single operand, whose
evaluation yields the value prior to the opera-
tion being performed. Both the increment (++)
and decrement (– –) operators can be applied
postfix. See also prefix operator.

precedence—See operator precedence.

prefix operator—In Java, an operator that is
positioned in front of its single operand, whose
evaluation yields the value after the operation
has been performed. Both the increment (++)
and decrement (– –) operators can be applied
prefix. See also postfix operator.

primitive data type—A data type that is pre-
defined in a programming language.

printable characters—Any character that has a
symbolic representation that can be displayed
on a monitor or printed by a printer. See also
nonprintable characters.

private—A Java reserved word that serves as
a visibility modifier for inner classes as well as
methods and variables. A private inner class is
accessible only to members of the class in which
it is declared. Private methods and variables
are visible only in the class in which they are
declared.

procedural programming—An approach to
software design and implementation that is
centered around procedures (or functions)
and their interaction. See also object-oriented
programming.

processing stream—An I/O stream that per-
forms some type of manipulation on the data in
the stream. Sometimes called a filtering stream.
See also data stream.

program—A series of instructions executed by
hardware, one after another.

Program Design Language (PDL)—A language
in which a program’s design and algorithms are
expressed. See also pseudocode.

programming language—A specification of the
syntax and semantics of the statements used to
create a program.

programming language statement—An indi-
vidual instruction in a given programming
language.

prompt—A message or symbol used to request
information from the user.

propagation—See exception propagation.

protected—A Java reserved word that serves as
a visibility modifier for inner classes as well as
methods and variables. A protected inner class

658 APPENDIX A Glossary

is visible to classes in the same package and to
all classes in other packages that extend the
class in which it is declared. Protected methods
and variables are visible to all classes in the
same package and to classes outside the pack-
age that extend the class.

prototype—A program used to explore an
idea or prove the feasibility of a particular
approach.

pseudocode—Structured and abbreviated natu-
ral language used to express the algorithmic
steps of a program. See also Program Design
Language.

pseudorandom number—A value generated by
software that performs extensive calculations
based on an initial seed value. The result is not
truly random because it is based on a calcula-
tion, but it is usually random enough for most
purposes.

public—A Java reserved word that serves as a
visibility modifier for classes, interfaces, meth-
ods, and variables. Anything declared public is
visible to all classes.

pure object-oriented language—A program-
ming language that enforces, to some degree,
software development using an object-oriented
approach. See also hybrid object-oriented
language.

push button—A graphical user interface com-
ponent that allows the user to initiate an action
with a mouse click. See also check box, radio
button.

queue—An abstract data type that manages
information in a first-in, first-out manner.

radio button—A graphical user interface com-
ponent that allows the user choose one of a set
of options with a mouse click. A radio button
is useful only as part of a group of other radio
buttons. See also check box.

RAM—See random access memory.

random access device—A memory device
whose information can be directly accessed.
See also random access memory, sequential
access device.

random access memory (RAM)—A term basi-
cally interchangeable with main memory.
Should probably be called read-write memory,
to distinguish it from read-only memory.

random number generator—Software that pro-
duces a pseudorandom number, generated by
calculations based on a seed value.

read-only memory (ROM)—Any memory
device whose stored information is stored per-
manently when the device is created. It can be
read from, but not written to.

recursion—The process of a method invoking
itself, either directly or indirectly. Recursive
algorithms sometimes provide elegant, though
perhaps inefficient, solutions to a problem.

reference—A variable that holds the address
of an object. In Java, a reference can be used
to interact with an object, but its numeric
address cannot be accessed, set, or operated
on directly.

register—A small area of storage in the CPU of
the computer.

relational operator—One of several opera-
tors that determine the ordering relationship
between two values: less than (<), less than or
equal to (<=), greater than (>), and greater than
or equal to (>=). See also equality operator.

release—A version of a software product that is
made available to the customer.

repetition statement—A programming con-
struct that allows a set of statements to be
executed repetitively as long as a particular
condition is true. The body of the repetition
statement should eventually make the condi-
tion false. Also called an iteration statement or
loop. See also do, for, while.

APPENDIX A Glossary 659

requirements—(1) The specification of what a
program must and must not do. (2) An early
phase of the software development process in
which the program requirements are established.

reserved word—A word that has special mean-
ing in a programming language and cannot be
used for any other purpose.

retirement—The phase of a program’s life cycle
in which the program is taken out of active use.

return—A Java reserved word that causes the
flow of program execution to return from a
method to the point of invocation.

return type—The type of value returned from
a method, specified before the method name in
the method declaration. Could be void, which
indicates that no value is returned.

reuse—Using existing software components to
create new ones.

review—The process of critically examining a
design or program to discover errors. There
are many types of review. See also desk check,
walkthrough.

RGB value—A collection of three values that
define a color. Each value represents the con-
tribution of the primary colors red, green, and
blue.

ROM—See read-only memory.

run-time error—A problem that occurs during
program execution that causes the program to
terminate abnormally. See also compile-time
error, logical error, syntax error.

scope—The areas within a program in which
an identifier, such as a variable, can be refer-
enced. See also access.

scroll pane—A graphical user interface con-
tainer that offers a limited view of a component
and provides horizontal and/or vertical scroll
bars to change that view.

SDK—See Software Development Kit.

searching—The process of determining the exis-
tence or location of a target value within a list
of values. See also binary search, linear search.

secondary memory—Hardware storage devices,
such as magnetic disks or tapes, which store
information in a relatively permanent manner.
See also main memory.

seed value—A value used by a random number
generator as a base for the calculations that
produce a pseudo-random number.

selection sort—A sorting algorithm in which
each value, one at a time, is placed in its final,
sorted position. See also insertion sort.

selection statement—A programming construct
that allows a set of statements to be executed
if a particular condition is true. See also if,
switch.

semantics—The interpretation of a program or
programming construct.

sentinel value—A specific value used to indicate
a special condition, such as the end of input.

serialize—The process of converting an object
into a linear series of bytes so it can be saved
to a file or sent across a network. See also
persistence.

service methods—Methods in an object that
are declared with public visibility and define a
service that the object’s client can invoke.

shadowing variables—The process of defin-
ing a variable in a subclass that supersedes an
inherited version.

short—A Java reserved word that represents a
primitive integer type, stored using 16 bits in
two’s complement format.

sibling—Two items in a tree or hierarchy, such
as a class inheritance hierarchy, that have the
same parent.

sign bit—A bit in a numeric value that represents
the sign (positive or negative) of that value.

660 APPENDIX A Glossary

signed numeric value—A value that stores a
sign (positive or negative). All Java numeric
values are signed. A Java character is stored as
an unsigned value.

signature—The number, types, and order of the
parameters of a method. Overloaded methods
must each have a unique signature.

slider—A graphical user interface component
that allows the user to specify a numeric value
within a bounded range by moving a knob to
the appropriate place in the range.

software—(1) Programs and data. (2) The
intangible components of a computer system.

software component—See component.

Software Development Kit (SDK)—A collection
of software tools that assist in the development
of software. The Java Software Development Kit
is another name for the Java Development Kit.

software engineering—The discipline within
computer science that addresses the process of
developing high-quality software within practi-
cal constraints.

sorting—The process of putting a list of values
into a well-defined order. See also insertion sort,
selection sort.

split pane—A graphical user interface container
that displays two components, either side by
side or one on top of the other, separated by a
moveable divider bar.

stack—An abstract data type that manages
data in a last-in, first-out manner.

stack trace—The series of methods called to
reach a certain point in a program. The stack
trace can be analyzed when an exception is
thrown to assist the programmer in tracking
down the problem.

standard I/O stream—One of three common
I/O streams representing standard input (usu-
ally the keyboard), standard output (usually

the monitor screen), and standard error (also
usually the monitor). See also stream.

start angle—When defining an arc, the angle at
which the arc begins. See also arc angle.

state—The state of being of an object, defined
by the values of its data. See also behavior,
identity.

statement—See programming language state-
ment.

statement coverage—A strategy used in white-
box testing in which all statements in a pro-
gram are executed. See also condition coverage.

static—A Java reserved word that serves as a
modifier for methods and variables. A static
method is also called a class method and can be
referenced without an instance of the class. A
static variable is also called a class variable and
is common to all instances of the class.

static data structure—A data structure that
has a fixed size and cannot grow and shrink as
needed. See also dynamic data structure.

storage capacity—The total number of bytes
that can be stored in a particular memory
device.

stream—A source of input or a destination for
output.

strictfp—A Java reserved word that is used
to control certain aspects of floating point
arithmetic.

string—See character string.

string concatenation—The process of attaching
the beginning of one character string to the end
of another, resulting in one longer string.

strongly typed language—A programming lan-
guage in which each variable is associated with
a particular data type for the duration of its
existence. Variables are not allowed to take on
values or be used in operations that are incon-
sistent with their type.

APPENDIX A Glossary 661

structured programming—An approach to pro-
gram development in which each software com-
ponent has one entry and exit point and in which
the flow of control does not cross unnecessarily.

stub—A method that simulates the functional-
ity of a particular software component. Often
used during unit testing.

subclass—A class derived from another class
via inheritance. Also called a derived class or
child class. See also superclass.

subscript—See index.

super—A Java reserved word that is a refer-
ence to the parent class of the object making
the reference. Often used to invoke a parent’s
constructor.

super reference—See super.

superclass—The class from which another class
is derived via inheritance. Also called a base
class or parent class. See also subclass.

support methods—Methods in an object that
are not intended for use outside the class. They
provide support functionality for service meth-
ods. As such, they are usually not declared with
public visibility.

swapping—The process of exchanging the val-
ues of two variables.

swing—The package in the Java API (javax.
swing) that contains classes related to graphical
user interfaces. Swing provides alternative com-
ponents than the Abstract Windowing Toolkit
package, but does not replace it.

switch—A Java reserved word that specifies a
compound conditional construct.

synchronization—The process of ensuring that
data shared among multiple threads cannot be
accessed by more than one thread at a time. See
also synchronized.

synchronized—A Java reserved word that serves
as a modifier for methods. Separate threads of a

process can execute concurrently in a method,
unless the method is synchronized, making it
a mutually exclusive resource. Methods that
access shared data should be synchronized.

syntax rules—The set of specifications that gov-
ern how the elements of a programming language
can be put together to form valid statements.

syntax error—An error produced by the com-
piler because a program did not conform to the
syntax of the programming language. Syntax
errors are a subset of compile-time errors. See
also compile-time error, logical error, run-time
error, syntax rules.

tabbed pane—A graphical user interface (GUI)
container that presents a set of cards from
which the user can choose. Each card contains
its own GUI components.

target value—The value that is sought when
performing a search on a collection of data.

TCP/IP—Software that controls the movement
of messages across the Internet. The acro-
nym stands for Transmission Control Protocol/
Internet Protocol.

terabyte (TB)—A unit of binary storage, equal
to 240 (approximately 1 trillion) bytes.

termination—The point at which a program
stops executing.

ternary operator—An operator that uses three
operands.

test case—A set of input values and user actions,
along with a specification of the expected out-
put, used to find errors in a system.

testing—(1) The process of running a program
with various test cases in order to discover
problems. (2) The process of critically evaluat-
ing a design or program.

text area—A graphical user interface compo-
nent that displays, or allows the user to enter,
multiple lines of data.

662 APPENDIX A Glossary

text field—A graphical user interface compo-
nent that displays, or allows the user to enter, a
single line of data.

text file—A file that contains data formatted as
ASCII or Unicode characters.

this—A Java reserved word that is a reference
to the object executing the code making the
reference.

thread—An independent process executing
within a program. A Java program can have mul-
tiple threads running in a program at one time.

throw—A Java reserved word that is used to
start an exception propagation.

throws—A Java reserved word that specifies
that a method may throw a particular type of
exception.

timer—An object that generates an event at
regular intervals.

token—A portion of a string defined by a set
of delimiters.

tool tip—A short line of text that appears when
the mouse pointer is allowed to rest on top of a
particular component. Usually, tool tips are used
to inform the user of the component’s purpose.

top-level domain—The last part of a network
domain name, such as edu or com.

transient—A Java reserved word that serves as
a modifier for variables. A transient variable
does not contribute to the object’s persistent
state and therefore does not need to be saved.
See also serialize.

tree—A nonlinear data structure that forms a
hierarchy stemming from a single root node.

true—A Java reserved word that serves as one
of the two boolean literals (true and false).

truth table—A complete enumeration of all
permutations of values involved in a boolean
expression, as well as the computed result.

try—A Java reserved word that is used to define
the context in which certain exceptions will be
handled if they are thrown.

two-dimensional array—An array that uses
two indices to specify the location of an ele-
ment. The two dimensions are often thought
of as the rows and columns of a table. See also
multidimensional array.

two’s complement—A technique for represent-
ing numeric binary data. Used by all Java inte-
ger primitive types (byte, short, int, long).

type—See data type.

UML—See Unified Modeling Language.

unary operator—An operator that uses only
one operand.

unchecked exception—A Java exception that
does not need to be caught or dealt with if the
programmer so chooses.

underflow—A problem that occurs when a
floating point value becomes too small for its
storage size, which can result in inaccurate
arithmetic processing. See also overflow.

Unicode—The international character set used
to define valid Java characters. Each character
is represented using a 16-bit unsigned numeric
value.

Unified Modeling Language (UML)—A graphi-
cal notation for visualizing relationships among
classes and objects. Abbreviated UML. There
are many types of UML diagrams. See also class
diagrams.

uniform resource locator (URL)—A designa-
tion for a resource that scan be located through
a World Wide Web browser.

unit test—The process of testing an individual
software component. May require the creation
of stub modules to simulate other system
components.

APPENDIX A Glossary 663

unsigned numeric value—A value that does not
store a sign (positive or negative). The bit usu-
ally reserved to represent the sign is included
in the value, doubling the magnitude of the
number that can be stored. Java characters are
stored as unsigned numeric values, but there are
no primitive numeric types that are unsigned.

URL—See uniform resource locator.

use relationship—A relationship between two
classes, often shown in a class diagram, that
establishes that one class uses another in some
way, such as relying on its services. See also
association.

user interface—The manner in which the user
interacts with a software system, which is often
graphical. See also graphical user interface.

variable—An identifier in a program that repre-
sents a memory location in which a data value
is stored.

visibility modifier—A Java modifier that
defines the scope in which a construct can
be accessed. The Java visibility modifiers are
public, protected, private, and default (no
modifier used).

void—A Java reserved word that can be used as
a return value for a method, indicating that no
value is returned.

volatile—(1) A Java reserved word that serves as
a modifier for variables. A volatile variable might
be changed asynchronously and therefore indi-
cates that the compiler should not attempt opti-
mizations on it. (2) The characteristic of a mem-
ory device that loses stored information when the
power supply is interrupted. Main memory is a
volatile storage device. See also nonvolatile.

von Neumann architecture—The computer
architecture named after John von Neumann,
in which programs and data are stored together
in the same memory devices.

walkthrough—A form of review in which a
group of developers, managers, and quality
assurance personnel examine a design or pro-
gram in order to find errors. Sometimes referred
to as an inspection. See also desk check.

WAN—See wide-area network.

waterfall model—One of the earliest software
development process models. It defines a basi-
cally linear interaction between the requirements,
design, implementation, and testing stages.

Web—See World Wide Web.

while—A Java reserved word that represents
a repetition construct. A while statement is
executed zero or more times. See also do, for.

white-box testing—Producing and evaluating
test cases based on the interior logic of a
software component. The test cases focus on
stressing decision points and ensuring coverage.
See also black-box testing, condition coverage,
statement coverage.

white space—Spaces, tabs, and blank lines that
are used to set off sections of source code to
make programs more readable.

wide-area network (WAN)—A computer net-
work that connects two or more local area
networks, usually across long geographic dis-
tances. See also local-area network.

widening conversion—A conversion between
two values of different but compatible data
types. Widening conversions usually leave the
data value intact because the converted type
has an internal representation equal to or larger
than the original storage space. See also nar-
rowing conversion.

word—A unit of binary storage. The size of a
word varies by computer, and is usually two,
four, or eight bytes. The word size indicates
the amount of information that can be moved
through the machine at one time.

664 APPENDIX A Glossary

World Wide Web (WWW or Web)—Software
that makes the exchange of information across
a network easier by providing a common user
interface for multiple types of information.
Web browsers are used to retrieve and format
HTML documents.

wrapper class—A class designed to store a
primitive type in an object. Usually used when
an object reference is needed and a primitive
type would not suffice.

WWW—See World Wide Web.

665

This appendix contains a detailed introduction to number systems and their under-
lying characteristics. The particular focus is on the binary number system, its use
with computers, and its similarities to other number systems. This introduction
also covers conversions between bases.

In our everyday lives, we use the decimal number system to represent values,
to count, and to perform arithmetic. The decimal system is also referred to as the
base-10 number system. We use 10 digits (0 through 9) to represent values in the
decimal system.

Computers use the binary number system to store and manage information.
The binary system, also called the base-2 number system, has only two digits (0
and 1). Each 0 and 1 is called a bit, short for binary digit. A series of bits is called
a binary string.

There is nothing particularly special about either the binary or decimal systems.
Long ago, humans adopted the decimal number system probably because we have
10 fingers on our hands. If humans had 12 fingers, we would probably be using
a base-12 number system regularly and find it as easy to deal with as we do the
decimal system now. It all depends on what you get used to. As you explore the
binary system, it will become more familiar and natural.

Binary is used for computer processing because the devices used to manage and
store information are less expensive and more reliable if they have to represent
only two possible values. Computers have been made that use the decimal system,
but they are not as convenient.

There are an infinite number of number systems, and they all follow the same
basic rules. You already know how the binary number system works, but you just
might not be aware that you do. It all goes back to the basic rules of arithmetic.

Place Value
In decimal, we represent the values of 0 through 9 using only one digit. To rep-
resent any value higher than 9, we must use more than one digit. The position of
each digit has a place value that indicates the amount it contributes to the overall
value. In decimal, we refer to the one’s column, the ten’s column, the hundred’s
column, and so on forever.

Number Systems B

666 APPENDIX B Number Systems

Each place value is determined by the base of the number system, raised to
increasing powers as we move from right to left. In the decimal number system,
the place value of the digit furthest to the right is 100, or 1. The place value of the
next digit is 101, or 10. The place value of the third digit from the right is 102, or
100, and so on. Figure B.1 shows how each digit in a decimal number contributes
to the value.

The binary system works the same way except that we exhaust the available
digits much sooner. We can represent 0 and 1 with a single bit, but to represent
any value higher than 1, we must use multiple bits.

The place values in binary are determined by increasing powers of the base as
we move right to left, just as they are in the decimal system. However, in binary,
the base value is 2. Therefore the place value of the bit furthest to the right is 20,
or 1. The place value of the next bit is 21, or 2. The place value of the third bit
from the right is 22, or 4, and so on. Figure B.2 shows a binary number and its
place values.

The number 1101 is a valid binary number, but it is also a valid decimal num-
ber as well. Sometimes to make it clear which number system is being used, the

FIGURE B.1 Place values in the decimal system

Place value:

Decimal number:

Decimal number:

103 102 101 100

8

8

4

4

2

2

103

1000

102

100

101

10

*

*

*

*

*

*

100

1 8427

*

*

+

+

+

+

7

7

+

+

=

=

8 4 2 7

FIGURE B.2 Place values in the binary system

Place value:

Binary number:

Decimal number: 1

1

1

1

0

0

23

8

22

4

21

2

*

*

*

*

*

*

20

1 13

*

*

+

+

+

+

1

1

+

+

=

=

23 22 21 20

1 1 0 1

 APPENDIX B Number Systems 667

base value is appended as a subscript to the end of a number. Therefore you can
distinguish between 11012, which is equivalent to 13 in decimal, and 110110 (one
thousand, one hundred and one), which in binary is represented as 100010011012.

A number system with base N has N digits (0 through N−1). As we have seen,
the decimal system has 10 digits (0 through 9), and the binary system has two
digits (0 and 1). They all work the same way. For instance, the base-5 number
system has five digits (0 to 4).

Note that, in any number system, the place value of the digit furthest to the
right is 1, since any base raised to the zero power is 1. Also notice that the value
10, which we refer to as “ten” in the decimal system, always represents the base
value in any number system. In base 10, 10 is one 10 and zero 1’s. In base 2, 10
is one 2 and zero 1’s. In base 5, 10 is one 5 and zero 1’s.

Bases Higher Than 10
Since all number systems with base N have N digits, then base 16 has 16 digits.
But what are they? We are used to the digits 0 through 9, but in bases higher than
10, we need a single digit, a single symbol, that represents the decimal value 10.
In fact, in base 16, which is also called hexadecimal, we need digits that represent
the decimal values 10 through 15.

For number systems higher than 10, we use alphabetic characters as single digits
for values greater than 9. The hexadecimal digits are 0 through F, where 0 through 9
represent the first 10 digits, and A represents the decimal value 10, B represents 11, C
represents 12, D represents 13, E represents 14, and F represents 15.

Therefore the number 2A8E is a valid hexadecimal number. The place values
are determined as they are for decimal and binary, using increasing powers of the
base. So in hexadecimal, the place values are powers of 16. Figure B.3 shows how
the place values of the hexadecimal number 2A8E contribute to the overall value.

FIGURE B.3 Place values in the hexadecimal system

Place value:

Hexadecimal number:

Decimal number: 2

2

10

10

8

8

163

4096

162

256

161

16

*

*

*

*

*

*

160

1 10893

*

*

+

+

+

+

14

14

+

+

=

=

163 162 161 160

2 A 8 E

668 APPENDIX B Number Systems

All number systems with bases greater than 10 use letters as digits. For exam-
ple, base 12 has the digits 0 through B and base 19 has the digits 0 through I.
However, beyond having a different set of digits and a different base, the rules
governing each number system are the same.

Keep in mind that when we change number systems, we are simply changing
the way we represent values, not the values themselves. If you have 1810 pencils,
it may be written as 10010 in binary or as 12 in hexadecimal, but it is still the
same number of pencils.

Figure B.4 shows the representations of the decimal values 0 through 20 in
several bases, including base 8, which is also called octal. Note that the larger the
base, the higher the value that can be represented in a single digit.

FIGURE B.4 Counting in various number systems

Binary
(base 2)

Octal
(base 8)

Decimal
(base 10)

Hexadecimal
(base 16)

0

1

10

11

100

101

110

111

1000

1001

1010

1011

1100

1101

1110

1111

10000

10001

10010

10011

10100

0

1

2

3

4

5

6

7

10

11

12

13

14

15

16

17

20

21

22

23

24

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

10

11

12

13

14

 APPENDIX B Number Systems 669

Conversions
We’ve already seen how a number in another base is converted to decimal by
determining the place value of each digit and computing the result. This process
can be used to convert any number in any base to its equivalent value in base 10.

Now let’s reverse the process, converting a base-10 value to another base. First,
find the highest place value in the new number system that is less than or equal to
the original value. Then divide the original number by that place value to deter-
mine the digit that belongs in that position. The remainder is the value that must
be represented in the remaining digit positions. Continue this process, position by
position, until the entire value is represented.

For example, Figure B.5 shows the process of converting the decimal value
180 into binary. The highest place value in binary that is less than or equal to
180 is 128 (or 27), which is the eighth bit position from the right. Dividing 180
by 128 yields 1 with 52 remaining. Therefore the first bit is 1, and the decimal
value 52 must be represented in the remaining seven bits. Dividing 52 by 64,
which is the next place value (26), yields 0 with 52 remaining. So the second bit
is 0. Dividing 52 by 32 yields 1 with 20 remaining. So the third bit is 1, and the
remaining five bits must represent the value 20. Dividing 20 by 16 yields 1 with
4 remaining. Dividing 4 by 8 yields 0 with 4 remaining. Dividing 4 by 4 yields 1
with 0 remaining.

Since the number has been completely represented, the rest of the bits are zero.
Therefore 18010 is equivalent to 10110100 in binary. This can be confirmed by

FIGURE B.5 Converting a decimal value into binary

Place
value Number Digit

128

64

32

16

8

4

2

1

180

52

52

20

4

4

0

0

1

0

1

1

0

1

0

0

18010 = 101101002

670 APPENDIX B Number Systems

converting the new binary number back to decimal to make sure we get the origi-
nal value.

This process works to convert any decimal value to any target base. For each
target base, the place values and possible digits change. If you start with the cor-
rect place value, each division operation will yield a valid digit in the new base.

In the example in Figure B.5, the only digits that could have resulted from each
division operation would have been 1 or 0, since we were converting to binary.
However, when we are converting to other bases, any valid digit in the new base
could result. For example, Figure B.6 shows the process of converting the decimal
value 1967 into hexadecimal.

The place value of 256, which is 162, is the highest place value less than or
equal to the original number, since the next highest place value is 163 or 4096.
Dividing 1967 by 256 yields 7 with 175 remaining. Dividing 175 by 16 yields
10 with 15 remaining. Remember that 10 in decimal can be represented as the
single digit A in hexadecimal. The 15 remaining can be represented as the digit F.
Therefore 196710 is equivalent to 7AF in hexadecimal.

Shortcut Conversions
We have established techniques for converting any value in any base to

its equivalent representation in base 10, and from base 10 to any other base.
Therefore. you can now convert a number in any base to any other base by going
through base 10. However, an interesting relationship exists between the bases
that are powers of 2, such as binary, octal, and hexadecimal, which allows very
quick conversions between them.

To convert from binary to hexadecimal, for instance, you can simply group the
bits of the original value into groups of four, starting from the right, then convert
each group of four into a single hexadecimal digit. The example in Figure B.7
demonstrates this process.

FIGURE B.6 Converting a decimal value into hexadecimal

Place
value Number Digit

256

16

1

1967

175

15

7

A

F

196710 = 7AF16

 APPENDIX B Number Systems 671

To go from hexadecimal to binary, we reverse this process, expanding each
hexadecimal digit into four binary digits. Note that you may have to add lead-
ing zeros to the binary version of each expanded hexadecimal digit if necessary
to make four binary digits. Figure B.8 shows the conversion of the hexadecimal
value 40C6 to binary.

Why do we section the bits into groups of four when converting from binary
to hexadecimal? The shortcut conversions work between binary and any base that
is a power of 2. We section the bits into groups of that power. Since 24 = 16, we
section the bits in groups of four.

Converting from binary to octal is the same process except that the bits are
sectioned into groups of three, since 23 = 8. Likewise, when converting from octal
to binary, we expand each octal digit into three bits.

To convert between, say, hexadecimal and octal is now a process of doing two
shortcut conversions. First convert from hexadecimal to binary, then take that
result and perform a shortcut conversion from binary to octal.

By the way, these types of shortcut conversions can be performed between any
base B and any base that is a power of B. For example, conversions between base
3 and base 9 can be accomplished using the shortcut grouping technique, section-
ing or expanding digits into groups of two, since 32 = 9.

FIGURE B.7 Shortcut conversion from binary to hexadecimal

1011111101100112 = 5FB316

101111110110011

1011

BF5 3

5FB3

101 1111 0011

FIGURE B.8 Shortcut conversion from hexadecimal to binary

40C616 = 1000000110001102

100000011000110

40C6

11000100 0000 0110

This page intentionally left blank

673

The Java programming language uses the Unicode character set for managing
text. A character set is simply an ordered list of characters, each corresponding to
a particular numeric value. Unicode is an international character set that contains
letters, symbols, and ideograms for languages all over the world. Each character
is represented as a 16-bit unsigned numeric value. Unicode, therefore, can support
over 65,000 unique characters. Only about half of those values have characters
assigned to them at this point. The Unicode character set continues to be refined
as characters from various languages are included.

Many programming languages still use the ASCII character set. ASCII stands
for the American Standard Code for Information Interchange. The 8-bit extended
ASCII set is quite small, so the developers of Java opted to use Unicode in order
to support international users. However, ASCII is essentially a subset of Unicode,
including corresponding numeric values, so programmers used to ASCII should
have no problems with Unicode.

Figure C.1 shows a list of commonly used characters and their Unicode
numeric values. These characters also happen to be ASCII characters. All of the
characters in Figure C.1 are called printable characters because they have a sym-
bolic representation that can be displayed on a monitor or printed by a printer.
Other characters are called nonprintable characters because they have no such
symbolic representation. Note that the space character (numeric value 32) is
considered a printable character, even though no symbol is printed when it is dis-
played. Nonprintable characters are sometimes called control characters because
many of them can be generated by holding down the control key on a keyboard
and pressing another key.

The Unicode characters with numeric values 0 through 31 are nonprintable
characters. Also, the delete character, with numeric value 127, is a nonprintable

The Unicode
Character Set C

674 APPENDIX C The Unicode Character Set

character. All of these characters are ASCII characters as well. Many of them have
fairly common and well-defined uses, while others are more general. The table in
Figure C.2 lists a small sample of the nonprintable characters.

Nonprintable characters are used in many situations to represent special condi-
tions. For example, certain nonprintable characters can be stored in a text docu-
ment to indicate, among other things, the beginning of a new line. An editor will
process these characters by starting the text that follows it on a new line, instead
of printing a symbol to the screen. Various types of computer systems use differ-
ent nonprintable characters to represent particular conditions.

Except for having no visible representation, nonprintable characters are essen-
tially equivalent to printable characters. They can be stored in a Java character
variable and be part of a character string. They are stored using 16 bits, can be
converted to their numeric value, and can be compared using relational operators.

FIGURE C.1 A small portion of the Unicode character set

Value Char Value Char Value Char Value Char Value Char

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

{

|

}

~

3

4

5

6

7

8

9

:

;

<

>

?

@

A

B

C

D

E

Y

Z

[

\

]

ˆ

–

'

a

b

c

d

e

f

g

h

i

j

k

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

space

!

"

#

$

%

&

'

(

)

*

+

'

–

.

/

0

1

2

=

 APPENDIX C The Unicode Character Set 675

The first 128 characters of the Unicode character set correspond to the com-
mon ASCII character set. The first 256 characters correspond to the ISO-Latin-1
extended ASCII character set. Many operating systems and Web browsers will
handle these characters, but they may not be able to print the other Unicode
characters.

The Unicode character set contains most alphabets in use today, including
Greek, Hebrew, Cyrillic, and various Asian ideographs. It also includes Braille,
and several sets of symbols used in mathematics and music. Figure C.3 shows a
few characters from non-Western alphabets.

FIGURE C.2 Some nonprintable characters in the Unicode character set

Value Character

0

7

8

9

10

12

13

27

127

null

bell

backspace

tab

line feed

form feed

carriage return

escape

delete

FIGURE C.3 Some non-Western characters in the Unicode character set

Value Character

1071

3593

5098

8478

8652

10287

13407

Source

Russian (Cyrillic)

Thai

Cherokee

Letterlike Symbols

Arrows

Braille

Chinese/Japanese/Korean (Common)

This page intentionally left blank

677

Java operators are evaluated according to the precedence hierarchy shown in
Figure D.1 Operators at low precedence levels are evaluated before operators at
higher levels. Operators within the same precedence level are evaluated according
to the specified association, either right to left (R to L) or left to right (L to R).
Operators in the same precedence level are not listed in any particular order.

The order of operator evaluation can always be forced by the use of parenthe-
ses. It is often a good idea to use parentheses even when they are not required, to
make it explicitly clear to a human reader how an expression is evaluated.

For some operators, the operand types determine which operation is carried
out. For instance, if the + operator is used on two strings, string concatenation is
performed, but if it is applied to two numeric types, they are added in the arith-
metic sense. If only one of the operands is a string, the other is converted to a
string, and string concatenation is performed. Similarly, the operators &, ^, and
| perform bitwise operations on numeric operands but boolean operations on
boolean operands.

The boolean operators & and | differ from the logical operators && and || in
a subtle way. The logical operators are “short-circuited” in that if the result of
an expression can be determined by evaluating only the left operand, the right
operand is not evaluated. The boolean versions always evaluate both sides of the
expression. There is no logical operator that performs an exclusive OR (XOR)
operation.

Java Bitwise Operators
The Java bitwise operators operate on individual bits within a primitive value. They
are defined only for integers and characters. They are unique among all Java opera-
tors, because they let us work at the lowest level of binary storage. Figure D.2 lists
the Java bitwise operators.

Three of the bitwise operators are similar to the logical operators !, &&, and
||. The bitwise NOT, AND, and OR operations work basically the same way
as their logical counterparts, except they work on individual bits of a value. The

Java Operators D

678 APPENDIX D Java Operators

FIGURE D.1 Java operator precedence

Precedence
Level

Operator Operation Associates

array indexing
object member reference
parameter evaluation and method invocation
postfix increment
postfix decrement

1 L to R

prefix increment
prefix decrement
unary plus
unary minus
bitwise NOT
logical NOT

R to L

[]
.

(parameters)
++
--

2 ++
--
+
-
~
!

object instantiation
cast

R to L3 new
(type)

multiplication
division
remainder

L to R4 *
/
%

addition
string concatenation
subtraction

L to R

L to R

5 +
+
-

less than
less than or equal
greater than
greater than or equal
type comparison

L to R7 <
<=
>
>=

instanceof

equal
not equal

L to R8 ==
!=

bitwise AND
boolean AND

L to R9 &

&

bitwise XOR
boolean XOR

L to R10 ˆ

ˆ

bitwise OR
boolean OR

L to R11 |

|

logical AND L to R12 &&

logical OR L to R13 ||

left shift
right shift with sign
right shift with zero

6 <<
>>
>>>

 APPENDIX D Java Operators 679

rules are essentially the same. Figure D.3 shows the results of bitwise operators on
all combinations of two bits. Compare this chart to the truth tables for the logical
operators in Chapter 5 to see the similarities.

The bitwise operators include the XOR operator, which stands for exclusive
OR. The logical || operator is an inclusive OR operation, which means it returns
true if both operands are true. The | bitwise operator is also inclusive and yields a

FIGURE D.1 Java operator precedence, continued

Precedence
Level

Operator Operation Associates

14 conditional operator R to L?:

assignment
addition, then assignment
string concatenation, then assignment
subtraction, then assignment
multiplication, then assignment
division, then assignment
remainder, then assignment
left shift, then assignment
right shift (sign), then assignment
right shift (zero), then assignment
bitwise AND, then assignment
boolean AND, then assignment
bitwise XOR, then assignment
boolean XOR, then assignment
bitwise OR, then assignment
boolean OR, then assignment

R to L15 =
+=
+=
-=
*=
/=
%=
<<=
>>=
>>>=
&=
&=
ˆ=
ˆ=
|=
|=

FIGURE D.2 Java bitwise operators

Operator Description

~

&

|

ˆ

<<

>>

>>>

bitwise NOT

bitwise AND

bitwise OR

bitwise XOR

left shift

right shift with sign

right shift with zero fill

680 APPENDIX D Java Operators

1 if both corresponding bits are 1. However, the exclusive OR operator (^) yields
a 0 if both operands are 1. There is no logical exclusive OR operator in Java.

When the bitwise operators are applied to integer values, the operation is per-
formed individually on each bit in the value. For example, suppose the integer
variable number is declared to be of type byte and currently holds the value 45.
Stored as an 8-bit byte, it is represented in binary as 00101101. When the bitwise
complement operator (~) is applied to number, each bit in the value is inverted,
yielding 11010010. Since integers are stored using two’s complement representa-
tion, the value represented is now negative, specifically −46.

Similarly, for all bitwise operators, the operations are applied bit by bit,
which is where the term “bitwise” comes from. For binary operators (with two
operands), the operations are applied to corresponding bits in each operand.
For example, assume num1 and num2 are byte integers, num1 holds the value 45,
and num2 holds the value 14. Figure D.4 shows the results of several bitwise
operations.

The operators &, |, and ^ can also be applied to boolean values, and they have
basically the same meaning as their logical counterparts. When used with boolean
values, they are called boolean operators. However, unlike the operators && and
||, which are “short-circuited,” the boolean operators are not short-circuited.
Both sides of the expression are evaluated every time.

FIGURE D.3 Bitwise operations on individual bits

a b ~ a a | ba & b a ˆ b

0

0

1

1

0

0

0

1

0

1

1

1

0

1

1

0

0

1

0

1

1

1

0

0

FIGURE D.4 Bitwise operations on bytes

num1 & num2 num1 | num2 num1 ˆ num2

00101101

& 00001110

= 00001100

00101101

| 00001110

= 00101111

00101101

 ̂00001110

= 00100011

 APPENDIX D Java Operators 681

Like the other bitwise operators, the three bitwise shift operators manipulate
the individual bits of an integer value. They all take two operands. The left oper-
and is the value whose bits are shifted; the right operand specifies how many
positions they should move. Prior to performing a shift, byte and short values
are promoted to int for all shift operators. Furthermore, if either of the operands
is long, the other operand is promoted to long. For readability, we use only 16
bits in the examples in this section, but the concepts are the same when carried
out to 32- or 64-bit strings.

When bits are shifted, some bits are lost off one end, and others need to be
filled in on the other. The left-shift operator (<<) shifts bits to the left, filling the
right bits with zeros. For example, if the integer variable number currently has the
value 13, then the statement

number = number << 2;

stores the value 52 into number. Initially, number contains the bit string
0000000000001101. When shifted to the left, the value becomes 0000000000110100,
or 52. Notice that for each position shifted to the left, the original value is
multiplied by 2.

The sign bit of a number is shifted along with all of the others. Therefore
the sign of the value could change if enough bits are shifted to change the
sign bit. For example, the value −8 is stored in binary two’s complement
form as 1111111111111000. When shifted left two positions, it becomes
1111111111100000, which is −32. However, if enough positions are shifted, a
negative number can become positive and vice versa.

There are two forms of the right-shift operator: one that preserves the sign of
the original value (>>) and one that fills the leftmost bits with zeros (>>>).

Let’s examine two examples of the right-shift-with-sign-fill operator. If the int
variable number currently has the value 39, the expression (number >> 2) results
in the value 9. The original bit string stored in number is 0000000000100111, and
the result of a right shift two positions is 0000000000001001. The leftmost sign
bit, which in this case is a zero, is used to fill from the left.

If number has an original value of −16, or 1111111111110000, the right-
shift (with sign fill) expression (number >> 3) results in the binary string
1111111111111110, or −2. The leftmost sign bit is a 1 in this case and is used to
fill in the new left bits, maintaining the sign.

If maintaining the sign is not desirable, the right-shift-with-zero-fill operator
(>>>) can be used. It operates similarly to the >> operator but fills with zero no
matter what the sign of the original value is.

This page intentionally left blank

683

This appendix summarizes the modifiers that give particular characteristics to Java
classes, interfaces, methods, and variables. For discussion purposes, the set of all
Java modifiers is divided into two groups: visibility modifiers and all others.

Java Visibility Modifiers
The table in Figure E.1 describes the effect of Java visibility modifiers on various
constructs. Visibility modifiers operate in the same way on classes and interfaces
and in the same way on methods and variables.

Default visibility means that no visibility modifier was explicitly used. Default
visibility is sometimes called package visibility, but you cannot use the reserved
word package as a modifier.

Note that only inner classes can have private or protected visibility.

Java Modifiers E

FIGURE E.1 Java visibility modifiers

Modifier Classes and interfaces Methods and variables

default (no modifier) Visible in its package. Visible to any class in the same package
as its class.

Visible anywhere. Visible anywhere.

Can only be applied to inner classes.
Visible in its package and to classes that
extend the class in which it is declared.

Visible to any class in the same package
and to any derived classes.

Can only be applied to inner classes.
Visible to the enclosing class only.

Not visible by any other class.

public

protected

private

684 APPENDIX E Java Modifiers

A Visibility Example
Consider the highly contrived situation depicted in the Figure E.2 Class P is the
parent class that is used to derive child classes C1 and C2. Class C1 is in the same
package as P, but C2 is not. Class P contains four methods, each with different
visibility modifiers. One object has been instantiated from each of these classes.

The public method a() has been inherited by C1 and C2, and any code with
access to object x can invoke x.a(). The private method d() is not visible to C1
or C2, so objects y and z have no such method available to them. Furthermore,
d() is fully encapsulated and can be invoked only from within object x.

The protected method b() is visible in both C1 and C2. A method in y could
invoke x.b(), but a method in z could not. Furthermore, an object of any class
in package One could invoke x.b(), even those that are not related to class P by
inheritance, such as an object created from class Another1.

Method c() has default visibility, since no visibility modifier was used to
declare it. Therefore object y can refer to the method c() as if it were declared
locally, but object z cannot. Object y can invoke x.c(), as can an object instanti-
ated from any class in package One, such as Another1. Object z cannot invoke
x.c().

These rules generalize in the same way for variables. The visibility rules may
appear complicated initially, but they can be mastered with a little effort.

FIGURE E.2 A situation demonstrating Java visibility modifiers

class Another1

package One
class P

public a()
protected b()

c()
private d()

class Another2

package Two

P x = new P();

C1 y = new C1();

C2 z = new C2();

class C2
class C1

 APPENDIX E Java Modifiers 685

Other Java Modifiers
Figure E.3 summarizes the rest of the Java modifiers, which address a variety of
issues. Furthermore, a modifier has different effects on classes, interfaces, meth-
ods, and variables. Some modifiers cannot be used with certain constructs and
therefore are listed as not applicable (N/A).

The transient modifier is used to indicate data that need not be stored in
a persistent (serialized) object. That is, when an object is written to a serialized
stream, the object representation will include all data that is not specified as
transient.

FIGURE E.3 The rest of the Java modifiers

Modifier Class Interface Method Variable

The class may con-
tain abstract meth-
ods. It cannot be
instantiated.

All interfaces are
inherently abstract.
The modifier is
optional.

No method body is
defined. The method
requires implementation
when inherited.

The class cannot be
used to drive new
classes.

N/A

N/A N/AN/A

N/AN/A

N/A N/A

The variable will not
be serialized.

The variable is changed
asynchronously. The
compiler should not
perform optimizations
on it.

N/A

N/AN/A

N/A

N/A

N/AN/A

The method cannot be
overridden.

No method body is neces-
sary since implementation
is in another language.

The execution of the
method is mutually exclu-
sive among all threads.

Defines a class method. It
does not require an instan-
tiated object to be invoked.
It cannot reference non-
static methods or variables.
It is implicitly final.

Defines a class variable. It
does not require an instan-
tiated object to be refer-
enced. It is shared (com-
mon memory space) among
all instances of the class.

The variable is a constant,
whose value cannot be
changed once initially set.

N/Aabstract

final

native

static

synchro-
nized

transient

volatile

This page intentionally left blank

687

This appendix contains a series of guidelines that describe how to organize and
format Java source code. They are designed to make programs easier to read and
maintain. Some guidelines can be attributed to personal preferences and could be
modified. However, it is important to have a standard set of practices that make
sense and to follow them carefully. The guidelines presented here are followed in
the example code throughout the text and are consistent with the Java naming
conventions.

Consistency is half the battle. If you follow the same rules throughout a
program and follow them from one program to another, you make the effort
of reading and understanding your code easier for yourself and others. It is not
unusual for a programmer to develop software that seems straightforward at
the time, only to revisit it months later and have difficulty remembering how it
works. If you follow consistent development guidelines, you reduce this problem
considerably.

When an organization adopts a coding standard, it is easier for people to work
together. A software product is often created by a team of cooperating developers,
each responsible for a piece of the system. If they all follow the same development
guidelines, they facilitate the process of integrating the separate pieces into one
cohesive entity.

You may have to make tradeoffs between some guidelines. For example, you
may be asked to make all of your identifiers easy to read yet keep them to a rea-
sonably short length. Use common sense on a case-by-case basis to embrace the
spirit of all guidelines as much as possible.

You may choose, or be asked, to follow this set of guidelines as presented. If
changes or additions are made, make sure they are clear and that they represent
a conscious effort to use good programming practices. Most of these issues are
discussed further in appropriate areas of the text but are presented succinctly here,
without elaboration.

Java Coding
Guidelines F

688 APPENDIX F Java Coding Guidelines

Design Guidelines
A. Design Preparation

1. The ultimate guideline is to develop a clean design. Think before you start
coding. A working program is not necessarily a good program.

2. Express and document your design with consistent, clear notation.

B. Structured Programming

1. Do not use the continue statement.
2. Use the break statement only to terminate cases of a switch statement.
3. Have only one return statement in a method as the last line, unless it

unnecessarily complicates the method.

C. Classes and Packages

1. Do not have additional methods in the class that contains the main method.
2. Define the class that contains the main method at the top of the file it is in,

followed by other classes if appropriate.
3. If only one class is used from an imported package, import that class by

name. If two or more are imported, use the * symbol.

D. Modifiers

1. Do not declare variables with public visibility.
2. Do not use modifiers inside an interface.
3. Always use the most appropriate modifiers for each situation. For example,

if a variable is used as a constant, explicitly declare it as a constant using
the final modifier.

E. Exceptions

1. Use exception handling only for truly exceptional conditions, such as
terminating errors, or for significantly unusual or important situations.

2. Do not use exceptions to disguise or hide inappropriate processing.
3. Handle each exception at the appropriate level of design.

F. Miscellaneous

1. Use constants instead of literals in almost all situations.
2. Design methods so that they perform one logical function. As such, the

length of a method will tend to be no longer than 50 lines of code, and
usually much shorter.

3. Keep the physical lines of a source code file to less than 80 characters in
length.

4. Extend a logical line of code over two or more physical lines only when
necessary. Divide the line at a logical place.

APPENDIX F Java Coding Guidelines 689

Style Guidelines

A. Identifier Naming

1. Give identifiers semantic meaning. For example, do not use single letter
names such as a or i unless the single letter has semantic meaning.

2. Make identifiers easy to read. For example, use currentValue instead of
curval.

3. Keep identifiers to a reasonably short length.
4. Use the underscore character to separate words of a constant.

B. Identifier Case

1. Use UPPERCASE for constants.
2. Use Title Case for class, package, and interface names.
3. Use lowercase for variable and method names, except for the first letter of

each word other than the first word. For example, minTaxRate. Note that
all reserved words must be lowercase.

C. Indentation

1. Indent the code in any block by three or four spaces (be consistent).
2. If the body of a loop, if statement, or else clause is a single statement

(not a block), indent the statement three spaces on its own line.
3. Put the left brace ({) starting each new block on a new line. Line up the

terminating right brace (}) with the opening left brace. For example:

while (value < 25)
{
 value += 5;
 System.out.println ("The value is " + value);
}

4. In a switch statement, indent each case label three spaces. Indent all code
associated with a case three additional spaces.

D. Spacing

1. Carefully use white space to draw attention to appropriate features of a
program.

2. Put one space after each comma in a parameter list.
3. Put one space on either side of a binary operator.
4. Do not put spaces immediately after a left parenthesis or before a right

parenthesis.
5. Do not put spaces before a semicolon.
6. Put one space before a left parenthesis, except before an empty parameter

list.

690 APPENDIX F Java Coding Guidelines

7. When declaring arrays, associate the brackets with the element type, as
opposed to the array name, so that it applies to all variables on that line.
For example:

 int[30] list1, list2;

8. When referring to the type of an array, do not put any spaces between the
element type and the square brackets, such as int[].

E. Messages and Prompts

1. Do not condescend.
2. Do not attempt to be humorous.
3. Be informative, but succinct.
4. Define specific input options in prompts when appropriate.
5. Specify default selections in prompts when appropriate.

F. Output

1. Label all output clearly.
2. Present information to the user in a consistent manner.

Documentation Guidelines

A. The Reader

1. Write all documentation as though the reader is computer literate and basi-
cally familiar with the Java language.

2. Assume the reader knows almost nothing about what the program is sup-
posed to do.

3. Remember that a section of code that seems intuitive to you when you
write it might not seem so to another reader or to yourself later. Document
accordingly.

B. Content

1. Make sure comments are accurate.
2. Keep comments updated as changes are made to the code.
3. Be concise but thorough.

C. Header Blocks

1. Every source code file should contain a header block of documentation
providing basic information about the contents and the author.

2. Each class and interface, and each method in a class, should have a small
header block that describes its role.

3. Each header block of documentation should have a distinct delimiter on the
top and bottom so that the reader can visually scan from one construct to
the next easily. For example:

APPENDIX F Java Coding Guidelines 691

 //***
 // header block
 //***

D. In-Line Comments

1. Use in-line documentation as appropriate to clearly describe interesting
processing.

2. Put a comment on the same line with code only if the comment applies to
one line of code and can fit conveniently on that line. Otherwise, put the
comment on a separate line above the line or section of code to which it
applies.

E. Miscellaneous

1. Avoid the use of the /* */ style of comment except to conform to the
javadoc (/** */) commenting convention.

2. Don’t wait until a program is finished to insert documentation. As pieces of
your system are completed, comment them appropriately.

This page intentionally left blank

693

In Chapter 2 we presented the basic concept of an applet, including how an applet
differs from an application and how an applet is referenced in an HTML page so
that it can be executed in a browser. The applet examples in Chapter 2 present
simple drawings. We revisited the concept of an applet in Chapter 9, exploring
how applets are a good example of inheritance. This appendix fills in some other
details about Java applets.

The example applets in Chapter 2 override the paint method of the JApplet
class. An applet has several other methods that perform specific duties. Because
an applet is designed to work with Web pages, some applet methods are specifi-
cally designed with that concept in mind. Figure G.1 lists several applet methods.

Java Applets G

FIGURE G.1 Some methods of the Applet class

public void init ()
Initializes the applet. Called just after the applet is loaded.

public void start ()
Starts the applet. Called just after the applet is made active.

public void stop ()
Stops the applet. Called just after the applet is made inactive.

public void destroy ()
Destroys the applet. Called when the browser is exited.

public URL getCodeBase ()
Returns the URL at which this applet's bytecode is located.

public URL getDocumentBase ()
Returns the URL at which the HTML document containing this applet is
located.

public AudioClip getAudioClip (URL url, String name)
Retrieves an audio clip from the specified URL.

public Image getImage (URL url, String name)
Retrieves an image from the specified URL.

694 APPENDIX G Java Applets

The init method is executed once when the applet is first loaded, such as when
the browser or appletviewer initially views the applet. Therefore the init method
is the place to initialize the applet’s environment and permanent data.

The start and stop methods of an applet are called when the applet becomes
active or inactive, respectively. For example, after we use a browser to initially
load an applet, the applet’s start method is called. We may then leave that page
to visit another one, at which point the applet becomes inactive and the stop
method is called. If we return to the applet’s page, the applet becomes active again
and the start method is called again.

Note that the init method is called once when the applet is loaded, but start
may be called several times as the page is revisited. It is good practice to imple-
ment start and stop for an applet if it actively uses CPU time, such as when it
is showing an animation, so that CPU time is not wasted on an applet that is not
visible.

Also note that reloading the Web page in the browser does not necessarily
reload the applet. To force the applet to reload, most browsers provide some key
combination for that purpose. For example, in Netscape Navigator, holding down
the Shift key while clicking the Reload button with the mouse not only reloads
the Web page but also reloads (and reinitializes) all applets linked to that page.

The getCodeBase and getDocumentBase methods are useful to determine
where the applet’s bytecode or HTML document resides. An applet could use the
appropriate URL to retrieve additional resources, such as an image or audio clip
by using the applet methods getImage or getAudioClip, respectively.

Security is an issue with applets. As you browse Web pages, you may open
a page containing an applet, and suddenly an unknown program is executing
on your machine. Because of the dangers inherent in that process, applets are
restricted in the kinds of operations they can perform. For instance, an applet
cannot write data to a local drive.

In the Graphics Track sections throughout this book, we explore issues related
to the development of programs that use graphical user interfaces (GUIs). The
examples in those sections are presented as Java applications, using JFrame com-
ponents as the primary heavyweight container. An applet can also be used to pres-
ent GUI-based programs. Like a JFrame, a JApplet is a heavyweight container.

Applets are useful for small, isolated programs, such as a game or calculator.
Because of their security restrictions and processing overhead, they are not fre-
quently used for larger systems. Generally, other technologies are used to support
fully integrated, dynamic Web sites.

Regular
Expressions
Throughout the book we’ve used the Scanner class to read interactive input from
the user and parse strings into individual tokens such as words. In Chapter 5 we
also used it to read input from a data file. Usually we used the default whitespace
delimiters for tokens in the scanner input.

The Scanner class can also be used to parse its input according to a regular
expression, which is a character string that represents a pattern. A regular expres-
sion can be used to set the delimiters used when extracting tokens, or it can be
used in methods like findInLine to match a particular string.

Some of the general rules for constructing regular expressions include:

■ The dot (.) character matches any single character.

■ The * character, which is called the Kleene star, matches zero or more
characters.

■ A string of characters in square brackets ([]) matches any single character
in the string.

■ The \ character followed by a special character (such as the ones in this
list) matches the character itself.

■ The \ character followed by a character matches the pattern specified by
that character (see the following table).

For example, the regular expression B.b* matches Bob, Bubba, and Baby. The
regular expression T[aei]*ing matches Taking, Tickling, and Telling.

These examples are just a few of many. Figure H.1 specifies some of the pat-
terns that can be matched in a Java regular expression, and this list is not com-
plete. See the online documentation for the Pattern class for a complete list.

H

695

696 APPENDIX H Regular Expressions

FIGURE H.1 Some patterns that can be matched in a Java regular expression

x

.

[abc]

[^abc]

[a-z][A-Z]

[a-d[m-p]]

[a-z&&[def]]

[a-z&&[^bc]]

[a-z&&[^m-p]]

\d

\D

\s

\S

^

$

The character x

Any character

a, b, or c

Any character except a, b, or c (negation)

a through z or A through Z, inclusive (range)

a through d or m through p (union)

d, e, or f (intersection)

a through z, except for b and c (subtraction)

a through z but not m through p (subtraction)

A digit: [0–9]

A non-digit: [^0–9]

A whitespace character

A non-whitespace character

The beginning of a line

The end of a line

Regular Expression Matches

697

Javadoc is a tool for creating documentation in HTML format from Java source
code. The utility examines the source code, extracts specially marked information
in the documentation, and then produces Web pages that summarize the software.

Documentation comments, also referred to as doc comments, specify the for-
mat for comments to be processed by the javadoc tool. Special labels called tags
are also parsed by javadoc. Together, doc comments and tags can be used to
construct a complete Java application programming interface (API) specification.
A Java API is a specification of how to work with a class.

Javadoc can be run on packages or individual files (or both). It produces a
well-structured, single document each time. However, javadoc does not support
incremental additions.

Javadoc comes as a standard part of the Java Software Development Kit (SDK).
The tool executable, javadoc.exe, resides in the bin folder of the installation direc-
tory along with the javac compiler and java execution tool. Therefore, if you are
able to compile and execute your code using the command line, javadoc should
also work.

Using javadoc is simple in its plain form; it is very much like compiling a java
source file. For example:

javadoc myfile.java

The javadoc command may also specify options and package names. The
source file name must contain the .java extension (similar to the javac compiler
command).

Javadoc
Documentation
Generator

I

698 APPENDIX I Javadoc Documentation Generator

Doc Comments
The document comments are subdivided into descriptions and tags. Descriptions
should provide an overview of the functionality of the explained code. Tags
address the specifics of the functionality such as code version (for classes or inter-
faces) or return types (for methods).

Javadoc processes code comments placed between /**, the beginning tag, and
*/, the end tag. The comments are allowed to span multiple lines where each
line begins with a * character, which are, along with any white space before
them, discarded by the tool. These comments are allowed to contain HTML tags.
For example:

/**
* This is an example document comment.
*/

Comment placement should be considered carefully. The javadoc tool auto-
matically copies the first sentence from each doc to a summary at the top of
the HTML document. The sentence begins after any white space following the
* character and ends at the first period. The description that follows should
be concise and complete. Document comments are recognized only if they
are placed immediately before a class, constructor, method, interface, or field
declaration.

The use of HTML inside the description should be limited to proper comment
separation and display rather than styling. Javadoc automatically structures the
document using certain tags—for example, heading tags. Appropriate use of
paragraph or list tags (ordered/unordered) should provide satisfactory formatting.

Tags
Tags are included in a doc comment. Each tag must start on a separate line, hence
it must be preceded by the * character. Tags are case sensitive and begin with the
@ symbol.

Certain tags are required in some situations. The @param tag must be supplied
for every parameter and is used to describe the purpose of the parameter. The
@return tag must be supplied for every method that returns anything other than
void, to describe what the method returns. The @author class and the @version
tags are required for classes and interfaces only.

Figure I.1 lists the various tags used in javadoc comments.

Note the two different types of tags listed in Figure I.1. The block tags,
which begin with the @ symbol (e.g., @author), must be placed in the tag section

 APPENDIX I Javadoc Documentation Generator 699

FIGURE I .1 Various tags used in javadoc comments

@author

{ @code}

@deprecated

{ @docRoot}

@exception

{ @inheritDoc}

{ @link}

{ @linkPlain}

{ @literal}

@param

@return

@see

@serial

@serialData

@serialField

@since

@throws

{ @value}

@version

Inserts an “Author” entry with the specified text.

Same as <code>{@literal}</code>.

Inserts a bold “Deprecated” entry with the specified text.

Relative link to the root of the document.

See @throws.

Copies documentation from the closest inherited class or implemented
interface where used allowing for more general comments of
hierarchically higher classes to be reused.

Inserts a hyperlink to an HTML document. Use: {@link name url}.

Same as {@link} but is displayed as plain text.
Use: {@linkPlain link label}.

Text enclosed in the tag is denoted literally, as containing any HTML.
For example, {@literal <td> TouchDown} would be displayed
as <td> TouchDown (<td> not interpreted as a table cell).

Inserts a “Parameters” section, which lists and describes parameters
for a particular constructor/method.

Inserts a “Returns” section, which lists and describes any return values
for a particular constructor/method. Use: @return description. An
error will be thrown if included in a comment of a method with the
void return type.

Included a “See Also” comment with a link pointing to a document
with more information. Use: @see link.

Used for a serializable field. Use: @serial text.

Used to document used to describe data written by the writeObject,
readObject, writeExternal, and readExternal methods.
Use: @serialdata text.

Used to comment on the ObjectStreamField.
Use: @serialField name type description.

Inserts a new “Since” heading that is used to denote when particular
features were first introduced. Use: @since text.

Includes a “Throws” heading. Use: @throws name description.

Returns the value of a code element it refers to. Use: @value code-
member label.

Add a “Version” heading when the –version command–line option is
used. Use: @version text.

Tag Name Description

700 APPENDIX I Javadoc Documentation Generator

following the main description. The inline tags, enclosed in the { and } delimiters,
can be placed anywhere in the description section or in the comments for block
tags. For example:

/**
* This is an example document comment.
* The {@link Glossary} provides definitions of types used.
*
* @author Sebastian Niezgoda
*/

Files Generated
The javadoc tool analyzes a java source file or package and produces a three-
part HTML document for each class. The HTML file is often referred to as a
documentation file. It contains cleanly organized information about the class file
derived from the doc comments included in the code.

The first part of the document contains an overall description of the class. The
class name appears first followed by a graphical representation of the inheritance
relationships. A general description is displayed next, which is extracted from the
first sentence of each doc comment entity (as discussed previously).

Next, a list of constructors and methods is provided. The signatures of all the
constructors and methods included in the source file are listed along with one-
sentence descriptions. The name of the constructor/method is a hyperlink to a
more detailed description in the third part of the document.

Third, complete descriptions of the methods are provided. Again, the signature
is provided first followed by an explanation of the entity, this time without the
one-sentence limit, which is obtained from the doc comments. If applicable, a list
of parameters and return values, along with their descriptions, is provided in the
respective sections.

The HTML document makes extensive use of hyperlinks to provide necessary
additional information, using the @see tag for example, and for navigational pur-
poses. The header and the footer of the page are navigation bars, with the following
links:

■ Package provides a list of classes included in the package along with a
short purpose and description of each class.

■ Tree presents a visual hierarchy of the classes within the package. Each
class name is a link to the appropriate documentation HTML file.

■ Deprecated lists functionality that is considered deprecated that is used in
any of the class files contained in the package.

 APPENDIX I Javadoc Documentation Generator 701

■ Index provides an alphabetical listing of classes, constructors, and methods
in the package. The class name is also associated with a short purpose and
description of the class. Each appearance of the class name is a link to the
appropriate HTML documentation. The signature of every constructor and
method is a link to the appropriate detailed description. A one-sentence
description presented next to the signature listing associates the constructor/
method with the appropriate class.

■ Help loads a help page with how-to instructions for using and navigating
the HTML documentation.

All pages could be viewed with or without frames. Each class summary has
links that can be used to quickly access any of the parts of the document (as
described above).

The output content could be somewhat generated by command-line options
(see above) used when executing the javadoc tool. By default, if no options are
specified, the output returned is equivalent to using the −protected option. The
options include:

■ private shows all classes, methods, and variables.

■ public shows only public classes, methods, and variables.

■ protected shows only protected and public classes, methods, and
variables.

■ help presents the online help.

■ keywords includes HTML meta tags to the output file generated to assist
with searching.

This page intentionally left blank

703

In this appendix we examine a software development project that is larger than
any other described in this text. Our example program allows the user to create
drawings with various shapes and colors. This type of project encompasses a
variety of issues that are commonly found in large-scale software development
and provides a good basis for exploring our development model. We call this
example the PaintBox project.

PaintBox Requirements
Suppose the client provides the following set of initial requirements. The program
will:

■ Present a graphical user interface that is primarily mouse driven for all user
actions.

■ Allow the user to draw lines, ovals, circles, rectangles, and squares.

■ Allow the user to change the drawing color.

■ Display the current drawing color.

■ Allow the user to fill a shape, except for a line, with a color.

■ Allow the user to select a shape in order to move it, modify its color, or
reshape it.

■ Allow the user to cut, copy, and paste individual shapes in a drawing.

■ Allow the user to save a drawing in a file and load a previously stored
drawing from a file for further editing.

■ Allow the user to begin a new drawing at any time.

After examining these general requirements, we might sit down with the client
and discuss some of the details to ensure that there are no misunderstandings. We
might create a new requirements document that is much more specific about the
issues involved.

During these interactions with the client, we might create a sketch, such as the
one shown in Figure J.1, of a user interface for the system. This sketch serves as
a basic prototype of the interface, and gives us something to refer to in our discussions

The PaintBox Project J

704 APPENDIX J The PaintBox Project

with the client. For other systems there may be many such sketches for each screen
of the program.

The interface sketch shows a main drawing area where the user will create
a drawing. The top edge contains a set of buttons used to select various tools,
such as the oval tool to draw an oval or circle, the color tool to change the
current drawing color, and a select tool to select a previously drawn shape to
modify or move it. Two menu headings are shown along the top edge. The
File menu contains operations to begin a new drawing, save a drawing, and
exit the program. The Edit menu contains editing operations such as cut, copy,
and paste.

As a result of the discussions with the client, several additional requirements
issues are established:

■ There is no need to have separate user interactions for circles or squares
because they are subsets of ovals and rectangles, respectively.

■ The user should also be able to create polyline shapes.

■ The buttons used to select drawing tools should have icons instead of words.

FIGURE J.1 A sketch of the user interface for the PaintBox program

Select

File Edit

Line Oval Rect Color

Drawing
Area

 APPENDIX J The PaintBox Project 705

■ The system should make a distinction between the stroke color (the out-
line) and the fill color (the interior) of a shape. Therefore, each shape will
have a separate stroke and fill color. Lines and polylines will have only a
stroke color because they cannot be filled.

■ An option to save a drawing under a particular name should be provided
(the traditional “save as” operation).

■ Traditional keyboard shortcuts for operations such as cut, copy, and paste
should be included.

■ The system should perform checks to ensure that the user does not lose
unsaved changes to a drawing.

■ The system should present an initial “splash screen” to introduce the pro-
gram when it is executed.

These issues must be integrated into the formal description of the requirements
document for the project. Several discussions with the client, with additional
screen sketches, may be necessary before we have an accurate and solid set of
program requirements.

PaintBox Architectural Design
After we have clarified the requirements with the client, we can begin to think
about some of the elements of the high-level architectural design of the system.
For example, many of the classes needed for the user interface can come from the
Java standard class library in the Swing package.

It also seems reasonable that a separate class could be used to represent each
shape type. Further, each individually drawn shape should be an instantiation of
the appropriate shape class. For example, we could define an Oval class to rep-
resent an oval, a Line class to represent a line, and so on. Each class should be
responsible for keeping track of the information it needs to define it, and it should
provide methods to draw itself.

A drawing may be composed of many shapes, so we need a way to keep track
of all of them. An ArrayList might be a good choice for this. As each new shape
is drawn, we can add the object that represents it to the list. The list will also
inherently define the order in which shapes are drawn. Since some shapes will be
drawn on top of others, the list will also keep track of the order in which shapes
are “stacked.”

The process of defining an architectural design could take a while. The key is
to make the most important and fundamental decisions that will affect the entire
system without skipping ahead to decisions that are better left to individual refine-
ments of the system.

706 APPENDIX J The PaintBox Project

PaintBox Refinements
After some consideration, we might decide that the evolution of the PaintBox
project could be broken down into the following refinement steps:

■ Establish the basic user interface.

■ Allow the user to draw basic shapes using different stroke colors.

■ Allow the user to cut, copy, and paste shapes.

■ Allow the user to select, move, and fill shapes.

■ Allow the user to modify the dimensions of shapes.

■ Allow the user to save and reload drawings.

■ Include final touches such as the splash screen.

Note, first of all, that these refinements focus on breaking down the functional-
ity of the system. Additional refinements may be necessary as we get into the itera-
tive process. For instance, we may decide that we need a refinement to address
problems that were discovered in previous refinements.

The listed refinements could have been broken down further. For example, one
refinement could have been devoted to the ability to draw one particular type of
shape. The level of refinement, just like many other decisions when developing
a software system, is a judgment call. The developer must decide what is best in
any particular situation.

The order in which we tackle the refinements is also important. The user
interface refinement seems to be a logical first step because all other activity
relies on it. We may decide that the ability to save and reload a drawing would
be nice to have early for testing purposes. We might also note that being able
to select an object is fundamental to operations such as move and cut/copy/
paste. After further analysis, we end up with the set of refinements shown in
Figure J.2.

PaintBox Refinement #1
Most of the classes used for the interface come from predefined libraries. We
use Swing technology whenever reasonable. For example, we can use a JPanel
for the overall interface space, as well as separate JPanel objects to organize
the button tools and the drawing area. The JButton class will serve well for
the buttons. Classes such as JMenuBar and JMenuItem will serve to implement the
menus.

Figure J.3 shows a class diagram that represents the classes that are important
to the first refinement of the PaintBox project. Note that it does not include all
classes that might be needed, nor does it address anything other than the needs

 APPENDIX J The PaintBox Project 707

of this one refinement. We’ll create additional diagrams that augment our under-
standing of the system design as further refinements are developed.

The detailed design and implementation for the interface refinement might
develop similarly to other graphical projects we’ve developed in previous chapters.

FIGURE J.2 Functional refinements for the PaintBox project

Present the basic graphical user interface, including the main frame, buttons,
menus, menu items, and the drawing area. The select and shape buttons
work together as a radio button set (only one can be chosen at a time). No
functionality for these interface elements is included at this time. Exiting the
program is provided only by the frame's window close button.

Add support for drawing the four basic shapes: lines, ovals, rectangles, and
polylines. The chosen shape button determines what shape is drawn. The
stroke color button can be used to set the stroke color for the next shape
drawn. The color button causes a separate dialog box to appear to allow
color selection.

Add support for saving and loading drawings. This includes the functionality
of the open, save, and save as File menu items. When the open, new, or
exit File menu options are chosen, check to see if the current drawing has
been modified since last saved, and if so prompt to see if the user wants
to save the drawing.

Provide the ability to select and move shapes on the drawing surface.
Simple graphic selection blocks should be presented on the shape's outline
to indicate the currently selected shape. Once selected, the mouse can be
used to drag the shape to another location on the drawing surface.

Add the functionality for the cut, copy and paste Edit menu items. Once
selected, a shape can be cut or copied. Once a shape has been cut or copied,
it can be pasted (perhaps multiple times) onto the drawing surface at a fixed
offset to the original position. Edit menu items that are not valid at any
given time are disabled. For example, unless a shape is selected, the cut
and copy menu items cannot be chosen.

Add support for filling and reshaping a shape. Once a shape has been selected,
the fill color button can be used to determine its fill color. A menu item
on the Edit menu can be used to remove the fill of any filled object (make it
transparent). The currently selected shape will now have a reshape handle
that can be used to change the dimensions of the shape.

Add some extra functionality to the program. These additions include a
splash screen that appears when the system is initially executed, an
about dialog box, keyboard shortcuts for all menu items, and packaging the
application into an executable JAR file.

DescriptionRefinement

1

2

3

4

5

6

7

708 APPENDIX J The PaintBox Project

We can create listener objects and methods as appropriate but not concern our-
selves with their inner workings at this time. That is, our focus in this refinement
is to present the user interface, not to create any of the functionality behind the
interface. During the development of this refinement, we modify the details of the
user interface until it appears just the way we’d like it.

At the end of the first refinement, we are left with a completely implemented
program that presents only the user interface. The buttons do nothing when
pushed, and the menu items do nothing when selected. We have no way of creat-
ing a drawing yet.

What we do have, however, is a complete entity that has been debugged and
tested to the level of this refinement. We may show it to the client at this point
and get further input. Any changes that result from these discussions can be incor-
porated into future refinements. Figure J.4 shows the PaintBox program after the
first refinement has been completed.

FIGURE J.3 A class diagram for the interface refinement of the PaintBox
project

+ main (args : String[]) : void

PaintBox

1

5

JRadioButton JButton

ButtonBar

JToolBar

DrawingPanel

PaintFrame JMenuBar

JFrame

 APPENDIX J The PaintBox Project 709

PaintBox Refinement #2
The next refinement to address is the ability to draw basic shapes, because all
other operations use drawn shapes in one way or another. Therefore, in this
refinement we focus on providing the processing power behind the buttons that
draw shapes and specify color.

Most of the objects and classes that we will use in this refinement are not
predefined as they were in the interface refinement. We might consider using the

FIGURE J.4 The PaintBox application after refinement #1

710 APPENDIX J The PaintBox Project

Rectangle class from the Java standard class library, but on further investigation
we realize that its role is not really consistent with our goals. In addition, no other
classes are defined for the other shapes we need.

So, as we envisioned in our architectural design, we consider having one
class per shape type: Line, Oval, Rect, and Poly. Remember that circles and
squares will just be specific instances of the Oval and Rect classes, respec-
tively. Each shape class will have a draw method that draws that kind of shape
on the screen.

Now let’s consider the kind of information that each shape needs to store to be
able to draw itself. A line needs two points: a starting point and an ending point.
Each polyline, on the other hand, needs a list of points to define the start and end
points of each line segment. Both ovals and rectangles are defined by a bounded
rectangle, storing an upper-left corner and the width and height of the shape.

This analysis leads to the conclusion that Oval and Rect objects have some
common characteristics that we could exploit using inheritance. They could both,
for instance, be derived from a class called BoundedShape. Furthermore, because
all shapes have to be stored in the ArrayList object that we’ll use to keep track
of the entire drawing, it would simplify the refinement to have a generic Shape
class from which all drawn shapes are derived.

The Shape and BoundedShape classes are used for organizational purposes.
We do not intend to instantiate them; therefore they probably should be abstract
classes. In fact, if we define an abstract method called draw in the Shape class,
we could capitalize on polymorphism to simplify the drawing of the shapes in
the drawing area. A loop can move through the ArrayList, having each shape
(whatever it may be) draw itself.

After some consideration, we achieve the class diagram shown in Figure J.5.
This diagram specifically represents the classes that are important to the second
refinement of the PaintBox project.

Selecting a current color can be relegated to the JColorChooser component
provided by the Swing package. The color button will bring up the JColorChooser
dialog box and respond accordingly to the user’s selection.

Multiple shapes will accumulate on the drawing surface. We could define a
class to serve as a collection of the drawn shape objects. It could use an ArrayList
to keep track of the list of shapes. Whenever the drawing area needs to be
refreshed, we can iterate through the list of shapes and draw each one in turn.

Figure J.6 shows the PaintBox program after the first two refinements have
been completed. Once again, we could visit with the client at this point to deter-
mine whether the evolution of the system meets with his or her satisfaction.

 APPENDIX J The PaintBox Project 711

Remaining PaintBox Refinements
For space reasons, the code for the various PaintBox refinements is not presented
in the text. The full implementation of the first two refinements can be down-
loaded with the rest of the book’s examples. The remaining refinements are left
as projects.

The refinements of the PaintBox program continue until all requirements issues
and problems have been addressed. This type of evolutionary development is
crucial for medium- and large-scale development efforts. Figure J.7 shows the
PaintBox program after all of the seven refinements have been completed.

FIGURE J.5 A class diagram for the second refinement of the PaintBox project

– strokeColor : Color

+ draw() : void

Shape

– firstPoint : Point
– secondPoint : Point

Line

– xList, yList : ArrayList

Poly

– upperLeft : Point
– width, height : int

BoundedShape

1

*

ArrayList

DrawingPanel

Rect Oval

712 APPENDIX J The PaintBox Project

FIGURE J.6 The PaintBox program after the interface and shapes refinements

 APPENDIX J The PaintBox Project 713

FIGURE J.7 The completed PaintBox program

This page intentionally left blank

715

Throughout the Graphics Track sections of this book, we’ve discussed various
events that components might generate. The goal of this appendix is to put the
event/component relationship into context.

The events listed in Figure K.1 are generated by every Swing component. That
is, we can set up a listener for any of these events on any component.

Some events are generated only by certain components. The table in Figure K.2
maps the components to the events that they can generate. Keep in mind that these
events are in addition to the ones that all components generate. If a component
does not generate a particular kind of event, a listener for that event cannot be
added to that component.

We have discussed some of the events in Figures K.1 and K.2 at appropriate
points in this text; we have left others for your independent exploration. Applying
the basic concept of component/event/listener interaction is often just a matter of
knowing which components generate which events under which circumstances.

Of course, many events occur in a GUI that have no bearing on the current
program. For example, every time a mouse is moved across a component, many
mouse motion events are generated. However, this doesn’t mean we must listen
for them. A GUI is defined in part by the events to which we choose to respond.

Despite our heavy coverage of GUI development in this book, we’ve still only
scratched the surface. The following list describes a few other Java GUI containers
and components that are not covered in depth in this text:

GUI Events K

FIGURE K.1 Events that are generated by every Swing component

Component Event Changing a component's size, position, or visibility.

Pressing, releasing, and clicking keyboard keys.

Moving or dragging a mouse over a component.

Clicking the mouse button and moving the mouse into and out of
a component's drawing area.

Gaining or losing the keyboard focus. Focus Event

Key Event

Mouse Event

Mouse Motion Event

Event Represents

716 APPENDIX K GUI Events

 ■ A tool bar is a container that groups several components into a row or col-
umn. A tool bar usually contains buttons that correspond to tasks that can
also be accomplished in other ways. Tool bars can be dragged away from
the container in which they initially exist into their own window.

 ■ An internal frame is a container that operates like a regular frame but
only within another window. An internal frame can be moved around
within the window and overlapped with other internal frames. Internal
frames can be used to create the feel of a GUI desktop in which compo-
nents can be arranged as the user chooses.

FIGURE K.2 Specific events generated by specific components

JButton

JCheckBox

JColorChooser

JComboBox

JDialog

JEditorPane

JFileChooser

JFrame

JInternalFrame

JList

JMenu

JMenuItem

JOptionPane

JPasswordField

JPopupMenu

JProgessBar

JRadioButton

JSlider

JTabbedPane

JTable

JTextArea

JTextField

JTextPane

JToggleButton

JTree

ActionComponent Caret Item Window OtherList
Selection

Change Document

Event

 APPENDIX K GUI Events 717

 ■ A layered pane is a container that takes into account a third dimension,
depth, for organizing the components it contains. When a component is
added to a layered pane, its depth is specified. If components overlap,
the depth value of each component determines which is on top.

 ■ A progress bar can be used to indicate the progress of a particular activ-
ity. The user does not generally interact with a progress bar other than
to view it to determine how far along a task, such as the loading of
images, has progressed.

 ■ A table is a Java GUI component that displays data in a table format. A
Java table can be completely tailored to provide a precise organization
and presentation. It can allow the user to edit the data as well. A Java
table does not actually contain or store the data; it simply presents it to
the user in an organized manner.

 ■ A tree is a component that presents a hierarchical view of data. Like a
table, it doesn’t actually store the data; it provides an organized view
that allows the user to traverse the data from a high-level root node
down through the various branches.

 ■ Another area for which Java provides rich support is text processing.
We’ve made use of basic text components such as text fields and text
areas, but that’s only the beginning. The Java standard class library (and
particularly the Swing API) has a huge number of classes that support
the display, editing, and manipulation of text.

As with all topics introduced in this book, we encourage you to explore these
issues in more detail. The world of Java GUIs, in particular, offers many oppor-
tunities for you to discover.

This page intentionally left blank

719

This appendix contains syntax diagrams that collectively describe the way in which
Java language elements can be constructed. Rectangles indicate something that is
further defined in another syntax diagram, and ovals indicate a literal word or
character.

Java Syntax L
Compilation Unit

Package Declaration Import Declaration Type Declaration

Package Declaration

package Name ;

Import Declaration

Type Declaration

Interface Declaration

Class Declaration

import Name Identifier.

*

;

720 APPENDIX L Java Syntax

Class Declaration

Modifier

class Identifier Class BodyClass Associations

Class Associations

implements Name Listextends Name

Class Body

Class Member
}{

Class Member

Block

Interface Declaration

Class Declaration

Method Declaration

Constructor Declaration

Field Declaration

static

Interface Declaration

Modifier

interface Identifier Interface Body

extends Name List

Interface Body

Interface Member
}{

Interface Member

Interface Declaration

Class Declaration

Method Declaration

Field Declaration

 APPENDIX L Java Syntax 721

Field Declaration

Modifier

Type Variable Declarator

,

;

Variable Declarator

Identifier

= Expression

Array Initializer

Type

Primitive Type

[Name]

Modifier

public

private

protected

static

final

abstract

native

synchronized

transient

volatile

Primitive Type

boolean

char

byte

short

int

long

float

double

Array Initializer

Expression

Array Initializer

{ }

,

Name

Identifier

.

Name List

Name

,

722 APPENDIX L Java Syntax

Method Declaration

Modifier

Parameters

void

Type Identifier Throws Clause Method Body

Parameters

()

IdentifierType

,

Throws Clause

throws Name List

Method Body

Block

;

Constructor Declaration

Modifier

ParametersIdentifier Throws Clause Constructor Body

Constructor Body

{ }

Block StatementConstructor Invocation

Constructor Invocation

this ;Arguments

Expression

super Arguments

.

APPENDIX L Java Syntax 723

Block

{ }

Block Statement

Block Statement

Class Declaration

Statement

Local Variable Declaration ;

Local Variable Declaration

Type Variable Declarator

,final

Statement

Try Statement

Throw Statement

Return Statement

For Statement

Empty Statement

Break Statement

Do Statement

While Statement

Switch Statement

If Statement

Basic Assignment

Statement Expression

Synchronized Statement

Block

Continue Statement

Labeled Statement

724 APPENDIX L Java Syntax

If Statement

if () Statement

else Statement

Expression

Switch Statement

switch ()
Switch Case

Expression { }

Switch Case

case

default

Expression :

:
Block Statement

While Statement

while () StatementExpression

For Statement

for
For Init

;
Expression

;
For Update

)(Statement

For Init

Local Variable Declaration

Statement Expression

,

For Update

Statement Expression

,

Do Statement

do ()whileStatement ;Expression

APPENDIX L Java Syntax 725

Return Statement

return

Expression

;

Throw Statement

throw Expression ;

Synchronized Statement

(Expressionsynchronized) Block

Empty Statement

;

Break Statement

break

Identifier

;

Continue Statement

continue

Identifier

;

Labeled Statement

Identifier : Statement

Basic Assignment

ExpressionIdentifier = ;

Try Statement

Blocktry catch

finally

Block

Block

()Type Identifier

726 APPENDIX L Java Syntax

Expression

Instance Expression

Conditional Expression

Bitwise Expression

Logical Expression

Relational Expression

Equality Expression

Arithmetic Expression

Assignment

Primary Expression

Unary Expression

Cast Expression

Primary Expression

this

Primary Suffix
Literal

super . Identifier

()Expression

Allocation

Name

Primary Suffix

[]Expression

Identifier.

.

.

Allocation.

this

class

Arguments

 APPENDIX L Java Syntax 727

Arguments

()

Expression

,

Allocation

new Primitive Type

Array Initializer
Name

Array Dimensions

Arguments

Class Body

Array Dimensions

[]Expression
[]

Statement Expression

Postfix Expression

Prefix Expression

Assignment ;

Assignment

ExpressionExpression =

+=

-=

*=

/=

%=

<<=

>>=

>>>=

&=

^=

|=

728 APPENDIX L Java Syntax

Arithmetic Expression

+ ExpressionExpression

-

*

/

%

Equality Expression

== ExpressionExpression

!=

Relational Expression

>=

< ExpressionExpression

>

<=

Logical Expression

&& ExpressionExpression

||

Bitwise Expression

ExpressionExpression &

|

^

<<

>>

>>>

Conditional Expression

? Expression :Expression Expression

Instance Expression

instanceOf TypeExpression

Cast Expression

(Type) Expression

APPENDIX L Java Syntax 729

Unary Expression

+

-

Expression

Prefix Expression

Postfix Expression

!

~

Prefix Expression

++

--

Expression

Postfix Expression

++

--

Expression

Literal

Boolean Literal

String Literal

Character Literal

Floating Point Literal

Integer Literal

null

Integer Literal

Hex Integer Literal

Octal Integer Literal

Decimal Integer Literal

Decimal Integer Literal

0

1 - 9 0 - 9 L

l

Octal Integer Literal

0 0 - 7
L

l

Hex Integer Literal

0
L

l

Hex DigitX

x

Hex Digit

a - f

0 - 9

A - F

730 APPENDIX L Java Syntax

Floating Point Literal

0 - 9

.

.0 - 9

0 - 9 Exponent Part

Float Suffix

Exponent Part

e

E +

-

0 - 9

Float Suffix

f

F

d

D

Character Literal

' any character

Escape Sequence

'

Unicode Escape

Boolean Literal

true

false

Escape Sequence

\ n

t

0 - 70 - 3 0 - 7

b

r

f

\

'

"

String Literal

"
any character

Escape Sequence

"

Unicode Escape

 APPENDIX L Java Syntax 731

Identifier

Java Letter

Java Letter

Java Digit

Java Letter

a - z

A - Z

_

$

Unicode Escape

other Java letter *

Java Digit

0 - 9

Unicode Escape

other Java digit *

* The "other Java letter" category includes letters
 from many languages other than English.

* The "other Java digit" category includes
 additional digits defined in Unicode.

Unicode Escape*

\ Hex Digitu Hex Digit Hex Digit Hex Digit

* In some contexts, the character represented
 by a Unicode Escape is restricted.

This page intentionally left blank

733

In previous editions of this book, this appendix included abbreviated reference
material for the Java API. This appendix is still available at ftp://ftp.aw.com/cseng/
authors/lewis/jss7/ for anyone who would like to download and make use of it.

A better solution, however, is to become familiar with the official and complete
online API documentation, as shown in Figure M.1. It contains a description of
every class, interface, and method available to every Java development environ-
ment. We encourage you to spend some time becoming familiar with the organi-
zation and layout of that documentation. It is a valuable tool to rely on during
program development.

The Java Class
Library M

FIGURE M.1 The online Java API documentation

This page intentionally left blank

735

Chapter 1 Introduction

1.1 Computer Processing
SR 1.1 The hardware of a computer system consists of its physical components

such as a circuit board, monitor, or keyboard. Computer software con-
sists of the programs that are executed by the hardware and the data
that those programs use. Hardware is tangible, whereas software is
intangible. In order to be useful, hardware requires software and soft-
ware requires hardware.

SR 1.2 The operating system provides a user interface and efficiently coordi-
nates the use of resources such as main memory and the CPU.

SR 1.3 It takes 7,200,000 numbers for a 3-minute song (40,000 � 60 � 3) and
144,000,000 numbers for 1 hour of music (40,000 � 60 � 60).

SR 1.4 The information is broken into pieces, and those pieces are represented
as numbers.

SR 1.5 In general, N bits can represent 2N unique items. Therefore:

a. 2 bits can represent 4 items because 22 � 4.
b. 4 bits can represent 16 items because 24 � 16.
c. 5 bits can represent 32 items because 25 � 32.
d. 7 bits can represent 128 items because 27 � 128.

SR 1.6 It would take 6 bits to represent each of the 50 states. Five bits is not
enough because 25 � 32 but six bits would be enough because 26 � 64.

1.2 Hardware Components
SR 1.7 A kilobyte (KB) is 210 = 1,024 bytes, a megabyte (MB) is 220 � 1,048,576

bytes, and a gigabyte (GB) is 230 � 1,073,741,824 bytes. Therefore:

Answers to Self-
Review Questions N

736 APPENDIX N Answers to Self-Review Questions

a. 3 KB � 3 * 1,024 bytes � 3,072 bytes = approximately 3 thou-
sand bytes

b. 2 MB � 2 * 1,048,576 bytes � 2,097,152 bytes = approximately
2.1 million bytes

c. 4 GB � 4 * 1,073,741,824 bytes � 4,294,967,296 bytes = approxi-
mately 4.3 billion bytes

SR 1.8 There are eight bits in a byte. Therefore:

a. 8 bytes � 8 * 8 bits � 64 bits
b. 2 KB � 2 * 1,024 bytes � 2,048 bytes � 2,048 * 8 bits = 16,384

bits
c. 4 MB � 4 * 1,048,576 bytes � 4,194,304 bytes � 4,194,304 * 8

bits � 33,554,432 bits

SR 1.9 Under the stated conditions, one hour of music would require
288,000,000 bytes (40,000 � 60 � 60 � 2). Dividing this number by
the number of bytes in a megabyte (1,048,576 bytes) gives approxi-
mately 275 MB. Note that a typical audio CD has a capacity of about
650 MB and can store about 70 minutes of music. This coincides with
an actual sampling rate of 41,000 measurements per second, two bytes
of storage space per measurement, and the need to store two streams of
music to produce a stereo effect.

SR 1.10 The two primary hardware components are main memory and the CPU.
Main memory holds the currently active programs and data. The CPU
retrieves individual program instructions from main memory, one at a
time, and executes them.

SR 1.11 A memory address is a number that uniquely identifies a particular
memory location in which a value is stored.

SR 1.12 Main memory is volatile, which means the information that is stored
in it will be lost if the power supply to the computer is turned off.
Secondary memory devices are nonvolatile; therefore, the information
that is stored on them is retained even if the power goes off.

SR 1.13 The word that best matches is

a. peripheral b. controller c. modem d. main or RAM
e. secondary or ROM f. RAM g. CPU

1.3 Networks
SR 1.14 A file server is a network computer that is dedicated to storing and pro-

viding programs and data that are needed by many network users.

APPENDIX N Answers to Self-Review Questions 737

SR 1.15 Counting the number of unique connections in Figure 1.16, there are 10
communication lines needed to fully connect a point-to-point network
of five computers. Adding a sixth computer to the network will require
that it be connected to the original five, bringing the total to 15 com-
munication lines.

SR 1.16 Having computers on a network share a communication line is cost
effective because it cuts down on the number of connections needed and
it also makes it easier to add a new computer to the network. Sharing
lines, however, can mean delays in communication if the network is
busy.

SR 1.17 The word Internet comes from the word internetworking, a concept
related to wide-area networks (WANs). An internetwork connects one
network to another. The Internet is a WAN.

SR 1.18 TCP stands for Transmission Control Protocol. IP stands for Internet
Protocol. A protocol is a set of rules that govern how two things com-
municate.

SR 1.19 Breaking down the parts of each URL:

a. duke is the name of a computer within the csc subdomain
(the Department of Computing Sciences) of the villanova.edu
domain, which represents Villanova University. The edu top-level
domain indicates that it is an educational organization. This URL
is requesting a file called examples.html from within a subdirec-
tory called jss.

b. java is the name of a computer (Web server) at the sun.com
domain, which represents Sun Microsystems, Inc. The com top-
level domain indicates that it is a commercial business. This URL
is requesting a file called index.html from within a subdirectory
called products.

1.4 The Java Programming Language
SR 1.20 The Java programming language was developed in the early 1990s by

James Gosling at Sun Microsystems. It was introduced to the public in
1995.

SR 1.21 The processing of a Java application begins with the main method.

SR 1.22 The characters “Hello” will be printed on the computer screen.

SR 1.23 The entire line of code is a comment, so there is no result.

SR 1.24 All of the identifiers shown are valid except 12345 (since an identifier
cannot begin with a digit) and black&white (since an identifier cannot

738 APPENDIX N Answers to Self-Review Questions

contain the character &). The identifiers RESULT and result are both
valid, but should not be used together in a program because they differ
only by case. The underscore character (as in answer_7) is a valid part
of an identifier.

SR 1.25 Although any of the listed names could be used as the required identifier,
the only “good” choice is scoreSum. The identifier x is not descriptive
and is meaningless, the identifier sumOfTheTestScoresOfTheStudents is
unnecessarily long, and the identifier smTstScr is unclear.

SR 1.26 White space is a term that refers to the spaces, tabs, and newline charac-
ters that separate words and symbols in a program. The compiler ignores
extra white space; therefore, it doesn’t affect execution. However, it is
crucial to use white space appropriately to make a program readable to
humans.

1.5 Program Development
SR 1.27 At the lowest level, a computer’s instructions perform only simple tasks,

such as copying a value or comparing two numbers. However, by put-
ting together millions of these simple instructions every second, a com-
puter can perform complex tasks.

SR 1.28 High-level languages allow a programmer to express a series of program
instructions in English-like terms that are relatively easy to read and use.
However, in order to execute, a program must be expressed in a particu-
lar computer’s machine language, which consists of a series of bits that
are basically unreadable by humans. A high-level language program must
be translated into machine language before it can be run.

SR 1.29 Java bytecode is a low-level representation of a Java source code pro-
gram. The Java compiler translates the source code into bytecode, which
can then be executed using the Java interpreter. The bytecode might be
transported across the Web before being executed by a Java interpreter
that is part of a Web browser.

SR 1.30 The word that best matches is

a. machine b. assembly c. high-level d. high-level
e. compiler f. interpreter

SR 1.31 Syntax rules define how the symbols and words of a programming
language can be put together. The semantics of a programming lan-
guage instruction determine what will happen when that instruction is
executed.

SR 1.32 a. Compile-time error b. Run-time error (you cannot divide by
zero) c. Logical error

APPENDIX N Answers to Self-Review Questions 739

1.6 Object-Oriented Programming
SR 1.33 1. Understand the problem.

2. Design a solution.
3. Consider alternatives and refinements to the solution.
4. Implement the solution.
5. Test the solution.

SR 1.34 The first solution to a problem that we think of may not be a good one.
By considering alternative solutions before expending too much energy
implementing our first idea, we can often save overall time and effort.

SR 1.35 The primary elements that support object-oriented programming are
objects, classes, encapsulation, and inheritance. An object is defined
by a class, which contains methods that define the operations on those
objects (the services that they perform). Objects are encapsulated such
that they store and manage their own data. Inheritance is a reuse tech-
nique in which one class can be derived from another.

Chapter 2 Data and Expressions

2.1 Character Strings
SR 2.1 A string literal is a sequence of characters delimited by double quotes.

SR 2.2 Both the print and println methods of the System.out object write a
string of characters to the monitor screen. The difference is that, after
printing the characters, the println performs a carriage return so that
whatever’s printed next appears on the next line. The print method
allows subsequent output to appear on the same line.

SR 2.3 A parameter is data that is passed into a method when it is invoked. The
method usually uses that data to accomplish the service that it provides.
For example, the parameter to the println method indicates what char-
acters should be printed.

SR 2.4 The output produced by the code fragment is

 One
 Two Three

SR 2.5 The output produced by the code fragment is

 Ready
 Set

 Go

740 APPENDIX N Answers to Self-Review Questions

SR 2.6 The output produced by the statement is

 It is good to be 10

The + operator in the sub-expression (5 + 5) represents integer addi-
tion, since both of its operands are integers. If the inner parentheses
are removed, the + operators represent string concatenation and the
output produced is

 It is good to be 55

SR 2.7 An escape sequence is a series of characters that begins with the backs-
lash (\) and that implies that the following characters should be treated
in some special way. Examples: \n represents the newline character, \t
represents the tab character, and \" represents the quotation character
(as opposed to using it to terminate a string).

SR 2.8 System.out.println ("\"I made this letter longer than "
+ "usual because I lack the time to\nmake it short.\""
+ "\n\tBlaise Pascal");

2.2 Variables and Assignment
SR 2.9 A variable declaration establishes the name of a variable and the type

of data that it can contain. A declaration may also have an optional
initialization, which gives the variable an initial value.

SR 2.10 Given those variable declarations, the answers are:

a. Five variables are declared: count, value, total, MAX_VALUE, and
myValue.

b. They are all of type int.
c. count, MAX_VALUE, and myValue are each given an initial value.
d. Yes, it is legal. myValue is a variable of type int and 100 is an int

literal.
e. No, it is not legal. MAX_VALUE is declared as a final variable and

therefore it cannot be assigned a value other than its initial value.

SR 2.11 The variable name you choose should reflect the purpose of the variable.
For example:

 int numCDs = 0;

SR 2.12 The variable name you choose should reflect the purpose of the variable.
Since the number of feet in a mile will not change, it is a good idea to
declare a constant. For example:

 final int FT_PER_MILE = 5280;

APPENDIX N Answers to Self-Review Questions 741

SR 2.13 First, by carefully choosing the name of the constant, you can make
your program more understandable than if you just use the literal value.
Second, using a constant ensures that the literal value represented by the
variable will not be inadvertently changed somewhere in the program.
Third, if you ever do have to rewrite the program using a different literal
value, you will only need to change that value once, as the initial value of
the constant, rather than many places throughout the program.

2.3 Primitive Data Types
SR 2.14 Primitive data are basic values such as numbers or characters. Objects

are more complex entities that usually contain primitive data that help
define them.

SR 2.15 An integer variable can store only one value at a time. When a new
value is assigned to it, the old one is overwritten and lost.

SR 2.16 The four integer data types in Java are byte, short, int, and long. They
differ in how much memory space is allocated for each and therefore
how large a number they can hold.

SR 2.17 Java automatically assigns an integer literal the data type int. If you
append an L or an l on the end of an integer literal, for example 1234L,
Java will assign it the type long.

SR 2.18 Java automatically assigns a floating point literal the data type double.
If you append an F or an f on the end of a floating point literal, for
example 12.34f, Java will assign it the type float.

SR 2.19 A character set is a list of characters in a particular order. A character set
defines the valid characters that a particular type of computer or program-
ming language will support. Java uses the Unicode character set.

SR 2.20 The original ASCII character set supports 27 � 128 characters, the
extended ASCII character set supports 28 � 256 characters, and the
UNICODE character set supports 216 � 65,536 characters.

2.4 Expressions
SR 2.21 The result of 19%5 in a Java expression is 4. The remainder operator %

returns the remainder after dividing the second operand into the first.
The remainder when dividing 19 by 5 is 4.

SR 2.22 The result of 13/4 in a Java expression is 3 (not 3.25). The result is an
integer because both operands are integers. Therefore, the / operator per-
forms integer division, and the fractional part of the result is truncated.

742 APPENDIX N Answers to Self-Review Questions

SR 2.23 After executing the statement, diameter holds the value 20. First, the
current value of diameter (5) is multiplied by 4, and then the result is
stored back in diameter.

SR 2.24 Operator precedence is the set of rules that dictates the order in which
operators are evaluated in an expression.

SR 2.25 The evaluations of the expressions are

a. 15 + 7 * 3 � 15 + 21 � 36
b. (15 + 7) * 3 � 22 * 3 � 66
c. 3 * 6 + 10 / 5 + 5 � 18 + 2 + 5 � 25
d. 27 % 5 + 7 % 3 � 2 + 1 � 3
e. 100 / 2 / 2 / 2 � 50 / 2 / 2 � 25 / 2 = 12
f. 100 / (2 / 2) / 2 � 100 / 1 / 2 � 100 / 2 = 50

SR 2.26 Expression a is valid. Expression b is invalid because there are two
open parentheses but only one close parenthesis. Similarly with expres-
sion c, where there are two open parentheses but no close parenthesis.
Expression d might be a valid algebraic expression in an algebra book,
but it is not a valid expression in Java. There is no operator between the
operands 2 and (4).

SR 2.27 After the sequence of statements, the value in result is 8.

SR 2.28 After the sequence of statements, the value in result is 8. Note that
even though result was set to base + 3, changing the value of base to
7 does not retroactively change the value of result.

SR 2.29 An assignment operator combines an operation with assignment. For
example, the += operator performs an addition, then stores the value
back into the variable on the left-hand side.

SR 2.30 After executing the statement, weight holds the value 83. The assign-
ment operator −= modifies weight by first subtracting 17 from the cur-
rent value (100), then storing the result back into weight.

2.5 Data Conversion
SR 2.31 A widening conversion tends to go from a small data value, in terms

of the amount of space used to store it, to a larger one. A narrowing
conversion does the opposite. Information is more likely to be lost in a
narrowing conversion, which is why narrowing conversions are consid-
ered to be less safe than widening ones.

SR 2.32 The conversions are: a. widening, b. narrowing, c. widening, d. widening,
e. widening.

APPENDIX N Answers to Self-Review Questions 743

SR 2.33 During the execution of the statement, the value stored in value is read
and transformed into a float as it is being copied into the memory
location represented by result. But the value variable itself is not
changed, so value will remain an int variable after the assignment
statement.

SR 2.34 During the execution of the statement, the value stored in result is read
and then transformed into an int as it is being copied into the memory
location represented by value. But the result variable itself is not
changed, so it remains equal to 27.32, whereas value becomes 27.

SR 2.35 The results stored are

 a. 3 integer division is used since both operands are integers.
 b. 3.0 integer division is used since both operands are integers,

but then assignment conversion converts the result of 3
to 3.0.

 c. 2.4 floating point division is used since one of the operands is
a floating point.

 d. 3.4 num1 is first cast as a double; therefore, floating point divi-
sion is used since one of the operands is a floating point.

 e. 2 val1 is first cast as an int; therefore, integer division is
used since both operands are integers.

2.6 Interactive Programs
SR 2.36 The corresponding lines of the GasMileage program are

a. import java.util.Scanner;
b. Scanner scan = new Scanner (System.in);
c. Scanner scan = new Scanner (System.in);
d. miles = scan.nextInt();

SR 2.37 Under the stated assumptions, the following code will ask users to enter
their age and store their response in value.

 System.out.print ("Enter your age in years: ");
 value = myScanner.nextInt();

2.7 Graphics
SR 2.38 A black and white picture can be drawn using a series of dots, called

pixels. Pixels that correspond to a value of 0 are displayed in white, and
pixels that correspond to a value of 1 are displayed in black. By using

744 APPENDIX N Answers to Self-Review Questions

thousands of pixels, a realistic black and white photo can be produced
on a computer screen.

SR 2.39 The coordinates of the fourth corner are (3, 7), which is the top right
corner.

SR 2.40 We can tell from the given information that the side of the square has
length 3. Therefore, the other two corners are (5, 13) and (8, 13).

SR 2.41 Eight bits per number, three numbers per pixel, and 300 by 200 pixels
gives

8 � 3 � 300 � 200 � 1,440,000 bits

2.8 Applets
SR 2.42 A Java applet is a Java program that can be executed using a Web

browser. Usually, the bytecode form of the Java applet is pulled across
the Internet from another computer and executed locally. A Java appli-
cation is a Java program that can stand on its own. It does not require
a Web browser in order to execute.

SR 2.43 An applet’s paint method is invoked by the system whenever the
applet’s graphic element needs to be displayed (or “painted”) on the
screen. Examples include when the applet first runs or when a window
that was covering the applet’s window is removed.

SR 2.44 The code tag should indicate a bytecode file, such as DrawHouse.class,
and not a source code file. The file indicated by the tag is supposed to
be “ready to run” on a Java interpreter.

2.9 Drawing Shapes
SR 2.45 A bounding rectangle is an imaginary rectangle that surrounds a curved

shape, such as an oval, in order to define the shape’s width, height, and
upper left corner.

SR 2.46 page.drawRect (16, 12, 50, 50);

SR 2.47 page.setColor (Color.blue);
page.fillRect (30, 35, 40, 20);

SR 2.48 The results of the changes are

a. Since the value of MID is added to all the horizontal components of
the snowman figure, the snowman shifts a little bit to the left.

b. Since the value of TOP is added to all the vertical components of
the snowman figure, the snowman shifts upwards a little bit.

c. The hat is now blue.

APPENDIX N Answers to Self-Review Questions 745

d. By changing the start angle of the smile arc to 10, the starting point
is now on the right side of the snowman’s face instead of the left. The
“direction” of the arc is still counterclockwise. Thus, the arc curves
downward instead of upward and the happy snowman is now sad.

e. The upper torso “disappears” since it merges with the background.

Chapter 3 Using Classes and Objects

3.1 Creating Objects
SR 3.1 A null reference is a reference that does not refer to any object. The

reserved word null can be used to check for null references before fol-
lowing them.

SR 3.2 The new operator creates a new instance (an object) of the specified
class. The constructor of the class is then invoked to help set up the
newly created object.

SR 3.3 The following declaration creates a String variable called author and
initializes it:

String author = new String ("Fred Brooks");

For strings, this declaration could have been abbreviated as follows:

String author = "Fred Brooks";

This object reference variable and its value can be depicted as follows:

SR 3.4 To set an integer variable size to the length of a String object called
name, you code:

size = name.length();

SR 3.5 Two references are aliases of each other if they refer to the same object.
Changing the state of the object through one reference changes it for the
other because there is actually only one object. An object is marked for
garbage collection only when there are no valid references to it.

3.2 The String Class
SR 3.6 Strings are immutable. The only way to change the value of a String

variable is to reassign it a new object. Therefore, the variables changed
by the statements are: a. none, b. s1, c. none, d. s3.

author "Fred Brooks"

746 APPENDIX N Answers to Self-Review Questions

SR 3.7 The output produced is:

o
Found
11
5

SR 3.8 The following statement prints the value of a String object in all upper-
case letters:
System.out.println (title.toUpperCase());

SR 3.9 The following declaration creates a String object and sets it equal to
the first 10 characters of the String description;
String front = description.substring(0, 10);

3.3 Packages
SR 3.10 A Java package is a collection of related classes. The Java standard

class library is a group of packages that support common programming
tasks.

SR 3.11 Each package contains a set of classes that support particular program-
ming activities. The classes in the java.net package support network
communication and the classes in the javax.swing class support the
development of graphical user interfaces.

SR 3.12 The Scanner class and the Random class are part of the java.util package.
The String and Math classes are part of the java.lang package.

SR 3.13 The Point class, according to the online Java API documentation, rep-
resents a location with coordinates (x, y) in two-dimensional space.

SR 3.14 An import statement establishes the fact that a program uses a particu-
lar class, specifying what package that class is a part of. This allows the
programmer to use the class name (such as Random) without having to
fully qualify the reference (such as java.util.Random) every time.

SR 3.15 The String class is part of the java.lang package, which is automati-
cally imported into any Java program. Therefore, no separate import
declaration is needed.

3.4 The Random Class
SR 3.16 A call to the nextInt method of a Random object returns a random inte-

ger in the range of all possible int values, both positive and negative.

APPENDIX N Answers to Self-Review Questions 747

SR 3.17 Passing a positive integer parameter x to the nextInt method of a
Random object returns a random number in the range of 0 to x−1. So a
call to nextInt(20) will return a random number in the range 0 to 19,
inclusive.

SR 3.18 The ranges of the expressions are:

a. From 0 to 49 b. From 10 to 14 c. From 5 to 14
d. From -25 to 24

SR 3.19 The expressions to generate the given ranges are:

a. generator.nextInt (31); // range is 0 to 30
b. generator.nextInt (10) + 10; // range is 10 to 19
c. generator.nextInt (11) - 5; // range is -5 to 5

3.5 The Math Class
SR 3.20 A class or static method can be invoked through the name of the class

that contains it, such as Math.abs. If a method is not static, it can be
executed only through an instance (an object) of the class.

SR 3.21 The values of the expressions are:

a. 20 b. 16.0 c. 16.0 d. 243.0 e. 125.0 f. 4.0

SR 3.22 The following statement prints the sine of an angle measuring 1.23
radians:
System.out.println (Math.sin(1.23));

SR 3.23 The following declaration creates a double variable and initializes it to
5 raised to the power 2.5:
double result = Math.pow(5, 2.5);

SR 3.24 Examples of methods that are not listed in Figure 3.5 include:

static int min(int a, int b)
static float max(long a, long b)
static long round(double a)

3.6 Formatting Output
SR 3.25 To obtain a NumberFormat object for use within a program, you request

an object using one of the static methods provided by the NumberFormat
class. The method you invoke depends upon your intended use of the

748 APPENDIX N Answers to Self-Review Questions

object. For example, if you intend to use it for formatting percentages,
you might code:
NumberFormat fmt = NumberFormat.getPercentInstance();

SR 3.26 a. The statement is:
 NumberFormat moneyFormat = NumberFormat.getCurrencyInstance();

Do not forget, you also must import java.text.NumberFormat into
your program.

b. The statement is:
 System.out.println(moneyFormat.format(cost));

c. If the locale is the United States, the output will be $54.89. If the
locale is the United Kingdom, the output will be £54.89.

SR 3.27 To output a floating point value as a percentage, you first obtain a
NumberFormat object using a call to the static method getPercentage-
Instance of the NumberFormat class. Then, you pass the value to be
formatted to the format method of the formatter object, which returns
a properly formatted string. For example:
NumberFormat fmt = NumberFormat.getPercentageInstance();

System.out.println (fmt.format(value));

SR 3.28 The following code will prompt for and read in a double value from the
user and then print the result of taking the square root of the absolute
value of the input value to two decimal places:

Scanner scan = new Scanner (System.in);
DecimalFormat fmt = new DecimalFormat("0.00");
double value, result;
System.out.print ("Enter a double value: ");
value = scan.nextDouble();
result = Math.sqrt(Math.abs(value));
System.out.println (fmt.format(result));

3.7 Enumerated Types
SR 3.29 The following is a declaration of an enumerated type for movie ratings:

enum Ratings {G, PG, PG13, R, NC17}

SR 3.30 Under the listed assumptions, the output is:

clubs
hearts
0
2

APPENDIX N Answers to Self-Review Questions 749

SR 3.31 By using an enumerated type, you guarantee that variables of that type
will only take on the enumerated values.

3.8 Wrapper Classes
SR 3.32 A wrapper class is defined in the Java standard class library for each

primitive type. In situations where objects are called for, an object cre-
ated from a wrapper class may suffice.

SR 3.33 The corresponding wrapper classes are Byte, Integer, Double,
Character, and Boolean.

SR 3.34 One approach is to use the constructor of Integer, as follows:

holdNumber = new Integer(number);

Another approach is to take advantage of autoboxing, as follows:

holdNumber = number;

SR 3.35 The following statement uses the MAX_VALUE constant of the Integer
class to print the largest possible int value:

System.out.println (Integer.MAX_VALUE);

3.9 Components and Containers
SR 3.36 Both a frame and a panel are containers that can hold GUI elements.

However, a frame is displayed as a separate window with a title bar,
whereas a panel cannot be displayed on its own. A panel is often dis-
played inside a frame.

SR 3.37 The term that best matches is

a. container b. frame c. panel d. heavyweight
e. lightweight f. content pane g. label h. layout manager

SR 3.38 If you resize the frame by dragging the bottom right corner toward the
right, the saying changes from being spread across two lines to being on
one line. This happens because no special instructions were included to
describe the layout of the container, in which case components of a panel
arrange themselves next to each other if the size of the panel allows.

SR 3.39 The best description is “Labels are added to a panel, which is added to
a content pane of a frame.”

SR 3.40 The results of the changes are

a. Due to the new dimensions the panel is larger and square.

750 APPENDIX N Answers to Self-Review Questions

b. The saying is not visible. You just see a black panel because the
saying, which is written in black, blends in with the background.

c. There is no change.
d. Since the labels are added in the opposite order, the saying is “back-

wards”—that is, it reads “but raise your hand first.” followed by
“Question authority.”

3.10 Nested Panels
SR 3.41 The containment hierarchy of a graphical user interface identifies the

nesting of elements within the GUI. For example, in a particular GUI,
suppose some labels and buttons are contained within a panel that is
contained within another panel that is contained within a frame. The
containment hierarchy can be represented as a tree that indicates how
all the elements of a GUI are nested within each other.

SR 3.42 In the NestedPanels program, there are three panels created: sub-
Panel1, subPanel2, and primary.

SR 3.43 In the NestedPanels program, subPanel1 and subPanel2 are added to
the primary panel. The primary panel is explicitly added to the content
pane of the frame.

3.11 Images
SR 3.44 One frame, one panel, one image icon, and three labels are declared in

the LabelDemo program.

SR 3.45 In the label instantiation statement from the LabelDemo program:
label2 = new JLabel ("Devil Right", icon, SwingConstants.CENTER);

the first parameter defines the text, the second parameter provides the
image, and the third parameter indicates the horizontal alignment of the
label.

SR 3.46 The results of the changes are:

a. Changing the horizontal alignment of the labels has no visual
effect. The horizontal alignment describes only how text and icons
are aligned within a label. Since a label’s area is typically exactly
the size needed to display the label, label alignment within that
area is irrelevant.

b. The change in the text position results in the text “Devil Right”
appearing to the right of the second image, instead of to its left.

APPENDIX N Answers to Self-Review Questions 751

c. The change in the text position results in a run-time error—
“Bottom” is not a valid argument for the setHorizontalTextPo-
sition method.

d. Since you changed the vertical position of the text within the label,
the text “Devil Above” appears directly on the third image.

Chapter 4 Writing Classes

4.1 Classes and Objects Revisited
SR 4.1 An attribute is a data value stored in an object and defines a par-

ticular characteristic of that object. For example, one attribute of a
Student object might be that student’s current grade point average.
Collectively, the values of an object’s attributes determine that object’s
current state.

SR 4.2 An operation is a function that can be done to or done by an object. For
example, one operation of a Student object might be to compute that
student’s current grade point average. Collectively, an object’s opera-
tions are referred to as the object’s behaviors.

SR 4.3 Some attributes and operations that might be defined for a class called
Book that represents a book in a library are:

Attributes Operations

idNumber checkOut
onShelfStatus checkIn
readingLevel isAvailable
dueDate placeOnHold

 setStatus

SR 4.4 The answers are:

a. False – Identifying classes to help us solve a problem is a key step
in object-oriented programming. In addition to identifying classes
that already exist, we also identify, design, and implement new
classes, as needed.

b. True – We call such operations mutators.
c. True – The result of many operations depends on the current state

of the object on which they are operating.
d. False – In Java, the state of an object is represented by its instance

data.

752 APPENDIX N Answers to Self-Review Questions

4.2 Anatomy of a Class
SR 4.5 A class is the blueprint of an object. It defines the variables and methods

that will be a part of every object that is instantiated from it. But a class
reserves no memory space for variables. Each object has its own data
space and, therefore, its own state.

SR 4.6 The instance data of the Die class are MAX, an integer constant equal to
6 that represents the number of faces on the die and therefore the maxi-
mum value of the die, and faceValue, an integer variable that represents
the current “up” or face value of the die.

SR 4.7 The methods defined for the Die class that can change the state of a Die
object are roll and setFaceValue.

SR 4.8 When you pass an object to a print or println method, the toString
method of the object is called automatically to obtain a string descrip-
tion of the object. If no toString method is defined for the object, then
a default string is used. Therefore, it is usually a good idea to define a
toString method when defining classes.

SR 4.9 The scope of a variable is the area within a program in which the vari-
able can be referenced. An instance variable, declared at the class level,
can be referenced in any method of the class. Local variables, including
the formal parameters, declared within a particular method, can be ref-
erenced only in that method.

SR 4.10 A UML diagram helps us visualize the entities (classes and objects)
in a program as well as the relationships among them. UML dia-
grams are tools that help us capture the design of a program prior
to writing it.

4.3 Encapsulation
SR 4.11 A self-governing object is one that controls the values of its own data.

Encapsulated objects, which don’t allow an external client to reach in
and change its data, are self-governing.

SR 4.12 An object’s interface is the set of public operations (methods) defined
on it. That is, the interface establishes the set of services the object will
perform for the rest of the system.

SR 4.13 A modifier is a Java reserved word that can be used in the definition of
a variable or method and that specifically defines certain characteristics
of its use. For example, by declaring a variable with private visibility,
the variable cannot be directly accessed outside of the object in which it
is defined.

APPENDIX N Answers to Self-Review Questions 753

SR 4.14 A constant might be declared with public visibility, because that would
not violate encapsulation. Because the value of a constant cannot be
changed, it is not generally a problem for another object to access it
directly.

SR 4.15 The modifiers affect the methods and variables in the following ways:

a. A public method is called a service method for an object because
it defines a service that the object provides.

b. A private method is called a support method because it cannot be
invoked from outside the object and is used to support the activi-
ties of other methods in the class.

c. A public variable is a variable that can be directly accessed and
modified by a client. This explicitly violates the principle of encap-
sulation and therefore should be avoided.

d. A private variable is a variable that can be accessed and modified
only from within the class. Variables almost always are declared
with private visibility.

4.4 Anatomy of a Method
SR 4.16 Although a method is defined in a class, it is invoked through a particu-

lar object to indicate which object of that class is being affected. For
example, the Student class may define the operation that computes the
grade point average (GPA) of a student, but the operation is invoked
through a particular Student object to compute the GPA for that stu-
dent. The exception to this rule is the invocation of a static method
(see Chapter 3), which is executed through the class name and does not
affect any particular object.

SR 4.17 An invoked method may return a value, which means it computes a
value and provides that value to the calling method. The calling method
usually uses the invocation and thus its return value, as part of a larger
expression.

SR 4.18 An explicit return statement is used to specify the value that is returned
from a method. The type of the return value must match the return type
specified in the method definition.

SR 4.19 A return statement is required in methods that have a return type other
than void. A method that does not return a value could use a return
statement without an expression, but it is not necessary. Only one
return statement should be used in a method.

SR 4.20 An actual parameter is a value sent to a method when it is invoked.
A formal parameter is the corresponding variable in the header of the

754 APPENDIX N Answers to Self-Review Questions

method declaration; it takes on the value of the actual parameter so that
it can be used inside the method.

SR 4.21 The following code implements the requested getFaceDown method.:

 //---
 // Face down value accessor.
 //---

public int getFaceDown()
 {

return (MAX + 1) - faceValue;
 }

SR 4.22 In the Transactions program

a. Three Account objects are created.
b. Two arguments (actual parameters) are passed to the withdraw

method when it is invoked on the acct2 object.
c. No arguments (actual parameters) are passed to the addInterest

method when it is invoked on the acct3 object.

SR 4.23 The method getBalance is a classic accessor method. One can also classify
the toString method as an accessor, since it returns information about the
object. The deposit, withdraw, and addInterest methods all provide both
mutator and accessor capabilities, because they can be used to change the
account balance and also return the value of the balance after the change
is made. All of the methods mentioned above are service methods––they all
have public visibility and provide a service to the client.

4.5 Constructors Revisited
SR 4.24 Constructors are special methods in an object that are used to initialize

the object when it is instantiated.

SR 4.25 A constructor has the same name as its class, and it does not return a
value.

4.6 Graphical Objects
SR 4.26 The “content” of the panel created in the SmilingFace program is

defined in the SmilingFacePanel class.

SR 4.27 In the SmilingFace program, the paintComponent method of the panel
object is invoked automatically when the panel object SmilingFacePanel
is instantiated.

APPENDIX N Answers to Self-Review Questions 755

SR 4.28 There are many ways to add a pair of eyeglasses to the smiling face. The
following code, inserted after the code that draws the nose and mouth,
is one approach.

page.drawOval (BASEX+17, BASEY+23, 21, 21); // glasses
page.drawOval (BASEX+42, BASEY+23, 21, 21);
page.drawLine (BASEX+3, BASEY+27, BASEX+17, BASEY+27);
page.drawLine (BASEX+62, BASEY+27, BASEX+76, BASEY+27);
page.drawLine (BASEX+39, BASEY+29, BASEX+42, BASEY+29);

SR 4.29 The following code implements the requested constructor:

 //---
 // Constructor: Sets up this circle with the
 // specified values.
 //---

public Circle (Color shade, int upperX, int upperY)
 {
 diameter = (int) (Math.random() * 180) + 20;
 color = shade;
 x = upperX;
 y = upperY;
 }

It might be better to define and use constants of 180 and 20 in the
Circle class, or perhaps pass those values to the constructor from the
client as arguments.

4.7 Graphical User Interfaces
SR 4.30 Events usually represent user actions. A listener object is set up

to listen for a certain event to be generated from a particular
component.

SR 4.31 No, we cannot add any listener to any component. Each component
generates a certain set of events, and only listeners of those types can be
added to the component.

4.8 Buttons
SR 4.32 A JButton object generates an action event when the button is pushed.

When that occurs, the actionPerformed method of the action listener
associated with that button is invoked.

SR 4.33 To change the PushCounterPanel class so that instead of displaying a
count of how many times the button was pushed it displays a count

756 APPENDIX N Answers to Self-Review Questions

“trail,” you can define a new instance variable of the PushCounterPanel
class as follows:

private String display = "0";

Then change the code in the actionPerformed method to be:
 count++;
 display = display + count;
 label.setText("Pushes: " + display);

4.9 Text Fields
SR 4.34 In the Fahrenheit program, when a user types a number into the text

box of the interface and presses the Enter (or Return) key, the text
field component generates an action event. The TempListener class
that is listening for that event reacts by getting the text from the text
box, transforming the text into an integer that represents the given
Fahrenheit temperature, calculating the corresponding Celsius tempera-
ture and saving it to the resultLabel. The contents of the resultLabel
then appear on the screen.

SR 4.35 To make the change to the FahrenheitPanel class, first remove the
outputLabel from the class since it is no longer needed. Then, change
the code that sets the result label to:

 String hold = text + " degrees Fahrenheit = ";

 hold += celsiusTemp + " degrees Celsius";

 resultLabel.setText (hold);

Chapter 5 Conditionals and Loops

5.1 Boolean Expressions
SR 5.1 The flow of control through a program determines the program state-

ments that will be executed on a given run of the program.

SR 5.2 Each conditional and loop is based on a boolean condition that evalu-
ates to either true or false.

SR 5.3 The equality operators are equal (==) and not equal (!=). The relational
operators are less than (<), less than or equal to (<=), greater than (>),
and greater than or equal to (>=). The logical operators are not (!), and
(&&) and or (||).

APPENDIX N Answers to Self-Review Questions 757

SR 5.4 Assuming the given declarations, the values are: a. true, b. true,
c. false, d. true, e. true, f. true, g. true, h. false, i. true, j. true

SR 5.5 A truth table is a table that shows all possible results of a boolean expres-
sion, given all possible combinations of variables and conditions.

SR 5.6 The truth table is:

c1 c2 !c1 !c2 c1 && !c2 !c1 && c2
c1 && !c2 ||
!c1 && c2

true true false false false false false

true false false true true false true

false true true false false true true

false false true true false false false

SR 5.7 The truth table is:

5.2 The if Statement
SR 5.8 Based on the given assumptions, the output would be:

a. red white yellow
b. blue yellow
c. blue yellow

SR 5.9 A block statement groups several statements together. We use them to
define the body of an if statement or loop when we want to do multiple
things based on the boolean condition.

SR 5.10 A nested if occurs when the statement inside an if or else clause is
an if statement. A nested if lets the programmer make a series of deci-
sions. Similarly, a nested loop is a loop within a loop.

value > 0 done !done
(value > 0)
|| !done

true true false true

true false true true

false true false false

false false true true

758 APPENDIX N Answers to Self-Review Questions

SR 5.11 Based on the given assumptions, the output would be:

a. red orange white yellow
b. black blue green
c. yellow green

SR 5.12 if (temperature <= 50)

{
 System.out.println ("It is cool.");
 System.out.println ("Dress warmly.");
}
else
 if (temperature > 80)
 {
 System.out.println ("It is warm.");
 System.out.println ("Dress cooly.");
 }
 else
 {
 System.out.println ("It is pleasant.");
 System.out.println ("Dress pleasantly.");
 }

5.3 Comparing Data
SR 5.13 Because they are stored internally as binary numbers, comparing float-

ing point values for exact equality will be true only if they are the same
bit-by-bit. It’s better to use a reasonable tolerance value and consider
the difference between the two values.

SR 5.14 We compare strings for equality using the equals method of the String
class, which returns a boolean result. The compareTo method of the String
class can also be used to compare strings. It returns a positive, 0, or nega-
tive integer result depending on the relationship between the two strings.

SR 5.15 //--

// Returns true if this Die equals die, otherwise
// returns false.
//--
public boolean equals(Die die)
{

return (this.faceValue == die.faceValue);
}

SR 5.16 if (s1.compareTo(s2) < 0)

 System.out.println (s1 + "\n" + s2);
else
 System.out.println (s2 + "\n" + s1);

APPENDIX N Answers to Self-Review Questions 759

5.4 The while Statement
SR 5.17 An infinite loop is a repetition statement that never terminates. Specifically,

the body of the loop never causes the condition to become false.

SR 5.18 The output is the integers 0 through 9, printed one integer per line.

SR 5.19 The loop is not entered, so there is no output.

SR 5.20 Since the value of high always remains larger than the value of low,
the code loops continuously, producing many lines of zeros, until the
program is terminated.

SR 5.21 The output is:

0 1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10
2 3 4 5 6 7 8 9 10
3 4 5 6 7 8 9 10
4 5 6 7 8 9 10
5 6 7 8 9 10
6 7 8 9 10
7 8 9 10
8 9 10
9 10
10

SR 5.22 int count = 1;
System.out.print ("divisors of " + value + ":");
while (count <= value)
{

if ((value % count) == 0)
 System.out.print(" " + count);
 count++;
}

SR 5.23 int count1 = 1, count2;

while (count1 <= value)
{
 System.out.print ("divisors of " + count1 + ":");
 count2 = 1;

while (count2 <= count1)
 {

if ((count1 % count2) == 0)
 System.out.print(" " + count2);
 count2++;
 }
 System.out.println ();
 count1++;
}

760 APPENDIX N Answers to Self-Review Questions

5.5 Iterators
SR 5.24 a. Scanner user = new Scanner (System.in);

b. Scanner infoFileScan = new Scanner (new
File("info.dat"));

c. Scanner infoStringScan = new Scanner (infoString);

SR 5.25 The following code prints out the average number of characters per
line:

int numChars = 0;
int numLines = 0;
String holdLine;

// Read and process each line of the file
while (fileScan.hasNext())
{
 numLines++;
 holdLine = fileScan.nextLine();
 numChars += holdLine.length();
}
System.out.println ((double)numChars/numLines);

5.6 The ArrayList Class
SR 5.26 An ArrayList stores and manages multiple objects at one time. It allows

you to access the objects by a numeric index and keeps the indexes of
its objects continuous as they are added and removed. An ArrayList
dynamically increases its capacity as needed.

SR 5.27 An ArrayList generally holds references to the Object class, which
means that it can hold any type of object at all (this is discussed
further in Chapter 8). A specific type of element can and should be
specified in the ArrayList declaration to restrict the type of objects
that can be added and eliminate the need to cast the type when
extracted.

SR 5.28 ArrayList<Die> dice = new ArrayList<Die>();

SR 5.29 [Andy, Don, Betty]

APPENDIX N Answers to Self-Review Questions 761

Chapter 6 More Conditionals and Loops

6.1 The switch Statement
SR 6.1 When a Java program is running, if the expression evaluated for a

switch statement does not match any of the case values associated
with the statement, execution continues with the default case. If no
default case exists, processing continues with the statement following
the switch statement.

SR 6.2 If a case does not end with a break statement, processing continues into
the statements of the next case. We usually want to use break state-
ments in order to jump to the end of the switch.

SR 6.3 If the user enters 72, the output is: That grade is average. If the user
enters 46, the output is: That grade is not passing. If the user enters
123, the output is: That grade is not passing.

SR 6.4 An equivalent switch statement is:
switch (num1)
{

case 5:
 myChar = 'W';

break;
case 6:

 myChar = 'X';
break;

case 7:
 myChar = 'Y';

break;
default:

 myChar = 'Z';
}

6.2 The Conditional Operator
SR 6.5 The conditional operator is a trinary operator that evaluates a condition

and produces one of two possible results. A conditional statement, such as
the if and switch statements, is a category of statements that allow condi-
tions to be evaluated and the appropriate statements executed as a result.

762 APPENDIX N Answers to Self-Review Questions

SR 6.6 char id = (first) ? 'A' : 'B';

SR 6.7 System.out.println ("The value is " + ((val <= 10) ? "not" :
"") + "greater than 10.");

6.3 The do Statement
SR 6.8 A while loop evaluates the condition first. If it is true, it executes the

loop body. The do loop executes the body first and then evaluates the
condition. Therefore, the body of a while loop is executed zero or more
times, and the body of a do loop is executed one or more times.

SR 6.9 The output is the integers 0 through 9, printed one integer per line.

SR 6.10 The code contains an infinite loop. The numbers 10, 11, 12, and so on
will be printed until the program is terminated or until the number gets
too large to be held by the int variable low.

SR 6.11 Scanner scan = new Scanner (System.in);
int num, sum = 0;
do
{
 System.out.print ("enter next number (0 to quit) > ");
 num = scan.nextInt ();
 sum += num;
} while (num != 0);
System.out.println (sum);

6.4 The for Statement
SR 6.12 A for loop is usually used when we know, or can calculate, how many

times we want to iterate through the loop body. A while loop handles
a more generic situation.

SR 6.13 The output is: 100

SR 6.14 The output is: 60

SR 6.15 The output is:
 *

APPENDIX N Answers to Self-Review Questions 763

SR 6.16 final int NUMROLLS = 100;

int sum = 0;
for (int i = 1; i <= NUMROLLS; i++)
{
 sum += die.roll();
}
System.out.println((double)sum/NUMROLLS);

Chapter 7 Object-Oriented Design

7.1 Software Development Activities
SR 7.1 The four basic activities in software development are requirements

analysis (deciding what the program should do), design (deciding how
to do it), implementation (writing the solution in source code), and test-
ing (validating the implementation).

SR 7.2 Typically the client provides an initial set of requirements or a descrip-
tion of a problem they would like to have solved. It is the responsibil-
ity of the software developer to work with the client to make sure the
requirements or problem statement is correct and unambiguous.

SR 7.3 Software development is a problem-solving activity. Therefore, it is not
surprising that the four basic development activities presented in this
section are essentially the same as the five general problem-solving steps
presented in Section 1.6. “Establishing the requirements” directly cor-
responds to “understanding the problem.” “Designing a solution” and
“considering alternative designs” taken together correspond to “creating
a design”––in the case of software, the design is the solution. Finally, in
both approaches we include “implementation” and “testing” stages.

7.2 Identifying Classes and Objects
SR 7.4 Identifying the nouns in a problem specification can help you identify

potential classes to use when developing an object-oriented solution to
a problem. The nouns in the specification often correspond to objects
that should be represented in the solution.

SR 7.5 It is not crucial to identify and define all the methods that a class will
contain during the early stages of problem solution design. It is often
sufficient to just identify those methods that provide the primary
responsibilities of the class. Additional methods can be added to a class
as needed, when you evolve and add detail to your design.

764 APPENDIX N Answers to Self-Review Questions

7.3 Static Class Members
SR 7.6 Memory space for an instance variable is created for each object that is

instantiated from a class. A static variable is shared among all objects
of a class.

SR 7.7 Assuming you decide to use the identifier totalBalance, the declaration is:

private static int totalBalance = 0;

SR 7.8 Assuming that the minimum required is 100 and you decide to use the
identifier MIN_BALANCE, the declaration is:

public static final int MIN_BALANCE = 100;

SR 7.9 The main method of any program is static, and can refer only to static
or local variables. Therefore, a main method could not refer to instance
variables declared at the class level.

7.4 Class Relationships
SR 7.10 A dependency relationship between two classes occurs when one class

relies on the functionality of the other. It is often referred to as a “uses”
relationship.

SR 7.11 A method executed through an object might take as a parameter
another object created from the same class. For example, the concat
method of the String class is executed through one String object and
takes another String object as a parameter.

SR 7.12 An aggregate object is an object that has other objects as instance data.
That is, an aggregate object is one that is made up of other objects.

SR 7.13 The this reference always refers to the currently executing object. A
non-static method of a class is written generically for all objects of the
class, but it is invoked through a particular object. The this reference,
therefore, refers to the object through which that method is currently
being executed.

7.5 Interfaces
SR 7.14 A class can be instantiated; an interface cannot. An interface contains a

set of abstract methods for which a class provides the implementation.

SR 7.15
public interface Nameable

{
public void setName (String name);
public String getName();

}

APPENDIX N Answers to Self-Review Questions 765

SR 7.16 a. False – An interface can also include constants.

b. True – There is no body of code defined for an abstract method.
c. True – An interface is a collection of constants and abstract methods.
d. False – Although the class must define the methods that are included

in the interface, the class can also define additional methods.
e. True – As long as each of the implementing classes provides the

required methods.
f. True – As long as the class provides the required methods for each

interface it implements.
g. False – Although the signatures of the methods must be the same,

the implementations of the methods can be different.

7.6 Enumerated Types Revisited
SR 7.17 Using the enumerated type Season as defined in this section, the out-

put is
winter
summer
0
June through August

7.7 Method Design
SR 7.18 Method decomposition is the process of dividing a complex method

into several support methods to get the job done. This simplifies and
facilitates the design of the program.

SR 7.19 Based on the PigLatinTranslator class:

a. The service provided by the class, namely to translate a string into
Pig Latin, is accessed through a static method. Therefore, there is
no need to create an object of the class. It follows that there is no
need for a constructor.

b. The methods defined as private methods do not provide services
directly to clients of the class. Instead, they are used to support the
public method translate.

c. The Scanner object declared in the translate method is used to scan
the string sentence, which is passed to the method by the client.

SR 7.20 The sequence of calls is:

a. translate – translateWord - beginsWithVowel
b. translate – translateWord - beginsWithVowel -

beginsWithBlend

766 APPENDIX N Answers to Self-Review Questions

c. translate – translateWord – beginsWithVowel–beginsWithBl
end – translateWord – beginsWithVowel – translateWord
– beginsWithVowel – beginsWithBlend – translateWord –
beginsWithVowel - beginsWithBlend

SR 7.21 Objects are passed to methods by copying the reference to the object
(its address). Therefore, the actual and formal parameters of a method
become aliases of each other.

7.8 Method Overloading
SR 7.22 Overloaded methods are distinguished by having a unique signature,

which includes the number, order, and type of the parameters. The
return type is not part of the signature.

SR 7.23 a. They are distinct.
b. They are not distinct. The return type of a method is not part of

its signature.
c. They are not distinct. The names of a method’s parameters are not

part of its signature.
d. They are distinct.

SR 7.24 //--
// Sets up the new Num object, storing a default value
// of 0.
//--
public Num ()
{
 value = 0;
}

7.9 Testing
SR 7.25 The word that best matches is

a. regression b. review c. walkthrough d. defects
e. test case f. test suite g. black-box h. white-box

7.10 GUI Design
SR 7.26 The general guidelines for GUI design include: know the needs and

characteristics of the user, prevent user errors when possible, opti-
mize user abilities by providing shortcuts and other redundant means

APPENDIX N Answers to Self-Review Questions 767

to accomplish a task, and be consistent in GUI layout and coloring
schemes.

SR 7.27 A good user interface design is very important because to the user, the
interface is the program. Since it is the only way the user interacts with
the program, in the user’s mind the interface represents the entire pro-
gram.

7.11 Layout Managers
SR 7.28 A layout manager is consulted whenever the visual appearance of its

components might be affected, such as when the container is resized or
when a new component is added to the container.

SR 7.29 Flow layout attempts to put as many components on a row as possible.
Multiple rows are created as needed.

SR 7.30 Border layout is divided into five areas: North, South, East, West, and
Center. The North and South areas are at the top and bottom of the
container, respectively, and span the entire width of the container.
Sandwiched between them, from left to right, are the West, Center, and
East areas. Any unused area takes up no space, and the others fill in as
needed.

SR 7.31 A glue component in a box layout dictates where any extra space in the
layout should go. It expands as necessary, but takes up no space if there
is no extra space to distribute.

7.12 Borders
SR 7.32 The BorderFactory class contains several methods used to create bor-

ders that can be applied to components.

SR 7.33 The border types presented in this section are: empty—buffering space
only, line—a simple line, etched—etched groove, bevel—component
appears raised or sunken, titled—text title, matte—edges may have
separate sizes, and compound—a combination of two borders.

7.13 Containment Hierarchies
SR 7.34 The containment hierarchy for a GUI is the set of nested containers and

the other components they contain. The containment hierarchy can be
described as a tree.

768 APPENDIX N Answers to Self-Review Questions

SR 7.35 The containment hierarchy tree for the LeftRight application GUI pre-
sented in Chapter 5 is:

Chapter 8 Arrays

8.1 Array Elements
SR 8.1 An array is an object that stores a list of values. The entire list can be

referenced by its name, and each element in the list can be referenced
individually based on its position in the array.

SR 8.2 Each element in an array can be referenced by its numeric position,
called an index, in the array. In Java, all array indexes begin at zero.
Square brackets are used to specify the index. For example, nums[5]
refers to the sixth element in the array called nums.

SR 8.3 a. 61, b. 139, c. 73, d. 79, e. 74, f. 11

8.2 Declaring and Using Arrays
SR 8.4 An array’s element type is the type of values that the array can hold.

All values in a particular array have the same type, or are at least of
compatible types. So we might have an array of integers, or an array of
boolean values, or an array of Dog objects, etc.

SR 8.5 Arrays are objects. Therefore, as with all objects, to create an array we
first create a reference to the array (its name). We then instantiate the
array itself, which reserves memory space to store the array elements.
The only difference between a regular object instantiation and an array
instantiation is the bracket syntax.

SR 8.6 int[] ages = new int[100];

SR 8.7 int[] faceCounts = new int[6];

JFrame

JPanel

JButton JButton

JPanel JPanel

APPENDIX N Answers to Self-Review Questions 769

SR 8.8 Whenever a reference is made to a particular array element, the
index operator (the brackets that enclose the subscript) ensures
that the value of the index is greater than or equal to zero and less
than the size of the array. If it is not within the valid range, an
ArrayIndexOutOfBoundsException is thrown.

SR 8.9 An off-by-one error occurs when a program’s logic exceeds the boundary
of an array (or similar structure) by one. These errors include forgetting to
process a boundary element as well as attempting to process a nonexistent
element. Array processing is susceptible to off-by-one errors because their
indexes begin at zero and run to one less than the size of the array.

SR 8.10 for (int index = 0; index < values.length; index++)

{
 values[index]++;
}

SR 8.11 int sum = 0;

for (int index = 0; index < values.length; index++)
{
 sum += values[index];
}
System.out.println(sum);

SR 8.12 An array initializer list is used in the declaration of an array to set up
the initial values of its elements. An initializer list instantiates the array
object, so the new operator is not needed.

SR 8.13 An entire array can be passed as a parameter. Specifically, because an
array is an object, a reference to the array is passed to the method.
Any changes made to the array elements will be reflected outside of the
method.

8.3 Arrays of Objects
SR 8.14 An array of objects is really an array of object references. The array

itself must be instantiated, and the objects that are stored in the array
must be created separately.

SR 8.15 a. String[] team = new String[6];

b. String[] team = {"Amanda", "Clare", "Emily", "Julie",
 "Katie", "Maria"};

SR 8.16 a. Book[] library = new Book[10];

b. library[0] = new Book("Starship Troopers", 208);

770 APPENDIX N Answers to Self-Review Questions

8.4 Command-Line Arguments
SR 8.17 A command-line argument is data that is included on the command line

when the interpreter is invoked to execute the program. Command-line
arguments are another way to provide input to a program. They are
accessed using the array of strings that is passed into the main method
as a parameter.

SR 8.18 //--
// Prints the sum of the string lengths of the first
// two command line arguments.
//--
public static void main (String[] args)
{
 System.out.println (args[0].length() +
 args[1].length());
}

SR 8.19 //--
// Prints the sum of the first two command line
// arguments, assuming they are integers.
//--
public static void main (String[] args)
{
 System.out.println (Integer.parseInt(args[0])
 + Integer.parseInt(args[1]));
}

8.5 Variable Length Parameter Lists
SR 8.20 A Java method can be defined to accept a variable number of param-

eters by using ellipses (...) in the formal parameter list. When a set of
values is passed to the method, they are automatically converted to an
array. This allows the method to be written in terms of array processing
without forcing the calling method to create the array.

SR 8.21 public int distance (int ... legs)

{
int sum = 0;
for (int leg : legs)

 {
 sum += leg;
 }

return sum;
}

SR 8.22 double travelTime (int speed, int ... legs)

{
int sum = 0;

APPENDIX N Answers to Self-Review Questions 771

for (int leg : legs)
 {

 sum += leg;
 }

return (double)sum/speed;
}

8.6 Two-Dimensional Arrays
SR 8.23 A multidimensional array is implemented in Java as an array of array

objects. The arrays that are elements of the outer array could also con-
tain arrays as elements. This nesting process could continue for as many
levels as needed.

SR 8.24 int high = scores[0][0];

int low = high;
for (int row = 0; row < scores.length; row++)

for (int col = 0; col < scores[row].length; col++)
 {

if (scores[row][col] < low)
 low = scores[row][col];

if (scores[row][col] > high)
 high = scores[row][col];
 }
System.out.println (high − low);

8.7 Polygons and Polylines
SR 8.25 A polyline is defined by a series of points that represent its vertices. The

drawPolyline method takes three parameters to specify its shape. The
first is an array of integers that represent the x coordinates of the points.
The second is an array of integers that represent the y coordinates of the
points. The third parameter is a single integer that indicates the number
of points to be used from the arrays.

SR 8.26 A polygon is always closed, whereas a polyline may be open. The first
and last coordinates of a polygon are automatically connected; that is
not the case for polylines.

SR 8.27 The results of the changes are:

a. The flame below the rocket is now solid red, because a polygon is
always closed and we specified it to be filled in.

b. The rocket ship’s window disappears, because only the first two
points are used to draw the polygon, which results in an “invis-
ible” line being drawn instead of the window.

772 APPENDIX N Answers to Self-Review Questions

c. The rocket ship and flames now appear sideways (i.e., horizontal),
because exchanging the x and y coordinates of all of the points
reflects the drawing across the line x = y.

d. The rocket ship and flames are framed by a yellow diamond;
because the yellow polygon is drawn first, everything else is visible
on top of it.

e. Almost all of the picture is hidden by the yellow polygon; because
the yellow polygon is drawn last, it hides the other components of
the drawing that fall within its coordinates.

8.8 Mouse Events
SR 8.28 A mouse event is an event generated when the user manipulates the

mouse in various ways. There are several types of mouse events that
may be of interest in a particular situation, including the mouse being
moved, a mouse button being pressed, the mouse entering a particular
component, and the mouse being dragged.

SR 8.29 The sequence of events is mouse pressed, mouse released, and mouse
clicked.

SR 8.30 The sequence of events is mouse pressed, mouse exited, and mouse
clicked. There are also a series of mouse motion events generated.

SR 8.31 The mouse event responded to in the Dots program is mouse pressed.
The mouse events responded to in the RubberLines program are mouse
pressed and mouse dragged.

SR 8.32 Some possible responses are: highlight a game square when a mouse
enters its space, if it represents a legal move; place an X (or an O) in a
game square if the user clicks on it at the appropriate time; allow the
user to drag an X (or an O) to a square.

8.9 Key Events
SR 8.33 A key event is generated when a keyboard key is pressed, which allows

a listening program to respond immediately to the user input. The object
representing the event holds a code that specifies which key was pressed.

SR 8.34 a. keyPressed
b. keyTyped, keyReleased
c. VK_UP
d. arrowLeft.gif
e. arrowRight.gif

APPENDIX N Answers to Self-Review Questions 773

Chapter 9 Inheritance

9.1 Creating Subclasses
SR 9.1 A child class is derived from a parent class using inheritance. The meth-

ods and variables of the parent class automatically become a part of the
child class, subject to the rules of the visibility modifiers used to declare
them.

SR 9.2 Because a new class can be derived from an existing class, the character-
istics of the parent class can be reused without the error-prone process
of copying and modifying code.

SR 9.3 Each inheritance derivation should represent an is-a relationship: the
child is-a more specific version of the parent. If this relationship does
not hold, then inheritance is being used improperly.

SR 9.4 The protected modifier establishes a visibility level (like public and pri-
vate) that takes inheritance into account. A variable or method declared
with protected visibility can be referenced by name in the derived class,
while retaining some level of encapsulation. Protected visibility allows
access from any class in the same package.

SR 9.5 The super reference can be used to call the parent’s constructor, which
cannot be invoked directly by name. It can also be used to invoke the
parent’s version of an overridden method.

SR 9.6 public class SchoolBook2 extends Book2

{
private int ageLevel;

 //---
 // Constructor: Sets up the schoolbook with the
 // specified number of pages and age level (assumed
 // to be between 4 and 16 inclusive).
 //---

public SchoolBook2 (int numPages, int age)
 {

super(numPages);
 ageLevel = age;
 }

 //---
 // Returns a string that describes the age level.
 //---

public String level ()
 {

if (ageLevel <= 6)
return "Pre-school";

774 APPENDIX N Answers to Self-Review Questions

else
if (ageLevel <= 9)

return "Early";
else

if (ageLevel <= 12)
return "Middle";

else
return "Upper";

 }
}

SR 9.7 With single inheritance, a class is derived from only one parent, whereas
with multiple inheritance, a class can be derived from multiple parents,
inheriting the properties of each. The problem with multiple inheritance
is that collisions must be resolved in the cases when two or more parents
contribute an attribute or method with the same name. Java supports
only single inheritance.

9.2 Overriding Methods
SR 9.8 A child class may prefer its own definition of a method in favor of the

definition provided for it by its parent. In this case, the child overrides
(redefines) the parent’s definition with its own.

SR 9.9 The answers are:

a. True – The child “overrides” the parent’s definition of the method
if both methods have the same signature.

b. False – A constructor is a special method with no return type
which has the same name as its class. If you tried to override the
parent’s constructor, you would create a syntax error since all
methods except constructors must have a return type.

c. False – A final method cannot be overridden (that’s why it is
“final”).

d. False – On the contrary, the need to override methods of a parent
class occurs often when using inheritance.

e. True – Such a variable is called a shadow variable. You can do this,
but it may lead to confusing situations and its use is discouraged.

9.3 Class Hierarchies
SR 9.10 There are many potential answers to this problem.

SR 9.11 All classes in Java are derived, directly or indirectly, from the Object
class. Therefore, all public methods of the Object class, such as equals
and toString, are available to every object.

APPENDIX N Answers to Self-Review Questions 775

SR 9.12 The only Java class that does not have a parent class is the Object class.
As mentioned in the previous answer, all other classes are derived from
Object either directly or indirectly. Object is the root of the Java inheri-
tance tree.

SR 9.13 An abstract class is a representation of a general concept. Common
characteristics and method signatures can be defined in an abstract class
so that they are inherited by child classes derived from it.

SR 9.14 It is a contradiction to define an abstract class as final. An abstract
class is “incomplete” because it contains abstract methods. Typically
the definitions of these methods are completed by one or more classes
that extend the abstract class. But a final class cannot be extended, so
there would be no way to complete its definition.

SR 9.15 A new interface can be derived from an existing interface using inheri-
tance, just as a new class can be derived from an existing class.

9.4 Visibility
SR 9.16 A class member is not inherited if it has private visibility, meaning that

it cannot be referenced by name in the child class. However, such mem-
bers do exist for the child and can be referenced indirectly.

SR 9.17 The Pizza class can refer to the variable servings explicitly, because it
is declared with protected visibility. It cannot, however, refer to the
calories method explicitly, because the calories method is declared
as private.

9.5 Designing for Inheritance
SR 9.18 An inheritance derivation represents an “is-a” relationship when the

child class represents a more specific version of the parent class. For
example, a dictionary is a type of book, so if a Dictionary class extends
a Book class, the inheritance represents an “is-a” relationship.

SR 9.19 Common features of classes should appear as high as possible in a class
hierarchy, as long as it is appropriate for the features to be at the level
where they are defined. This approach supports understandability, con-
sistency, and reuse.

SR 9.20 You can define a class with multiple roles by having the class implement
more than one interface.

SR 9.21 You should override the toString method of a parent in its child class,
even when the method is not invoked through the child by your current

776 APPENDIX N Answers to Self-Review Questions

applications, to avoid problems at a later time. Someone who later uses
the class directly or extends the class may assume the existence of a valid
toString method.

SR 9.22 The final modifier can be applied to a particular method, which
keeps that method from being overridden in a child class. It can also be
applied to an entire class, which keeps that class from being extended
at all.

9.6 The Component Class Hierarchy
SR 9.23 a. True, b. True, c. False, d. False, e. False, f. True

SR 9.24 The benefits include not having to worry about the details of applet
creation and execution, or how the applet interacts with the browser, or
security concerns. Essentially, you do not have to worry about anything
that would be a common concern across all applets; such concerns have
already been handled. You just have to worry about what makes your
applet different from other applets.

9.7 Extending Adapter Classes
SR 9.25 An adapter class is a class that implements a listener interface, providing

empty definitions for all of its methods. A listener class can be created
by extending the appropriate adapter class and overriding the methods
of interest.

SR 9.26 The OffCenterPanel class extends the JPanel class. The JPanel
class inherits from all of the other classes mentioned. Therefore,
an OffCenterPanel object “is” a JPanel, and a JComponent, and a
Container, and an Object.

SR 9.27 The OffCenterListener class extends the MouseAdapter class. Since the
MouseAdapter class includes methods for each of the mouse events, the
OffCenterListener class inherits those methods and does not need to
define them directly.

9.8 The Timer Class
SR 9.28 An object created from the Timer class produces an action event at

regular intervals. It can be used to control the speed of an animation.

SR 9.29 The Timer constructor is called in the ReboundPanel constructor to set
the initial delay and to associate a listener with the timer. The start

APPENDIX N Answers to Self-Review Questions 777

method is also called in the ReboundPanel constructor to begin the timer
countdown initially. The timer is never stopped in the Rebound program.

SR 9.30 a. The smiling face would move faster if the timer delay were decreased.
b. The smiling face would move slower if the timer delay were
increased. c. The image could be changed by specifying a new file in
the call to the ImageIcon constructor. d. The smiling face would make
larger jumps if the values of moveX and moveY were increased. e. The
smiling face would move faster when it hits the edge if, in the action-
Performed method, the timer delay were decreased in both of the if
statements.

Chapter 10 Polymorphism

10.1 Late Binding
SR 10.1 Polymorphism is the ability of a reference variable to refer to objects

of various types at different times. A method invoked through such a
reference is bound to different method definitions at different times,
depending on the type of the object referenced.

SR 10.2 Compile time binding is considered more efficient than dynamic bind-
ing. Compile time binding occurs before the program is executed
and therefore does not delay the execution progress of the program.
Dynamic binding occurs while the program is running and therefore
does affect the runtime efficiency of the program.

10.2 Polymorphism via Inheritance
SR 10.3 In Java, a reference variable declared using a parent class can be used

to refer to an object of the child class. If both classes contain a method
with the same signature, the parent reference can be polymorphic.

SR 10.4 Yes, the statements are legal. Since a CDPlayer is a MusicPlayer, it
is legal to assign an object of class CDPlayer to a variable of class
MusicPlayer.

SR 10.5 No, the third statement is not legal. A MusicPlayer is not necessarily
a CDPlayer. It is not legal to perform cdplayer = mplayer without
using an explicit cast operation. Consider that the mplayer variable
could potentially represent many different kinds of music players: CD
players, record players, mp3 players, etc. Suppose at the time of the
assignment statement, it represents an mp3 player. Then, you would

778 APPENDIX N Answers to Self-Review Questions

be assigning an mp3 player object to a CDPlayer variable. That, most
likely, doesn’t make sense and would cause problems if it was allowed
to happen.

SR 10.6 When a child class overrides the definition of a parent’s method, two
versions of that method exist. If a polymorphic reference is used to
invoke the method, the version of the method that is invoked is deter-
mined by the type of the object being referred to, not by the type of the
reference variable.

SR 10.7 The StaffMember class is abstract because it is not intended to be instan-
tiated. It serves as a placeholder in the inheritance hierarchy to help
organize and manage the objects polymorphically.

SR 10.8 The pay method has no meaning at the StaffMember level, so is declared
as abstract. But by declaring it there we guarantee that every object of
its children will have a pay method. This allows us to create an array of
StaffMember objects, which is actually filled with various types of staff
members, and pay each one. The details of being paid are determined
by each class as appropriate.

SR 10.9 It depends. The pay method invocation is polymorphic. The actual
method that is invoked is determined at run time and is based on the
class of the object referenced by the current (according to the value of
count) element of the staff list.

10.3 Polymorphism via Interfaces
SR 10.10 An interface name can be used as the type of a reference. Such a refer-

ence variable can refer to any object of any class that implements that
interface. Because all classes implement the same interface, they have
methods with common signatures, which can be dynamically bound.

SR 10.11 a. illegal – Speaker is an interface and interfaces do not have constructors.

b. legal – the Dog class implements Speaker.
c. legal – note that all the classes involved implement Speaker.
d. legal – Philosopher implements Speaker, so it is legal to assign

a philosopher object to a speaker variable.
e. illegal – first is declared to be a Speaker, so we cannot invoke

the Philosopher method pontificate through first.

10.4 Sorting
SR 10.12 The Comparable interface contains a single method called compareTo,

which should return an integer that is less than zero, equal to zero,

APPENDIX N Answers to Self-Review Questions 779

or greater than zero if the executing object is less than, equal to, or
greater than the object to which it is being compared, respectively.

SR 10.13 The sequence of changes the selection sort algorithm makes to the list
of numbers is:

5 7 1 8 2 4 3

1 7 5 8 2 4 3

1 2 5 8 7 4 3

1 2 3 8 7 4 5

1 2 3 4 7 8 5

1 2 3 4 5 8 7

1 2 3 4 5 7 8

SR 10.14 The sequence of changes the insertion sort algorithm makes to the list
of numbers is:

5 7 1 8 2 4 3

5 7 1 8 2 4 3

1 5 7 8 2 4 3

1 5 7 8 2 4 3

1 2 5 7 8 4 3

1 2 4 5 7 8 3

1 2 3 4 5 7 8

SR 10.15 The sorting methods in this chapter all operate on an array of
Comparable objects. So the sorting method doesn’t really “know”
what the objects are, other than that they are comparable and there-
fore have a compareTo method that can be invoked.

SR 10.16 Selection sort and insertion sort are generally equivalent in efficiency,
because they both take about n2 number of comparisons to sort a list
of n numbers. Selection sort, though, generally makes fewer swaps.
Several sorting algorithms are more efficient than either of these.

10.5 Searching
SR 10.17 a. 4, b. 1, c. 15, d. 15

SR 10.18 A binary search assumes that the search pool is already sorted and
begins by examining the middle element. Assuming the target is not
found, approximately half of the data is eliminated as viable candi-
dates. Then, the middle element of the remaining candidates is exam-
ined, eliminating another quarter of the data. This process continues
until the element is found or all viable data has been examined.

SR 10.19 a. 1, b. 3, c. 4, d. 4

780 APPENDIX N Answers to Self-Review Questions

10.6 Designing for Polymorphism
SR 10.20–SR 10.22 For the questions in this section, reasonable arguments

can be made for using either inheritance or interfaces in
each of the situations described. The point of the questions
is to have students think about choices, consider alternative
approaches, and practice making technical arguments to sup-
port their decisions.

Chapter 11 Exceptions

11.1 Exception Handling
SR 11.1 An exception is an object that defines an unusual or erroneous situation.

An error is similar, except that an error generally represents an unrecov-
erable situation and should not be caught.

SR 11.2 A thrown exception can be handled in one of three ways: it can be
ignored, which will cause a program to terminate; it can be handled
where it occurs using a try statement; or it can be caught and handled
higher in the method calling hierarchy.

11.2 Uncaught Exceptions
SR 11.3 a. False – Exceptions and errors are related but are not always the same

thing.
b. True – Division by zero is invalid, so an exception is thrown.
c. False – An exception must be either handled or thrown.
d. True – If the exception is not handled, the program will terminate

and display a message.
e. True – That is the purpose of the call stack trace.

11.3 The try-catch Statement
SR 11.4 A catch phrase of a try statement defines the code that will handle a

particular type of exception.

SR 11.5 The finally clause of a try statement is executed no matter how the try
block is exited. If no exception is thrown, the finally clause is executed
after the try block is complete. If an exception is thrown, the appropriate
catch clause is executed; then the finally clause is executed.

APPENDIX N Answers to Self-Review Questions 781

SR 11.6 The output produced is:

a. finally
the end

b. one caught
finally
the end

c. two caught

finally
the end

d. finally

11.4 Exception Propagation
SR 11.7 If an exception is not caught immediately when thrown, it begins to

propagate up through the methods that were called to get to the point
where it was generated. The exception can be caught and handled at any
point during that propagation. If it propagates out of the main method,
the program terminates.

SR 11.8 If the exception generating code was added to the level2 method, just
before the call to the level3 method, then the output would not include
any mention of “Level 3” – this is because the call to level 3 does not
occur since the exception is raised before the call is made.

SR 11.9 There is no change. The exception is still raised in level 3. The new code
in level 2 does not get executed.

11.5 The Exception Class Hierarchy
SR 11.10 A checked exception is an exception that must be either (1) caught

and handled or (2) listed in the throws clause of any method that
may throw or propagate it. This establishes a set of exceptions that
must be formally acknowledged in the program one way or another.
Unchecked exceptions can be ignored completely in the code if desired.

SR 11.11 a. True – It inherits from RunTimeException which inherits from
Exception.

b. True – It inherits from Throwable through RunTimeException
and Exception.

c. False – It inherits from RunTimeException so it is unchecked.
d. True – It does not inherit from RunTimeException.
e. True – See, for example, the OutOfRangeException defined in

this section.
f. False – The ArithmeticException is unchecked.

782 APPENDIX N Answers to Self-Review Questions

SR 11.12 If the input is 42 the program defined OutOfRangeException is thrown in
main, the message “Input value is out of range.” is printed along with the
stack trace that consists of just information about CreatingExceptions.
main, and the program terminates. If the input is -3, the same thing
happens. If the input is the string “thirty,” then a library defined
InputMismatchException is thrown, a stack trace that consists of infor-
mation about five methods is printed, and the program terminates. I/O
exceptions are the topic of the next section of this textbook.

11.6 I/O Exceptions
SR 11.13 A stream is a sequential series of bytes that serves as a source of input

or a destination for output.

SR 11.14 The standard I/O streams in Java are System.in, the standard input
stream; System.out, the standard output stream; and System.err,
the standard error stream. Usually, standard input comes from the
keyboard and standard output and error go to a default window on
the monitor screen.

SR 11.15 The Stream object we have been using explicitly throughout this book
is the System.out object. We have used it when printing output from
our programs. Sometimes we have also used the System.in object, to
create Scanner objects for reading input from the user.

SR 11.16 The main method definition of the CreatingExceptions program
does not include a throws InputMismatchException clause, because
the Scanner class takes care of that—there is no need to repeat code
in the main method when it is already included in a helper class.

SR 11.17 The main method definition of the TestData program does not include
a throws FileNotFoundException clause, because the FileWriter
class takes care of that that—there is no need to repeat code in the
main method when it is already included in a helper class.

SR 11.18 If the PrintWriter constructor of the TestDate class is passed the fw
object instead of the bw object, the program still works. The only dif-
ference is that the program does not use the buffering capabilities of
the BufferedWriter class and therefore the processing may not be as
efficient.

11.7 Tool Tips and Mnemonics
SR 11.19 A tool tip is a small amount of text that can be set up to appear when

the cursor comes to rest on a component. It usually gives information
about that component.

APPENDIX N Answers to Self-Review Questions 783

SR 11.20 A mnemonic is a character that can be used to activate a control
such as a button as if the user had used to mouse to do so. The user
activates a mnemonic by holding down the ALT key and pressing the
appropriate character.

SR 11.21 A component should be disabled if it is not a viable option for the user
at a given time. Not only does this prevent user error, but also it helps
clarify what the current valid actions are.

SR 11.22 The class(es), and the line(s) of code from the class(es), that provide
the listed functionality are:

a. LightBulb − panel.setBackground (Color.black)
b. LightBulbControls - offButton.setToolTipText ("Turn it

off!")
c. LightBulbControls - onButton.setMnemonic (‘n’)

OffListener - onButton.setEnabled (true)
d. OnListener - onButton.setEnabled (false)
e. LightBulbPanel − on = true

11.8 Combo Boxes
SR 11.23 A combo box is a component that allows the user to choose from a

set of options in a pull-down list. An editable combo box also allows
the user to enter a specific value.

SR 11.24 The JukeBox program ensures that it doesn’t try to play a song associ-
ated with the "Make a Selection. . ." combo box option by setting
the corresponding entry in the music array to null.

SR 11.25 There are two action listeners defined in the JukeBox program. The
ComboListener listens for a mouseclick on the combo box selection
list. The ButtonListener listens for a mouseclick on one of the two
buttons (play and stop).

SR 11.26 The JukeBox program associates the combo box selection made by the
user with a specific audio clip by storing the audio clips in an array
music; storing the descriptions of the music, in the same order, in an
array musicNames; generating the combo box used to make music selec-
tions based on the array musicNames; and using the index returned from
a combo box selection to set the current audio clip from the music array.

11.9 Scroll Panes
SR 11.27 A scroll pane can have a vertical scroll bar on the right side and/or a hor-

izontal scroll bar along the bottom. The programmer can determine, in

784 APPENDIX N Answers to Self-Review Questions

either case, whether the scroll bar should always appear, never appear,
or appear as needed to be able to view the underlying component.

SR 11.28 If you change the first parameter passed to the Dimension constructor
within the TransitMap program to 1000, when the map appears, it is in
a wider container—there is no horizontal scroll bar at the bottom of the
map, because the entire width of the map already fits in the container.

11.10 Split Panes
SR 11.29 Divider bars separate split panes into distinct right/left or top/bottom

sections. The bars can be dragged to make one section larger and the
other section smaller so that users can control what they see.

SR 11.30 In general, all of the options of a JList object are visible to the user,
whereas with a combo box the user must “open” the box to see the
options.

Chapter 12 Recursion

12.1 Recursive Thinking
SR 12.1 Recursion is a programming technique in which a method calls itself,

solving a smaller version of the problem each time, until the terminat-
ing condition is reached.

SR 12.2 The recursive part of the definition of a List is used nine times to
define a list of 10 numbers. The base case is used once.

SR 12.3 Infinite recursion occurs when there is no base case that serves as a
terminating condition or when the base case is improperly specified.
The recursive path is followed forever. In a recursive program, infi-
nite recursion will often result in an error that indicates that available
memory has been exhausted.

SR 12.4 A base case is always required to terminate recursion and begin the
process of returning through the calling hierarchy. Without the base
case, infinite recursion results.

SR 12.5 5 * n = 5 if n = 1, 5 * n = 5 + (5 * (n − 1)) if n > 1

12.2 Recursive Programming
SR 12.6 Recursion is not necessary. Every recursive algorithm can be written

in an iterative manner. However, some problem solutions are much
more elegant and straightforward when written recursively.

APPENDIX N Answers to Self-Review Questions 785

SR 12.7 Avoid recursion when the iterative solution is simpler and more easily
understood and programmed. Recursion has the overhead of multiple
method calls and is not always intuitive.

SR 12.8 If n < 0 a −1 is returned; otherwise the number of digits in the integer
n is returned.

SR 12.9 The recursive solution below is more complicated than the iterative
version, so it normally would not be done in this way.
// Returns 5 * num, assumes num > 0
private static int multByFive (int num)
{

int result = 5; // when num == 1
if (num > 1)

 result = 5 + multByFive(num - 1);
return result;

}

SR 12.10 Indirect recursion occurs when a method calls another method, which
calls another method, and so on until one of the called methods
invokes the original. Indirect recursion is usually more difficult to
trace than direct recursion, in which a method calls itself.

12.3 Using Recursion
SR 12.11 The MazeSearch program recursively processes each of the four posi-

tions adjacent to the “current” one unless either (1) the current posi-
tion is outside of the playing grid or (2) the final destination position
is reached.

SR 12.12 a. The original maze is defined when the grid array is declared and
initialized.

b. A test to see if we have arrived at the goal occurs at the second
if statement in the traverse method.

c. A location is marked as having been tried in the first statement
in the first if block of the traverse method.

d. A test to see if we already tried a location occurs in the second
if statement of the valid method.

SR 12.13 a. valid 0,0 valid 1,0 valid 2,0 valid 1,1
b. valid 0,0
c. valid 0,0 valid 1,0 valid 2,0 valid 1,1 valid 0,0 valid 1,-1

valid 0,1 valid 1,1 valid 0,2 valid -1,1 valid 0,0
valid -1,0 valid 0,-1

SR 12.14 The Towers of Hanoi puzzle of N disks is solved by moving N−1
disks out of the way onto an extra peg, moving the largest disk to

786 APPENDIX N Answers to Self-Review Questions

its destination, then moving the N−1 disks from the extra peg to the
destination. This solution is inherently recursive because, to move the
substack of N−1 disks, we can use the same process.

SR 12.15 For an initial stack of 1 disk there is 1 call to the moveTower method.
For an initial stack of 2 disks there are 3 calls. For 3 disks there are
7 calls. For every disk added, the number of calls increases by double
the previous number, plus one.

12.4 Recursion in Graphics
SR 12.16 The base case of the TiledPictures program is a minimal size for the

images to be produced. If the size of the area is smaller than the preset
minimum, the recursion terminates.

SR 12.17 A fractal is a geometric shape that can be composed of multiple ver-
sions of the same shape at different scales and different angles of
orientation. Recursion can be used to draw the repetitive shapes over
and over again.

Chapter 13 Collections

13.1 Collections and Data Structures
SR 13.1 A collection is an object whose purpose is to store and organize primi-

tive data or other objects. Some collections represent classic data struc-
tures that are helpful in particular problem-solving situations.

SR 13.2 Yes, the ArrayList class provides an abstract data type. The ArrayList
class provides a collection of information. It provides operations for
storing and accessing the information. The implementation details are
hidden from us—that is, we do not need to know anything about how
the information is stored or how the operations are implemented in
order to use an ArrayList object.

SR 13.3 An abstract data type (ADT) is a collection of data and the opera-
tions that can be performed on that data. An object is essentially
the same thing in that we encapsulate related variables and methods
in an object. The object hides the underlying implementation of the
ADT, separating the interface from the underlying implementation,
permitting the implementation to be changed without affecting the
interface.

APPENDIX N Answers to Self-Review Questions 787

13.2 Dynamic Representations
SR 13.4 A dynamic data structure is constructed using references to link various

objects together into a particular organization. It is dynamic in that it
can grow and shrink as needed. New objects can be added to the struc-
ture, and obsolete objects can be removed from the structure at run time
by adjusting references between objects in the structure.

SR 13.5 To insert a node into a list, first find the node that comes before the new
node (let’s call it beforeNode). Then, set the new node’s next pointer
equal to beforeNode’s next pointer. Then, set beforeNode’s next
pointer to the new node. A special case exists when inserting a node at
the beginning of the list.

SR 13.6 To delete a node from a list, first find the node that comes before the
node to be deleted (let’s call it beforeNode). Then, set beforeNode’s
next pointer to the deleted node’s next pointer. A special case exists
when deleting the first node of the list.

SR 13.7 set count = 0;
current = first;
while current != null
 count++;
 current = current.next;
return count;

SR 13.8 Each node in a doubly linked list has references to both the node that
comes before it in the list and the node that comes after it in the list.
This organization allows for easy movement forward and backward in
the list, and simplifies some operations.

SR 13.9 A header node for a linked list is a special node that holds informa-
tion about the list, such as references to the front and rear of the list
and an integer to keep track of how many nodes are currently in the
list.

13.3 Linear Data Structures
SR 13.10 A queue is a linear data structure like a list, but it has more constraints

on its use. A general list can be modified by inserting or deleting
nodes anywhere in the list, but a queue only adds nodes to one end
(enqueue) and takes them off of the other (dequeue). Thus, a queue
uses a first-in, first-out (FIFO) approach.

SR 13.11 The contents of the queue from front to rear are: 72 37 15

788 APPENDIX N Answers to Self-Review Questions

SR 13.12 A stack is a linear data structure that adds (pushes) and removes
(pops) nodes from one end. It manages information using a last-in,
first-out (LIFO) approach.

SR 13.13 The contents of the stack from top to bottom are: 37 72 5

SR 13.14 The Stack class is defined in the java.util package of the Java stan-
dard class library. It implements a generic stack ADT. The Stack class
stores Object references, so the stack can be used to store any kind of
object.

13.4 Non-Linear Data Structures
SR 13.15 Trees and graphs are both non-linear data structures, meaning that the

data they store is not organized in a linear fashion. Trees create a hier-
archy of nodes. The nodes in a graph are connected using general edges.

SR 13.16 a. tree, b. graph, c. graph, d. tree

13.5 The Java Collections API
SR 13.17 The Java Collections API is a set of classes in the Java standard class

library that represents collections of various types, such as ArrayList
and LinkedList.

SR 13.18 A generic type is a collection object that is implemented such that
the type of objects it manages can be established when the collection
is created. This allows some compile-time control over the types of
objects that are added to the collection and eliminates the need to cast
the objects when they are removed from the collection. All collections
in the Java Collections API have been implemented as generic types.

Index

789

Symbols
-- (decrement operator), 80–81
'' (single quotes for

character literals), 73
– (subtraction operator), 75
!== (equal to operator),

209–210
" " (double quotes for

character string literals),
29, 58, 63

$ (dollar sign character), 31–32
% (remainder operator), 75,

277–278
%= (remainder assignment

operator), 81–82
& (AND bitwise operator), 667
&& (AND logical operator),

210–212
() (parentheses), 62–63,

77–78, 85–86, 115, 213
arithmetic expressions,

77–78
boolean expressions, 213
casting data conversion,

85–86
invoking methods, 115
operator precedence using,

62–63, 77–78
* (asterisk for Import

declaration), 125
*– (multiplication assignment

operator, 81
* (multiplication operator), 75
. (dot operator for accessing

methods), 115
/ (division operator), 75–76
/ (slash for path separation),

244
/* and */ (multiple line

comments), 30
/** and */ (external

comments), 30
// (comments), 28, 30
/= (division assignment

operator), 81

–= (subtraction assignment
operator), 81

== (not equal to operator),
209–210

> (greater than relational
operator), 209–210

>= (greater than or equal to
relational operator),
209–210

>> (right–shift bitwise
operator), 669

>>> (right–shift with zeros
bitwise operator), 669

A
abstract classes, 461–462
abstract data types (ADT), 618
abstract methods, 323
abstract modifier (reserved

word), 323, 461–462, 673
Abstract Windowing Toolkit

(AWT), 144, 468–469
accessor methods,

encapsulation, 171–172
action events, 195–196,

248–251, 257–259
actual parameters

(arguments), 175
adapter classes, extended events

using, 471–474
add method, 145
addresses, 13, 21, 23–24

Internet, 21, 23–24
memory, 13
network, 21

Advanced Research Projects
Agency (ARPA) network
(ARAPNET), 23

aggregation, 316–320
algorithms, 332–333
aliases, 116–118
analog signals, 4–5
AND bitwise operator (&), 667

? : (conditional operator),
274–275

[] (square brackets for arrays),
380–381, 384

\' (single quote escape
sequence), 63

\" (double quote escape
sequence), 63

\\ (backslash escape sequence),
63

\b (backspace escape
sequence), 63

\n (newline escape sequence),
63

\r (carriage return escape
sequence), 63

\t (tab escape sequence), 63
^ (XOR bitwise operator),

667–678
_ (underscore character),

31–32
{ } (class definition), 28–29
{} (braces for if statements),

221, 225
| (NOT logical operator),

210–212
| (OR bitwise operator),

667–678
|| (OR logical operator),

210–212
~ (NOT bitwise operator), 667
+ (plus symbol), 60–62, 75

addition operator, 75
string concatenation, 60–62

++ (increment operator), 80–81
+= (addition assignment

operator), 81
< (less than relational

operator), 209–210
<< (left–shift bitwise

operator), 669
<= (less than or equal to

relational operator),
209–210

<> (HTML tags), 98

790 INDEX

applets, 95–103, 601–611,
681–682

appletviewer tool for,
95–96

applications compared to,
95–96

bytecode for, 96
drawing shapes, 99–103
executing, 96–98
fractals, 604–611
Graphics class, 99–103
HTML tags <> for, 98
import statements for,

96–97
Java programming, 95–103,

681–682
methods for, 97, 681–682
paint method, 97
public declaration of, 97
recursion used for, 601–611
tiled pictures, 601–604
World Wide Web execution

of, 98
application programming

interfaces (API), 27,
122–123, 634–635

applications, 4, 95–96
arc angle, 101
architecture, computer

hardware functions,
11–13

arg identifier, 31, 402–403
arguments, command-line,

402–403. See also
parameters

arithmetic/logic unit, 17
ArrayList class, 245–247
arrays, 245, 379–442,

575–578
bounds checking, 384–389
characters in, 386–389
command-line arguments,

402–403
constructors and, 398–400,

405–407
declaration, 381–401
elements, 380–381
event-driven programs using,

418–432, 575–578
graphical user interfaces

(GUIs), 413–432,
575–578

index (subscript) values, 245,
380–381, 384–389

initializer lists, 389–390

B
background color, 101
base case, 584–585
base value, 7
bevel borders, 367–368
binary operators, 76
binary search, 515–518
binary trees, 631
binary values, 7–10, 653
bits, 9–10, 653
black–box testing, 347–348
block statements, 219–223
boolean expressions,

208–213, 226–229
conditional statement

decisions and, 208
data comparison using,

226–229
equality operators, 209–210
if statements, 208,

212–213, 226–229
logical operators, 210–212
loop execution time using,

209
parentheses () for, 213
relational operators,

209–210
short-circuited operations,

211–212
truth tables, 210–212

boolean literals, 74
boolean operators, 668
boolean primitive data types,

74, 85, 141
borders, 356–359, 365–369

bevel, 367–368
compound, 368
empty, 367–368
etched, 367–368
GUI programs for, 365–369
layout manager for, 356–359
line, 367–368
matte, 368–369
Swing components use of,

365–369
titled, 368

boundaries, 347–348
black-box testing, 347–348
equivalence categories for,

347–348
bounding rectangle, 99–101
bounds checking, 384–389

array index (subscript)
values, 384–389

characters, 386–389

instantiation, 381–382,
392–394, 398–400

int[] declaration,
381–382, 408

integers in, 384–386
key events using,

427–432
lists as, 575–578
mouse events using, 418–426
multidimensional, 412–413
new operator, 381–382,

392–393
objects and, 381–384,

392–401
off-by-one errors, 384
parameters as, 390–391,

402–407
polygons drawn using,

413–417
polylines drawn using,

414–416
ragged, 413
square brackets [] used for,

380–381, 384
syntax, 389
two-dimensional, 408–412
variable-length parameter

lists, 404–407
variables in, 381–384,

389–390
ASCII character set, 73–74,

661–662
assembly language, 37
assignment, 67–69, 77–78,

81–82, 85
arithmetic operator

precedence and, 77–78
addition (+=), 81
data conversion by, 85
data values and, 67–69
division (/=), 81
expressions and, 67, 77–78,

81–82
Java defined operations,

81–82
multiplication (*=), 81
operators (=), 67, 77–78,

81–82
remainder (%=), 81–82
statements, 67–69
subtraction (–=), 81
variables and, 67–69

asterisk (*) for Import
declaration, 125

autoboxing, 143

 INDEX 791

integers, 384–386
off-by-one errors, 384

box layout, 361–364
break statements, 239,

270–271
browser, 25
bus, 11
buttons, 192–196, 248–259

action events, 195–196,
248–251, 257–259

check boxes, 251–255
conditional statements for,

248–259
event sources, 248–251
GUI programs for,

192–196, 248–251
item events, 252–255
label font styles, 251–255
listener objects, 191–199,

248–251
push, 192–196, 248–251
radio, 255–259
toggle, 259

by value parameter passing,
338–342

byte integer data type,
71–72, 83–85, 141–142

bytecode, Java programming,
39–40, 96

bytes, 14

C
cache, 15
call stack trace, 540
case sensitivity, Java

programming, 32–33
casting (), data conversion by,

85–86
catch clause, 540–544
CD (compact disc) devices,

16–17
CD-ROM device, 16
central processing unit (CPU),

2–3, 12, 15, 17–19
arithmetic/logic unit, 17
cache, 15
computer hardware

functions, 2–3, 12, 17–19
control unit, 17
fetch-decode-execute

cycle, 18
main memory and, 2–3, 15
microprocessor, 18–19
registers, 17–18
system clock, 19

child class and, 458–459
Component class, 468–470
exceptions, 549–552
inheritance and, 458–462,

468–470
Object class, 460–461
polymorphism and, 490–491

classes, 27, 31, 47–49, 113–158,
159–206, 303–343,
443–486, 490–491

adapter classes, 471–474
abstract, 461–462
aggregation, 316–320
assigning responsibilities

to, 305
child, 445, 453–458
Component, 468–470
constructors, 181–182
DecimalFormat, 134–135
dependency, 310–316
encapsulation, 169–172
enumerated types, 138–140,

329–332
event adapter, 471–474
formatting output using,

132–137
graphical objects, 182–190
graphic-user interfaces

(GUIs), 143–153,
191–199

identification of, 303–305
import declaration,

124–125
inheritance, 48, 443–486
instance data, 167
interfaces, implementation of,

322–329
Java programming and,

47–49
Java standard class library,

27, 31, 122–125
JButton, 193–195
JFrame, 144–147, 185–186
JPanel, 144–147, 182–187
JTextField, 196–199
listener, 195
main method, 162–163
Math, 129–132
methods for, 160–166,

169–182, 332–343
NumberFormat, 132–134
Object, 460–461
object-oriented (OO)

programming and, 47–49,
303–322

von Neumann architecture,
18

change events, 532
char character data type, 74,

84–85, 141
character strings, 29, 58–65,

116, 228–229
data comparison, 228–229
escape sequences, 63–64
if statements for, 228–229
Java programming, 29, 58
literals (" "), 29, 58, 63, 116
object data and, 58–65, 116,

228–229
parameters of, 58
print and println

methods for, 58–59
string concatenation, 60–63
Unicode relationships,

228–229
characters, 73–74, 83–85, 227,

386–389, 661–663
array index values, 386–389
ASCII character set, 73–74,

661–662
assignment conversion for, 85
bounds checking, 386–389
char, 74, 84–85
control characters, 73,

661–663
conversion of, 83–86
data comparisons, 227
if statements for, 227
literals (''), 73
narrowing conversion for,

83–84
nonprintable (control),

661–663
primitive data as, 73–74
printable, 661–662
Unicode character set, 74,

661–663
widening conversion for,

83–84
check boxes, GUI creation of,

251–255
checked exceptions, 552
child class, 445, 453–459.

See also subclasses
Circle class, 188–190
class definition ({}), 28–29
class hierarchies, 458–462,

468–470, 490–491,
549–552

abstract classes, 461–462

792 INDEX

programming languages,
26–41

programs, 2, 26–49
semantics, 41–42
software, 2–4, 24–25, 38–43,

44–49
syntax, 41–42
Uniform Resource Locators

(URL), 25–26
wide area network (WAN),

22–23
World Wide Web (WWW),

25–26
conditional operator (? :),

274–275
conditional statements,

207–268, 269–299
boolean expressions for,

208–212
break, 239, 270–271
buttons developed using,

248–259
continue, 239
data comparison using,

226–229
decisions from, 208
dialog box development

using, 291–293
do loops, 209, 275–278,

292–293
drawing programs using,

285–291
events determined using,

248–251
flow of control, 208
for loops, 209, 279–284
graphical user interfaces (GUI),

248–259, 285–293
if, 208, 213–226
if–else, 208, 216–225,

274–275
iterators, 241–244, 282–284
loops, 209–212, 230–239,

269, 275–293
nested, 223–225, 236–239
object management using,

245–247
objects and, 241–259
switch, 208, 270–273
ternary operator (? :) for,

274–275
while loops, 209,

230–239, 241–244
confirm dialog box,

292–293

color choosers, GUI programs
for, 526–527

Color class, 94–95
color representation, Java

graphics, 94–95, 101
combo boxes, GUI programs

for, 564–569
command-line applications,

144
command-line arguments,

402–403
comments, 28–31, 685–688

documentation, 28, 30–31,
685–688

double slash (//) symbols for,
28, 30

inline documentation,
28, 31

javadoc, 30, 685–688
javadoc (/** and */)

symbols for, 30
newline character, 30
multiple line (/* and */)

symbols for, 30
tags, 686–688

Comparable interface, 328
compile–time error, 42
compilers, 39–40
Component class, 468–470
compound borders, 368
computer systems, 1–56

architecture, 11–12
central processing unit (CPU),

2, 17–19
development environments,

40–41
digital technology for, 4–10
errors, 42–43, 45–46
hardware components, 2–3,

10–19
information storage and

management, 4–10, 13–17
input/output (I/O) devices, 2,

12–13
Internet, 23–24
Java programming, 26–35,

39–41, 44–49
local area network (LAN),

22–23
memory, 2, 13–17
networks, 20–26
object–oriented (OO)

programming, 27,
44–49

processing, 2–10

classes (continued)
objects and, 47–48,

113–158, 160–161,
169–172, 181–190,
303–305, 310–317,
320–322

packages, 122–125
parent (base), 445, 450–453
polymorphism and, 490–491
qualified names, 124
Random, 126–129
relationships, 310–322
returned values from,

115–116, 126–127,
129–132

software design, 303–322
static members, 305–309
String, 118–121
subclasses, 444–447
System, 135–137
this method for, 320–322
Timer, 475–478
use of, 113–158
visibility modifiers, 170
wrapper, 141–143
writing, 159–206

clients, 169, 302
clock speed, 19
coding guidelines, 675–679

design, 676
documentation, 678–679
Java programming, 675–679
style, 677–678

collections, 617–640
abstract data types (ADT),

618
data structures for, 618–634
dynamic representations,

619–626
generic types, 634–635
graphs, 632–634
heterogeneous, 618
homogeneous, 618
implementation of, 618
interfaces for, 618
Java Collections API,

634–635
linked lists, 620–626
linear data structures,

627–630
nonlinear data structures,

631–634
queues, 627–628
stacks, 628–630
trees, 631–632

 INDEX 793

primitive data types and,
83–85, 143

promotion, 85
widening, 83–84
wrapper class objects and,

143
data structures, 618–634

collections and, 618,
627–634

doubly linked lists, 625
dynamic, 619–626
graphs, 632–634
header nodes, 626
linear, 627–630
linked lists, 620–626
nodes, 631–632
nonlinear, 631–634
object storage using, 618
queues, 627–628
stacks, 628–630
trees, 631–632

data transfer devices, 12
debugging software, 40–41, 43
decimal values, 653
DecimalFormat class,

134–135
declaration, 65–67, 69–70,

87–89, 114–116,
124–125, 163–167,
172–173, 175–176,
381–400, 489–490, 502

arrays, 381–400
asterisk (*) for, 125
bounds checking, 374–389
classes, 124–125
constants, 69–70
constructors and, 89, 115,

181, 398–400
data, 163–164, 167,

175–176
import, 124–125
initializer lists, 389–390
instance data, 167
instantiation and, 87–89,

115, 181, 381–382,
392–394, 398–400

int, 65–67, 114, 381–382
java.util packages,

124–125
local data, 175–176
methods, 163–166,

172–173, 175–176
new operator and, 87–89,

115–116, 381–382,
392–394

applets, 95–103
assignment statements, 67–69
boolean, 74, 85
character strings (" "),

58–65, 228–229
characters, 73–74, 83–86,

227
comparison of types,

226–229
constants, 69–70
constructor, 87–89
conversion, 83–86
declarations, 163–164, 167,

175–176
enumerated types, 138–140,

329–332
escape sequences, 63–64
expressions, 75–83
floating point, 71–72,

83–86, 226–227
Graphics class, 99–103
graphics, 92–103
if statements for, 226–229
input, 89, 91
instance, 167
integers, 71–72, 83–86
interactive programs for,

87–91
lexicographic order, 229
literals, 58, 63, 72–74
local, 175–176
method declaration and,

175–176
new operator, 87–89
object comparisons,

228–229
operators, 60–62, 67, 69,

75–82
output, 90
parameters, 58, 404–407
primitive types, 71–75, 83–87
Scanner class, 87–91
switch statement types,

270–271
Unicode relationships,

228–229
variable-length parameter

lists, 404–407
variables, 65–69, 167,

175–176
data conversion, 83–87, 143

assignment, 85
autoboxing, 143
casting (), 85–86
narrowing, 84–85

connections, 20–22
constants, data value as,

69–70
constructors, 87–89, 115, 164,

175, 181–190, 398–400,
405–407

arrays using, 398–400,
405–407

default, 181
graphical object

characteristics from,
182–190

instantiation using, 87–89,
181, 398–400

invoking (calling), 164, 181
Java programming use of,

87–89, 181–182
new operator for, 87–89,

115, 164
parameters and, 405–407
void modifier, 175,

181–182
containers, 144–150, 191,

350–365, 369–371
add method for, 145
content panes, 145–147
GUI components, 144–150,

191, 350–365, 369–371
heavyweight, 144–145
hierarchy for, 148–150,

369–371
labels, 145–146, 151–153
layout manager for, 147,

350–365
lightweight, 144–145
panels, 144–150
panes, 145–147
top-level, 369

containment hierarchy,
148–150, 369–371

content panes, 145–147
continue statements, 239
control (nonprintable)

characters, 73, 661–663
control flow statements, 348
control unit, 17
controllers, 12
coordinate systems, Java

graphics, 92–94, 99

D
data, 57–110, 138–140,

163–164, 167, 175–176,
226–229, 270–271,
329–322, 404–407

794 INDEX

DVD devices, 17
dynamic data structures,

619–626

E
Eclipse IDE software, 41
editors, 38–39
else clause, 223–225
empty borders, 367–368
encapsulation, 48, 169–172,

447–449
accessor methods, 171–172
client, 169
inheritance and, 447–449
modifiers for, 170–172
mutator methods, 171–172
objects, 48, 169–172
service (support) methods,

170
visibility modifiers,

170–171, 447–449
enumerated types, 138–140,

329–332
equality operators, 209–210
equivalence categories,

347–348
errors, 40–43, 232–233,

345–348, 384, 538
black-box testing, 347
compile-time, 42
debugging software for,

40–41, 43
defect testing, 346–348
divide-by-zero, 232–233
exceptions and, 43, 538
logical, 43
off-by-one, 384
programming, 42–43
run-time, 43, 538
syntax, 43
testing programs for,

345–348
white-box (glass-box)

testing, 348
escape sequences, 63–64
etched borders, 367–368
event adapter classes,

 471–474
event-driven programs,

191–192, 195–196,
248–259, 418–432,
471–474, 521–522,
527–532, 564–578

action events, 195–196

remainder operator (%) for,
277–278

repetition of, 276–278
while clause for, 275–276

documentation, 28, 30–31,
678–679, 685–689

coding guidelines, 678–679
comments, 28, 30–31,

685–688
HTML file generation,

688–689
programming style, 28,

30–31, 678–679
inline, 28, 30
javadoc generator, 30,

685–689
tags, 686–688

Domain Name System (DNS),
24

domain names, 23–24
domain server, 24
dot (.) operator for accessing

methods, 115
double floating–point data type,

71–72, 84–85, 141–142
doubly linked lists, 625
drawing, 99–103, 182–190,

285–291, 413–417
arc angle, 101
arrays used for, 413–417
background color, 101
bounding rectangle, 99–101
bull’s–eye, 285–288
Circle class, 188–190
conditional statements used

for, 285–291
constructors for, 182–190
drawing programs using,

285–291
foreground color, 101
graphical objects, 182–190
Graphics class, 99–103,

413–416
Java standard class library

for, 416–417
loops used for, 285–291
ovals, 99–101
paintComponent method,

182, 185, 187–188,
285–288

polygons, 413–417
polylines, 414–416
rectangles, 288–291
shapes, 99–103
start angle, 101

declaration (continued)
objects, 87–89, 114–116,

381–384, 392–400
parameters and, 390–391
polymorphism and,

489–490, 502
reference variables,

488–490, 502
square brackets [] used for,

381–384, 389
String methods for,

114–116, 392–397
syntax and, 389
variables, 66–67, 114–116,

167, 175–176, 382–384,
389–390

decomposition of methods,
333–338

decrement (–) operator, 80–81
default visibility, 671–672
defect testing, 346–348
delimiters, 89, 244
dependency, 310–316
development environments,

40–41
diagraph, 632–633
dialog boxes, 291–293,

522–527
color choosers, 526–527
conditional statements used

for, 291–293
confirm, 292–293
creation of, 291–293
file choosers, 522–525
input, 292–293
loops for creation of, 291–293
message, 292–293
polymorphism used for,

522–527
Swing package for, 291

digital computers, 4–10
analog information

compared to, 4–5
binary values, 7–10
digitized process, 6–7
sampling rate, 5–7
signals, 6–10

direct access storage devices,
15–16

direct recursion, 589–590
directed graph, 632–633
divide–by–zero error, 232–233
do loop statements, 275–278,

292–293
infinite, 278

 INDEX 795

literals, 72
primitive data as, 71–72
promotion conversion

for, 85
widening conversion of,

84–85
flow layout, 352–356
font styles, GUI programming

for, 251–255
for loop statements, 209,

279–284, 408–412
for-each version, 282–284
increment code for,

279–281
initialization of, 279–282
iterators and, 282–284
nested, 408–412
repetition of, 279–280
two–dimensional arrays

using, 408–412
for-each loop, 282–284
foreground color, 101
formal parameters, 175
formatting output, 132–137
DecimalFormat class,

134–135
NumberFormat class,

132–134
printf method, 135–137

fourth–generation language
(4GL), 38

fractals, 604–611
frames, 144–150

containment hierarchy,
148–150

content pane, 145–147
Jframe class, 144–147
panes, 145

functional specification, 302

G
garbage, object references,

117–118
generic types, 634–635
graph data structures, 632–634
graphic applications, 601–611
graphical user interfaces (GUIs),

4, 144–153, 191–199,
248–259, 285–293,
349–371, 413–432,
468–478, 521–532,
557–578, 703–705. See
also event-driven programs

Abstract Windowing Toolkit
(AWT), 144, 468–469

try blocks, 540–544
try–catch statements,

540–544
uncaught, 539–540
unchecked, 552

exponential complexity, 600
expressions, 75–83, 209–212,

244, 683–684
arithmetic operators, 75–76
assignment (=) operators,

77–78, 81–82
boolean, 209–212
data and, 75–83
decrement (–) operator,

80–81
equality operators, 209–210
increment (++) operator,

80–81
logical operators, 210–212
operator precedence, 76–80
parentheses () in, 77–78
postfix operator, 80–81
prefix operator, 80–81
regular, 244, 683–684
relational operators, 209–210
trees, 77

extends modifier (reserved
word), 182, 445, 460

F
false boolean value, 74
fetch-decode-execute cycle, 18
file choosers, GUI programs

for, 522–525
file generation (HTML),

688–689
file servers, 20
final modifier (reserved

word), 69–70, 170, 457,
467–468, 673

finally clause, 544
first-in, first-out (fifo)

processing, 627
float floating-point data type,

71–72, 84–85, 141
floating-point data types,

71–72, 83–87, 226–227
assignment conversion for, 85
casting (), 85–86
conversion of, 83–87
data comparison, 226–227
if statements for, 226–227
narrowing conversion of,

83–84

adapter classes, 471–474
arrays used for, 418–432
buttons, 192–196, 248–259
change events, 532
combo boxes, 564–569
conditional statements used

for, 248–259
determining event sources,

248–251
graphical-user interfaces

(GUIs) as, 191–192
inheritance used for,

471–474
item events, 252–255
key events, 427–432
list selection events,

572–578
listeners, 191–199, 248–251,

422–426, 427–431,
471–474, 569

mouse events, 418–426,
471–474

mouse motion events,
418–419

polymorphism used for,
521–522, 527–532

rubberbanding, 423–426
scroll panes, 569–572
sliders, 527–532
split panes, 572–578

event generation, 703–705
event processing, 521–522
event sources, 248–251,

418–432
exceptions, 43, 537–581

call stack trace, 540
catch clause, 540–544
checked, 552
class hierarchy, 549–552
combo boxes, 564–569
finally clause, 544
graphic user interfaces (GUI),

557–578
handling, 538, 540–544
inheritance and, 549–552
input/output (I/O), 553–557
mnemonics and, 557–563
propagation, 545–548
run-time errors, 43, 538
scroll panes, 569–572
split panes, 572–578
streams in, 553–554
throw statements,

551–552, 554–556
tool tips and, 557–563

796 INDEX

main memory, 2–3, 13–15
memory, 2–3, 13–17
secondary memory, 2,

15–17
software and, 2

has-a relationships, 316–317
header nodes, 626
Heavyweight containers,

144–145
hexadecimal values, 655
high-level languages, 37–38
HTML file generation,

688–689
HTML tags (<>), 98
hypermedia, 25
hypertext, 24–26
HyperText Markup Language

(HTML), 25
HyperText Transfer Protocol

(http), 26

I
identifiers, 31–33, 677

abbreviations for, 33
case sensitivity of, 32–33
coding guidelines, 677
naming, 33
reserved words, 31–32
title case for, 33

if statements, 208, 213–229
boolean expressions () for,

208, 212–213, 226–229
braces {} used in, 221, 225
character data comparisons,

227
data comparison using,

226–229
else clause, 216–225
floating-point data

comparisons, 226–227
indentation for, 213–214,

216, 221, 225
nested, 223–225
object comparisons,

228–229
if-else statements, 208,

216–225, 274–275
block statements, 219–223
conditional (ternary)

operators as, 274–275
nested, 223–225
true/false conditions of,

216–219
image observer, 427
ImageIcon class, 151–153

polymorphism used for,
521–532

scroll panes, 569–572
sliders, 527–532
software design and, 349–371
split panes, 572–578
Swing package, 144, 291,

468–470, 557
text fields, 196–199
timer objects, 475–478
tool tips and, 557–563

graphics, 92–95, 95–103,
143–153, 182–190,
601–611

applets used for, 95–103
color representation, 94–95,

101
constructors for, 182–190
coordinate systems, 92–94,

99
drawing, 99–103, 182–190
fractals, 604–611
GUI containers for,

144–150
images, 151–153
Java programming, 91–103
Koch snowflakes, 604–611
labels, 145–146, 151–153
monitor resolution, 92
objects as, 182–190
paint method, 97
panels, 144–150
picture resolution, 92
pixels, 92
recursion used for, 601–611
RGB (red-green-blue)

values, 94
tiled pictures and, 601–604

Graphics class, 99–103
grid layout, 359–361
GUI, see graphical user

interfaces (GUIs)

H
hard disks, 15
hardware components, 2–3,

10–19
central processing unit (CPU),

2–3, 12, 15,
17–19

computer architecture, 11–13
computer processing

functions, 2–3
input/output (I/O) devices, 2,

12–13

graphical user interfaces (GUIs)
(continued)

action events, 195–196,
248–251, 257–259

arrays used for, 413–432,
574–578

borders, 356–359, 365–369
buttons, 192–196, 248–251
change events, 532
classes used for, 143–153,

191–199
color choosers and, 526–527
combo boxes, 564–569
components, 144, 191,

350–365, 468–470,
557–563, 703–705

computer systems and, 4
conditional statements used

for, 248–259, 285–293
containers, 144–150, 191,

350–365, 369–371
containment hierarchies,

148–150, 369–371
dialog boxes, 291–293
disabling components, 558,

561–563
drawing programs,

285–291, 413–417
event adapter classes,

471–474
event generation, 703–705
event processing, 521–522
event sources, 248–251,

418–432
exceptions used for, 557–578
file choosers, 522–525
frames, 144–147
inheritance used for, 468–478
interaction of, 191–199
interface implementation, 195
item events, 252–255
key events, 427–432
labels, 145–146, 151–153
layout managers, 147,

350–365
list components, 575–578
listener objects, 191–199,

248–251, 422–426,
427–431, 471–478, 569

loops used for, 285–291
mnemonics and, 557–563
mouse events, 418–426
object-oriented programming

and, 349–371
panels, 144–150

 INDEX 797

input dialog box, 292–293
input/output (I/O), 2, 12–13,

553–557
computer devices, 2, 12–13
exceptions and, 553–557
Java standard class library

for, 554
streams, 553–557

input validation, 234
insertion sort, 511–512
instance data, 167
instantiation, 87–89, 115,

181, 381–382, 392–394,
398–400

arrays, 381–382, 392–394,
398–400

constructors, 87–89, 181,
398–400

object declaration and, 115,
381–382, 392–394,
398–400

instruction register, 17
int integer data type, 65–67,

71–72, 84–85, 141–143,
381–382, 408

array declaration using,
381–382, 408

autoboxing, 143
conversion for, 84–85
primitive data, as, 71–72
square brackets ([]) for,

381–382, 408
variable value declaration

using, 65–67
wrapper classes for,

141–142
integer data types, 71–72,

83–87, 384–386
array index values,

384–386
assignment conversion of, 85
bounds checking, 384–386
casting () conversion of,

85–86
conversion of, 83–87
literals, 72
narrowing conversion for,

83–84
primitive data as, 71–72
promotion conversion of, 85
widening conversion for,

84–85
integrated development

environments (IDEs),
40–41

main memory, 2–3, 13–15
memory devices, 13–17
sampling rate, 5–7
secondary memory, 2,

15–17
signals, 4–10

inheritance, 48, 443–486,
488–501, 549–552

abstract classes, 461–462
child class, 445, 453–458
class hierarchies, 458–462,

468–470, 549–552
Component class, 468–470
encapsulation and, 447–449
event adapter classes,

471–474
exceptions and, 549–552
extends modifier used for,

445, 460
final modifier used for,

457, 467–468
graphical-user interfaces

(GUIs), 468–478
interface hierarchies, 463
is-a relationship of, 445–446
multiple, 453–454
Object class, 460–461
object-oriented programming

and, 48, 443–486
overriding methods,

455–457, 497
parent (base) class, 445,

450–453
polymorphism via, 488–501
protected modifier used

for, 447–449
reference variables, 488–490
reserved words for, 445,

447–453, 457, 460–462,
464, 467–468

restricting, 467–468
shadow variables, 457–458
siblings, 459
software design for, 466–468
software reuse, 48, 444
subclasses, 444–454
super modifier used for,

450–453, 464, 467
Timer class, 475–478
UML diagrams for, 446,

449
visibility and, 447–449,

463–466
initializer lists, 389–390
input data, 89, 91

images, 92–95, 151–153,
601–611. See also drawing

color representation, 94–95
coordinate systems, 92–94
fractals, 604–611
Java programming for, 92–95
labels with, 151–153
picture resolution, 92
pixels, 92
recursion used for, 601–611
tiled pictures, 601–604

immutable objects, 118
implementation, 195, 303,

323–328, 618
classes, 323–328
collections, 618
interfaces, 195, 323–328
software design and, 303,

323–328
implements reserved word,

322–328
import statement, 89, 96–97,

124–125
asterisk (*) for, 125
class declaration, 89,

124–125
java.util packages and,

96–97, 124–125
increment code, 279–281
increment (++) operator, 80–81
indentation, 213–214, 216,

221, 225, 677
coding guidelines, 677
if statements, 213–214, 216,

221, 225
nested statements, 225

index values, 245, 380–381,
384–389

array elements, 245,
380–381, 384–389

ArrayList class, 245–247
bounds checking, 384–389
characters, 386–389
integers, 384–386

indirect recursion, 589–590
infinite loops, 234–235, 278
infinite recursion, 584–585
information storage and

management, 4–10,
13–17

analog, 4–5
binary values, 7–10
bits, 9–10
capacity of devices, 14–17
digital, 6–10

798 INDEX

object-oriented (OO)
language, 27, 46–49

objects, 46–49, 87–89,
181–182

operators, 665–669
packages, 122–125
PaintBox project, 691–701
polymorphism, 48
primitive data, 46
println method, 29
reserved words, 31–33
Scanner class, 87–91
semantics, 41–42
Software Development Kit

(SDK), 41
standard class library, 27, 31
syntax, 41–42, 707–719
terminating, 29
visibility modifiers, 170
white space, 33–35, 89, 677

Java standard class library, 27,
31, 122–125, 132–135,
141–142, 245–247,
416–417, 460–461,
634–635, 671–672, 721

application programming
interfaces (API), 27,
122–123, 634–635

ArrayList class, 245–247
collections, 634–635
formatting data output,

132–135
generic types, 634–635
identifiers in, 31
import declaration,

124–125
java packages, 124–125,

416–417
modifiers, 671–673
Object class, 460–461
online API documentation,

123–124, 721
packages, 122–125
Polygon class, 416–417
input/output (I/O) streams,

554
visibility modifiers, 671–672
wrapper classes, 141–142

java.util packages, 124–125
javadoc, 30, 685–689

comments, 30, 685–688
documentation generation,

30, 685–689
files generated for, 688–689
tags, 686–688

reading text files using,
242–244

recursion versus, 589
Scanner class for, 241–244

J
Java Collections API, 634–635
Java Development Kit (JDK), 41
Java programming, 26–35,

39–41, 44–49, 81–82,
87–91, 92–95, 95–103,
117–118, 122–125,
137–140, 170, 181–182,
350–365, 665–682,
691–719

applets, 95–103, 681–682
application programming

interfaces (API), 27,
122–123

applications, 95–96
assignment operators 81–82
bytecode, 39–40, 96
character strings (" "), 29
class definition ({ }), 28–29
classes, 47–49, 122–125,

181–182
coding guidelines, 675–679
color representation, 94–95
coordinate systems, 92–94
comments, 28–31
compilers, 39–40
constructors, 87–89, 181–182
deprecated, 27
documentation, 28, 30–31,

678–679
encapsulation, 48
enumerated types, 138–140
event generation, 703–705
garbage collection, 117–118
graphics, 92–103
identifiers, 31–33, 677
inheritance, 48
inline documentation, 28, 31
integrated development

environments (IDEs),
40–41

interactive, 87–91
invoking (calling) methods, 29
language, 26–35
layout managers, 350–365
legacy system, 137
main method, 28
methods, 29, 47
modifiers, 671–673, 676
new operator, 87–89

interactive programming,
87–89

new operator, 87–89, 115,
381–382, 392–394

interfaces, 195, 323–329, 463,
502–504. See also
graphical user interfaces
(GUIs)

Comparable, 328
hierarchies, 463
implementation for, 195,

323–328
inheritance and, 463
Iterator, 328–329
methods for, 322–328,

502–504
polymorphism via, 502–504
reference variables for,

502–504
software design and, 323–329

internal frame, 704
internal nodes, 631
Internet, 23–26

addresses, 21, 23–24
Advanced Research Projects

Agency (ARAPA), 23
domain names, 23–24
domain server, 24
hypertext, 24–26
protocol (IP), 23
search engines, 25–26
subdomains, 24
top-level domain (TLD), 24
Transmission Control

Protocol (TCP), 23
Uniform Resource Locators

(URL), 25–26
World Wide Web (WWW),

25–26
interpreters, 49–40
invisible components,

362–364
invoking (calling) methods, 29,

115, 172–173,
343–345

is-a relationship, 445–446
Iterator interface, 328–329
iterators, 241–244, 282–284,

589
conditional statements and,

241–244, 282–284
delimiters, 244
for–each statements for,

282–284
path separation (/), 244

 INDEX 799

cache, 15
central processing unit (CPU)

and, 2–3, 15
locations, 13–14
storage capacity, 14–15

main method, 28, 162–163,
402–403

Math class, 129–132
matte borders, 368–369
megabyte (MB), 14
memory, 2–3, 13–17

address, 13
bytes, 14
capacity, 14–17
computer hardware

functions, 2–3, 13–17
direct access devices,

15–16
locations, 13–14
magnetic devices, 15–16
main, 2–3, 13–15
random access (RAM), 14
read-only (ROM), 14
secondary, 2, 15–17
sequential access devices, 14
storage devices, 14–17
volatility of, 14

message dialog box, 292–293
methods, 29, 47, 58–59,

114–116, 118–121,
126–129, 129–132,
135–137, 142, 160–166,
169–182, 306–309,
322–329, 332–345,
404–407, 455–457,
488–504, 681–682. See
also recursion

abstract, 323
accessor, 171–172
algorithms for, 332–333
applets, 97, 681–682
classes and, 160–166,

169–182
constructors as, 115, 164,

181–182
declaration of, 163–166,

172–173
decomposition, 333–338
dot (.) operator for

accessing, 115
encapsulation of objects,

169–172
header, 172, 174–175
inheritance and, 455–457,

488–501

line borders, 367–368
linear search, 513–515
linked lists, 620–626
list components, 575–578
listener objects, 191–199,

248–251, 422–426,
427–431, 471–474,
521–522, 527–532

adapter classes extended for,
471–474

buttons, 192–196, 248–259
key events, 427–431
mouse events, 422–426
polymorphism and,

521–522, 527–532
sliders, 527–532

ListPanel class, 574–578
literals, data types as, 58, 63,

72–74, 116, 393
local area network (LAN),

22–23
local data, 175–176
logical error, 43
logical operators, 210–212
long integer data type, 71, 84
loops, 209–212, 230–239, 269,

275–293
boolean expressions for,

209–212
comparison of, 284
dialog box creation using,

291–293
do statements, 209,

275–278, 292–293
drawing programs using,

285–291
execution time, 212
for statements, 209,

279–284
for-each statements,

282–284
graphical user interfaces

(GUI), 285–293
infinite, 234–235, 278
nested, 236–239
while statements, 209,

230–239
low–level languages, 37

M
machine language, 37
magnetic storage devices,

15–16
main memory, 2–3, 13–15

addresses, 13

JButton class, 193–195
JColorChooser class, 525–527
JComboBox class, 564–569
JFileChooser class,

522–525
JFrame class, 144–147,

185–186
JList class, 575–578
JOptionPane class, 291–293
JPanel class, 144–147,

182–187
JScrollBar class, 569–572
JSlider class, 527–532
JSplitPane class, 572–578
JTextField class, 196–199

K
key events, GUI programs for,

427–432
key repetition, 432
keyboard focus, 432
kilobyte (KB), 14

L
labels, 145–146, 151–153,

251–255
font styles, 251–255
GUI containers, 145–146
images and, 150–153
Jlabel class, 145–146, 151

languages, see programming
languages

last-in, first–out (lifo)
processing, 628

late (dynamic) binding, 488
layered pane, 705
layout managers, 147,

350–365
border, 356–359
box, 361–364
containers and, 147, 350–365
flow, 352–356
grid, 359–361
GUI components using,

350–365
invisible components,

362–364
tabbed panes, 351–352

leaf nodes, 631–632
left-shift operator (<<), 669
legacy systems, 137
lexicographic order, 229
lightweight containers,

144–145

800 INDEX

Uniform Resource Locators
(URL), 25–26

wide area (WAN), 22–23
World Wide Web, 25–26

new operator, 87–89, 115–116,
164, 381–382, 392–394

array declaration, 381–382,
392–394

constructors and, 87–89, 115,
164

instantiation using, 87–89,
115, 381–382, 392–394

object data and, 87–89,
115–116, 392–394

String objects and,
115–116, 392–394

nextLine method, 89
nodes, non-linear data

structures, 631–632
nonprintable (control)

characters, 661–663
NOT bitwise operator (~), 667
null value setting,

115, 625
number systems, 653–659

base-2, 653
bases higher than ten,

655–656
binary, 653
bits, 653
conversions, 657–659
decimal, 653
hexadecimal, 655
place value, 653–655

NumberFormat class,
132–134

O
object-oriented (OO)

programming, 27,
44–49, 167–168,
301–378, 466–468,
519–520

aggregation and, 316–320
assigning responsibilities, 305
borders, 356–359, 365–369
classes and, 47–49, 303–305
containment hierarchies,

369–371
dependency and, 310–316
encapsulation, 48
enumerated types, 329–332
graphical user interfaces

(GUI), 349–371

mnemonics, 37
mnemonics, GUI programs for,

557–563
modifiers, 170–171,

447–449, 463–466,
671–673. See also reserved
words

encapsulation and, 170–172
inheritance and, 447–449,

463–466
Java programming, 671–673
visibility, 170–171, 447–449,

463–466, 671–672
use of, 673

monitor resolution, 92
mouse events, GUI programs

for, 418–426, 471–474
mouse motion events,

418–419
multidimensional arrays,

412–413
multiple inheritance, 453–454
mutator methods,

encapsulation, 171–172

N
narrowing conversions, 84–85
native modifier (reserved

word), 673
nested panels, 148–150
nested statements, 223–225,

236–239, 408–412
boolean expressions, 223–225
else clause applications,

223–225
for loop statements,

223–225
if statements, 223–225
indentation for, 225
palindrome example,

236–239
two-dimensional arrays using,

408–412
while loops, 236–239

networks, 20–26
computer systems, 20–26
addresses, 21, 23–24
connections, 20–22
file servers, 20
Internet, 23–26
local-area (LAN), 22–23
packets, 21–22
point-to-point connection,

20–21
protocol, 23

methods (continued)
interfaces and, 322–328,

502–504
invoking (calling), 29, 115,

172–173, 343–345
late (dynamic) binding, 488
local, 175–176
main, 28, 162–163
Math class, 129–132
mutator, 171–172
object behavior and, 47,

160–161, 163
object declaration, 114–116
object-oriented

programming and,
306–309, 322–329,
332–345

object reference variables, 47,
114–116

operations as, 160–161
overloading, 343–345
overriding, 455–457, 497
parameter passing,

175–176, 338–342,
404–407

parentheses () for
invoking, 115

polymorphism and,
488–504

print, 58–59
printf, 135–137
println, 29, 58–59
pseudorandom number

generator, 126–129
Random class, 126–129
reference variables, 47,

114–116, 488–490,
502–504

return statement, 174–175
returned values, 115–116,

126–127, 129–132
signature, 344
static, 129, 142, 306–309
String class, 114–116,

118–121
terminating programs, 29
UML class diagrams for,

337–338
variable–length parameter

lists, 404–407
variables in, 47, 114–116,

175–176, 488–490,
502–504

wrapper classes and, 142
microprocessor, 18–19

 INDEX 801

string literals ("") for, 116,
393

text fields, 196–199
this reference for, 320–322
timers, 475–478
variables as, 114–118,

138–140
wrapper classes, 141–143

off-by-one errors, 384
operating systems, 3–4
operations, object behavior

and, 160–161. See also
methods

operators, 60–62, 67, 69,
75–82, 115, 209–212,
274–275, 665–669

addition (+), 75, 81
arithmetic, 75–76
assignment (=), 67, 81–82
binary, 76
bitwise, 665–669
boolean values, 668
boolean expression

conditions, 209–212
conditional (? :), 274–275
conditional statements and,

209–212, 274–275
decrement (–), 80–81
division (/), 75–76, 81
dot (.) for accessing

methods, 115
equality, 209–210
increment (++), 80–81
Java programming, 665–669
logical, 210–212
looping statements and,

209–212
multiplication (*), 75, 81
parentheses () for, 62, 77–78
postfix form, 80–81
precedence, 62, 76–80,

665–667
prefix form, 80–81
relational, 209–210
remainder (%), 75, 81–82,

277–278
string concatenation (+),

60–62
subtraction (–), 75, 81
ternary (conditional),

274–275
unary, 76

OR bitwise operator (|),
667–678

ordinal value, 138–139

containers, 144–145
creating, 114–118
data comparisons, 228–229
declaration of, 87–89,

114–115, 381–384,
392–401

dependencies among,
310–316

dot (.) operator for accessing
methods, 115

encapsulation, 48, 169–172
enumerated types, 138–140
event-driven programs,

191–192
events, 191–199, 248–251
frames for, 143–147
frames, 144–147
garbage, 117–118
graphical, 144–153, 182–190
GUI-based classes for,

144–153, 191–199,
248–259

has-a relationships, 316–317
identification of, 303–305
images, 151–153
immutable, 118
index value, 245–247
inheritance and, 48, 475–478
instantiation, 115, 381–384,

392–394, 398–400
iterators, 241–244
labels, 145–146, 151–153
listeners for GUI interfaces,

191–199, 248–251
methods and, 47, 115–116,

169–172
new operator, 87–89,

115–116, 381–382,
392–394

object-oriented programming
and, 46–47, 87–89,
303–305, 316–317,
320–322

operations for, 160–161
ordinal values, 138–139
parentheses () for

invoking methods, 115
pointers, 115
reference variables, 114–118
returned values, 115–116
software design and,
303–305, 316–317, 320–322
state, 46, 160
String class, 114–116,

118–121, 392–397

inheritance for, 48, 466–468
interfaces, 322–329
language, 27
layout managers, 350–365
methods, 47, 306–309,

332–345
objects and, 46–48, 87–89,

303–305, 316–317,
320–322

overloading methods,
343–345

polymorphism for, 48,
519–520

problem solving, 45–46
software design, 44–49,

301–378, 466–468,
519–520

static class members,
305–309

testing, 345–349
this reserved word and,

320–322
Unified Modeling Language

(UML) diagrams,
167–168, 446, 449

objects, 46–48, 87–89,
113–158, 181–199,
228–229, 241–259,
303–305, 310–317,
320–322, 381–384,
392–401, 475–478,
617–640

action events for, 195
aggregate, 316–317
aliases of, 116–118
ArrayList class, 245–247
arrays as, 381–384,

392–401
attributes, 47, 160–161
autoboxing, 143
behavior, 46–47, 160
buttons, 192–196,

248–259
character strings (" ") for,

58–65, 116, 228–229
classes and, 47–48, 113–158,

160–161, 169–172,
181–190, 303–305,
310–317, 320–322

client, 169
collections, 617–640
conditional statements for,

241–259
constructors for, 87–89, 115,

181–190, 398–400

802 INDEX

primitive data types, 46,
71–75, 83–87, 141–143,
226–227, 384–389,
661–663

array index values, 384–389
assignment conversion of, 85
autoboxing, 143
booleans, 74, 141
bounds checking, 384–389
casting () conversion of

85–86
char, 74, 84–85
characters, 73–74, 83–86,

386–389, 661–663
conversion of, 83–87
data values as, 71–75
double, 71–72, 84–85
false, 74
float, 71–72, 84–85
floating point, 71–72,

83–86, 226–227
int, 71–72, 84–85, 141–143
integers, 71–72, 83–87,

384–386
Java programming and, 46
literals, 72
long, 71, 84
narrowing conversion of,

84–85
promotion conversion of, 85

short, 71–72, 83–85
true, 74

types, 71–75
widening conversion for,

83–84
wrapper classes, 141–143

print method, 58–59
printable characters, 661–662
printf method, 135–137
println method, 29, 58–59
private modifier, 170,

671–672
program counter, 17
programming languages, 26–43

assembly, 37
character strings (" "), 29
class definition ({ }), 28–29
comments, 28–31
compilers for, 39–40
computer error and, 42–43
documentation, 28, 31
fourth-generation (4GL), 38
high-level, 37–38
identifiers, 31–33
interpreters for, 39–40

by value passing, 338–342
character strings as, 58
command-line arguments,

402–407
constructors and, 405–407
data as, 58
formal, 175
header specification, 175–176
lists, 175
main method and, 402–403
methods, 175–175,

338–342, 404–407
multiple, 402–407
passing, 175–176, 338–342,

390–391, 404–407
software design and, 338–342
String objects and, 402–403
variable–length lists, 404–407

parent (base) class, 445,
450–453

path separation (/), 244
peripherals, 12
petabyte (PB), 14
picture resolution, 92
pixels, 92
place value, 653–655
point-to-point connection,

20–21
pointers, 115
polygons, drawing, 413–417
polylines, drawing, 414–416
polymorphism, 48, 487–535

class hierarchy and,
490–491

color choosers and, 526–527
event processing using,

521–522
file choosers and, 522–525
graphical user interfaces

(GUI), 521–532
inheritance and, 48, 488–501
interfaces and, 502–504
late (dynamic) binding, 488
methods and, 488–501
reference variables,

488–490, 502–504
searching, 513–519
sliders and, 527–532
software design for, 519–520
sorting, 504–512
super reserved word used

for, 497
postfix operator form, 80–81
prefix operator form, 80–81
primary colors, 94

output data, 29, 58–59, 90,
132–137

DecimalFormat class,
134–135

formatting, 132–137
interactive programming, 90
Java standard class library

packages, 132–135
NumberFormat class,

132–134
print method, 58–59
printf method, 135–137
println method, 29, 58–59

overloading methods, 343–345
overriding methods,

455–457, 497

P
packages, 122–125, 671

application programming
interfaces (API), 122–123

import declaration, 124–125
java.util, 124–125
visibility of, 671

packets, 21–22
paint method, 97
PaintBox project, 691–701
paintComponent method,

182, 185, 187–188,
285–288

palindrome, nested loop
example of, 236–239

panels, 144–150
containment hierarchy,

148–150
Jpanel class, 144–147
nested, 148–150

panes, 145–147, 351–352,
569–578

content, 145–147
exceptions used for, 569–578
frames and, 145
GUI programs for, 145–147,

351–352, 569–578
layout manager and, 351–352
list components for, 575–578
scrolls, 569–572
split, 572–578
tabbed, 351–352

parameters, 58, 175–176,
338–342, 390–391,
402–407

actual (arguments), 175
arg identifier, 402–403
arrays as, 390–391, 402–407

 INDEX 803

reserved words, 31–32, 69–70,
74, 170–171, 174–175,
181–182, 305–309,
320–328, 447–453, 457,
460–462, 467–468,
671–673, 676

abstract, 323, 461–462,
673

extends, 445, 460
boolean, 74
class, 31
constants declared using,

69–70
false, 74
final, 69–70, 170, 457,

467–468, 328, 673
identifiers, 31–32
implements, 322–328
inheritance using, 445,

447–453, 460–462, 464,
467–468

interfaces and, 322–328
Java modifiers, 671–673, 676
Java programming, 31–32
object-oriented design

using, 305–309, 320–328
private modifier, 170,

671–672
protected modifier, 170,

447–449, 671–672
public modifier, 31, 170,

671–672
return, 174–175, 181
static modifier, 31,

305–309, 673
super, 450–453, 464, 467,

497
this reserved word and,

320–322
true, 74
visibility modifiers, 170–171,

447–449
void, 31, 174–175, 181–182

return statement, 174–175
returned values, 115–116,

126–127, 129–132
Math class, 129–132
Random class, 126–129
String class, 115–116

review, code evaluation by, 346
rewritable CD (CD–RW)

devices, 16
RGB (red-green-blue) values,

94
right-shift operator (>>), 669

push buttons, GUI creation of,
192–196, 248–251

Q
queues, 627–628

R
radio buttons, GUI creation of,

255–259
ragged arrays, 413
random access memory (RAM),

14
Random class, 126–129
read–only memory (ROM), 14
recordable CD (CD–R) devices,

16
recursion, 583–616

direct, 589–590
fractals and, 604–611
graphic applications,

601–611
indirect, 589–590
infinite, 584–585
iteration versus, 589
math use of, 585–586
problem-solving use of,

590–600
programming, 586–590
recursive thinking, 584–586
tiled pictures and, 601–604
Towers of Hanoi problem,

595–600
traversing a maze, 591–595

reference variables, 47,
114–118, 489–490,
502–504

garbage, 117–118
inheritance and, 489–490
interfaces and, 502–504
object aliases for, 116–118
object declaration and,

114–116
polymorphic, 488–490,

502–504
string methods, 114–116

registers, 17–18
regular expressions, 91,

683–684
relational operators,

209–210
remainder (%) operator, 75,

81–82, 277–278
repetition statements, see loops

invoking (calling) methods,
29

Java, 26–35
low-level, 37
machine, 37
methods and, 29
mnemonics, 37
object-oriented (OO), 27
reserved words, 31–32
semantics, 41–42
statements and, 26
syntax, 41–42
target, 39
translating code for, 38–40

programs, 2, 26–49
class definition ({ }), 28–29
comments, 28–31
compilers, 39–40
computer hardware and, 2
debuggers, 40–41
development environments,

40–41
development of, 36–43
documentation, 28, 30–31
editors, 38–39
errors, 40–43
integrated development

environments (IDEs),
40–41

interpreters, 49–40
invoking (calling) methods, 29
Java, 26–35, 40–43
languages, 26–43
methods, 29, 47
object–oriented (OO), 27,

44–49
semantics, 41–42
software tools for, 2, 38–41
source code, 39
statements, 26
syntax, 41–42
terminating, 29

progress bar, 705
promotion, data conversion

by, 85
propagating the exception,

545–548
protected modifier, 170,

447–449, 671–672
protocol, 23
pseudocode, 333
pseudorandom number

generator, 126–129
public modifier, 29, 31, 97,

170, 671–672

804 INDEX

layout managers, 350–365
methods, 306–309, 332–345
objects and, 46–48, 303–305,

316–317, 320–322
parameter passing, 338–342
principles of, 44–49
static class members,

305–309
testing programs for, 303,

345–348
this reserved word and,

320–322
Software Development Kit

(SDK), 41
software failure, 111–112,

205–206, 267–268,
377–378, 441–442,
485–486

Ariane 5 Fight 501,
485–486

Denver Airport Baggage
Handling System,
205–206

LA Air Traffic Control,
441–442

NASA Mars Climate Orbiter
and Polar Lander,
111–112

Therac-25, 267–268
2003 Northeast blackout,

377–378
software reuse, 48, 444
sorting, 504–512

comparison of approaches,
512

insertion, 511–512
polymorphism and, 504–512
selection, 505–507

source code, 39
spacing, coding guidelines for,

677
split panes, GUI programs for,

572–578
stack data structures, 628–630
standard input stream, 89
start angle, 101
statement coverage, 348
static class members, 29, 31,

129, 142, 300, 305–309,
673

methods, 129, 142,
306–309

static modifier, 29, 31,
305–309, 673

variables, 300, 306

software, 2–4, 24–25, 38–43,
44–49, 466–468,
519–520

application, 4
compilers, 39–40
compile-time error, 42
computer system functions,

2–4
debugging, 40–41, 43
development environments,

40–41
editors, 38–39
errors, 40–43
graphical user interface

(GUI), 4
hardware components and, 4
inheritance and design of,

466–468
interpreters, 39–40
Java Development Kit (JDK),

41
logical error, 43
object-oriented

programming, 44–49
operating systems, 3–4
polymorphism and design of,

519–520
program development tools,

38–41
run-time error, 43
user interface, 3

software design, 44–49,
301–378, 466–468,
519–520

polymorphism and,
519–520

aggregation and, 316–320
borders, 356–359, 365–369
boundaries, 347–348
classes and, 303–343
clients, 302
containment hierarchies,

369–371
dependency and, 310–316
development activities,

302–303
enumerated types, 329–332
functional specification, 302
graphical user interfaces

(GUIs), 349–371
identification of objects and

classes, 303–305
implementation, 303, 323–328
inheritance and, 466–468
interfaces and, 322–329

right-shift with zeros operator
(>>>), 669

robust programs, 234
root nodes, 631–632
rubberbanding, 423–426
run-time error, 43
running sums, 233

S
sampling rate, 5–7
Scanner class, 87–91,

241–244
scope of a variable, 167
scroll panes, GUI programs for,

569–572
search engines, 25–26
searching, 513–519

binary, 515–518
comparison of approaches,

519
linear, 513–515
polymorphism and, 513–519

secondary memory, 2, 15–17
direct access storage devices,

15–16
magnetic storage devices,

15–16
random access memory

(RAM), 14
read-only memory (ROM), 14
sequential access storage

devices, 14
storage capacity, 15–17

seed value, 126–127
selection sort, 505–507
selection statements, see

conditional statements
semantics, 41–42
sentinel values, 231–233
sequential access storage

devices, 14
service (support) methods,

encapsulation, 170
shadow variables, 457–458
short integer data type,

71–72, 83–85
siblings, 459
signals, 4–10

analog, 4–5
digital, 6–10
sampling rate, 5–7

signature, method invocation
and, 344

sliders, GUI programs for,
527–532

 INDEX 805

top-level containers, 369
top-level domain (TLD), 24
touch screen systems, 13
Towers of Hanoi recursion

problem, 595–600
transient modifier (reserved

word), 673
Transmission Control Protocol

(TCP), 23
traversing a maze recursion

problem, 591–595
tree component, 705
tree data structures, 631–632
true boolean value, 74
truth tables, 210–212
try blocks, 540–544
try–catch statements,

540–544
two–dimensional arrays,

408–412

U
unary operators, 76
unchecked exceptions, 552
Unicode Character Set, 74,

661–663
Unified Modeling Language

(UML) diagrams,
167–168, 446, 449

Uniform Resource Locators
(URL), 25–26

uninitialized variables, 114
USB flash drives, 15
user interface, 3

V
variable-length parameter lists,

404–407
variables, 65–69, 114–118,

138–140, 167, 175–176,
306, 329–332, 381–384,
389–390, 457–458,
488–490, 502–504

aliases of, 116–118
arrays, 381–384, 389–390
assignment statements, 67–69
data value as, 65–69
declarations, 66–67,

114–116, 167, 175–176,
381–384, 389–390,
489–490, 502

enumerated types, 138–140,
329–332

inheritance and, 457–458,
489–490

default case, 270–271
equal conditions of, 272–273
single value cases of, 270

synchronized modifier
(reserved word), 673

syntax, 41–42, 389, 707–719
syntax error, 43
System class, 135–137
system clock, 19
System.err standard I/O

stream, 553–554
System.in standard I/O

stream, 553
System.out standard I/O

stream, 553–554

T
tabbed panes, 351–352
tables, 705
tags, javadoc comments,

686–688
target language, 39
terabyte (TB), 14
test case, 347
test suite, 347
testing programs, 303, 345–348

black–box, 347–348
boundaries, 347–348
defect, 346–348
equivalence categories,

347–348
review, 346
software design and, 303,

345–348
statement coverage, 348
walkthrough, 346
white-box (glass-box), 348

text fields, 196–199
text files, reading using

iterators, 242–244
text processing, 705
this reserved word, 320–322
throws clause, 243–244,

550–555
throw statements, 551–552,

554–556
tiled pictures and, 601–604
Timer class, 475–478
title case, 33
titled borders, 368
toggle buttons, 259
tokens, 89
tool bar, 704
tool tips and, GUI programs

for, 557–563

streams, exceptions and,
553–554

string concatenation, 60–63
string literals (" "), 29, 58,

116, 393
String objects, 114–116,

118–121, 392–397,
402–403

arg identifier, 402–403
arrays of, 392–397, 402–403
command–line arguments for,

402–403
declaration of objects using,

114–116, 392–397
immutable objects in, 118
index of characters, 118
instantiation using, 115,

392–394
main method and, 402–403
methods, 116–116, 118–121
new operator for, 115–116,

392–394
parameters as, 402–403
reference variables, 114–116
returned values, 115–116

subclasses, 444–458
child class as, 445
creating, 444–447
extends reserved word used

for, 445
multiple inheritance,

453–454
overriding methods,

455–457
parent (base) class, 445
protected modifier used

for, 447–449
shadow variables, 457–458
super reserved word used

for, 450–453
UML class diagrams for, 446,

449
subdomains, 24
subscript values, see index

values
super modifier(reserved

word), 450–453, 464,
467, 497

Swing packages, 144, 291,
365–369, 468–470, 557

switch statements, 208,
270–273

break statement and,
270–271

data types for, 271

806 INDEX

while loop statements, 209,
230–239, 241–244

break statements for,
239

continue statements for,
239

divide-by-zero error,
232–233

infinite, 234–235
input validation, 234
iteration using, 241–244
nested, 236–269
repetition of, 230–231
running sums, 233
sentinel values, 231–233

white-box (glass-box)
testing, 348

white space, 33–35, 89, 677
wide area network (WAN),

22–23
widening conversions, 83–84
World Wide Web (WWW),

25–26, 98
wrapper classes, 141–143
writing classes, 159–206

X
XOR bitwise operator (^),

667–678

encapsulation and, 170–171,
447–449

inheritance and, 447–449,
463–466

Java programming, 671–672
package, 671
private, 170, 671–672
protected, 447–449,

671–672
public, 170, 671–672

void modifier, 29, 31, 141,
174–175, 181–182

Java programming use of, 29,
31, 181–182

method header specification,
174–175

return statement and,
174–175, 181

wrapper class for, 141
volatile modifier (reserved

word), 673
von Neumann architecture,

18

W
walkthrough, code evaluation

by, 346
while clause for do statements,

275–276

variables (continued)
initializer lists, 389–390
instance data, 167
instantiation, 115, 167
int value declaration of,

65–67, 114, 381–382,
389–390

interfaces and, 502–504
interfaces for, 502–504
late binding, 488
local data, 175–176
method declaration of,

175–176, 381–384
new operator for, 115–116
null value setting, 115
objects and, 114–118,

138–140
ordinal value, 138–139
polymorphism and,

488–490, 502–504
reference, 114–116, 488–490,

502–504
scope of, 197
shadowing, 457–458
static (class), 300, 306
uninitialized, 114

visibility modifiers, 170–171,
447–449, 463–466,
671–672

default, 671–672

	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	Acknowledgments
	Chapter 1 Introduction
	1.1 Computer Processing
	Software Categories
	Digital Computers
	Binary Numbers

	1.2 Hardware Components
	Computer Architecture
	Input/Output Devices
	Main Memory and Secondary Memory
	The Central Processing Unit

	1.3 Networks
	Network Connections
	Local-Area Networks and Wide-Area Networks
	The Internet
	The World Wide Web
	Uniform Resource Locators

	1.4 The Java Programming Language
	A Java Program
	Comments
	Identifiers and Reserved Words
	White Space

	1.5 Program Development
	Programming Language Levels
	Editors, Compilers, and Interpreters
	Development Environments
	Syntax and Semantics
	Errors

	1.6 Object-Oriented Programming
	Problem Solving
	Object-Oriented Software Principles

	Chapter 2 Data and Expressions
	2.1 Character Strings
	The print and println Methods
	String Concatenation
	Escape Sequences

	2.2 Variables and Assignment
	Variables
	The Assignment Statement
	Constants

	2.3 Primitive Data Types
	Integers and Floating Points
	Characters
	Booleans

	2.4 Expressions
	Arithmetic Operators
	Operator Precedence
	Increment and Decrement Operators
	Assignment Operators

	2.5 Data Conversion
	Conversion Techniques

	2.6 Interactive Programs
	The Scanner Class

	2.7 Graphics
	Coordinate Systems
	Representing Color

	2.8 Applets
	Executing Applets Using the Web

	2.9 Drawing Shapes
	The Graphics Class

	Software Failure: NASA Mars Climate Orbiter and Polar Lander

	Chapter 3 Using Classes and Objects
	3.1 Creating Objects
	Aliases

	3.2 The String Class
	3.3 Packages
	The import Declaration

	3.4 The Random Class
	3.5 The Math Class
	3.6 Formatting Output
	The NumberFormat Class
	The DecimalFormat Class
	The printf Method

	3.7 Enumerated Types
	3.8 Wrapper Classes
	Autoboxing

	3.9 Components and Containers
	Frames and Panels

	3.10 Nested Panels
	3.11 Images

	Chapter 4 Writing Classes
	4.1 Classes and Objects Revisited
	4.2 Anatomy of a Class
	Instance Data
	UML Class Diagrams

	4.3 Encapsulation
	Visibility Modifiers
	Accessors and Mutators

	4.4 Anatomy of a Method
	The return Statement
	Parameters
	Local Data
	Bank Account Example

	4.5 Constructors Revisited
	4.6 Graphical Objects
	4.7 Graphical User Interfaces
	4.8 Buttons
	4.9 Text Fields
	Software Failure: Denver Airport Baggage Handling System

	Chapter 5 Conditionals and Loops
	5.1 Boolean Expressions
	Equality and Relational Operators
	Logical Operators

	5.2 The if Statement
	The if-else Statement
	Using Block Statements
	Nested if Statements

	5.3 Comparing Data
	Comparing Floats
	Comparing Characters
	Comparing Objects

	5.4 The while Statement
	Infinite Loops
	Nested Loops
	The break and continue Statements

	5.5 Iterators
	Reading Text Files

	5.6 The ArrayList Class
	5.7 Determining Event Sources
	5.8 Check Boxes and Radio Buttons
	Check Boxes
	Radio Buttons

	Software Failure: Therac-25

	Chapter 6 More Conditionals and Loops
	6.1 The switch Statement
	6.2 The Conditional Operator
	6.3 The do Statement
	6.4 The for Statement
	The for-each Loop
	Comparing Loops

	6.5 Drawing with Loops and Conditionals
	6.6 Dialog Boxes

	Chapter 7 Object-Oriented Design
	7.1 Software Development Activities
	7.2 Identifying Classes and Objects
	Assigning Responsibilities

	7.3 Static Class Members
	Static Variables
	Static Methods

	7.4 Class Relationships
	Dependency
	Dependencies Among Objects of the Same Class
	Aggregation
	The this Reference

	7.5 Interfaces
	The Comparable Interface
	The Iterator Interface

	7.6 Enumerated Types Revisited
	7.7 Method Design
	Method Decomposition
	Method Parameters Revisited

	7.8 Method Overloading
	7.9 Testing
	Reviews
	Defect Testing

	7.10 GUI Design
	7.11 Layout Managers
	Flow Layout
	Border Layout
	Grid Layout
	Box Layout

	7.12 Borders
	7.13 Containment Hierarchies
	Software Failure: 2003 Northeast Blackout

	Chapter 8 Arrays
	8.1 Array Elements
	8.2 Declaring and Using Arrays
	Bounds Checking
	Alternate Array Syntax
	Initializer Lists
	Arrays as Parameters

	8.3 Arrays of Objects
	8.4 Command-Line Arguments
	8.5 Variable Length Parameter Lists
	8.6 Two-Dimensional Arrays
	Multidimensional Arrays

	8.7 Polygons and Polylines
	The Polygon Class

	8.8 Mouse Events
	8.9 Key Events
	Software Failure: LA Air Traffic Control

	Chapter 9 Inheritance
	9.1 Creating Subclasses
	The protected Modifier
	The super Reference
	Multiple Inheritance

	9.2 Overriding Methods
	Shadowing Variables

	9.3 Class Hierarchies
	The Object Class
	Abstract Classes
	Interface Hierarchies

	9.4 Visibility
	9.5 Designing for Inheritance
	Restricting Inheritance

	9.6 The Component Class Hierarchy
	9.7 Extending Adapter Classes
	9.8 The Timer Class
	Software Failure: Ariane 5 Flight 501

	Chapter 10 Polymorphism
	10.1 Late Binding
	10.2 Polymorphism via Inheritance
	10.3 Polymorphism via Interfaces
	10.4 Sorting
	Selection Sort
	Insertion Sort
	Comparing Sorts

	10.5 Searching
	Linear Search
	Binary Search
	Comparing Searches

	10.6 Designing for Polymorphism
	10.7 Event Processing
	10.8 File Choosers
	10.9 Color Choosers
	10.10 Sliders

	Chapter 11 Exceptions
	11.1 Exception Handling
	11.2 Uncaught Exceptions
	11.3 The try-catch Statement
	The finally Clause

	11.4 Exception Propagation
	11.5 The Exception Class Hierarchy
	Checked and Unchecked Exceptions

	11.6 I/O Exceptions
	11.7 Tool Tips and Mnemonics
	11.8 Combo Boxes
	11.9 Scroll Panes
	11.10 Split Panes

	Chapter 12 Recursion
	12.1 Recursive Thinking
	Infinite Recursion
	Recursion in Math

	12.2 Recursive Programming
	Recursion vs. Iteration
	Direct vs. Indirect Recursion

	12.3 Using Recursion
	Traversing a Maze
	The Towers of Hanoi

	12.4 Recursion in Graphics
	Tiled Pictures
	Fractals

	Chapter 13 Collections
	13.1 Collections and Data Structures
	Separating Interface from Implementation

	13.2 Dynamic Representations
	Dynamic Structures
	A Dynamically Linked List
	Other Dynamic List Representations

	13.3 Linear Data Structures
	Queues
	Stacks

	13.4 Non-Linear Data Structures
	Trees
	Graphs

	13.5 The Java Collections API
	Generics

	Appendix A: Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	Appendix B: Number Systems
	Appendix C: The Unicode Character Set
	Appendix D: Java Operators
	Appendix E: Java Modifiers
	Appendix F: Java Coding Guidelines
	Appendix G: Java Applets
	Appendix H: Regular Expressions
	Appendix I: Javadoc Documentation Generator
	Appendix J: The PaintBox Project
	Appendix K: GUI Events
	Appendix L: Java Syntax
	Appendix M: The Java Class Library
	Appendix N: Answers to Self-Review Questions
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

