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| Introduction

Here is a typical problem of interest involving probability: A communication system
is to consist of # seemingly identical antennas that are to be lined up in a linear order.
The resulting system will then be able to receive all incoming signals—and will be
called functional—as long as no two consecutive antennas are defective. If it turns
out that exactly m of the n antennas are defective, what is the probability that the
resulting system will be functional? For instance, in the special case where n = 4 and
m = 2, there are 6 possible system configurations, namely,

0110
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where 1 means that the antenna is working and 0 that it is defective. Because the
resulting system will be functional in the first 3 arrangements and not functional in
the remaining 3, it seems reasonable to take % = % as the desired probability. In
the case of general n and m, we could compute the probability that the system is
functional in a similar fashion. That is, we could count the number of configurations
that result in the system’s being functional and then divide by the total number of all
possible configurations.

From the preceding discussion, we see that it would be useful to have an effec-
tive method for counting the number of ways that things can occur. In fact, many
problems in probability theory can be solved simply by counting the number of dif-
ferent ways that a certain event can occur. The mathematical theory of counting is
formally known as combinatorial analysis.

From Chapter 1 of A First Course in Probability, Ninth Edition. Sheldon Ross.
Copyright © 2014 by Pearson Education, Inc. All rights reserved.
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2 The Basic Principle of Counting

Example

2a

Example
2b

The basic principle of counting will be fundamental to all our work. Loosely put, it
states that if one experiment can result in any of m possible outcomes and if another
experiment can result in any of n possible outcomes, then there are mn possible
outcomes of the two experiments.

The basic principle of counting

Suppose that two experiments are to be performed. Then if experiment 1 can
result in any one of m possible outcomes and if, for each outcome of experiment
1, there are n possible outcomes of experiment 2, then together there are mn
possible outcomes of the two experiments.

Proof of the Basic Principle: The basic principle may be proven by enumerating
all the possible outcomes of the two experiments; that is,

1y, 4,2, ...,0,n
@0, 22, ...,2n

(m,1), m,2), ..., (m,n)

where we say that the outcome is (i, j) if experiment 1 results in its ith possible
outcome and experiment 2 then results in its jth possible outcome. Hence, the set of
possible outcomes consists of m rows, each containing » elements. This proves the
result.

A small community consists of 10 women, each of whom has 3 children. If one
woman and one of her children are to be chosen as mother and child of the year,
how many different choices are possible?

Solution By regarding the choice of the woman as the outcome of the first experi-
ment and the subsequent choice of one of her children as the outcome of the second
experiment, we see from the basic principle that there are 10 X 3 = 30 possible
choices. |

When there are more than two experiments to be performed, the basic principle
can be generalized.

The generalized basic principle of counting

If r experiments that are to be performed are such that the first one may result
in any of n; possible outcomes; and if, for each of these ny possible outcomes,
there are n, possible outcomes of the second experiment; and if, for each of the
possible outcomes of the first two experiments, there are n3 possible outcomes
of the third experiment; and if ..., then there is a total of n; - ny - - - n, possible
outcomes of the r experiments.

A college planning committee consists of 3 freshmen, 4 sophomores, 5 juniors, and
2 seniors. A subcommittee of 4, consisting of 1 person from each class, is to be cho-
sen. How many different subcommittees are possible?
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Solution We may regard the choice of a subcommittee as the combined outcome of
the four separate experiments of choosing a single representative from each of the
classes. It then follows from the generalized version of the basic principle that there
are 3 X 4 X 5 X 2 = 120 possible subcommittees. |

How many different 7-place license plates are possible if the first 3 places are to be
occupied by letters and the final 4 by numbers?

Solution By the generalized version of the basic principle, the answer is 26 - 26 -
26 - 10 - 10 - 10 - 10 = 175,760,000. n

How many functions defined on » points are possible if each functional value is
either O or 1?

Solution Let the points be 1,2,...,n. Since f(i) must be either 0 or 1 for each
i=1,2,...,n,it follows that there are 2" possible functions. ]

In Example 2c, how many license plates would be possible if repetition among letters
or numbers were prohibited?

Solution In this case, there would be 26 - 25 - 24 . 10 - 9 \8 - 7 = 78,624,000
possible license plates. |

How many different ordered arrangements of the letters a, b, and ¢ are possible?
By direct enumeration we see that there are 6, namely, abc, ach, bac, bca, cab,
and cba. Each arrangement is known as a permutation. Thus, there are 6 possible
permutations of a set of 3 objects. This result could also have been obtained
from the basic principle, since the first object in the permutation can be any of
the 3, the second object in the permutation can then be chosen from any of the
remaining 2, and the third object in the permutation is then the remaining 1.
Thus, there are 3 - 2 - 1 = 6 possible permutations.

Suppose now that we have n objects. Reasoning similar to that we have just used
for the 3 letters then shows that there are

nn—-1n -2)---3-2.-1=n!

different permutations of the n objects.

Whereas n! (read as “n factorial”) is defined to equal 1 - 2.-.n when n is a
positive integer, it is convenient to define 0! to equal 1.

How many different batting orders are possible for a baseball team consisting of 9
players?

Solution There are 9! = 362,880 possible batting orders. |

A class in probability theory consists of 6 men and 4 women. An examination is
given, and the students are ranked according to their performance. Assume that no
two students obtain the same score.

(a) How many different rankings are possible?
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(b) If the men are ranked just among themselves and the women just among them-
- selves, how many different rankings are possible?

Solution (a) Because each ranking corresponds to a particular ordered arrangement
of the 10 people, the answer to this part is 10! = 3,628,800.

(b) Since there are 6! possible rankings of the men among themselves and 4!
possible rankings of the women among themselves, it follows from the basic principle
that there are (6!)(4!) = (720)(24) = 17,280 possible rankings in this case. |

Ms. Jones has 10 books that she is going to put on her bookshelf. Of these, 4 are math-
ematics books, 3 are chemistry books, 2 are history books, and 1 is a language book.
Ms. Jones wants to arrange her books so that all the books dealing with the same
subject are together on the shelf. How many different arrangements are possible?

Solution There are 4! 3! 2! 1! arrangements such that the mathematics books are
first in line, then the chemistry books, then the history books, and then the language
book. Similarly, for each possible ordering of the subjects, there are 4! 3! 2! 1! pos-
sible arrangements. Hence, as there are 4! possible orderings of the subjects, the
desired answer is 4! 4! 3! 2! 1! = 6912. |

We shall now determine the number of permutations of a set of n objects when
certain of the objects are indistinguishable from one another. To set this situation
straight in our minds, consider the following example.

How many different letter arrangements can be formed from the letters PEPPER?

Solution We first note that there are 6! permutations of the letters P1E1P,P3EoR
when the 3P’s and the 2FE’s are distinguished from one another. However, consider
any one of these permutations—for instance, P1 P, E1 P3E>R. If we now permute the
P’s among themselves and the E’s among themselves, then the resultant arrange-
ment would still be of the form PPEPER. That is, all 3! 2! permutations

P P,E1P3E>R
PiP3E{P,E>R
P,P E1P3E>R
P,P3E{P1E>R
P3P1E{P,E»R
P3P,E{P1E>R

PiP,E,P3;E 1R
P P3E,PE R
P,P1E;P3E{R
P,P;E,P1E1R
P3;P{E>P>E1R
P3P,E,P{E1R

are of the form PPEPER. Hence, there are 6!/(3! 2!) = 60 possible letter arrange-
ments of the letters PEPPER. |

In general, the same reasoning as that used in Example 3d shows that there are
n!
nilny! - ng!

different permutations of n objects, of which n; are alike, n; are alike, . ..,n, are
alike.

A chess tournament has 10 competitors, of which 4 are Russian, 3 are from the
United States, 2 are from Great Britain, and 1 is from Brazil. If the tournament
result lists just the nationalities of the players in the order in which they placed, how
many outcomes are possible?
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Solution There are 10!
ISR 12,600

possible outcomes. ]

How many different signals, each consisting of 9 flags hung in a line, can be made
from a set of 4 white flags, 3 red flags, and 2 blue flags if all flags of the same color
are identical?

Solution There are 91

4! 312!
different signals. [ |

= 1260

We are often interested in determining the number of different groups of r objects
that could be formed from a total of n objects. For instance, how many different
groups of 3 could be selected from the S items A, B, C, D, and E? To answer this
question, reason as follows: Since there are 5 ways to select the initial item, 4 ways to
then select the next item, and 3 ways to select the final item, there are thus S - 4 - 3
ways of selecting the group of 3 when the order in which the items are selected is
relevant. However, since every group of 3—say, the group consisting of items A, B,
and C—will be counted 6 times (that is, all of the permutations ABC, ACB, BAC,
BCA, CAB, and CBA will be counted when the order of selection is relevant), it
follows that the total number of groups that can be formed is

5.4.3
3.2.17

In general,asn(n — 1)---(n — r + 1) represents the number of different ways that
a group of r items could be selected from n items when the order of selection is
relevant, and as each group of r items will be counted r! times in this count, it follows
that the number of different groups of r items that could be formed from a set of
items is

10

n(n—l)~-(n—r+1)_ n!
r! T (m-nn

Notation and terminology

We define (’:),forr =< n, by

ny\ _ n!
r]- m-n'r

and say that ':) (read as “n choose r”) represents the number of possible

combinations of n objects taken r at a time."

¥ By convention, 0! is defined to be 1. Thus, ( 8 ) = ( : > = 1. We also take ( ': ) to be equal to 0 when
eitheri < Oori > n.
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Thus, ’: represents the number of different groups of size r that could be
selected from a set of n objects when the order of selection is not considered relevant.

Equivalently, 'rl is the number of subsets of size r that can be chosen from

. . n! -

a set of size n. Using that 0! = 1, note that 0 I A 1, which is
n 0 0!n!

consistent with the preceding interpretation because in a set of size n there is exactly

1 subset of size n (namely, the entire set), and exactly one subset of size 0 (namely
the empty set). A useful convention is to define < 'rl ) equal to 0 when eitherr > n
orr < 0.

A committee of 3 is to be formed from a group of 20 people. How many different
committees are possible?

20)_20'19~18

3 | =35 5 = 1140 possible committees. |

Solution There are ( 321

From a group of 5 women and 7 men, how many different committees consisting of
2 women and 3 men can be formed? What if 2 of the men are feuding and refuse to
serve on the committee together?

Solution As there are (g) possible groups of 2 women, and (;) possible

groups of 3 men, it follows from the basic principle that there are (;) (;) =

.4\ 7.6 -
; 113 g i = 350 possible committees consisting of 2 women and 3 men.

Now suppose that 2 of the men refuse to serve together. Because a total of
(g i = 5 out of the (; ) = 35 possible groups of 3 men contain both of
the feuding men, it follows that there are 35 — 5 = 30 groups that do not contain

both of the feuding men. Because there are still g = 10 ways to choose the 2

women, there are 30 - 10 = 300 possible committees in this case.

Consider a set of n antennas of which m are defective and n — m are functional
and assume that all of the defectives and all of the functionals are considered indis-
tinguishable. How many linear orderings are there in which no two defectives are
consecutive?

Solution Imagine that the n — m functional antennas are lined up among them-

selves. Now, if no two defectives are to be consecutive, then the spaces between the

functional antennas must each contain at most one defective antenna. That is, in

then — m + 1 possible positions—represented in Figure 1 by carets—between the

n — m functional antennas, we must select m of these in which to put the 'defective

n—m+1
m

least one functional antenna between any two defective ones.

antennas. Hence, there are possible orderings in which there is at
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Alalal...Aalala

1 = functional

A = place for at most one defective

Figure 1 No consecutive defectives.

A useful combinatorial identity is

(f):(’r‘:;>+<":1> 1=r=n 4.1)
Equation (4.1) may be proved analytically or by the following combinatorial argu-
ment: Consider a group of n objects, and fix attention on some particular one of
these objects—call it object 1. Now, there are ’: : % groups of size r that con-
tain object 1 (since each such group is formed by selecting 7 — 1 from the remaining

n — 1 objects). Also, there are " , 1 groups of size r that do not contain object
1. As there is a total of ( 'rl ) groups of size r, Equation (4.1) follows.

n . . , .
The values . ] are often referred to as binomial coefficients because of their

prominence in the binomial theorem.

The binomial theorem

x+ "= Z (Z)xky"‘k (4.2)

k=0

We shall present two proofs of the binomial theorem. The first is a proof by
mathematical induction, and the second is a proof based on combinatorial consider-
ations.

Proof of the Binomial Theorem by Induction: When n = 1, Equation (4.2) reduces to

x +y=((1))x°y1 + <}>x1)’°=y + x

Assume Equation (4.2) forn — 1. Now,

E+ Y=+ &+t
n—1
=x + y)Z(n ; 1)xky"‘1“k
k=0

='§<n P 1)xk+1yn—1—k + 'S(n P 1>xkyn—k
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Letting i = k + 1 in the first sum and i = k in the second sum, we find that

n n—1
(x + y)"=z<': __11)x"y""' + Z(" ; 1)x"y"-i

i=1 =0

=xn+§[(’;_‘}) " (”;1>]xfyn—i+y"

n_l . .
Xt + (’z)x’y”"‘+y”

i=1

- n i n—i
(1)
i=0

where the next-to-last equality follows by Equation (4.1). By induction, the theorem
is now proved.

Combinatorial Proof of the Binomial Theorem: Consider the product

(X1 + yO)@x2 + y2) - (xXn + yn)

Its expansion consists of the sum of 2" terms, each term being the product of n fac-
tors. Furthermore, each of the 2" terms in the sum will contain as a factor either x;
ory; foreachi=1,2,...,n. For example,

X1 + yDG2 + y2) =x1x2 + x1y2 + y1x2 + y1)2

Now, how many of the 2" terms in the sum will have k of the x;’s and (n — k) of
the y;’s as factors? As each term consisting of k of the x;’s and (n — k) of the y;’s
corresponds to a choice of a group of k from the n values x1,x2,...,x,, there are

such terms. Thus, letting x; = x,y; = y,i = 1,...,n, we see that

x+ = Z (Z)xky"‘k

k=0

n
k

Expand (x + y)3.

Solution

x+y°’= (g)x0y3 + (i’)xly2 + (g)xzyl + (g)ﬁy"

=y + 302 + %y + & [ ]

How many subsets are there of a set consisting of # elements?

n

Solution Since there are ( X

) subsets of size k, the desired answer is

Z(Z):a + 1)t =2"

=0
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This result could also have been obtained by assigning either the number 0 or the
number 1 to each element in the set. To each assignment of numbers, there cor-
responds, in a one-to-one fashion, a subset, namely, that subset consisting of all
elements that were assigned the value 1. As there are 2" possible assignments, the
result follows.

Note that we have included the set consisting of 0 elements (that is, the null set)
as a subset of the original set. Hence, the number of subsets that contain at least 1
elementis 2" — 1. [ |

5 Multinomial Coefficients

In this section, we consider the following problem: A set of » distinct items is to be
divided into r distinct groups of respective sizes nq,n,...,n,, where Y i_, n; = n.
How many different divisions are possible? To answer this question, we note that

there are :1 possible choices for the first group; for each choice of the first group,

there are (n ;2 " ) possible choices for the second group; fo\r each choice of the

— nT —n

first two groups, there are ns

2 ) possible choices for the third group; and

so on. It then follows from the generalized version of the basic counting principle
that there are

n n—m n—ng—ny — - — Np_q
ny ny n,

_ n! (n — ny)! “(n—n1—n2—--~—-n,_1)!
n—n)!'n!(n — ny — np)! ny! 0! n,!
n!

T nng!--on,!

possible divisions.

Another way to see this result is to consider the n values 1,1,...,1,2,...,2,...,
r,...,r, where i appears n; times, for i = 1,...,r. Every permutation of these values
corresponds to a division of the n items into the r groups in the following manner:
Let the permutation iy, i, . .., i, correspond to assigning item 1 to group iy, item 2 to
group iz, and so on. For instance, if n = 8 and if ny = 4, n; = 3, and n3 = 1, then
the permutation 1,1,2,3,2,1,2,1 corresponds to assigning items 1,2, 6,8 to the first
group, items 3,5, 7 to the second group, and item 4 to the third group. Because every
permutation yields a division of the items and every possible division results from
some permutation, it follows that the number of divisions of » items into r distinct
groups of sizes ni,ny,...,n, is the same as the number of permutations of n items
of which nq are alike, an(il n, are alike, ..., and n, are alike, which was shown in

n!

Section 3 to equal ———.
nilny!---n,!
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Notation

n
Ifny + np + --- + n, = n, we define (nl,nz,...,n,)by

n n!
n,ny,.. 0 | nglngl- oy

Thus " represents the number of possible divisions of n distinct

’ nlanZ’--"nr
objects into r distinct groups of respective sizes ny,nz,...,n,.

A police department in a small city consists of 10 officers. If the department policy is
to have 5 of the officers patrolling the streets, 2 of the officers working full time at the
station, and 3 of the officers on reserve at the station, how many different divisions
of the 10 officers into the 3 groups are possible?

Solution There are = 2520 possible divisions. |

10!
51213t
Ten children are to be divided into an A team and a B team of 5 each. The A team

will play in one league and the B team in another. How many different divisions are
possible?

10!
Solution There are S5 = 252 possible divisions. |

In order to play a game of basketball, 10 children at a playground divide themselves
into two teams of 5 each. How many different divisions are possible?

Solution Note that this example is different from Example 5b because now the
order of the two teams is irrelevant. That is, there is no A or B team, but just a
division consisting of 2 groups of 5 each. Hence, the desired answer is
10t/(5! 5h
2!
The proof of the following theorem, which generalizes the binomial theorem, is
left as an exercise.

=126 |

The multinomial theorem
1+ x4+ +x) =

n
Z xrltl x;z . x:lr
nlinz’”'anr

(nly""nf):
n+--+n=n

That is, the sum is over all nonnegative integer-valued vectors (ny,nz,...,n;)
suchthatn; + ny + -+ + n, =n. ‘

The numbers ( ) are known as multinomial coefficients.

nlanZ"-- ,nr
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In the first round of a knockout tournament involving #» = 2™ players, the » players
are divided into n/2 pairs, with each of these pairs then playing a game. The losers
of the games are eliminated while the winners go on to the next round, where the
process is repeated until only a single player remains. Suppose we have a knockout
tournament of 8 players.

(a) How many possible outcomes are there for the initial round? (For instance,
one outcome is that 1 beats 2, 3 beats 4, 5 beats 6, and 7 beats 8.)

(b) How many outcomes of the tournament are possible, where an outcome gives
complete information for all rounds?

Solution One way to determine the number of possible outcomes for the initial
round is to first determine the number of possible pairings for that round. To do so,
note that the number of ways to divide the 8 players into a first pair, a second pair, a

. .. 8! . .
thirc? pair, and a fourth pair is (2, 2’82, 2) =5 Thus, the number of possible pair-
ings when there is no ordering of the 4 pairs is > For each such pairing, there are

2 possible choices from each pair as to the winner of that game,showing that there
8124 8l
e Tyl possible results of round 1. [Another way to see this is to note that

8
there are ( 4> possible choices of the 4 winners and, for each such choice, there are

!
4! ways to pair the 4 winners with the 4 losers, showing that there are 4! (i) = %

ar

possible results for the first round.]

4!
Similarly, for each result of round 1, there are 2 possible outcomes of round 2,

2! .
and for each of the outcomes of the first two rounds, there are = possible outcomes

of rc:un'd 3. Consequently, by the generalized basic principle of counting, there are
% % %— = 8! possible outcomes of the tournament. Indeed, the same argument
can be used to show that a knockout tournament of n = 2™ players has n! possible
outcomes.

Knowing the preceding result, it is not difficult to come up with a more direct
argument by showing that there is a one-to-one correspondence between the set of
possible tournament results and the set of permutations of 1,...,s. To obtain such
a correspondence, rank the players as follows for any tournament result: Give the
tournament winner rank 1, and give the final-round loser rank 2. For the two play-
ers who lost in the next-to-last round, give rank 3 to the one who lost to the player
ranked 1 and give rank 4 to the one who lost to the player ranked 2. For the four play-
ers who lost in the second-to-last round, give rank 5 to the one who lost to player
ranked 1, rank 6 to the one who lost to the player ranked 2, rank 7 to the one who
lost to the player ranked 3, and rank 8 to the one who lost to the player ranked 4.
Continuing on in this manner gives a rank to each player. (A more succinct descrip-
tion is to give the winner of the tournament rank 1 and let the rank of a player who
lost in a round having 2 matches be 2* plus the rank of the player who beat him, for
k=0,...,m — 1.) In this manner, the result of the tournament can be represented
by a permutation iy,i,...,i,, Where jj is the player who was given rank j. Because
different tournament results give rise to different permutations, and because there is
a tournament result for each permutation, it follows that there are the same number
of possible tournament results as there are permutations of 1,...,#n. |

11
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Example 1 + x2 + x3)% = x2x X x0x3x3
Se 2, 0 0 X3 + 0,2,0 ) 717273
0.0.2 2 1,10
0, 0 ) X1Xyx5 + 1,1,0 X1X5%3

2 0.1.1
(1 01)"1"2"3 + (o 1, 1)x1x2x3
+

4
=x% x2 + x3 + 2x1x2 + 2x1x3 + 2x2%3 |

"6 The Number of Integer Solutions of Equations

An individual has gone fishing at Lake Ticonderoga, which contains four types of
fish: lake trout, catfish, bass, and bluefish. If we take the result of the fishing trip to
be the numbers of each type of fish caught, let us determine the number of possible
outcomes when a total of 10 fish are caught. To do so, note that we can denote the
outcome of the fishing trip by the vector (x1,x;,x3,x4) where x; is the number of
trout that are caught, x; is the number of catfish, x3 is the number of bass, and x4 is
the number of bluefish. Thus, the number of possible outcomes when a total of 10
fish are caught is the number of nonnegative vectors (x1,x3,x3,x4) that sum to 10.

More generally, if we supposed there were r types of fish and that a total of n
were caught then the number of possible outcomes would be the number of nonneg-
ative integer-valued vectors x1, ..., x, such that

X1+x+...+x=n 6.1)

To compute this number, let us start by considering the number of positive integer-
valued vectors xq,...,x, that satisfy the preceding. To determine this number, sup-
pose that we have # consecutive values zero lined up in a row:

000...00

Note that any selection of r — 1 of the n — 1 spaces between adjacent zeroes (see
Figure 2) corresponds to a positive solution of (6.1) by letting x; be the number of
zeroes before the first chosen space, x; be the number of zeroes between the first
and second chosen space, ..., and x, being the number of zeroes following the last
chosen space.

0AOAOA...A0AO

n objects 0

Choose r — 1 of the spaces a.

Figure 2 Number of positive solutions.

* Asterisks denote material that is optional.
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For instance, if we have n = 8 and r = 3, then (with the choices represented by dots)
the choice

0.0000.000

corresponds to the solution x; = 1,x; = 4,x3 = 3. As positive solutions of (6.1)
correspond, in a one-to-one fashion, to choices of r — 1 of the adjacent spaces, it
follows that the number of differerent positive solutions is equal to the number of
different selections of r — 1 of the n — 1 adjacent spaces. Consequently, we have
the following proposition.

There are ’: _—_ % distinct positive integer-valued vectors (x1, x2,...,x,) satisfy-
ing the equation
x1+x+--+x,=n x>0, i=1,...,r

To obtain the number of nonnegative (as opposed to positive) solutions, note
that the number of nonnegative solutions of x; + x, + --- + x, = n is the same
as the number of positive solutions of y; + --- + y, = n + r (seen by letting
yi = x; + 1, i = 1,...,r). Hence, from Proposition 6.1, we obtain the following
proposition.

n+r—-1Y\_ . ..
There are r—1 distinct nonnegative integer-valued vectors (x1,x2,...,X,)
satisfying the equation
X +x2+ -+ x=n

Thus, using Proposition 6.2, we see that there are 133 = 286 possible outcomes

when a total of 10 Lake Ticonderoga fish are caught.

How many distinct nonnegative integer-valued solutions of x; + x, = 3 are possible?

3+2-1

Solution There are ( 21

) = 4 such solutions: (0, 3), (1,2), (2,1), (3,0). ®

An investor has $20,000 to invest among 4 possible investments. Each investment
must be in units of $1000. If the total $20,000 is to be invested, how many different
investment strategies are possible? What if not all the money needs to be invested?

Solution If we let x;,i = 1, 2, 3, 4, denote the number of thousands invested in
investment i, then, when all is to be invested, x1,x,, x3, x4 are integers satisfying the
equation

X1 +x2+x3+x4=20 x,= 0

Hence, by Proposition 6.2, there are 233 = 1771 possible investment strategies. If

not all of the money needs to be invested, then if we let x5 denote the amount kept in
reserve, a strategy is a nonnegative integer-valued vector (x1,x3,x3, X4, Xs) satisfying
the equation

X1 4+ x2 +x3 4+ x4 + x5=20

Hence, by Proposition 6.2, there are now ( 24

4 ) = 10,626 possible strategies. |

13
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How many terms are there in the multinomial expansion of (x; + x + --- + x,)"*?

Solution

(1 +x2 + - 4 x)" =Z (nl,.’.i.,n,>x'1l1 RS it
where the sum is over all nonnegative integer-valued (ny,...,n,) such thatny +--- +
n, = n. Hence, by Proposition 6.2, there are " _: —r I 1 such terms. n

Let us consider again Example 4c, in which we have a set of # items, of which m are
(indistinguishable and) defective and the remaining n — m are (also indistinguish-
able and) functional. Our objective is to determine the number of linear orderings
in which no two defectives are next to each other. To determine this number, let us
imagine that the defective items are lined up among themselves and the functional
ones are now to be put in position. Let us denote x; as the number of functional
items to the left of the first defective, x; as the number of functional items between
the first two defectives, and so on. That is, schematically, we have

X1 Oxz 0~-~xm 0xm+1

Now, there will be at least one functional item between any pair of defectives as long
asx; > 0,i = 2,...,m. Hence, the number of outcomes satisfying the condition is
the number of vectors xq,...,x;,4+1 that satisfy the equation

X1+ -+ xppu=n-m x1=0,x,01=0,x>0,i=2,...,m

But, on letting y1 = x1 + L,y; = x;,i = 2,...,m,Yme1 = Xmy1 + 1, we see that
this number is equal to the number of positive vectors (y1,...,ym+1) that satisfy the
equation

yi+y+-+ympa=n-—m+ 2

n-m+1
m

Hence, by Proposition 6.1, there are ( ) such outcomes, in agreement

with the results of Example 4c.

Suppose now that we are interested in the number of outcomes in which each
pair of defective items is separated by at least 2 functional items. By the same rea-
soning as that applied previously, this would equal the number of vectors satisfying
the equation

X1+ - F+xXp=n-—-m 120, xp001=0,x,=2,i=2,...,m

Upon lettingy; =x1 + 1,yi=x; — 1,i =2,...,m,Ymi1 = Xms1 + 1, we see that
this is the same as the number of positive solutions of the equation

v+ -+ ympp=n-2m+3

Hence, from Proposition 6.1, there are (n - Zr:ln +2 ) such outcomes. |
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Summary

The basic principle of counting states that if an experiment
consisting of two phases is such that there are n possible
outcomes of phase 1 and, for each of these n outcomes,
there are m possible outcomes of phase 2, then there are
nm possible outcomes of the experiment.

There are n! = n(n — 1)---3 - 2 - 1 possible linear
orderings of n items. The quantity 0! is defined to equal 1.

Let
()=
i) (-0t

when 0 = i < n, and let it equal 0 otherwise. This quan-
tity represents the number of different subgroups of size i
that can be chosen from a set of size n. It is often called a

Problems

binomial coefficient because of its prominence in the bino-
mial theorem, which states that

n
x+ = Z(?)xiy”‘i

i=0

For nonnegative integers ni,...,n, summing to n,

n n!
ni,ng,...,ny —n1!n2!~-~n,!

is the number of divisions of n items into r distinct
nonoverlapping subgroups of sizes ni,ny...,n,. These
quantities are called multinomial coefficients.

~

1. (a) How many different 7-place license plates are possi-
ble if the first 2 places are for letters and the other 5 for
numbers?

(b) Repeat part (a) under the assumption that no let-
ter or number can be repeated in a single license
plate.

2. How many outcome sequences are possible when a die
is rolled four times, where we say, for instance, that the
outcome is 3, 4, 3, 1 if the first roll landed on 3, the second
on 4, the third on 3, and the fourth on 1?

3. Twenty workers are to be assigned to 20 different jobs,
one to each job. How many different assignments are pos-
sible?

4. John, Jim, Jay, and Jack have formed a band consist-
ing of 4 instruments. If each of the boys can play all 4
instruments, how many different arrangements are possi-
ble? What if John and Jim can play all 4 instruments, but
Jay and Jack can each play only piano and drums?

5. For years, telephone area codes in the United States and
Canada consisted of a sequence of three digits. The first
digit was an integer between 2 and 9, the second digit was
either 0 or 1, and the third digit was any integer from 1 to
9. How many area codes were possible? How many area
codes starting with a 4 were possible?

6. A well-known nursery rhyme starts as follows:
“As I was going to St. Ives

I met a man with 7 wives.

Each wife had 7 sacks.

Each sack had 7 cats.

Each cat had 7 kittens...”

How many kittens did the traveler meet?

7. (a) In how many ways can 3 boys and 3 girls sit in a row?

(b) In how many ways can 3 boys and 3 girls sit in a row if
the boys and the girls are each to sit together?

(¢) In how many ways if only the boys must sit together?

(d) In how many ways if no two people of the same sex are
allowed to sit together?

8. How many different letter arrangements can be made
from the letters

(a) Fluke?

(b) Propose?

(¢) Mississippi?

(d) Arrange?

9. A child has 12 blocks, of which 6 are black, 4 are red, 1
is white, and 1 is blue. If the child puts the blocks in a line,
how many arrangements are possible?

10. In how many ways can 8 people be seated in a row if

(a) there are no restrictions on the seating arrangement?
(b) persons A and B must sit next to each other?

(¢) there are 4 men and 4 women and no 2 men or 2 women
can sit next to each other?

(d) there are 5 men and they must sit next to one another?

(e) there are 4 married couples and each couple must sit
together?

11. In how many ways can 3 novels, 2 mathematics books,
and 1 chemistry book be arranged on a bookshelf if
(a) the books can be arranged in any order?

(b) the mathematics books must be together and the nov-
els must be together?

(c) the novels must be together, but the other books can
be arranged in any order?

15



16

Combinatorial Analysis

12. Five separate awards (best scholarship, best leadership
qualities, and so on) are to be presented to selected stu-
dents from a class of 30. How many different outcomes
are possible if

() a student can receive any number of awards?
(b) each student can receive at most 1 award?

13. Consider a group of 20 people. If everyone shakes
hands with everyone else, how many handshakes take
place?

14. How many S-card poker hands are there?

15. A dance class consists of 22 students, of which 10 are
women and 12 are men. If 5 men and 5 women are to be
chosen and then paired off, how many results are possible?

16. A student has to sell 2 books from a collection of
6 math, 7 science, and 4 economics books. How many
choices are possible if

(a) both books are to be on the same subject?
(b) the books are to be on different subjects?

17. Seven different gifts are to be distributed among 10
children. How many distinct results are possible if no child
is to receive more than one gift?

18. A committee of 7, consisting of 2 Republicans, 2
Democrats, and 3 Independents, is to be chosen from a
group of 5 Republicans, 6 Democrats, and 4 Independents.
How many committees are possible?

19. From a group of 8 women and 6 men, a committee con-
sisting of 3 men and 3 women is to be formed. How many
different committees are possible if

(a) 2 of the men refuse to serve together?
(b) 2 of the women refuse to serve together?
(c) 1 man and 1 woman refuse to serve together?

20. A person has 8 friends, of whom 5 will be invited to a
party.

(a) How many choices are there if 2 of the friends are feud-
ing and will not attend together?

(b) How many choices if 2 of the friends will only attend
together?

21. Consider the grid of points shown at the top of the
next column. Suppose that, starting at the point labeled
A, you can go one step up or one step to the right at each
move. This procedure is continued until the point labeled
B is reached. How many different paths from A to B are
possible?

Hint: Note that to reach B from A, you must take 4 steps
to the right and 3 steps upward.

A

22. In Problem 21, how many different paths are there
from A to B that go through the point circled in the fol-
lowing lattice?

B

N
1

A

23. A psychology laboratory conducting dream research
contains 3 rooms, with 2 beds in each room. If 3 sets of
identical twins are to be assigned to these 6 beds so that
each set of twins sleeps in different beds in the same room,
how many assignments are possible?

24. Expand 3x2 + y)5.

25. The game of bridge is played by 4 players, each of
whom is dealt 13 cards. How many bridge deals are pos-
sible?

26. Expand (x; + 2x3 + 3x3)*.

27. If 12 people are to be divided into 3 committees of
respective sizes 3, 4, and 5, how many divisions are pos-
sible?

28. If 8 new teachers are to be divided among 4 schools,
how many divisions are possible? What if each school must
receive 2 teachers?

29. Ten weight lifters are competing in a team weight-
lifting contest. Of the lifters, 3 are from the United States,
4 are from Russia, 2 are from China, and 1 is from Canada.
If the scoring takes account of the countries that the lifters
represent, but not their individual identities, how many
different outcomes are possible from the point of view
of scores? How many different outcomes correspond to
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results in which the United States has 1 competitor in the
top three and 2 in the bottom three?

30. Delegates from 10 countries, including Russia, France,
England, and the United States, are to be seated in a row.
How many different seating arrangements are possible if
the French and English delegates are to be seated next to
each other and the Russian and U.S. delegates are not to
be next to each other?

*31. If 8 identical blackboards are to be divided among 4
schools, how many divisions are possible? How many if
each school must receive at least 1 blackboard?

“32. An elevator starts at the basement with 8 people (not
including the elevator operator) and discharges them all
by the time it reaches the top floor, number 6. In how many
ways could the operator have perceived the people leaving
the elevator if all people look alike to him? What if the 8
people consisted of 5 men and 3 women and the operator
could tell a man from a woman?

Theoretical Exercises

*33. We have $20,000 that must be invested among 4 pos-
sible opportunities. Each investment must be integral in
units of $1000, and there are minimal investments that
need to be made if one is to invest in these opportuni-
ties. The minimal investments are $2000, $2000, $3000, and
$4000. How many different investment strategies are avail-
able if

(a) an investment must be made in each opportunity?

(b) investments must be made in at least 3 of the 4 oppor-
tunities?

“34. Suppose that 10 fish are caught at a lake that contains
5 distinct types of fish.

(a) How many different outcomes are possible, where an
outcome specifies the numbers of caught fish of each of the
5 types?

(b) How many outcomes are possible when 3 of the 10 fish
caught are trout?

(c) How many when at least 2 of the 10 are trout?

~

1. Prove the generalized version of the basic counting
principle.

2. Two experiments are to be performed. The first can
result in any one of m possible outcomes. If the first exper-
iment results in outcome i, then the second experiment
can result in any of n; possible outcomes, i = 1,2,...,m.
What is the number of possible outcomes of the two exper-
iments?

3. In how many ways can r objects be selected from a set of
n objects if the order of selection is considered relevant?

4. There are ( ’: ) different linear arrangements of n balls

of which r are black and n — r are white. Give a combina-
torial explanation of this fact.

5. Determine the number of vectors (x1,...,x,), such that
each x; is either O or 1 and

n
in = k
i=1

6. How many vectors x1, ..., xk are there for which each x;
is a positive integer such that 1 = x; = nandx; < x; <
- < xg?

7. Give an analytic proof of Equation (4.1).
8. Prove that

(”T’")=(8)(’€)+(?)(r’f1)

Hint: Consider a group of n men and m women. How
many groups of size r are possible?

9. Use Theoretical Exercise 8 to prove that

(1)-50)

k=0

10. From a group of n people, suppose that we want to
choose a committee of k, k < n, one of whom is to be des-

ignated as chairperson.
(a) By focusing first on the choice of the committee and
then on the choice of the chair, argue that there are ( z ) k

possible choices.

(b) By focusing first on the choice of the nonchair
committee members and then on the choice of the chair,
argue that there are ( k ﬁ 1)(n — k + 1) possible
choices.

(c) By focusing first on the choice of the chair and then
on the choice of the other committee members, argue that

possible choices.

(d) Conclude from parts (a), (b), and (c) that

(1) =o-ro(uny)=n(221)

(e) Use the factorial definition of ( ':l ) to verify the iden-

n—1
therearen(k _ 1)

tity in part (d).

17
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11. The following identity is known as Fermat’s combina-
torial identity:

(1)-5(i23) ==

Give a combinatorial argument (no computations are
needed) to establish this identity.

Hint: Consider the set of numbers 1 through n. How many
subsets of size k have i as their highest numbered member?

12. Consider the following combinatorial identity:

n
Zk(Z):n Lot
k=1

(a) Present a combinatorial argument for this identity by
considering a set of n people and determining, in two ways,
the number of possible selections of a committee of any

‘size and a chairperson for the committee.

Hint:
(i) How many possible selections are there of a commit-
tee of size k and its chairperson?
(i) How many possible selections are there of a chair-
person and the other committee members?

(b) Verify the following identity for n = 1,2,3,4,5:

Z(Z)kz=2”_2n(n + 1

k=1

For a combinatorial proof of the preceding, consider a set
of n people and argue that both sides of the identity rep-
resent the number of different selections of a committee,
its chairperson, and its secretary (possibly the same as the
chairperson). ~ '
Hint:

(i) How many different selections result in the commit-

tee containing exactly k people?

(i) How many different selections are there in which
the chairperson and the secretary are the same?
(ANSWER: n2"1))

(iii) How many different selections result in the chairper-
son and the secretary being different?

(c) Now argue that

3 ( Z ) B =232 + 3)

k=1

13. Show that, forn > 0,

n -
Sy ( ’l' ) =0
i=0

Hint: Use the binomial theorem.

14. From a set of n people, a committee of size j is to be
chosen, and from this committee, a subcommittee of size
i,i = j,is also to be chosen.

(a) Derive a combinatorial identity by computing, in two
ways, the number of possible choices of the committee and
subcommittee —first by supposing that the committee is
chosen first and then the subcommittee is chosen, and sec-
ond by supposing that the subcommittee is chosen first and
then the remaining members of the committee are chosen.

(b) Use part (a) to prove the following combinatorial

identity:
2(5)(1)=(5)z o=
j i i -

j=i

(c¢) Use part (a) and Theoretical Exercise 13 to show that

(7)) eomieo i

j=i

15. Let Hi(n) be the number of vectors xi,...,x; for
which each x; is a positive integer satisfying 1 < x; = n
andx; < x =< --- < xp.

(a) Without any computations, argue that
Hi(n)=n

Him) =) Hia() k> 1
j=1

Hint: How many vectors are there in which xx = j?

(b) Use the preceding recursion to compute H3(5).
Hint: First compute Hp(n) forn=1,2,3,4,5.

16. Consider a tournament of n contestants in which the
outcome is an ordering of these contestants, with ties
allowed. That is, the outcome partitions the players into
groups, with the first group consisting of the players who
tied for first place, the next group being those who tied
for the next-best position, and so on. Let N(n) denote
the number of different possible outcomes. For instance,
N(2) = 3, since, in a tournament with 2 contestants, player
1 could be uniquely first, player 2 could be uniquely first,
or they could tie for first.

(a) List all the possible outcomes when n = 3.

(b) With N(0) defined to equal 1, argue, without any com-
putations, that

n

N(n)=Z(?>N(n -

i=1

Hint: How many outcomes are there in which i players tie
for last place?
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(c) Show that the formula of part (b) is equivalent to the
following:
n—1

N(n):Z('l?)N(z)

i=0
(d) Use the recursion to find N(3) and N(4).

17. Present a combinatorial

ny _ n
r) \r,n—-r)
18. Argue that
n _ n—1
ni,ny,....np ) - \mp — 1,nm,...,n,
n-1
+ (nl,nz - 1,...,n,) to

n-1
+ (nl,nz,...,n, - 1)

Hint: Use an argument similar to the one used to establish
Equation (4.1).

explanation of why

Self-Test Problems and Exercises

19. Prove the multinomial theorem.

*20. In how many ways can 7 identical balls be distributed
into r urns so that the ith urn contains at least »; balls, for
eachi=1,...,r? Assume thatn = Y |_; m;.

*21. Argue that there are exactly ( ,l;) (n 7_ : _'1_ k)
solutions of
X1 +x2+4+ -+ xr=n

for which exactly k of the x; are equal to 0.

*22. Consider a function f(xi,...,x,) of n variables. How
many different partial derivatives of order r does f
possess?

*23. Determine the number of vectors (xq, ..., x,) such that
each x; is a nonnegative integer and

n
ZX,‘ =k -
i=1

1. How many different linear arrangements are there of
the letters A, B, C, D, E, F for which

(a) A and B are next to each other?

(b) A is before B?

(¢) A is before B and B is before C?

(d) A is before B and C is before D?

(e) A and B are next to each other and C and D are also
next to each other?

(D) E is not last in line?

2. If 4 Americans, 3 French people, and 3 British people
are to be seated in a row, how many seating arrangements
are possible when people of the same nationality must sit
next to each other?

3. A president, treasurer, and secretary, all different, are to
be chosen from a club consisting of 10 people. How many
different choices of officers are possible if

(a) there are no restrictions?

(b) A and B will not serve together?

(¢) C and D will serve together or not at all?

(d) E must be an officer?

(e) F will serve only if he is president?

4. A student is to answer 7 out of 10 questions in an exami-
nation. How many choices has she? How many if she must
answer at least 3 of the first 5 questions?

5. In how many ways can a man divide 7 gifts among his 3
children if the eldest is to receive 3 gifts and the others 2
each?

6. How many different 7-place license plates are possible
when 3 of the entries are letters and 4 are digits? Assume
that repetition of letters and numbers is allowed and that
there is no restriction on where the letters or numbers can
be placed.

7. Give a combinatorial explanation of the identity

(7)=(")

8. Consider n-digit numbers where each digit is one of the
10 integers 0,1,...,9. How many such numbers are there
for which

(a) no two consecutive digits are equal?

(b) 0 appears as a digit a total of i times, i =0, ...,n?

9. Consider three classes, each consisting of »n students.
From this group of 3n students, a group of 3 students is
to be chosen.

(a) How many choices are possible?

(b) How many choices are there in which all 3 students are
in the same class?

(¢) How many choices are there in which 2 of the 3 stu-
dents are in the same class and the other student is in a
different class?

(d) How many choices are there in which all 3 students are
in different classes?

(e) Using the results of parts (a) through (d), write a com-
binatorial identity.

19
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10. How many 5-digit numbers can be formed from the
integers 1,2,...,9 if no digit can appear more than twice?
(For instance, 41434 is not allowed.)

11. From 10 married couples, we want to select a group of
6 people that is not allowed to contain a married couple.

(a) How many choices are there?

(b) How many choices are there if the group must also
consist of 3 men and 3 women?

12. A committee of 6 people is to be chosen from a group
consisting of 7 men and 8 women. If the committee must
consist of at least 3 women and at least 2 men, how many
different committees are possible?

“13. An art collection on auction consisted of 4 Dalis, 5 van
Goghs, and 6 Picassos. At the auction were 5 art collectors.
If a reporter noted only the number of Dalis, van Goghs,
and Picassos acquired by each collector, how many differ-
ent results could have been recorded if all of the works
‘were sold?

*14. Determine the number of vectors (x1,. . ., x,) such that
each x; is a positive integer and

ixi = k
i=1

where k = n.

15. A total of n students are enrolled in a review course
for the actuarial examination in probability. The posted
results of the examination will list the names of those who
passed, in decreasing order of their scores. For instance,
the posted result will be “Brown, Cho” if Brown and Cho
are the only ones to pass, with Brown receiving the higher
score. Assuming that all scores are distinct (no ties), how
many posted results are possible?

Answers to Selected Problems

16. How many subsets of size 4 of the set S = {1,2,...,20}
contain at least one of the elements 1,2, 3,4,5?

17. Give an analytic verification of

(’21)=(§)+k(n—k)+(n;k), l=k=n

Now, give a combinatorial argument for this identity.

18. In a certain community, there are 3 families consisting
of a single parent and 1 child, 3 families consisting of a sin-
gle parent and 2 children, 5 families consisting of 2 parents
and a single child, 7 families consisting of 2 parents and 2
children, and 6 families consisting of 2 parents and 3 chil-
dren. If a parent and child from the same family are to be
chosen, how many possible choices are there?

19. If there are no restrictions on where the digits and let-
ters are placed, how many 8-place license plates consisting
of 5 letters and 3 digits are possible if no repetitions of
letters or digits are allowed? What if the 3 digits must be
consecutive?

20. Verify that the equality

> “
x1!x2! .. -x,!

X1+...+xr=n, x;=0

=r

when n = 3,r = 2, and then show that it always valid.
(The sum is over all vectors of r nonnegative integer val-
ues whose sum is 7.)

Hint: How many different n letter sequences can be
formed from the first r letters of the alphabet? How many
of them use letter i of the alphabet a total of x; times for
eachi=1,...,r?

1. 67,600,000; 19,656,000
18 6. 2401
34,650
384

13. 190

2.1296 4.24; 4
7.720; 72; 144; 72 8.120; 1260;
9.27,720  10. 40,320; 10,080; 1152; 2880;
11. 720; 72; 144  12.24,300,000; 17,100,720
14. 2,598,960 16. 42; 94 17. 604,800

5. 144;

Solutions to Self-Test Problems and Exercises

18. 600 19. 896; 1000; 910 20. 36;26 21.35 22.18
23.48  25.521/(13)*  27.27,720  28. 65,536, 2520
29. 12,600; 945  30. 564,480 31.165; 35  32. 1287,
14,112 33. 220,572

1. (a) There are 4! different orderings of the letters C, D,
E, E For each of these orderings, we can obtain an order-
ing with A and B next to each other by inserting A and B,
either in the order A, B or in the order B, A, in any of 5
places, namely, either before the first letter of the permu-
tation of C, D, E, F, or between the first and second, and

so on. Hence, there are 2 - 5 - 4! = 240 arrangements.
Another way of solving this problem is to imagine that B
is glued to the back of A. Then there are 5! orderings in
which A is immediately before B. Since there are also 5!
orderings in which B is immediately before A, we again
obtain a total of 2 - 5! = 240 different arrangements.
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(b) There are 6! = 720 possible arrangements, and since
there are as many with A before B as with B before A,
there are 360 arrangements.

(c) Of the 720 possible arrangements, there are as many
that have A before B before C as have any of the 3! possi-
ble orderings of A, B, and C. Hence, there are 720/6 = 120
possible orderings.

(d) Of the 360 arrangements that have A before B, half
will have C before D and half D before C. Hence, there
are 180 arrangements having A before B and C before D.
(e) Gluing B to the back of A and D to the back of C yields
4! = 24 different orderings in which B immediately follows
A and D immediately follows C. Since the order of A and
B and of C and D can be reversed, there are 4 - 24 = 96
different arrangements. ‘

() There are 5! orderings in which E is last. Hence, there
are 6! — 5! = 600 orderings in which E is not last.

2. 3! 4! 31 31, since there are 3! possible orderings of coun-
tries and then the countrymen must be ordered.

3.(a)10 - 9 - 8=1720

®)8-7-6+2-3.8-7=672. The result of part (b) fol-
lows because there are 8 - 7 - 6 choices not including A or
B and there are 3 - 8 - 7 choices in which a specified one
of A and B, but not the other, serves. The latter follows
because the serving member of the pair can be assigned to
any of the 3 offices, the next position can then be filled by
any of the other 8 people, and the final position by any of
the remaining 7.

©8-7-6+3-2.-8=384.
(@3.9.8=216.
(€9 -8-7+9.8=576.

s (7)
o)+ 66+ G)0)
5. (3,3.2) =210

6. There are (;) = 35 choices of the three places for

the letters. For each choice, there are (26)3(10)* different
license plates. Hence, altogether there are 35 - (26) - (10)*
different plates.

7. Any choice of r of the n items is equivalent to a choice
of n — r, namely, those items not selected.

8.(10-9-9...9=10 - 9~
(b) (’Z) 97~ since there are ': choices of the i places to

put the zeroes and then each of the other n — i positions
can be any of the digits 1,...,9.

9. (a) (33”)
o)
0O

(d) n3
(e) (33”> =3 ('3‘) +3n2(n — 1) + n?

10. There are 9 - 8 - 7 -
digit is repeated. There are

6 . S numbers in which no

; - 8 - 7 . 6 numbers in
which only one specified digit appears twice, so there are
9 G) - 8 - 7 - 6 numbers in which only a single digit
appears twice. There are 7 - 2—% numbers in which two
specified digits appear twice, so there are g 7- 2%[ num-

bers in which two digits appear twice. Thus, the answer is

5 9 5!
9.8.7-6.5+9(2).8.7-6+(2)7-m

11. (a) We can regard this as a seven-stage experiment.
First choose the 6 married couples that have a represen-
tative in the group, and then select one of the members of
each of these couples. By the generalized basic principle of
counting, there are (160)26 different choices.

(b) First select the 6 married couples that have a represen-
tative in the group, and then select the 3 of those couples

that are to contribute a man. Hence, there are (1(?) G =

m%[ different choices. Another way to solve this is to first

select 3 men and then select 3 women not related to the
selected men. This shows that there are (13?) G) = 3-,%%;
different choices.

N (g) (;) N (?‘) (;) = 3430. The first term gives the

number of committees that have 3 women and 3 men; the
second gives the number that have 4 women and 2 men.

13. (number of solutions of x; + --- + x5 = 4) (number
of solutions of x; + --- + x5 = 5) (number of solutions of

8\ (9) (10
e GO
14. Since there are (rlz ~ 11) positive vectors whose
k /i _
sum is j, there must be ) (’Jl _ 11) such vectors. But

j=n

(fl __ 11) is the number of subsets of size n from the
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set of numbers {1,...,k} in which j is the largest ele-

k /: _

ment in the subset. Consequently, ) (’]1 _ 11) is just
j=n

the total number of subsets of size n from a set of

size k, showing that the preceding answer is equal
k

to .
n

15. Let us first determine the number of different results

in which k people pass. Because there are Z different
groups of size k and k! possible orderings of their scores,

it follows that there are (Z) k! possible results in which

n
k people pass. Consequently, there are ) (Z) k! possible
k=0 :
results.

16. The number of subsets of size 4 is (2‘?) = 4845. Because
the number of these that contain none of the first five ele-
ments is (55) = 1365, the number that contain at least one
is 3480. Another way to solve this problem is to note that
there are (3)(,”>,) that contain exactly i of the first five ele-
ments and sum this fori =1,2,3,4.

17. Multiplying both sides by 2, we must show that

nn—-D=ktkk-1)+2k(n—-k+n—-kn-k-1)

This follows because the right side is equal to
BAd-=2+4+1D4+k(-1+2n—n—-n+1) +nn-1)

For a combinatorial argument, consider a %roup of n items
and a subgroup of k of the # items. Then ( ) is the number

of subsets of size 2 that contain 2 items from the subgroup
of size k, k(n — k) is the number that contain 1 item
from the subgroup, and ("5") is the number that contain
0 items from the subgroup. Adding these terms gives the
total number of subgroups of size 2, namely, (3).

18. There are 3 choices that can be made from families
consisting of a single parent and 1 child; thereare3-1-2 =
6 choices that can be made from families consisting of a
single parent and 2 children; there are 5 - 2 - 1 = 10 choices
that can be made from families consisting of 2 parents and
a single child; there are 7 - 2 - 2 = 28 choices that can be
made from families consisting of 2 parents and 2 children;
there are 6 - 2 - 3 = 36 choices that can be made from fami-
lies consisting of 2 parents and 3 children. Hence, there are
83 possible choices.

19. First choose the 3 positions for the digits, and then put
in the letters and digits. Thus, there are (g) - 26 - 25 -
24 .23 .22.10 -9 - 8 different plates. If the digits must
be consecutive, then there are 6 possible positions for the
digits, showing that there are now 6 - 26 - 25 - 24 . 23 .
22 - 10 - 9 - 8 different plates.

20. There are r* different n letter sequences that can be
formed using the first r letters of the alphabet. For given
nonnegative integers x1, ...,x, such that Y7, x; = r, the
number of the different sequences that use letter i exactly
x; times for each i = 1,...,n, is the number of permu-
tations of n values, of which x; are equal to i for each
i = 1,...,r; which is equal to —,—; As each n letter
sequence is of exactly one of the precedmg types, the result
follows.
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| Introduction

In this chapter, we introduce the concept of the probability of an event and then
show how probabilities can be computed in certain situations. As a preliminary,
however, we need to discuss the concept of the sample space and the events of an
experiment.

2 Sample Space and Events

Consider an experiment whose outcome is not predictable with certainty. However,
although the outcome of the experiment will not be known in advance, let us suppose
that the set of all possible outcomes is known. This set of all possible outcomes of
an experiment is known as the sample space of the experiment and is denoted by S.
Following are some examples:

1. If the outcome of an experiment consists of the determination of the sex of a
newborn child, then
S = {g,b}

where the outcome g means that the child is a girl and b that it is a boy.

2. If the outcome of an experiment is the order of finish in a race among the 7
horses having post positions 1, 2, 3,4, 5, 6, and 7, then

S = {all 7! permutations of (1,2,3,4,5,6,7)}

The outcome (2, 3, 1, 6, 5, 4, 7) means, for instance, that the number 2 horse
comes in first, then the number 3 horse, then the number 1 horse, and so on.

3. If the experiment consists of flipping two coins, then the sample space consists
of the following four points:

S = {(H,H),(H’ T),(TaH)»(T’ T)}

From Chapter 2 of A First Course in Probability, Ninth Edition. Sheldon Ross.
Copyright © 2014 by Pearson Education, Inc. All rights reserved.
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The outcome will be (H, H) if both coins are heads, (H, T) if the first coin is
heads and the second tails, (7', H) if the first is tails and the second heads, and
(T, T) if both coins are tails.

4. If the experiment consists of tossing two dice, then the sample space consists
of the 36 points

S={G p:i,j=1,2,3,4,5, 6}

where the outcome (i, j) is said to occur if i appears on the leftmost die and j
on the other die.

S. If the experiment consists of measuring (in hours) the lifetime of a transistor,
then the sample space consists of all nonnegative real numbers; that is,

S=x:0=x < o0}

Any subset E of the sample space is known as an event. In other words, an event
is a set consisting of possible outcomes of the experiment. If the outcome of the
experiment is contained in E, then we say that E has occurred. Following are some
examples of events.

In the preceding Example 1, if E = {g}, then E is the event that the child is a
girl. Similarly, if F = {b}, then F is the event that the child is a boy.

In Example 2, if

E = {all outcomes in S starting with a 3}

then E is the event that horse 3 wins the race.

In Example 3, if £ = {(H, H),(H, T)}, then E is the event that a head appears
on the first coin.

In Example 4, if E = {(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)}, then E is the event
that the sum of the dice equals 7.

In Example 5, if E = {x: 0 = x < 5}, then E is the event that the transistor does
not last longer than 5 hours.

For any two events E and F of a sample space S, we define the new event E U F
to consist of all outcomes that are either in E or in F or in both E and F. That is, the
event E U F will occur if either E or F occurs. For instance, in Example 1, if E = {g}
is the event that the child is a girl and F = {b} is the event that the child is a boy,
then

E U F = {g,b}

is the whole sample space S. In Example 3, if E = {(H, H), (H, T)} is the event that
the first coin lands heads, and F = {(T, H), (H, H)} is the event that the second coin
lands heads, then

EU F={H,H),H,T),(T, H)

is the event that at least one of the coins lands heads and thus will occur provided
that both coins do not land tails.

The event E U F is called the union of the event E and the event F.

Similarly, for any two events E and F, we may also define the new event EF,
called the intersection of E and F, to consist of all outcomes that are both in E and
in F. That is, the event EF (sometimes written E N F) will occur only if both E and
F occur. For instance, in Example 3, if E = {(H, H), (H, T), (T, H)} is the event that
at least 1 head occurs and F = {(H, T), (T, H), (T, T)} is the event that at least 1 tail
occurs, then

EF = {(H,T),(T,H)}
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is the event that exactly 1 head and 1 tail occur. In Example 4, if E = {(1,6), (2,5),
3,4),(4,3),(5,2),(6,1)} is the event that the sum of the dice is 7and F = {(1,5), (2,4),
(3,3),(4,2),(5,1)} is the event that the sum is 6, then the event EF does not contain
any outcomes and hence could not occur. To give such an event a name, we shall refer
to it as the null event and denote it by @. (That is, @ refers to the event consisting of
no outcomes.) If EF = @, then E and F are said to be mutually exclusive.

We define unions and intersections of more than two events in a ogimilar manner.

If E1, Ey, ... are events, then the union of these events, denoted by | J Ej, is defined

n=1
to be that event that consists of all outcomes that are in E,, for at least one value

o0
of n = 1,2,.... Similarly, the intersection of the events E,, denoted by [ E,, is
n=1
defined to be the event consisting of those outcomes that are in all of the events

E,.n=1,2,....

Finally, for any event E, we define the new event E°, referred to as the com-
plement of E, to consist of all outcomes in the sample space S that are not in E.
That is, E° will occur if and only if E does not occur. In Example 4, if event E =
{1,6),(2,5),(3,4),(4,3),(5,2),(6,1)}, then E° will occur when the sum of the dice
does not equal 7. Note that because the experiment must result in some outcome, it
follows that ¢ = @. N

For any two events E and F, if all of the outcomes in E are also in F, then we
say that E is contained in F, or E is a subset of F, and write E C F (or equivalently,
F D E, which we sometimes say as F is a superset of E). Thus, if E C F, then the
occurrence of E implies the occurrence of F. If E C F and F C E, we say that E
and F are equal and write E = F.

A graphical representation that is useful for illustrating logical relations among
events is the Venn diagram. The sample space S is represented as consisting of
all the outcomes in a large rectangle, and the events E, F,G,... are represented
as consisting of all the outcomes in given circles within the rectangle. Events of
interest can then be indicated by shading appropriate regions of the diagram. For
instance, in the three Venn diagrams shown in Figure 1, the shaded areas represent,

N N

E F E F

(a) Shaded region: E U F. (b) Shaded region: EF.

N

(c) Shaded region: E€.

Figure I Venn diagrams.
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Figure2 E C F.

respectively, the events E U F, EF, and E°. The Venn diagram in Figure 2 indicates
that E C F.

The operations of forming unions, intersections, and complements of events
obey certain rules similar to the rules of algebra. We list a few of these rules:

Commutative laws EUF =FUE EF = FE
Associative laws (EUF)UG = EU(FUG) (EF)G = E(FG)
Distributive laws (EUF)G = EGUFG EFUG = (EUG)(FUG)

These relations are verified by showing that any outcome that is contained in the
event on the left side of the equality sign is also contained in the event on the
right side, and vice versa. One way of showing this is by means of Venn diagrams.
For instance, the distributive law may be verified by the sequence of diagrams in
Figure 3.

G G
(a) Shaded region: EG. (b) Shaded region: FG.

E F

G
(c) Shaded region: (E U F)G.

Figure 3 (EUF)G = EG U FG.
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The following useful relationships among the three basic operations of forming
unions, intersections, and complements are known as DeMorgan’s laws:

(OEf)c=ﬁEf

i=1 i=1

n ¢ n
NE) =Us
For instance, for two events E and F, DeMorgan’s laws state that

(E U F)f=EF and (EF)°=E°U F°

which can be easily proven by using Venn diagrams (see Theoretical Exercise 7).
To prove DeMorgan’s laws for general n, suppose first that x is an outcome of
c

n n

(U E; | . Then x is not contained in |J E;, which means that x is not contained
i=1 i=1

in any of the events E;,i = 1,2,...,n, implying that x is contained in E for all

n
i =1,2,...,n and thus is contained in (1] Ef. To go the other way, suppose that x is
i=1

n
an outcome of () EY. Then x is contained in Ef for all i = 1,2,...,n, which means
i=1
that x is not contained in E; for any i = 1,2,...,n, implying that x is not contained
c
n n
in |J E;, in turn implying that x is contained in {|J E; ] . This proves the first of
i 1

DeMorgan’s laws.
To prove the second of DeMorgan’s laws, we use the first law to obtain

(UE?) =B
i=1

i=1

which, since (E€)¢ = E, is equivalent to
[
n n
1 1

Taking complements of both sides of the preceding equation yields the result we
seek, namely,

(o)

3 Axioms of Probability

One way of defining the probability of an event is in terms of its relative frequency.
Such a definition usually goes as follows: We suppose that an experiment, whose
sample space is S, is repeatedly performed under exactly the same conditions. For
each event E of the sample space S, we define n(E) to be the number of times in
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the first n repetitions of the experiment that the event E occurs. Then P(E), the
probability of the event E, is defined as
. n(E)
P(B) = lim =~
That is, P(E) is defined as the (limiting) proportion of time that E occurs. It is thus
the limiting relative frequency of E.

Although the preceding definition is certainly intuitively pleasing and should
always be kept in mind by the reader, it possesses a serious drawback: How do we
know that n(E)/n will converge to some constant limiting value that will be the same
for each possible sequence of repetitions of the experiment? For example, suppose
that the experiment to be repeatedly performed consists of flipping a coin. How do
we know that the proportion of heads obtained in the first n flips will converge to
some value as n gets large? Also, even if it does converge to some value, how do we
know that, if the experiment is repeatedly performed a second time, we shall obtain
the same limiting proportion of heads?

Proponents of the relative frequency definition of probability usually answer
this objection by stating that the convergence of n(E)/n to a constant limiting value
is an assumption, or an axiom, of the system. However, to assume that n(E)/n will
necessarily converge to some constant value seems to be an extraordinarily compli-
cated assumption. For, although we might indeed hope that such a constant limiting
frequency exists, it does not at all seem to be a priori evident that this need be the
case. In fact, would it not be more reasonable to assume a set of simpler and more
self-evident axioms about probability and then attempt to prove that such a con-
stant limiting frequency does in some sense exist? The latter approach is the modern
axiomatic approach to probability theory that we shall adopt in this chapter. In par-
ticular, we shall assume that, for each event E in the sample space S, there exists a
value P(E), referred to as the probability of E. We shall then assume that all these
probabilities satisfy a certain set of axioms, which, we hope the reader will agree, is
in accordance with our intuitive notion of probability.

Consider an experiment whose sample space is S. For each event E of the sample
space S, we assume that a number P(E) is defined and satisfies the following three
axioms:

The three axioms of probability

Axiom 1
0=PE) =1
Axiom 2
P©S) =1
Axiom 3

For any sequence of mutually exclusive events Eq, E5,... (that is, events for
which E;E; = @ when i # j),

P (O E,') =Y PE)
i=1 i=1

We refer to P(E) as the probability of the event E.
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Thus, Axiom 1 states that the probability that the outcome of the experiment
is an outcome in E is some number between 0 and 1. Axiom 2 states that, with
probability 1, the outcome will be a point in the sample space S. Axiom 3 states
that, for any sequence of mutually exclusive events, the probability of at least one of
these events occurring is just the sum of their respective probabilities.

If we consider a sequence of events Ej, E,,..., where E; = S and E; = O for
oo

i > 1, then, because the events are mutually exclusive and because S = |J E;, we
i=1
have, from Axiom 3,

P(S) =Y P(E)=P(S) + Y _P(©®)

i=1 i=2
implying that
P(@)=0

That is, the null event has probability 0 of occurring.
Note that it follows that, for any finite sequence of mutually exclusive events E1,
E2, ceny En,

-

P (O E,') = iP(Ei) (3.1)
1

i=1

This equation follows from Axiom 3 by defining E; as the null event for all values
of i greater than n. Axiom 3 is equivalent to Equation (3.1) when the sample space
is finite. (Why?) However, the added generality of Axiom 3 is necessary when the
sample space consists of an infinite number of points.

If our experiment consists of tossing a coin and if we assume that a head is as likely
to appear as a tail, then we would have

1
P(HY) = PATYH = 5

On the other hand, if the coin were biased and we believed that a head were twice
as likely to appear as a tail, then we would have

1

2
PAHY) =3 P{TH =3 u

If a die is rolled and we suppose that all six sides are equally likely to appear, then
we would have P({1}) = P({2}) = P({3}) = P({4}) = P({5}) = P({6}) = % From
Axiom 3, it would thus follow that the probability of rolling an even number would
equal

P({2,4,6}) = P({2}) + P({4}) + P{6) u

1
2

The assumption of the existence of a set function P, defined on the events of
a sample space S and satisfying Axioms 1, 2, and 3, constitutes the modern math-
ematical approach to probability theory. It is hoped that the reader will agree that
the axioms are natural and in accordance with our intuitive concept of probabil-
ity as related to chance and randomness. Furthermore, using these axioms, we shall
be able to prove that if an experiment is repeated over and over again, then, with
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probability 1, the proportion of time during which any specific event E occurs will
equal P(E). This result is known as the strong law of large numbers. In addition,
we present another possible interpretation of probability—as being a measure of
belief—in Section 7.

Technical Remark. We have supposed that P(E) is defined for all the events E
of the sample space. Actually, when the sample space is an uncountably infinite set,
P(E) is defined only for a class of events called measurable. However, this restriction
need not concern us, as all events of any practical interest are measurable.

4 Some Simple Propositions

Proposition
4.1

Proposition
4.2

Proposition
4.3

In this section, we prove some simple propositions regarding probabilities. We first
note that since E and E°€ are always mutually exclusive and since E U E€ = §, we
have, by Axioms 2 and 3,

1= P(S) = P(E U E) = P(E) + P(E°)

Or, equivalently, we have Proposition 4.1.

P(E)=1 - P(E)

In words, Proposition 4.1 states that the probability that an event does not occur
is 1 minus the probability that it does occur. For instance, if the probability of obtain-
ing a head on the toss of a coin is %, then the probability of obtaining a tail must be %

Our second proposition states that if the event E is contained in the event F,
then the probability of E is no greater than the probability of F.

If E C F,then P(E) = P(F).

Proof Since E C F, it follows that we can express F as
F=E U EF
Hence, because E and E€F are mutually exclusive, we obtain, from Axiom 3,
P(F) = P(E) + P(E°F)

which proves the result, since P(E‘F) = 0. O

Proposition 4.2 tells us, for instance, that the probability of rolling a 1 with a die
is less than or equal to the probability of rolling an odd value with the die.

The next proposition gives the relationship between the probability of the union

of two events, expressed in terms of the individual probabilities, and the probability
of the intersection of the events.

P(E U F) = P(E) + P(F) — P(EF)

Proof To derive a formula for P(E U F), we first note that E U F can be written as
the union of the two disjoint events E and E°F. Thus, from Axiom 3, we obtain

P(E U F)=P(E U E°F)
= P(E) + P(E°F)
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ty
"~y

Figure 4 Venn diagram.

:

Figure 5 Venn diagram in sections. ~

Furthermore, since F = EF U E°F, we again obtain from Axiom 3

P(F) = P(EF) + P(E°F)

or, equivalently, P(EF) = P(F) — P(EF)

thereby completing the proof. a

Proposition 4.3 could also have been proved by making use of the Venn diagram
in Figure 4.

Let us divide E U F into three mutually exclusive sections, as shown in Figure 5.
In words, section I represents all the points in E that are not in F (that is, EF€),
section II represents all points both in E and in F (that is, EF), and section III rep-
resents all points in F that are not in E (that is, E°F).

From Figure 5, we see that

EUF=1UulluUII
E=1TUII
F=IIu Il
As 1,11, and III are mutually exclusive, it follows from Axiom 3 that
P(E U F)=PQ + PAD) + PAII)
P(E) = PQ) + PAD
P(F) = PAD + PID)

which shows that
P(E U F)=P(E) + P(F) — Pl

and Proposition 4.3 is proved, since II = EF.
J is taking two books along on her holiday vacation. With probability .5, she will like

the first book; with probability .4, she will like the second book; and with probabil-
ity .3, she will like both books. What is the probability that she likes neither book?
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Solution Let B; denote the event that J likes book i,i = 1,2. Then the probability
that she likes at least one of the books is

P(By U By) =P(By) + P(B) — P(B1B)) =5+ 4-3=.6

Because the event that J likes neither book is the complement of the event that she
likes at least one of them, we obtain the result

P(BSBS) =P ((B1 U By)°) =1 — P(B; U By) = 4 -

We may also calculate the probability that any one of the three events E, F, and
G occurs, namely,

P(EUFUG)=P[(EUF) UG]
which, by Proposition 4.3, equals
P(E U F) + P(G) — P[(E U F)G]

Now, it follows from the distributive law that the events (£ U F)G and EG U FG
are equivalent; hence, from the preceding equations, we obtain

P(EU FUG)
= P(E) + P(F) — P(EF) + P(G) — P(EG U FG)
= P(E) + P(F) — P(EF) + P(G) — P(EG) — P(FG) + P(EGFG)
=P(E) + P(F) + P(G) — P(EF) — P(EG) — P(FG) + P(EFG)

In fact, the following proposition, known as the inclusion—exclusion identity, can
be proved by mathematical induction:

n

P(ELUE, U - UEy)=) PE)—- Y PEE,) + -
i=1 i1<iy
+ (<Y > P(EyEp,---Ey)

i <ip<-<iy

+ o+ (C)"P(E\E; - En)

The summation )=  P(E; E, - - - E;,) is taken over all of the ( rrl ) possible sub-
i <ip<--<iy
sets of size r of the set {1,2,...,n}.

In words, Proposition 4.4 states that the probability of the union of n events
equals the sum of the probabilities of these events taken one at a time, minus the
sum of the probabilities of these events taken two at a time, plus the sum of the
probabilities of these events taken three at a time, and so on.

Remarks 1. For a noninductive argument for Proposition 4.4, note first that if an
outcome of the sample space is not a member of any of the sets E;, then its probabil-
ity does not contribute anything to either side of the equality. Now, suppose that an
outcome is in exactly m of the events E;, where m > 0. Then, since it is in | E;, its

14

probability is counted once in P (U E,-); also, as this outcome is contained in < 'Z )
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subsets of the type E; E;, - - - E;, , its probability is counted

(7)-(2)+ (5) -+ ()

times on the right of the equality sign in Proposition 4.4. Thus, for m > 0, we must

show that 1=(7)_(?)+<rg>_...i<z)

However, since 1 = < r(r)z >, the preceding equation is equivalent to

£(1) -

i=0

and the latter equation follows from the binomial theorem, since

O=(-1+D"=)" (’? ) (DI

i=0

2. The following is a succinct way of writing the inclusion-exclusion identity:

PULE) =) (- )" P(E;---E;)

r=1 i <<y

3. In the inclusion—exclusion identity, going out one term results in an upper
bound on the probability of the union, going out two terms results in a lower bound
on the probability, going out three terms results in an upper bound on the proba-
bility, going out four terms results in a lower bound, and so on. That is, for events
E,,...,E,, we have

n

P(UL,E) = ) P(E) (4.1)
i=1

P(UL E) = Y P(E) — Y P(EE) 42)
i=1 j<i
n

PULE) = Y P(E) — Y PEE) + Y. PEEE) (43)
i=1 j<i k<j<i

and so on. To prove the validity of these bounds, note the identity
U?=1Ei =FE U EfE2 U E‘{E%Eg, u-..-u Eg "'Ef,_lEn

That is, at least one of the events E; occurs if E; occurs, or if E; does not occur but
E; does, or if Ey and E; do not occur but E3 does, and so on. Because the right-hand
side is the union of disjoint events, we obtain

P(U;'=1Ei) = P(Ey) + P(Esz) + P(E§E§E3) + ... + P(Ef'HEf,_lEn)

=P(Ey) + Y P(ES .- E{_|E)) (44)
=2 .
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Now, let B; = E{.---E{ | = (Uj<Ej)° be the event that none of the first i — 1
events occurs. Applying the identity

P(E;) = P(B;E;) + P(B{E;)

shows that
P(E)) = P(ES ---E;_E;) + P(E; Vj.; E))

or, equivalently,

Substituting this equation into (4.4) yields
P(U E) =) P(E) — ) P(U<EE) (4.5)
i i
Because probabilities are always nonnegative, Inequality (4.1) follows directly from
Equation (4.5). Now, fixing i and applying Inequality (4.1) to P(U;;E;E}) yields

PUj<EE) < Y P(EE)
j<i
which, by Equation (4.5), gives Inequality (4.2). Similarly, fixing i and applying
Inequality (4.2) to P(U;;E;E}) yields

P(UjEiE) = ZP(E,'E]') - Z P(EE|E;Ey)

j<i k<j<i
=Y P(EE) - Y P(EEE)
j<i k<j<i

which, by Equation (4.5), gives Inequality (4.3). The next inclusion—exclusion
inequality is now obtained by fixing i and applying Inequality (4.3) to P(U;;E;E)),
and so on.

-~

5 Sample Spaces Having Equally Likely Outcomes

In many experiments, it is natural to assume that all outcomes in the sample space
are equally likely to occur. That is, consider an experiment whose sample space S is
a finite set, say, S = {1,2, ..., N}. Then, it is often natural to assume that

P({1h = P({2}) = --- = P({N})

which implies, from Axioms 2 and 3 (why?), that

P({i})=—;-,- i=1,2,...,N

From this equation, it follows from Axiom 3 that, for any event E,

number of outcomes in E

P(E) =
(&) number of outcomes in S

In words, if we assume that all outcomes of an experiment are equally likely to occur,
then the probability of any event E equals the proportion of outcomes in the sample
space that are contained in E.
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If two dice are rolled, what is the probability that the sum of the upturned faces will
equal 7?

Solution We shall solve this problem under the assumption that all of the 36 possible
outcomes are equally likely. Since there are 6 possible outcomes—namely, (1, 6),
(2,5), (3,4), (4,3), (5,2),and (6, 1)— that result in the sum of the dice being equal
to 7, the desired probability is 5 = . [ ]

If 3 balls are “randomly drawn” from a bowl containing 6 white and 5 black balls,
what is the probability that one of the balls is white and the other two black?

Solution If we regard the balls as being distinguishable and the order in which they
are selected as being relevant, then the sample space consists of 11 - 10 - 9 = 990
outcomes. Furthermore, there are 6 - 5 - 4 = 120 outcomes in which the first ball
selected is white and the other two are black; 5 - 6 - 4 = 120 outcomes in which
the first is black, the second is white, and the third is black; and 5 - 4 - 6 =120 in
which the first two are black and the third is white. Hence, assuming that “randomly
drawn” means that each outcome in the sample space is equally likely to occur, we
see that the desired probability is h

120 + 120 + 120 4

990 1

This problem could also have been solved by regarding the outcome of the
experiment as the unordered set of drawn balls. From this point of view, there are

131 = 165 outcomes in the sample space. Now, each set of 3 balls corresponds

to 3! outcomes when the order of selection is noted. As a result, if all outcomes
are assumed equally likely when the order of selection is noted, then it follows that
they remain equally likely when the outcome is taken to be the unordered set of
selected balls. Hence, using the latter representation of the experiment, we see that

the desired probability is
6 5
1 2

(%)

which, of course, agrees with the answer obtained previously in the chapter. ]

When the experiment consists of a random selection of k items from a set of n
items, we have the flexibility of either letting the outcome of the experiment be the
ordered selection of the k items or letting it be the unordered set of items selected.
In the former case, we would assume that each new selection is equally likely to be
any of the so far unselected items of the set, and in the latter case, we would assume
that all (} ) possible subsets of k items are equally likely to be the set selected. For
instance, suppose 5 people are to be randomly selected from a group of 20 individu-
als consisting of 10 married couples, and we want to determine P(N), the probability
that the S chosen are all unrelated. (That is, no two are married to each other.) If
we regard the sample space as the set of 5 people chosen, then there are (20) equally
likely outcomes. An outcome that does not contain a married couple can be thought
of as being the result of a six-stage experiment: In the first stage, 5 of the 10 couples
to have a member in the group are chosen; in the next 5 stages, 1 of the 2 members of

=l -
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each of these couples is selected. Thus, there are (150)25 possible outcomes in which
the 5 members selected are unrelated, yielding the desired probability of

10
25
(5)
20
5
In contrast, we could let the outcome of the experiment be the ordered selection
of the 5 individuals. In this setting, there are 20 - 19 - 18 - 17 - 16 equally likely

outcomes, of which 20 - 18 - 16 - 14 - 12 outcomes result in a group of 5 unrelated
individuals, yielding the result

P(N) =

20-18-16-14 - 12
20-19-18-17 - 16
We leave it for the reader to verify that the two answers are identical.

P(N) =

A committee of S is to be selected from a group of 6 men and 9 women. If the
selection is made randomly, what is the probability that the committee consists of 3
men and 2 women?

Solution Because each of the (155) possible committees is equally likely to be selected,
the desired probability is

An urn contains » balls, one of which is special. If k£ of these balls are withdrawn one
at a time, with each selection being equally likely to be any of the balls that remain
at the time, what is the probability that the special ball is chosen?

Solution Since all of the balls are treated in an identical manner, it follows that the

set of k balls selected is equally likely to be any of the < Z ) sets of k balls. Therefore,

(1) (x21)

P{special ball is selected} = =
n

We could also have obtained this result by letting A; denote the event that the special
ball is the ith ball to be chosen, i = 1,...,k. Then, since each one of the n balls is
equally likely to be the ith ball chosen, it follows that P(A;) = 1/n. Hence, because
these events are clearly mutually exclusive, we have

S|

S|

k k
P{special ball is selected} = P (U Ai) = Z PA) =
i=1 i=1

We could also have argued that P(A;) = 1/n, by noting that there are n(n — 1) --.
(n — k + 1) = n!l/(n — k)! equally likely outcomes of the experiment, of which
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m-1Dn-2)---n—i+HQOA----m—k+1D=@m—-1/(n — k)! result
in the special ball being the ith one chosen. From this reasoning, it follows that
n-1n 1

PA)=—r—=3 u

Suppose that n + m balls, of which n are red and m are blue, are arranged in a linear
order in such a way that all (n + m)! possible orderings are equally likely. If we
record the result of this experiment by listing only the colors of the successive balls,
show that all the possible results remain equally likely.

Solution Consider any one of the (n + m)! possible orderings, and note that any per-
mutation of the red balls among themselves and of the blue balls among themselves
does not change the sequence of colors. As a result, every ordering of colorings cor-
responds to n! m! different orderings of the n + m balls, so every ordering of the
colors has probability (T";-L"m'—)f of occurring.

For example, suppose that there are 2 red balls, numbered r;, r, and 2 blue balls,
numbered b1, by. Then, of the 4! possible orderings, there will be 2! 2! orderings that
result in any specified color combination. For instance, the following orderings result
in the successive balls alternating in color, with a red ball first:

ri,bi,ra,b2 ri,ba,r2,b1 ry,b1,r1,by r2,b2,r1,by

Therefore, each of the possible orderings of the colors has probability i% = % of
occurring. |

A poker hand consists of 5 cards. If the cards have distinct consecutive values and
are not all of the same suit, we say that the hand is a straight. For instance, a hand
consisting of the five of spades, six of spades, seven of spades, eight of spades, and
nine of hearts is a straight. What is the probability that one is dealt a straight?

552 possible poker hands are equally
likely. To determine the number of outcomes that are straights, let us first deter-
mine the number of possible outcomes for which the poker hand consists of an ace,
two, three, four, and five (the suits being irrelevant). Since the ace can be any 1 of the
4 possible aces, and similarly for the two, three, four, and five, it follows that there
are 4° outcomes leading to exactly one ace, two, three, four, and five. Hence, since
in 4 of these outcomes all the cards will be of the same suit (such a hand is called a
straight flush), it follows that there are 4° — 4 hands that make up a straight of the
form ace, two, three, four, and five. Similarly, there are 4% — 4 hands that make upa
straight of the form ten, jack, queen, king, and ace. Thus, there are 10(4° — 4) hands
that are straights, and it follows that the desired probability is

Solution We start by assuming that all

104° — 4)

52

5
A 5-card poker hand is said to be a full house if it consists of 3 cards of the same
denomination and 2 other cards of the same denomination (of course, different from

the first denomination). Thus, a full house is three of a kind plus a pair. What is the
probability that one is dealt a full house?

~ 0039 |
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Solution Again, we assume that all 552 possible hands are equally likely. To

4 4
2 3
different combinations of, say, 2 tens and 3 jacks. Because there are 13 different
choices for the kind of pair and, after a pair has been chosen, there are 12 other
choices for the denomination of the remaining 3 cards, it follows that the probability

of a full house is
4 4
13 - 12 - <2> <3>
~ 0014 [ |
52
5

In the game of bridge, the entire deck of 52 cards is dealt out to 4 players. What is
the probability that

determine the number of possible full houses, we first note that there are

(a) one of the players receives all 13 spades;
(b) each player receives 1 ace?

Solution (a) Letting E; be the event that hand i has all 13 spades, then

P(E;)) = i=1,2,3,4

13
Because the events E;, i = 1,2,3,4, are mutually exclusive, the probability that one
of the hands is dealt all 13 spades is

4
52 _
P(ULE)=) P(E)= 4/(13) ~ 6.3 x 10712

i=1

(b) To determine the number of outcomes in which each of the distinct players

48
12,12,12,12
possible divisions of the other 48 cards when each player is to receive 12. Because
there are 4! ways of dividing the 4 aces so that each player receives 1, we see that
the number of possible outcomes in which each player receives exactly 1 ace is
41 48

"\ 12,12,12,12 J°

As there are (13,135,213,13) possible hands, the desired probability is thus

receives exactly 1 ace, put aside the aces and note that there are

4! (12,1;32,12)
52
13,13,13,13)

~ 1055 . |

Some results in probability are quite surprising when initially encountered. Our
next two examples illustrate this phenomenon.



Example
5i

Example
5j

Axioms of Probability

If n people are present in a room, what is the probability that no two of them cele-
brate their birthday on the same day of the year? How large need n be so that this
probability is less than §?

Solution As each person can celebrate his or her birthday on any one of 365 days,
there are a total of (365)" possible outcomes. (We are ignoring the possibility of
someone having been born on February 29.) Assuming that each outcome is equally
likely, we see that the desired probability is (365)(364)(363) ... (365 — n + 1)/(365)".
It is a rather surprising fact that when n = 23, this probability is less than % That is, if
there are 23 or more people in a room, then the probability that at least two of them
have the same birthday exceeds % Many people are initially surprised by this result,
since 23 seems so small in relation to 365, the number of days of the year. However,

every pair of individuals has probability of having the same birthday,

365 1
(365)2 ~ 365

and in a group of 23 people, there are = 253 different pairs of individuals.

23
2
Looked at this way, the result no longer seems so surprising.

When there are 50 people in the room, the probability that at least two share the

same birthday is approximately .970, and with 100 persons in the room, the odds are

3 X 108
1 that at

better than 3,000,000:1. (That is, the probability is greater than IX106 ¥ 1 n

least two people have the same birthday.)

A deck of 52 playing cards is shuffled, and the cards are turned up one at a time until
the first ace appears. Is the next card—that is, the card following the first ace —more
likely to be the ace of spades or the two of clubs?

Solution To determine the probability that the card following the first ace is the
ace of spades, we need to calculate how many of the (52)! possible orderings of the
cards have the ace of spades immediately following the first ace. To begin, note that
each ordering of the 52 cards can be obtained by first ordering the 51 cards different
from the ace of spades and then inserting the ace of spades into that ordering. Fur-
thermore, for each of the (51)! orderings of the other cards, there is only one place
where the ace of spades can be placed so that it follows the first ace. For instance, if
the ordering of the other 51 cards is

4c, 6h, Jd, 5s, Ac, 7d,...,Kh

then the only insertion of the ace of spades into this ordering that results in its fol-
lowing the first ace is

4c, 6h, Jd, Ss, Ac, As, 7d,...,Kh

Therefore, there are (51)! orderings that result in the ace of spades following the first
ace, SO
ot 1

G2~ 2

In fact, by exactly the same argument, it follows that the probability that the two
of clubs (or any other specified card) follows the first ace is also 317 In other words,
each of the 52 cards of the deck is equally likely to be the one that follows the first
ace!

Many people find this result rather surprising. Indeed, a common reaction is to
suppose initially that it is more likely that the two of clubs (rather than the ace of

P{the ace of spades follows the first ace} =

»
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spades) follows the first ace, since that first ace might itself be the ace of spades. This
reaction is often followed by the realization that the two of clubs might itself appear
before the first ace, thus negating its chance of immediately following the first ace.
However, as there is one chance in four that the ace of spades will be the first ace
(because all 4 aces are equally likely to be first) and only one chance in five that
the two of clubs will appear before the first ace (because each of the set of 5 cards
consisting of the two of clubs and the 4 aces is equally likely to be the first of this set
to appear), it again appears that the two of clubs is more likely. However, this is not
the case, and our more complete analysis shows that they are equally likely. |

A football team consists of 20 offensive and 20 defensive players. The players are to
be paired in groups of 2 for the purpose of determining roommates. If the pairing is
done at random, what is the probability that there are no offensive—defensive room-
mate pairs? What is the probability that there are 2i offensive—defensive roommate

pairs, i =1,2,...,10?
40 _(40)!
2,2,...,2 ) 7 @2n2

ways of dividing the 40 players into 20 ordered pairs of two each. (That is, there
are (40)!/22° ways of dividing the players into a first pair, a second pair, and so on.)
Hence, there are (40)!/220(20)! ways of dividing the players into (unordered) pairs of
2 each. Furthermore, since a division will result in no offensive—defensive pairs if the
offensive (and defensive) players are paired among themselves, it follows that there
are [(20)!/219(10)!]? such divisions. Hence, the probability of no offensive—defensive
roommate pairs, call it Py, is given by

Solution There are

20)! \?
Po = (210(10)!) (o
0= TT@0)! T [(10)1Ed0)!
220(20)!

To determine Py;, the probability that there are 2i offensive—defensive pairs, we first

note that there are 3(1) > ways of selecting the 2i offensive players and the 2i defen-

sive players who are to be in the offensive—defensive pairs. These 4i players can then
be paired up into (2i)! possible offensive—defensive pairs. (This is so because the
first offensive player can be paired with any of the 2i defensive players, the second
offensive player with any of the remaining 2i — 1 defensive players, and so on.)
As the remaining 20 — 2i offensive (and defensive) players must be paired among
themselves, it follows that there are

2 . 2
20 ~ [ 20 — 25!
(2i> @ [210—i(1o - i)!]

divisions that lead to 2i offensive—defensive pairs. Hence,

2 . 2
20} iy [—-———(29 — 2! ]
2i 210-i(10 — i)!

Py = @0 i=0,1,...,10

220(20)!
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The Py;,i = 0,1,...,10, can now be computed, or they can be approximated by
making use of a result of Stirling, which shows that n! can be approximated by
n"t1/2¢=n. /27 . For instance, we obtain

Py ~ 1.3403 x 107°
Py =~ 345861
Py ~ 7.6068 X 10~° (]

Our next three examples illustrate the usefulness of the inclusion—exclusion
identity (Proposition 4.4). In Example 51, the introduction of probability enables us
to obtain a quick solution to a counting problem.

A total of 36 members of a club play tennis, 28 play squash, and 18 play badminton.
Furthermore, 22 of the members play both tennis and squash, 12 play both tennis
and badminton, 9 play both squash and badminton, and 4 play all three sports. How
many members of this club play at least one of three sports?

Solution Let N denote the number of members of the club, and introduce probabil-
ity by assuming that a member of the club is randomly selected. If, for any subset C
of members of the club, we let P(C) denote the probability that the selected member
is contained in C, then

number of members in C
N
Now, with T being the set of members that plays tennis, S being the set that plays
squash, and B being the set that plays badminton, we have, from Proposition 4.4,
P(T U SUB)
= P(T) + P(S) + P(B) — P(TS) — P(TB) — P(SB) + P(TSB)
36 +28+18-22-12-9+4

PO =

N
_ 43
"N
Hence, we can conclude that 43 members play at least one of the sports. |

The next example in this section not only possesses the virtue of giving rise to a
somewhat surprising answer, but is also of theoretical interest.

The matching problem

Suppose that each of N men at a party throws his hat into the center of the room.
The hats are first mixed up, and then each man randomly selects a hat. What is the
probability that none of the men selects his own hat?

Solution We first calculate the complementary probability of at least one man select-
ing his own hat. Let us denote by E;,i = 1,2,..., N the event that the ith man selects

N
his own hat. Now, by Proposition 4.4, P | | J E; |, the probability that at least one of
i=1
the men selects his own hat is given by

N N
PIJE|=)_PE) - Y PE4E,) + -
i=1 i=1 i<l
+ ()™ > P(E4Ey - E,)
i <ip-<ip

+ o+ (DY P(ELE; - EN)

41



42

Example
5n

Axioms of Probability

If we regard the outcome of this experiment as a vector of N numbers, where the ith
element is the number of the hat drawn by the ith man, then there are N! possible
outcomes. [The outcome (1,2,3,..., N) means, for example, that each man selects his
own hat.] Furthermore, E; E;, ... E;,, the event that each of the n men iy,i,...,in
selects his own hat, can occurinanyof (N — n)(N —n —-1)-..3.2 . 1 =N — n)!
possible ways; for, of the remaining N — n men, the first can select any of N — n
hats, the second can then select any of N — n — 1 hats, and so on. Hence, assuming
that all N! possible outcomes are equally likely, we see that

(N - n)!

P(ELE;, - - E;,) = N

Also, as there are ( IZ ) termsin ) P(EyE; ---E;,), it follows that

i) <ip---<ip
NI(N — n)!
, Z , P By - Biy) = (N —mnIN! — n!
iy <ip--<ip
Thus,
N 1 1 1
. — — — — — .« — N+1——-
PL{E, =1- 5+ 3 + DT
1=

Hence, the probability that none of the men selects his own hat is

1 1 -y X
1—1+2—!—§+...+ N =X£(—1)'/t!
1=

o] .
Upon letting x = —1 in the identity e* = )_ x'/i! the preceding probability when N
i=0
large is seen to be approximately equal to e~ ~ .3679. In other words, for N large,
the probability that none of the men selects his own hat is approximately .37. (How
many readers would have incorrectly thought that this probability would go to 1 as
N—>00?) |

For another illustration of the usefulness of Proposition 4.4, consider the follow-
ing example.
Compute the probability that if 10 married couples are seated at random at a round
table, then no wife sits next to her husband.
Solution If we let E;,i = 1,2,...,10 denote the event that the ith couple sit next
i=1

10
to each other, it follows that the desired probability is 1 — P (U E,~>. Now, from

Proposition 4.4,

10 10
P (U Ei) =Y P(E)— -+ 1" Y P(ELE, - E,)
1 1

I <@y <-<ip

+ -+ — P(E1E; - - - Eqp)

To compute P(E; E;, - - - E;,), we first note that there are 19! ways of arranging
20 people around a round table. (Why?) The number of arrangements that result in
a specified set of n men sitting next to their wives can most easily be obtained by first
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thinking of each of the » married couples as being single entities. If this were the
case, then we would need to arrange 20 — n entities around a round table, and there
are clearly (20 — n — 1)! such arrangements. Finally, since each of the » married
couples can be arranged next to each other in one of two possible ways, it follows
that there are 2"(20 — n — 1)! arrangements that result in a specified set of » men
each sitting next to their wives. Therefore,

2"19 — n)!
9!

Thus, from Proposition 4.4, we obtain that the probability that at least one married
couple sits together, namely,

P(ELE;,---E;) =

10\ ,; (18)! 10 \ . A7) 10 ) ,3 (16)! 10 ) 5109
2 — - —— ~ 6605
( 1 )2 aon ~\2 )7t 3 )P o) 10 )% Qo)1
and the desired probability is approximately .3395. |
Runs

~

Consider an athletic team that had just finished its season with a final record of n
wins and m losses. By examining the sequence of wins and losses, we are hoping to
determine whether the team had stretches of games in which it was more likely to
win than at other times. One way to gain some insight into this question is to count
the number of runs of wins and then see how likely that result would be when all
(n + m)!/(n! m!) orderings of the n wins and m losses are assumed equally likely. By
a run of wins, we mean a consecutive sequence of wins. For instance, if n = 10,m = 6,
and the sequence of outcomes was WWLLWWWLWLLLWWWW, then there would
be 4 runs of wins—the first run being of size 2, the second of size 3, the third of size
1, and the fourth of size 4.

Suppose now that a team has n wins and m losses. Assuming that all (n + m)!/

n+m

(n!'m!) = orderings are equally likely, let us determine the probability

that there will be exactly r runs of wins. To do so, consider first any vector of positive
integers x1,x2,...,% withx; + --- + x, = n, and let us see how many outcomes
result in r runs of wins in which the ith run is of size x;,i = 1,...,r. For any such
outcome, if we let y; denote the number of losses before the first run of wins, y, the
number of losses between the first 2 runs of wins, ..., y,.1 the number of losses after
the last run of wins, then the y; satisfy

yi+y2+ -+ yqp1=m y1 =0,y,41 =0,y;i > 0,i=2,...,r
and the outcome can be represented schematically as

LL..LWW. WL..LWW..W...WWL...L
D i i i Ny N e’

Y1 X1 Y2 X2 Xr Yr+1

Hence, the number of outcomes that result in 7 runs of wins—the ith of size x;,i =
1,...r—is equal to the number of integers y1,...,y,+1 that satisfy the foregoing, or,
equivalently, to the number of positive integers

y1=)’1+1 y,‘=}’i,i=2,---,",yr+1‘—’}’r+1+1

that satisfy
Yyi+V2t+ o+ Vpp=m+ 2
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Generally, there are (m :' 1 ) such outcomes. Hence, the total number of out-

m+1

comes that result in r runs of wins is < ) , multiplied by the number of positive

integral solutions of x; + --- + x, = n. Thus, there are (m :- 1 ) (n h 1) out-

comes resulting in r runs of wins. As there are equally likely outcomes,

)
-

For example, if n = 8 and m = 6, then the probability of 7 runs is (;) (Z) /

n+m
n

it follows that

P({r runs of wins}) =

r=1

1; = 1/429 if all 184 outcomes are equally likely. Hence, if the outcome

was WLWLWLWLWWLWLW, then we might suspect that the team’s probability of
winning was changing over time. (In particular, the probability that the team wins
seems to be quite high when it lost its last game and quite low when it won its last
game.) On the other extreme, if the outcome were WWWWWWWWLLLLLL, then

there would have been only 1 run, and as P({l1run}) = Z (g) / (184 ) =

1/429, it would thus again seem unlikely that the team’s probability of winning
remained unchanged over its 14 games. |

*6 Probability as a Continuous Set Function

A sequence of events {E,,n = 1} is said to be an increasing sequence if
E{CEC - CE, CEpq C---

whereas it is said to be a decreasing sequence if
Ei1 DFE D - DE; DEpn1 D -

If {E,,n = 1} is an increasing sequence of events, then we define a new event,
denoted by h_r)n E,, by
n o0

[ee]
=

Similarly, if {E,,n = 1} is a decreasing sequence of events, we define nlir)noo E,, by

o0
nli—l)noo En = ﬂ E;

i=1

We now prove the following Proposition 6.1:
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Proposition If {E,,n = 1} is either an increasing or a decreasing sequence of events, then

6.1

nl-i—l>noo P(En) = P(nl—i}-)noo En)

Proof Suppose, first, that {E,,n = 1} is an increasing sequence, and define the events
F,,n = 1,by

Fi = E;

n-1 ¢
1

n-1
where we have used the fact that | J E; = E,_1, since the events are increasing. In

1
words, F,, consists of those outcomes in E, that are not in any of the earlier E;,i < n.
It is easy to verify that the F,, are mutually exclusive events such that

(o0} o0 n n
\JFi=\JE and |JFi=|JEi foralin=1

i=1 i=1 i=1 i=1

-1

=) _P(F;) (by Axiom 3)
1

~

Thus,

n
- i rc
n
n

nlir}noo P(En)

which proves the result when {E,,n = 1} is increasing.

If {En,n =1} is a decreasing sequence, then {E],, n = 1} is an increasing sequence;
hence, from the preceding equations,

’ (LIJ EC) = Jim, PCE)

C
o0 o0
However, because | J Ef = <ﬂ Ei) , it follows that
1 1
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or, equivalently,

1-P (ﬂ Ei) = lim [1 - P(Ep]=1 - lim P(Ey)
1

or
00
P (O Ei) = nEI;DOOP(En)

which proves the result. a

Probability and a “paradox”

Suppose that we possess an infinitely large urn and an infinite collection of balls
labeled ball number 1, number 2, number 3, and so on. Consider an experiment
performed as follows: At 1 minute to 12 PM., balls numbered 1 through 10 are placed
in the urn and ball number 10 is withdrawn. (Assume that the withdrawal takes
no time.) At % minute to 12 PM., balls numbered 11 through 20 are placed in the
urn and ball number 20 is withdrawn. At % minute to 12 PM., balls numbered 21
through 30 are placed in the urn and ball number 30 is withdrawn. At % minute
to 12PM., and so on. The question of interest is, How many balls are in the urn at
12PM.?

The answer to this question is clearly that there is an infinite number of
balls in the urn at 12PM,, since any ball whose number is not of the form 10n,
n = 1, will have been placed in the urn and will not have been withdrawn before
12 pM. Hence, the problem is solved when the experiment is performed as described.

However, let us now change the experiment and suppose that at 1 minute to
12 PM,, balls numbered 1 through 10 are placed in the urn and ball number 1 is with-
drawn; at % minute to 12 PM.,, balls numbered 11 through 20 are placed in the urn

and ball number 2 is withdrawn; at % minute to 12 PM., balls numbered 21 through

30 are placed in the urn and ball number 3 is withdrawn; at % minute to 12 PM,, balls
numbered 31 through 40 are placed in the urn and ball number 4 is withdrawn, and
so on. For this new experiment, how many balls are in the urn at 12 PM.?

Surprisingly enough, the answer now is that the urn is empty at 12PM. For,
consider any ball—say, ball number n. At some time prior to 12 PM. [in particular,
at (%)n ' minutes to 12 PM], this ball would have been withdrawn from the urn.
Hence, for each n, ball number 7 is not in the urn at 12 PM.; therefore, the urn must
be empty at that time.

Because for all n, the number of balls in the urn after the nth interchange is
the same in both variations of the experiment, most people are surprised that the
two scenarios produce such different results in the limit. It is important to recognize
that the reason the results are different is not because there is an actual paradox, or
mathematical contradiction, but rather because of the logic of the situation, and also
that the surprise results because one’s initial intuition when dealing with infinity is
not always correct. (This latter statement is not surprising, for when the theory of
the infinite was first developed by the mathematician Georg Cantor in the second
half of the nineteenth century, many of the other leading mathematicians of the day
called it nonsensical and ridiculed Cantor for making such claims as that the set of
all integers and the set of all even integers have the same number of elements.)

We see from the preceding discussion that the manner in which the balls are
withdrawn makes a difference. For, in the first case, only balls numbered 10n,n = 1,
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are ever withdrawn, whereas in the second case all of the balls are eventually with-
drawn. Let us now suppose that whenever a ball is to be withdrawn, that ball is
randomly selected from among those present. That is, suppose that at 1 minute to
12 PM. balls numbered 1 through 10 are placed in the urn and a ball is randomly
selected and withdrawn, and so on. In this case, how many balls are in the urn at
12pMm.?

Solution We shall show that, with probability 1, the urn is empty at 12PM. Let us
first consider ball number 1. Define E, to be the event that ball number 1 is still in
the urn after the first n withdrawals have been made. Clearly,

9.18 -27-.-9n)

P(Ey) = 10-19 -28-.-9n + 1)

[To understand this equation, just note that if ball number 1 is still to be in the
urn after the first » withdrawals, the first ball withdrawn can be any one of 9, the
second any one of 18 (there are 19 balls in the urn at the time of the second with-
drawal, one of which must be ball number 1), and so on. The denominator is similarly
obtained.]

o
Now, the event that ball number 1 is in the urn at 12 PM. is just the event (] E,.
n=1
Because the events E,,n = 1, are decreasing events, it follows from Proposition 6.1

that

P{ball number 1 is in the urn at 12pM.}

= i Pz
e
ol On + 1
We now show that
o0
l—I 9n — 0
9n + 1
n=1

Since

f1(=2) - [ ()]

n=1

this is equivalent to showing that

47



48

Axioms of Probability

Now, forallm = 1,

i+ 2) =i 2

n= n=1

>1+1+ + +L
9 18 27 9m
1K1

9i=ll

(2]
Hence, letting m— oo and using the fact that ) 1/i = oo yields
i=1

o0
n (1 + l) =00
9n
n=1
Thus, letting F; denote the event that ball number i is in the urn at 12 PM,, we have

shown that P(F;) = 0. Similarly, we can show that P(F;) = 0 for all i.

o0

(For instance, the same reasoning shows that P(F;) = [][[9n/(9n + 1)] for
n=2
i = 11,12,...,20.) Therefore, the probability that the urn is not empty at 12PM,,
[0.9)
P { | F;), satisfies
1

1 1

by Boole’s inequality. (See Self-Test Exercise 14.)
Thus, with probability 1, the urn will be empty at 12 PM. |

7 Probability as a Measure of Belief

Thus far we have interpreted the probability of an event of a given experiment as
being a measure of how frequently the event will occur when the experiment is
continually repeated. However, there are also other uses of the term probability.
For instance, we have all heard such statements as “It is 90 percent probable that
Shakespeare actually wrote Hamlet” or “The probability that Oswald acted alone in
assassinating Kennedy is .8.” How are we to interpret these statements?

The most simple and natural interpretation is that the probabilities referred to
are measures of the individual’s degree of belief in the statements that he or she
is making. In other words, the individual making the foregoing statements is quite
certain that Oswald acted alone and is even more certain that Shakespeare wrote
Hamlet. This interpretation of probability as being a measure of the degree of one’s
belief is often referred to as the personal or subjective view of probability..

It seems logical to suppose that a “measure of the degree of one’s belief” should
satisfy all of the axioms of probability. For example, if we are 70 percent certain
that Shakespeare wrote Julius Caesar and 10 percent certain that it was actually
Marlowe, then it is logical to suppose that we are 80 percent certain that it was either
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Shakespeare or Marlowe. Hence, whether we interpret probability as a measure of
belief or as a long-run frequency of occurrence, its mathematical properties remain
unchanged.

Example Suppose that in a 7-horse race, you believe that each of the first 2 horses has a 20
7a percent chance of winning, horses 3 and 4 each have a 15 percent chance, and the
remaining 3 horses have a 10 percent chance each. Would it be better for you to
wager at even money that the winner will be one of the first three horses or to wager,

again at even money, that the winner will be one of the horses 1, 5, 6, and 7?

Solution On the basis of your personal probabilities concerning the outcome of the
race, your probability of winning the first bet is .2 + 2 + .15 = .55, whereas
itis.2 + .1 + .1 + .1 = .5 for the second bet. Hence, the first wager is more
attractive. |

Note that in supposing that a person’s subjective probabilities are always consis-
tent with the axioms of probability, we are dealing with an idealized rather than an
actual person. For instance, if we were to ask someone what he thought the chances
were of

(a) rain today,

(b) rain tomorrow,

(c) rain both today and tomorrow,

(d) rain either today or tomorrow,
it is quite possible that, after some deliberation, he might give 30 percent, 40 percent,
20 percent, and 60 percent as answers. Unfortunately, such answers (or such subjec-
tive probabilities) are not consistent with the axioms of probability. (Why not?) We
would of course hope that after this was pointed out to the respondent, he would

change his answers. (One possibility we could accept is 30 percent, 40 percent, 10
percent, and 60 percent.)

Summary

Let S denote the set of all possible outcomes of an exper-

iment. S is called the sample space of the experiment. An

event is a subset of S. If A;,i = 1,...,n, are events, then
n

(oo o0
P UA,' = ZP(A,‘)
i=1 i=1
U A, called the union of these events, consists of all out-
i=1

comes that are in at least one of the events A;,i=1,...,n.

n
Similarly, () A;, sometimes written as Ay --- A, is called

P(A) represents the probability that the outcome of the
experiment is in A.
It can be shown that

P(A°) =1 — P(A)
A useful result is that
P(A U B) =P(A) + P(B) — P(AB)

i=1
the intersection of the events A; and consists of all out-
comes that are in all of the events A;,i = 1,...,n.

For any event A, we define A° to consist of all out-
comes in the sample space that are not in A. We call A€
the complement of the event A. The event S$¢, which is
empty of outcomes, is designated by @ and is called the
null set. If AB = @, then we say that A and B are mutually
exclusive.

For each event A of the sample space S, we suppose
that a number P(A), called the probability of A, is defined

which can be generalized to give

P (UA") = ZP(A;') - ZZP(AiAj)
i=1

and is such that + )Y ) P(AiAjAR)
G 0=PA) =1 Pk 1
(i) PS) =1 +o A+ CDTPAL - An)

(iii) For mutually exclusive events A;,i = 1,

This result is known as the inclusion—exclusion identity.
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If S is finite and each one point set is assumed to have
equal probability, then
IA|

PA) = —
(A) iSi

Problems

where | E| denotes the number of outcomes in the event E.
P(A) can be interpreted either as a long-run relative
frequency or as a measure of one’s degree of belief.

1. A box contains 3 marbles: 1 red, 1 green, and 1 blue.
Consider an experiment that consists of taking 1 marble
from the box and then replacing it in the box and draw-
ing a second marble from the box. Describe the sample
space. Repeat when the second marble is drawn without
replacing the first marble.

2.In an experiment, die is rolled continually until a 6
appears, at which point the experiment stops. What is the
sample space of this experiment? Let E,, denote the event
that n rolls are necessary to complete the experiment.
What points of ghe sample space are contained in E,?

[e9)
Whatis { UE, | ?
1

3. Two dice are thrown. Let E be the event that the sum of
the dice is odd, let F be the event that at least one of the
dice lands on 1, and let G be the event that the sum is 5.
Describe the events EF,E U F,FG, EF°, and EFG.

4. A, B, and C take turns flipping a coin. The first one to
get a head wins. The sample space of this experiment can
be defined by

S = 1,01,001,0001,...,
=10000.--

(a) Interpret the sample space.
(b) Define the following events in terms of S:
(i) A wins = A.
(ii) B wins = B.
(iii) (4 U B)-.
Assume that A flips first, then B, then C, then A,
and so on.

5. A system is composed of 5 components, each of which
is either working or failed. Consider an experiment that
consists of observing the status of each component, and
let the outcome of the experiment be given by the vector
(x1,x2,%3,x4,x5), where x; is equal to 1 if component i is
working and is equal to 0 if component i is failed.

(a) How many outcomes are in the sample space of this
experiment?

(b) Suppose that the system will work if components 1 and
2 are both working, or if components 3 and 4 are both
working, or if components 1, 3, and 5 are all working. Let
W be the event that the system will work. Specify all the
outcomes in W.

(c¢) Let A be the event that components 4 and 5 are both
failed. How many outcomes are contained in the event A?

(d) Write out all the outcomes in the event AW.

6. A hospital administrator codes incoming patients suf-
fering gunshot wounds according to whether they have
insurance (coding 1 if they do and 0 if they do not) and
according to their condition, which is rated as good (g), fair
(f), or serious (s). Consider an experiment that consists of
the coding of such a patient.

(a) Give the sample space of this experiment.

(b) Let A be the event that the patient is in serious condi-
tion. Specify the outcomes in A.

(¢) Let B be the event that the patient is uninsured. Specify
the outcomes in B.

(d) Give all the outcomes in the event B¢ U A.

7. Consider an experiment that consists of determining
the type of job—either blue collar or white collar—
and the political affiliation—Republican, Democratic, or
Independent —of the 15 members of an adult soccer team.
How many outcomes are

(a) in the sample space?
(b) in the event that at least one of the team members is a
blue-collar worker?

(c) in the event that none of the team members considers
himself or herself an Independent?

8. Suppose that A and B are mutually exclusive events for
which P(A) = .3 and P(B) = .5. What is the probabil-
ity that

(a) either A or B occurs?

(b) A occurs but B does not?

(¢) both A and B occur?

9. A retail establishment accepts either the American
Express or the VISA credit card. A total of 24 percent
of its customers carry an American Express card, 61 per-
cent carry a VISA card, and 11 percent carry both cards.
What percentage of its customers carry a credit card that
the establishment will accept?

10. Sixty percent of the students at a certain school wear
neither a ring nor a necklace. Twenty percent wear a ring
and 30 percent wear a necklace. If one of the students is
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chosen randomly, what is the probability that this student
is wearing

() a ring or a necklace?
(b) a ring and a necklace?

11. A total of 28 percent of American males smoke
cigarettes, 7 percent smoke cigars, and 5 percent smoke
both cigars and cigarettes.

(a) What percentage of males smokes neither cigars nor
cigarettes?

(b) What percentage smokes cigars but not cigarettes?

12. An elementary school is offering 3 language classes:
one in Spanish, one in French, and one in German. The
classes are open to any of the 100 students in the school.
There are 28 students in the Spanish class, 26 in the French
class, and 16 in the German class. There are 12 students
who are in both Spanish and French, 4 who are in both
Spanish and German, and 6 who are in both French and
German. In addition, there are 2 students taking all 3
classes.

(a) If a student is chosen randomly, what is the probability
that he or she is not in any of the language classes?

(b) If a student is chosen randomly, what is the probability
that he or she is taking exactly one language class?

(¢) If 2 students are chosen randomly, what is the proba-
bility that at least 1 is taking a language class?

13. A certain town with a population of 100,000 has 3
newspapers: I, II, and III. The proportions of townspeople
who read these papers are as follows:

I and II and
III: 1 percent

I: 10 percent I and II: 8 percent

II: 30 percent I and III: 2 percent

IIT: 5 percent 1I and III: 4 percent
(The list tells us, for instance, that 8000 people read news-
papers I and I1.)

(a) Find the number of people who read only one newspa-
per.

(b) How many people read at least two newspapers?

(¢) If I and III are morning papers and II is an evening
paper, how many people read at least one morning paper
plus an evening paper?

(d) How many people do not read any newspapers?

(e) How many people read only one morning paper and
one evening paper?

14. The following data were given in a study of a group
of 1000 subscribers to a certain magazine: In reference
to job, marital status, and education, there were 312 pro-
fessionals, 470 married persons, 525 college graduates, 42
professional college graduates, 147 married college gradu-
ates, 86 married professionals, and 25 married professional
college graduates. Show that the numbers reported in the
study must be incorrect.

Hint: Let M, W, and G denote, respectively, the set
of professionals, married persons, and college graduates.
Assume that one of the 1000 persons is chosen at random,
and use Proposition 4.4 to show that if the given numbers
are correct, then P(IM U W U G) > 1.

I15.If it is assumed that all 552 ) poker hands are

equally likely, what is the probability of being dealt

(a) a flush? (A hand is said to be a flush if all 5 cards are of
the same suit.)

(b) one pair? (This occurs when the cards have denomina-
tions a, a, b, ¢, d, where a, b, ¢, and d are all distinct.)

(¢) two pairs? (This occurs when the cards have denomi-
nations a, a, b, b, ¢, where a, b, and c are all distinct.)

(d) three of a kind? (This occurs when the cards have
denominations a, a, a, b, ¢, where a, b, and ¢ are all dis-
tinct.)

(e) four of a kind? (This occurs when the cards have
denominations a, a, a, a, b.) -

16. Poker dice is played by simultaneously rolling S dice.
Show that

(a) P{no two alike} = .0926;
(b) P{one pair} = .4630;

(¢) P{two pair} = .2315;

(d) P{three alike} = .1543;
(e) P{full house} = .0386;
(D P{four alike} = .0193;
(g) Pffive alike} = .0008.

17. If 8 rooks (castles) are randomly placed on a chess-
board, compute the probability that none of the rooks can
capture any of the others. That is, compute the probability
that no row or file contains more than one rook.

18. Two cards are randomly selected from an ordinary
playing deck. What is the probability that they form a
blackjack? That is, what is the probability that one of the
cards is an ace and the other one is either a ten, a jack, a
queen, or a king?

19. Two symmetric dice have had two of their sides painted
red, two painted black, one painted yellow, and the other
painted white. When this pair of dice is rolled, what is the
probability that both dice land with the same color face
up?

20. Suppose that you are playing blackjack against a
dealer. In a freshly shuffled deck, what is the probability
that neither you nor the dealer is dealt a blackjack?

21. A small community organization consists of 20 fam-
ilies, of which 4 have one child, 8 have two children, 5
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have three children, 2 have four children, and 1 has five
children.

(a) If one of these families is chosen at random, what is the
probability it has i children, i = 1,2,3,4,5?

(b) If one of the children is randomly chosen, what is the
probability that child comes from a family having i chil-
dren,i=1,2,3,4,5?

22. Consider the following technique for shuffling a deck
of n cards: For any initial ordering of the cards, go through
the deck one card at a time and at each card, flip a fair coin.
If the coin comes up heads, then leave the card where it is;
if the coin comes up tails, then move that card to the end
of the deck. After the coin has been flipped n times, say
that one round has been completed. For instance, if n = 4
and the initial ordering is 1, 2, 3, 4, then if the successive
flips result in the outcome A, ¢, ¢, h, then the ordering at
the end of the round is 1, 4, 2, 3. Assuming that all possible
outcomes of the sequence of n coin flips are equally likely,
what is the probability that the ordering after one round is
the same as the initial ordering?

23. A pair of fair dice is rolled. What is the probability that
the second die lands on a higher value than does the first?

24. If two dice are rolled, what is the probability that
the sum of the upturned faces equals i? Find it for i =
2,3,...,11,12.

25. A pair of dice is rolled until a sum of either 5 or 7
appears. Find the probability that a 5 occurs first.

Hint: Let E, denote the event that a 5 occurs on the nth
roll and no 5 or 7 occurs on the first » — 1 rolls. Compute

o0
P(E,) and argue that Y P(E,) is the desired probability.
n=1
26. The game of craps is played as follows: A player rolls
two dice. If the sum of the dice is either a 2, 3, or 12, the
player loses; if the sum is either a 7 or an 11, the player
wins. If the outcome is anything else, the player continues
to roll the dice until she rolls either the initial outcome or a
7. If the 7 comes first, the player loses, whereas if the initial
outcome reoccurs before the 7 appears, the player wins.
Compute the probability of a player winning at craps.
Hint: Let E; denote the event that the initial outcome is

12
i and the player wins. The desired probability is Y P(E;).
i=2
To compute P(E;), define the events E;, to be tlhe event
that the initial sum is i and the player wins on the nth roll.
(o)
Argue that P(E;) = > P(E;pn).

n=1

27. An urn contains 3 red and 7 black balls. Players A and
B withdraw balls from the urn consecutively until a red
ball is selected. Find the probability that A selects the red
ball. (A draws the first ball, then B, and so on. There is no
replacement of the balls drawn.)

28. An urn contains 5 red, 6 blue, and 8 green balls. If a set
of 3 balls is randomly selected, what is the probability that
each of the balls will be (a) of the same color? (b) of differ-
ent colors? Repeat under the assumption that whenever a
ball is selected, its color is noted and it is then replaced in
the urn before the next selection. This is known as sam-
pling with replacement.

29. An urn contains n white and m black balls, where n and
m are positive numbers.

(a) If two balls are randomly withdrawn, what is the prob-
ability that they are the same color?

(b) If a ball is randomly withdrawn and then replaced
before the second one is drawn, what is the probability that
the withdrawn balls are the same color?

(¢) Show that the probability in part (b) is always larger
than the one in part (a).

30. The chess clubs of two schools consist of, respectively,
8 and 9 players. Four members from each club are ran-
domly chosen to participate in a contest between the two
schools. The chosen players from one team are then ran-
domly paired with those from the other team, and each
pairing plays a game of chess. Suppose that Rebecca and
her sister Elise are on the chess clubs at different schools.
What is the probability that

(a) Rebecca and Elise will be paired?

(b) Rebecca and Elise will be chosen to represent their
schools but will not play each other?

(c) either Rebecca or Elise will be chosen to represent her
school?

31. A 3-person basketball team consists of a guard, a for-
ward, and a center.

(a) If a person is chosen at random from each of three dif-
ferent such teams, what is the probability of selecting a
complete team?

(b) What is the probability that all 3 players selected play
the same position?

32. A group of individuals containing b boys and g girls
is lined up in random order; that is, each of the (b + g)!
permutations is assumed to be equally likely. What is the
probability that the person in the ith position, 1 <i<b + g,
is a girl?

33. A forest contains 20 elk, of which 5 are captured,
tagged, and then released. A certain time later, 4 of the
20 elk are captured. What is the probability that 2 of these
4 have been tagged? What assumptions are you making?

34. The second Earl of Yarborough is reported to have bet
at odds of 1000 to 1 that a bridge hand of 13 cards would
contain at least one card that is ten or higher. (By ten or
higher we mean that a card is either a ten, a jack, a queen,
a king, or an ace.) Nowadays, we call a hand that has no
cards higher than 9 a Yarborough. What is the probability
that a randomly selected bridge hand is a Yarborough?
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35. Seven balls are randomly withdrawn from an urn that
contains 12 red, 16 blue, and 18 green balls. Find the prob-
ability that

(a) 3red, 2 blue, and 2 green balls are withdrawn;

(b) at least 2 red balls are withdrawn;

(¢) all withdrawn balls are the same color;

(d) either exactly 3 red balls or exactly 3 blue balls are
withdrawn.

36. Two cards are chosen at random from a deck of 52
playing cards. What is the probability that they

(a) are both aces?
(b) have the same value?

37. An instructor gives her class a set of 10 problems with
the information that the final exam will consist of a ran-
dom selection of 5 of them. If a student has figured out
how to do 7 of the problems, what is the probability that
he or she will answer correctly

(a) all 5 problems?
(b) at least 4 of the problems?

38. There are n socks, 3 of which are red, in a drawer. What
is the value of n if, when 2 of the socks are chosen ran-
domly, the probability that they are both red is %?

39. There are 5 hotels in a certain town. If 3 people check
into hotels in a day, what is the probability that they each
check into a different hotel? What assumptions are you
making?

40. A town contains 4 people who repair televisions. If
4 sets break down, what is the probability that exactly i
of the repairers are called? Solve the problem for i =
1,2,3,4. What assumptions are you making?

41. If a die is rolled 4 times, what is the probability that 6
comes up at least once?

42. Two dice are thrown n times in succession. Compute
the probability that double 6 appears at least once. How
large need n be to make this probability at least %?

43. (a) If N people, including A and B, are randomly
arranged in a line, what is the probability that A and B
are next to each other?

(b) What would the probability be if the people were ran-
domly arranged in a circle?

44. Five people, designated as A, B, C, D, E, are arranged
in linear order. Assuming that each possible order is
equally likely, what is the probability that

(a) there is exactly one person between A and B?

(b) there are exactly two people between A and B?

(¢) there are three people between A and B?

45. A woman has »n keys, of which one will open her door.

(a) If she tries the keys at random, discarding those that
do not work, what is the probability that she will open the
door on her kth try?

(b) What if she does not discard previously tried keys?

46. How many people have to be in a room in order that
the probability that at least two of them celebrate their
birthday in the same month is at least %? Assume that all
possible monthly outcomes are equally likely.

47. If there are 12 strangers in a room, what is the proba-
bility that no two of them celebrate their birthday in the
same month?

48. Given 20 people, what is the probability that among
the 12 months in the year, there are 4 months containing
exactly 2 birthdays and 4 containing exactly 3 birthdays?

49. A group of 6 men and 6 women is randomly divided
into 2 groups of size 6 each. What is the probability that
both groups will have the same number of men?

50. In a hand of bridge, find the probability that you have
5 spades and your partner has the remaining 8.

51. Suppose that n balls are randomly distributed into N
compartments. Find the probability that m balls will fall
into the first compartment. Assume that all N* arrange-
ments are equally likely.

52. A closet contains 10 pairs of shoes. If 8 shoes are ran-
domly selected, what is the probability that there will be
(a) no complete pair?

(b) exactly 1 complete pair?

53.If 4 married couples are arranged in a row, find the
probability that no husband sits next to his wife.

54. Compute the probability that a bridge hand is void in
at least one suit. Note that the answer is not

(1)(3)
(%)
(Why not?)

Hint: Use Proposition 4.4.

55. Compute the probability that a hand of 13 cards
contains

(a) the ace and king of at least one suit;
(b) all 4 of at least 1 of the 13 denominations.

56. Two players play the following game: Player A chooses
one of the three spinners pictured in Figure 6, and then
player B chooses one of the remaining two spinners. Both
players then spin their spinner, and the one that lands on
the higher number is declared the winner. Assuming that
each spinner is equally likely to land in any of its 3 regions,
would you rather be player A or player B? Explain your
answer!
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Theoretical Exercises

Figure 6 Spinners.

Prove the following relations:

I.EFCECEUF.
2.If E C F,then F* C E°.

3. F=FE U FECandE U F=E U E°F.
00 0
4. {UE;|F=UEF and
1 1
0 0
N E; UF=N(E U F).
1 1

5. For any sequence of events Ep, Ej,..., define a new
sequence Fi, F,,... of disjoint events (that is, events such
that F;Fj = @ whenever i # j) such that foralln = 1,

n n
UFi= UEi
1 1

6. Let E, F, and G be three events. Find expressions for
the events so that, of E, F, and G,

(a) only E occurs;

(b) both E and G, but not F, occur;
(¢) at least one of the events occurs;
(d) at least two of the events occur;
(e) all three events occur;

(P none of the events occurs;

() at most one of the events occurs;
(h) at most two of the events occur;
(i) exactly two of the events occur;
(j) at most three of the events occur.

7. Use Venn diagrams
(a) to simplify the expressions (E U F)(E U F°);

(b) to prove DeMorgan’s laws for events E and F. [That is,
prove (E U F)¢ = E°F¢, and (EF)¢=E° U F°]

8. Let S be a given set. If, for some k > 0, $1,52,...,5
are mutually exclusive nonempty subsets of S such that
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k
USi = S, then we call the set {S1,52,...,5«} a parti-

’tioln of S. Let T, denote the number of different parti-
tions of {1,2,...,n}. Thus, Ty = 1 (the only partition
being S; = {1}) and T, = 2 (the two partitions being
{{1,2, 1}, ({1}, (2}D).

(a) Show, by computing all partitions, that 73 =5, Ty = 15.
(b) Show that

n
Tn+1=1+Z(Z)Tk

k=1

and use this equation to compute T7o.

Hint: One way of choosing a partition of n + 1 items is to
call one of the items special. Then we obtain different par-
titions by first choosing k,k = 0,1,...,n, then a subset of
size n — k of the nonspecial items, and then any of the T
partitions of the remaining k nonspecial items. By adding
the special item to the subset of size n — k, we obtain a
partition of all n + 1 items.

9. Suppose that an experiment is performed n times. For
any event E of the sample space, let n(E) denote the num-
ber of times that event E occurs and define f(E) = n(E)/n.
Show that f(-) satisfies Axioms 1, 2, and 3.

10. Prove that P(E U F U G) = P(E) + P(F) + P(G) —
P(E°FG) — P(EF‘G) — P(EFG®) — 2P(EFG).

1. If P(E) = .9 and P(F) = .8, show that P(EF) = .7. In
general, prove Bonferroni’s inequality, namely,

P(EF) = P(E) + P(F) — 1

12. Show that the probability that exactly one of the events
E or F occurs equals P(E) + P(F) — 2P(EF).

13. Prove that P(EF°) = P(E) — P(EF).
14. Prove Proposition 4.4 by mathematical induction.

15. An urn contains M white and N black balls. If a ran-
dom sample of size r is chosen, what is the probability that
it contains exactly k£ white balls?

16. Use induction to generalize Bonferroni’s inequality to
n events. That is, show that

P(E\Ey---Ep) = P(E1) + -+ + P(Ep) — (n — 1)

17. Consider the matching problem, Example Sm, and
define Ay to be the number of ways in which the N
men can select their hats so that no man selects his own.
Argue that

AN =N — D(AN_1 + AN-2)

This formula, along with the boundary conditions A; = 0,
Aj =1, can then be solved for Ay, and the desired proba-
bility of no matches would be Ax/N!.

Hint: After the first man selects a hat that is not his own,
there remain N — 1 men to select among aset of N — 1
hats that does not contain the hat of one of these men.
Thus, there is one extra man and one extra hat. Argue that
we can get no matches either with the extra man select-
ing the extra hat or with the extra man not selecting the
extra hat.

18. Let f, denote the number of ways of tossing a coin n
times such that successive heads never appear. Argue that

fn =fn—1 + fn—-2

Hint: How many outcomes are there that start with a head,
and how many start with a tail? If P, denotes the proba-
bility that successive heads never appear when a coin is
tossed n times, find P, (in terms of f,;) when all possible
outcomes of the n tosses are assumed equally likely. Com-
pute Pip.

n=2wherefy =1, fi =2

19. An urn contains n red and m blue balls. They are with-
drawn one at a time until a total of ,r = n, red balls have
been withdrawn. Find the probability that a total of k balls
are withdrawn.

Hint: A total of k balls will be withdrawn if there are r — 1
red balls in the first k¥ — 1 withdrawals and the kth with-
drawal is a red ball.

20. Consider an experiment whose sample space consists
of a countably infinite number of points. Show that not all
points can be equally likely. Can all points have a positive
probability of occurring?

*21. Consider Example 50, which is concerned with the
number of runs of wins obtained when n wins and m losses
are randomly permuted. Now consider the total number
of runs—that is, win runs plus loss runs—and show that

(m—l)(n-—l)
k-1 k-1
P{2k runs} =2
m + n
("2")
P{2k + 1 runs}

m—1 n-1 m—1 n-1
k-1 k)t & k—1
m+n
n
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Self-Test Problems and Exercises

1. A cafeteria offers a three-course meal consisting of an
entree, a starch, and a dessert. The possible choices are
given in the following table:

Course Choices

Entree  Chicken or roast beef

Starch  Pasta or rice or potatoes

Dessert Ice cream or Jello or apple pie or a peach

A person is to choose one course from each category.

(a) How many outcomes are in the sample space?

(b) Let A be the event that ice cream is chosen. How many
outcomes are in A?

(¢) Let B be the event that chicken is chosen. How many
outcomes are in B?

(d) List all the outcomes in the event AB.

(e) Let C be the event that rice is chosen. How many out-
comes are in C?

(P) List all the outcomes in the event ABC.

2. A customer visiting the suit department of a certain
store will purchase a suit with probability .22, a shirt with
probability .30, and a tie with probability .28. The cus-
tomer will purchase both a suit and a shirt with probability
.11, both a suit and a tie with probability .14, and both a
shirt and a tie with probability .10. A customer will pur-
chase all 3 items with probability .06. What is the proba-
bility that a customer purchases

(a) none of these items?
(b) exactly 1 of these items?

3. A deck of cards is dealt out. What is the probability that
the 14th card dealt is an ace? What is the probability that
the first ace occurs on the 14th card?

4. Let A denote the event that the midtown temperature
in Los Angeles is 70°F, and let B denote the event that
the midtown temperature in New York is 70°F. Also, let
C denote the event that the maximum of the midtown
temperatures in New York and in Los Angeles is 70°F. If
P(A) = .3,P(B) = .4, and P(C) = .2, find the probabil-
ity that the minimum of the two midtown temperatures is
70°F.

5. An ordinary deck of 52 cards is shuffled. What is the
probability that the top four cards have

(a) different denominations?
(b) different suits?

6. Urn A contains 3 red and 3 black balls, whereas urn
B contains 4 red and 6 black balls. If a ball is randomly

selected from each urn, what is the probability that the
balls will be the same color?

7. In a state lottery, a player must choose 8 of the num-
bers from 1 to 40. The lottery commission then performs
an experiment that selects 8 of these 40 numbers. Assum-
ing that the choice of the lottery commission is equally

likely to be any of the (480 combinations, what is the

probability that a player has

(@) all 8 of the numbers selected by the Iottery
commission?

(b) 7 of the numbers selected by the lottery commission?
(c) at least 6 of the numbers selected by the lottery
commission?

8. From a group of 3 first-year students, 4 sophomores, 4
juniors, and 3 seniors, a committee of size 4 is randomly
selected. Find the probability that the committee will con-
sist of

(a) 1 from each class;
(b) 2 sophomores and 2 juniors;
(¢) only sophomores or juniors.

9. For a finite set A, let N(A) denote the number of ele-
ments in A.

(a) Show that
N(A U B)=N(A) + N(B) — N(AB)
(b) More generally, show that

N (OA,) = ;N(A,-) -

i=1

Y D NiA)

i<j

+ o+ CD™INA - Ap)

10. Consider an experiment that consists of 6 horses, num-
bered 1 through 6, running a race, and suppose that the
sample space consists of the 6! possible orders in which the
horses finish. Let A be the event that the number-1 horse
is among the top three finishers, and let B be the event that
the number-2 horse comes in second. How many outcomes
are in the event A U B?

11. A 5-card hand is dealt from a well-shuffled deck of 52
playing cards. What is the probability that the hand con-
tains at least one card from each of the four suits?

12. A basketball team consists of 6 frontcourt and 4 back-
court players. If players are divided into roommates at ran-
dom, what is the probability that there will be exactly two
roommate pairs made up of a backcourt and a frontcourt
player?
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13. Suppose that a person chooses a letter at random from
R E S E R V E and then chooses one at random from
VERTIC A L. What is the probability that the same
letter is chosen?

14. Prove Boole’s inequality:

, (U) = Sy

i=1 i=1

o0
15. Show thatif P(A;) = 1foralli=1,then P (ﬂ A,~> =1
=1

16. Let Ty (n) denote the number of partitions of the set
{1,...,n} into k nonempty subsets, where 1 < k = n. (See
Theoretical Exercise 8 for the definition of a partition.)
Argue that

Tx(n) =kTe(n — 1) + Tg1(n — 1)
Hint: In how many partitions is {1} a subset, and in how
many is 1 an element of a subset that contains other

elements?

17. Five balls are randomly chosen, without replacement,
from an urn that contains 5 red, 6 white, and 7 blue balls.

Answers to Selected Problems

Find the probability that at least one ball of each color is
chosen.

18. Four red, 8 blue, and 5 green balls are randomly
arranged in a line.

(a) What is the probability that the first 5 balls are blue?
(b) What is the probability that none of the first S balls is
blue?

(c) What is the probability that the final 3 balls are of dif-
ferent colors?

(d) What is the probability that all the red balls are
together?

19. Ten cards are randomly chosen from a deck of 52 cards
that consists of 13 cards of each of 4 different suits. Each
of the selected cards is put in one of 4 piles, depending on
the suit of the card.

(a) What is the probability that the largest pile has 4 cards,
the next largest has 3, the next largest has 2, and the small-
est has 1 card? _

(b) What is the probability that two of the piles have 3
cards, one has 4 cards, and one has no cards?

20. Balls are randomly removed from an urn initially con-
taining 20 red and 10 blue balls. What is the probability
that all of the red balls are removed before all of the blue
ones have been removed?

9.74 10..4, .1 11.70; 2 12..5; .32; 149/198

120;495  36. .0045;.0588 37..0833;.5 38.4 39. .48

13. 20,000; 12,000; 11,000; 68,000; 10,000 14. 1.057 40. 1/64; 21/64; 36/64; 6/64 41. 5177 4, 3; .2
15. .0020; .4226; .0475; .0211;.00024 17.9.10947 X 10=® .1 46.5 48..01697 49. .4329 50.2.6084 X 10~°
18..048 19.5/18 20..9052 22. (n + 1)/2" 23.5/12 52..09145; .4268 53. 12/35 54. .0511 55. .2198;
25. 4 26. .492929 28. .0888; .2477;, .1243; .2099 .0342

30. 1/18; 1/6; 172 31.2/9; 1/9 33.70/323  34. 1001;

Solutions to Self-Test Problems and Exercises

(@2 3 -4=24 (@1 — .51= .49

(b)2-3=6 (b) The probability that two or more items are pur-
(©)3-4=12 chased is

(d) AB = {(c, pasta, i), (c, rice, i), (c, potatoes, i)}
(e)8
(5 ABC = {(c, rice, i)}

2. Let A be the event that a suit is purchased, B be the
event that a shirt is purchased, and C be the event that a
tie is purchased. Then

PAUBUCO =22+ 30+ 28 - .11 — .14 — .10
+ .06 = .51

P(AB U AC U BC)=.11 + .14 + .10 — .06 — .06
—.06 + .06=.23

Hence, the probability that exactly 1 item is purchased is
S1 — 23 =28

3. By symmetry, the 14th card is equally likely to be any of
the 52 cards; thus, the probability is 4/52. A more formal
argument is to count the number of the 52! outcomes for
which the 14th card is an ace. This yields
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_4-51.50--.2-1 i
P= 52)! =52
Letting A be the event that the first ace occurs on the 14th
card, we have

48 - 47...36 - 4
52 . 51---40 - 39

4. Let D denote the event that the minimum temperature
is 70 degrees. Then

P(A) = = .0312

P(AUB) =
P(C U D)

P(A) + P(B) — P(AB) = .7— P(AB)
= P(C) + P(D) — P(CD) = 2+ P(D) — P(DC)

Since A U B =C U D and AB = CD, subtracting one of
the preceding equations from the other yields

0=.5 - P(D)
or P(D) =
52 - 48 - 44 - 40
5. (a) 55 5150 .49 =.6761
52.39-.26-13
®) 52.51.50.49 = 1055

6. Let R be the event that both balls are red, and let B be
the event that both are black. Then

PQR) + P(B) = ~— & 4 36

PR U B) = 6.10 T 6. 10

=1/2

1. (a) =13x10"8

8 32
=3.3x% 10"

+13%x108 +33%x10%=18x 104

3.

8. () 3

=.1439

13

/‘\A

) =.0360

(c) =.0699

A
A R[px __‘N#
> s
(SN

n
9.Let § = |JA; and consider the experiment of

=1
randomly choésing an element of S. Then P(A) =
N(A)/N(S).

10. Since there are 5! = 120 outcomes in which the
position of horse number 1 is specified, it follows that
N(A) = 360. Similarly, N(B) = 120, and N(AB) =

4! = 48. Hence, from Self-Test Problem 9, we obtain
N(A U B) =432.

11. One way to solve this problem is to start with the
complementary probability that at least one suit does not
appear. Let A;, i = 1,2,3,4, be the event that no.cards
from suit i appear. Then

4
P (UAi) =) _PA) - ) ) PAi4)
i=1 i joki<j
+ -+ — P(A1A2A3A4)

( 39 ) ( 26 )
5 4 5
-(3) 7=y *
5
39 26 13
4 5 6 5 5
52 52 52
5 5 5
The desired probability is then 1 minus the preceding.

Another way to solve is to let A be the event that all 4
suits are represented, and then use

P(A)

()

3) (52
5

+4

= P(n,n,n,n,0) + P(n,n,n,o,n) + P(n,n,o,n,n)
+ P(n,o,n,n,n)

where P(n, n, n, o, n), for instance, is the probability that
the first card is from a new suit, the second is from a new
suit, the third is from a new suit, the fourth is from an old
suit (that is, one which has already appeared) and the fifth
is from a new suit. This gives

52-39-26-13-48 +52-39-26-36-13

52-51-50-49 - 48
52 39 .24 .26 -

PA) =

13 +52-12.39-26-13

52 -51-50-49 .48
52.39.26.13(48 4+ 36 + 24 + 12)

= 52 -51-50 49 - 48

= .2637

12. There are (10)!/2° different divisions of the 10 players
into a first roommate pair, a second roommate pair, and
so on. Hence, there are (10)!/(5!2°) divisions into 5 room-
6 4 .
2 o | ways of choosing the
frontcourt and backcourt players to be in the mixed room-
mate pairs and then 2 ways of pairing them up. As there is

mate pairs. There are
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then 1 way to pair up the remaining two backcourt players
and 4!/(2!2%) = 3 ways of making two roommate pairs
from the remaining four frontcourt players, the desired

probability-is
(5)(2) o
= .5714

(10)!/(5!25)
13. Let R denote the event that letter R is repeated; simi-
larly, define the events E and V. Then

= P(R) + P(E) + P(V)
21 31 3
78 7 78 28

P{2 mixed pairs} =

P{same letter}
+ 11
78~ 28

c
i-1
14.Let By = A1,B; = A; (U Aj) ,i > 1. Then

j=1
p (DAi) =P (fj B;
i=1 i=1
=) P(B)
i=1
=) P@A)

i=1
where the final equality uses the fact that the B; are mutu-
ally exclusive. The inequality then follows, since B; C A;.

Is. P(irj""') —1_p (@Ai)c
-+-r(G)

o0

=1 - ZP(A,?)
i=1

=1

16. The number of partitions for which {1} is a subset
is equal to the number of partitions of the remaining
n — 1 elements into k — 1 nonempty subsets, namely,
Tx—1(n — 1). Because there are Ty(n — 1) partitions of
{2,...,n — 1} into k nonempty subsets and then a choice
of k of them in which to place element 1, it follows that
there are kTg(n — 1) partitions for which {1} is not a sub-
set. Hence, the result follows.

17. Let R, W, B denote, respectively, the events that there
are no red, no white, and no blue balls chosen. Then

P(R U W U B) = P(R) + P(W) + P(B) — P(RW)
— P(RB) — P(WB) + P(RWB)
13 12 11 7
s 5 5 5
=7y T T 71 T 78
5 5 5 5
6 5
5 5
T 718\ [18
5 5
~ 0.2933

Thus, the probability that all colors appear in the chosen
subset is approximately 1 — 0.2933 = (.7067.

4
18. (a) 876514 2

(b) Beca;use there are 9 nonblue balls, the probability is
9.87-6
1716151413 — _2'

(c) Because there are 3! possible orderings of the different
colors and all possibilities for the final 3 balls are equally
likely, the probability is 13#3-—55 -157.

(d) The probability that the red balls are in a specified 4
spotsis 7 4321 . Because there are 14 possible locations

of the red balls’ where they are all together, the probability
14.432.1 1

IS {67517 = 170

19. (a) The probability that the 10 cards consist

of 4 spades, 3 hearts, 2 diamonds, and 1 club is

13\/13\(13\(13
4 3 2

52
10

the suits to have 4,3,2, and 1 cards, respectively, it follows

13\(13\(13\(13
4 3 2 1

52
10

(b) Because there are (g)=6 choices of the two suits that

are to have 3 cards and then 2mchc1>3i 1s3for the suit to have
e . 20505
4 cards, the probability is J_%%ng—)

20. All the red balls are removed before all the blue ones
if and only if the very last ball removed is blue. Because all
30 balls are equally likely to be the last ball removed, the
probability is 10/30.

. Because there are 4! possible choices of

that the probability is
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CONDITIONAL PROBABILITY
AND INDEPENDENCE

Contents

2 Conditional Probabilities

3

Introduction

Bayes’s Formula

Introduction

4 Independent Events
5 P(.|F) Is a Probability

In this chapter, we introduce one of the most important concepts in probability
theory, that of conditional probability. The importance of this concept is twofold.
In the first place, we are often interested in calculating probabilities when some
partial information concerning the result of an experiment is available; in such a
situation, the desired probabilities are conditional. Second, even when no partial
information is available, conditional probabilities can often be used to compute the
desired probabilities more easily.

2 Conditional Probabilities

Suppose that we toss 2 dice, and suppose that each of the 36 possible outcomes is
equally likely to occur and hence has probability 313 Suppose further that we observe
that the first die is a 3. Then, given this information, what is the probability that the
sum of the 2 dice equals 8? To calculate this probability, we reason as follows: Given
that the initial die is a 3, there can be at most 6 possible outcomes of our experiment,
namely, (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), and (3, 6). Since each of these outcomes
originally had the same probability of occurring, the outcomes should still have equal
probabilities. That is, given that the first die is a 3, the (conditional) probability of
each of the outcomes (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), and (3, 6) is %, whereas the
(conditional) probability of the other 30 points in the sample space is 0. Hence, the
desired probability will be .

If we let E and F denote, respectively, the event that the sum of the dice is 8
and the event that the first die is a 3, then the probability just obtained is called the
conditional probability that E occurs given that F has occurred and is denoted by

P(E|F)

A general formula for P(E|F) that is valid for all events E and F is derived in the
same manner: If the event F occurs, then, in order for E to occur, it is necessary

From Chapter 3 of A First Course in Probability, Ninth Edition. Sheldon Ross.
Copyright © 2014 by Pearson Education, Inc. All rights reserved.
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2a

Example
2b

Conditional Probability and Independence

that the actual occurrence be a point both in E and in F; that is, it must be in EF.
Now, since we know that F has occurred, it follows that F becomes our new, or
reduced, sample space; hence, the probability that the event EF occurs will equal
the probability of EF relative to the probability of F. That is, we have the following
definition.

Definition
If P > 0, then
(F) PEP)

P(E|F) = 0]

2.1)

Joe is 80 percent certain that his missing key is in one of the two pockets of his
hanging jacket, being 40 percent certain it is in the left-hand pocket and 40 percent
certain it is in the right-hand pocket. If a search of the left-hand pocket does not find
the key, what is the conditional probability that it is in the other pocket?

Solution If we let L be the event that the key is in the left-hand pocket of the jacket,
and R be the event that it is in the right-hand pocket, then the desired probability
P(R|L°) can be obtained as follows:

P(RL®)

P(L¢)

PR

1 - P

=2/3 [ ]

P(RIL) =

If each outcome of a finite sample space S is equally likely, then, conditional on
the event that the outcome lies in a subset F C S, all outcomes in F become equally
likely. In such cases, it is often convenient to compute conditional probabilities of
the form P(E|F) by using F as the sample space. Indeed, working with this reduced
sample space often results in an easier and better understood solution. Our next two
examples illustrate this point.

A coin is flipped twice. Assuming that all four points in the sample space S = {(4, h),
(h,0),(t,h), (t,0)} are equally likely, what is the conditional probability that both flips
land on heads, given that (a) the first flip lands on heads? (b) at least one flip lands
on heads?

Solution Let B = {(h, h)} be the event that both flips land on heads; let F = {(h, h),
(h,t)} be the event that the first flip lands on heads; and let A = {(h, h), (h,?), (t,h)} be
the event that at least one flip lands on heads. The probability for (a) can be obtained
from

P(BF)

PB|F) = ———
(BIF) PR
_ __ P,
P({(h,h),(h,n)})
1/4
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2c
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For (b), we have

P(BA)
P(B|A) = PA)
_ P({(h, W)}
P({(h,h), (h,n),(t, )}
1/4
=34" 1/3
Thus, the conditional probability that both flips land on heads given that the first
one does is 1/2, whereas the conditional probability that both flips land on heads
given that at least one does is only 1/3. Many students initially find this latter result
surprising. They reason that given that at least one flip lands on heads, there are two
possible results: Either they both land on heads or only one does. Their mistake,
however, is in assuming that these two possibilities are equally likely. Initially there
are 4 equally likely outcomes. Because the information that at least one flip lands on
heads is equivalent to the information that the outcome is not (¢,¢), we are left with
the 3 equally likely outcomes (h, k), (h, £), (t,h), only one of which results in both flips
landing on heads. |

-~

In the card game bridge, the 52 cards are dealt out equally to 4 players—called East,
West, North, and South. If North and South have a total of 8 spades among them,
what is the probability that East has 3 of the remaining 5 spades?

Solution Probably the easiest way to compute the desired probability is to work
with the reduced sample space. That is, given that North-South have a total of 8
spades among their 26 cards, there remains a total of 26 cards, exactly 5 of them
being spades, to be distributed among the East—West hands. Since each distribution
is equally likely, it follows that the conditional probability that East will have exactly
3 spades among his or her 13 cards is

(%)

Multiplying both sides of Equation (2.1) by P(F ), we obtain

P(EF) = P(F)P(E|F) (2.2)

In words, Equation (2.2) states that the probability that both E and F occur is equal
to the probability that F occurs multiplied by the conditional probability of E given
that F occurred. Equation (2.2) is often quite useful in computing the probability of
the intersection of events.

Celine is undecided as to whether to take a French course or a chemistry course. She
estimates that her probability of receiving an A grade would be % in a French course
and % in a chemistry course. If Celine decides to base her decision on the flip of a
fair coin, what is the probability that she gets an A in chemistry?

Solution Let C be the event that Celine takes chemistry and A denote the event
that she receives an A in whatever course she takes, then the desired probability is
P(CA), which is calculated by using Equation (2.2) as follows: -
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P(CA) = P(C)P(A|C)

-(0)-3 -

Suppose that an urn contains 8 red balls and 4 white balls. We draw 2 balls from the
urn without replacement. (a) If we assume that at each draw, each ball in the urn is
equally likely to be chosen, what is the probability that both balls drawn are red? (b)
Now suppose that the balls have different weights, with each red ball having weight
r and each white ball having weight w. Suppose that the probability that a given ball
in the urn is the next one selected is its weight divided by the sum of the weights of
all balls currently in the urn. Now what is the probability that both balls are red?

Solution Let R; and R, denote, respectively, the events that the first and second
balls drawn are red. Now, given that the first ball selected is red, there are 7 remain-
ing red balls and 4 white balls, so P(R;|R;) = i7T As P(Ry) is clearly %, the desired
probability is

P(R1R3) = P(R1)P(R2|R1)
_ (%) (_7_) _14
“\3/)\11/) " 33

Of course, this probability could have been computed by P(R{R;) = (g) / (122)

For part (b), we again let R; be the event that the ith ball chosen is red and use
P(R1Rz) = P(R1)P(R2|Ry)

Now, number the red balls, and let B;, i = 1,..., 8 be the event that the first ball
drawn is red ball number i. Then

8
P(R;) = P(U}_ B;) = ) P(B;) =8

i=1

8r + 4w

Moreover, given that the first ball is red, the urn then contains 7 red and 4 white
balls. Thus, by an argument similar to the preceding one,

Tr

P(R2|Ry) = Tt

Hence, the probability that both balls are red is

8r Tr
P(RiRy) = 8 + 4w Tr + 4w u

A generalization of Equation (2.2), which provides an expression for the prob-
ability of the intersection of an arbitrary number of events, is sometimes referred to
as the multiplication rule.

The multiplication rule

P(E\EyEs - - - Ep) = P(E()P(ER|E)P(E3|E1Ep) - - - P(ER|Eq -+ - Ep—q)
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To prove the multiplication rule, just apply the definition of conditional proba-
bility to its right-hand side, giving

P(E\Ep) P(E\E2E3)  P(E\E; - -- Ey)

PED &) PEE)  PEE B

= P(E1E3 - Ey)

For example, consider that Py, the probability that there are no matches when N
people randomly select from among their own N hats, is given by

N
Py =) (-1)/it
i=0

What is the probability that exactly k of the N people have matches?

Solution Let us fix our attention on a particular set of k people and determine the
probability that these k individuals have matches and no one else does. Letting E
denote the event that everyone in this set has a match, and letting G be the event
that none of the other N — k people have a match, we have

~

P(EG) = P(E)P(G|E)

Now, let F;, i = 1,...,k, be the event that the ith member of the set has a match.
Then

P(E)=P(FFp - Fy)
= P(F1)P(Fp|F)P(F3|F1F3) - - - P(Fi|Fy - - Fr_1)

11 1 1
"NN-1N-2 N-k+1
(N =k

- N

Given that everyone in the set of k£ has a match, the other N — k people will be
randomly choosing among their own N — k hats, so the probability that none of
them has a match is equal to the probability of no matches in a problem having
N — k people choosing among their own N — k hats. Therefore,

N—k
P(GIE) = Py_x = ) (-1)'/i!
i=0
showing that the probability that a specified set of k people have matches and no

one else does is
(N — k)!

P(EG) = i

Pn_
Because there will be exactly k matches if the preceding is true for any of the (IZ)

sets of k individuals, the desired probability is

P(exactly k matches) = Py_g/k!
~ e l/k!  when N is large [ |

An ordinary deck of 52 playing cards is randomly divided into 4 piles of 13 cards
each. Compute the probability that each pile has exactly 1 ace. -
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Solution Define events E;,i = 1,2,3, 4, as follows:

E; = {the ace of spades is in any one of the piles}

E, = {the ace of spades and the ace of hearts are in different piles}

E3 = {the aces of spades, hearts, and diamonds are all in different piles}
E, = {all 4 aces are in different piles}

The desired probability is P(E1 E2 E3E4), and by the multiplication rule,
P(E1E2E3E) = P(E1)P(E3|E1)P(E3|E1E2)P(E4|E1E2E3)

Now,
P(E) =1

since Ej is the sample space S. To determine P(E3|E;), consider the pile that con-
tains the ace of spades. Because its remaining 12 cards are equally likely to be any
12 of the remaining 51 cards, the probability that the ace of hearts is among them is
12/51, giving that

12 39

51 51

Also, given that the ace of spades and ace of hearts are in different piles, it follows
that the set of the remaining 24 cards of these two piles is equally likely to be any set
of 24 of the remaining 50 cards. As the probability that the ace of diamonds is one
of these 24 is 24/50, we see that

P(E2|E)) =1 —

24 26
P(E3|E1Ey) =1 — 50 =350
Because the same logic as used in the preceding yields that
36 13
P(E4|E1E2E3) =1 — yoRmiT

the probability that each pile has exactly 1 ace is

392613
51.50 .49
That is, there is approximately a 10.5 percent chance that each pile will contain an

ace. (Problem 13 gives another way of using the multiplication rule to solve this
problem.) |

P(E1EyE3Ey) = 105

Remarks Our definition of P(E|F) is consistent with the interpretation of
probability as being a long-run relative frequency. To see this, suppose that n
repetitions of the experiment are to be performed, where n is large. We claim that
if we consider only those experiments in which F occurs, then P(E|F) will equal
the long-run proportion of them in which E also occurs. To verify this statement,
note that since P(F) is the long-run proportion of experiments in which F occurs,
it follows that in the n repetitions of the experiment, F will occur approximately
nP(F) times. Similarly, in approximately nP(EF) of these experiments, both E and
F will occur. Hence, out of the approximately nP(F) experiments in which
F occurs, the proportion of them in which E also occurs is approximately equal to

nP(EF) _ P(EF)
nP(F) ~— P(F)
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Because this approximation becomes exact as n becomes larger and larger, we have
the appropriate definition of P(E|F).

3 Bayes’s Formula

Example
3a

Let E and F be events. We may express E as
E=EF U EF¢

for, in order for an outcome to be in E, it must either be in both E and F or be in E
but not in F. (See Figure 1.) As EF and EF°¢ are clearly mutually exclusive, we have,
by Axiom 3,

P(E) = P(EF) + P(EF°)
= P(E|F)P(F) + P(E|F)P(F°) (3.1)
= P(E|F)P(F) + P(E|F%)[1 — P(F)]

Equation (3.1) states that the probability of the event E is a weighted average of the
conditional probability of E given that F has occurred and the conditional proba-
bility of E given that F has not occurred—each conditional probability being given
as much weight as the event on which it is conditioned has of occurring. This is an
extremely useful formula, because its use often enables us to determine the prob-
ability of an event by first “conditioning” upon whether or not some second event
has occurred. That is, there are many instances in which it is difficult to compute the
probability of an event directly, but it is straightforward to compute it once we know
whether or not some second event has occurred. We illustrate this idea with some
examples.

Y

Figure | E = EF U EF°. EF = Shaded Area; EF¢ = Striped Area.

(Part 1)

An insurance company believes that people can be divided into two classes: those
who are accident prone and those who are not. The company’s statistics show that
an accident-prone person will have an accident at some time within a fixed 1-year
period with probability .4, whereas this probability decreases to .2 for a person who
is not accident prone. If we assume that 30 percent of the population is accident
prone, what is the probability that a new policyholder will have an accident within a
year of purchasing a policy?

Solution We shall obtain the desired probability by first conditioning upon whether
or not the policyholder is accident prone. Let A1 denote the event that the policy-
holder will have an accident within a year of purchasing the policy, and let A denote
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the event that the policyholder is accident prone. Hence, the desired probability is
given by

P(A1) = P(A1|A)P(A) + P(A1|A°)P(A°)
=(4(3) + (2)(7) =26 )

(Part 2)

Suppose that a new policyholder has an accident within a year of purchasing a policy.
What is the probability that he or she is accident prone?

Solution The desired probability is

P(AA
P(AIAY) = St
_ PAPAIA)
P(Ay)
_ A _6
T2 13 "

Consider the following game played with an ordinary deck of 52 playing cards: The
cards are shuffled and then turned over one at a time. At any time, the player can
guess that the next card to be turned over will be the ace of spades; if it is, then the
player wins. In addition, the player is said to win if the ace of spades has not yet
appeared when only one card remains and no guess has yet been made. What is a
good strategy? What is a bad strategy?

Solution Every strategy has probability 1/52 of winning! To show this, we will use
induction to prove the stronger result that for an n card deck, one of whose cards
is the ace of spades, the probability of winning is 1/n, no matter what strategy is
employed. Since this is clearly true for n = 1, assume it to be true forann — 1
card deck, and now consider an n card deck. Fix any strategy, and let p denote the
probability that the strategy guesses that the first card is the ace of spades. Given
that it does, the player’s probability of winning is 1/n. If, however, the strategy does
not guess that the first card is the ace of spades, then the probability that the player
wins is the probability that the first card is not the ace of spades, namely, (n — 1)/n,
multiplied by the conditional probability of winning given that the first card is not
the ace of spades. But this latter conditional probability is equal to the probability of
winning when using an » — 1 card deck containing a single ace of spades; it is thus,
by the induction hypothesis, 1/(n — 1). Hence, given that the strategy does not guess
the first card, the probability of winning is
n—-1 1 1

n n-1 n

Thus, letting G be the event that the first card is guessed, we obtain

P{win} = P{win|G}P(G) + P{win|G°}(1 — P(G)) = %p + -’1;(1 - p)
1
n

In answering a question on a multiple-choice test, a student either knows the answer
or guesses. Let p be the probability that the student knows the answer and 1 — p
be the probability that the student guesses. Assume that a student who guesses at
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the answer will be correct with probability 1/m, where m is the number of multiple-
choice alternatives. What is the conditional probability that a student knew the
answer to a question given that he or she answered it correctly?

Solution Let C and K denote, respectively, the events that the student answers the
question correctly and the event that he or she actually knows the answer. Now,

P(KC)

P(K|C) = PC)

B P(C|K)P(K)

" P(CIK)P(K) + P(C|K€)P(KC)
_ p

T p+ A/md - p)
"™

T 14+ (m-1p

For example, if m = 5,p = %, then the probability that the student knew the answer
to a question he or she answered correctly is % |

A laboratory blood test is 95 percent effective in detecting a certain disease when
it is, in fact, present. However, the test also yields a “false positive” result for 1
percent of the healthy persons tested. (That is, if a healthy person is tested, then,
with probability .01, the test result will imply that he or she has the disease.) If .5
percent of the population actually has the disease, what is the probability that a
person has the disease given that the test result is positive?

Solution Let D be the event that the person tested has the disease and E the event
that the test result is positive. Then the desired probability is
P(DE)

P(E)

P(DIE) =

_ P(E\D)P(D)

" P(E\D)P(D) + P(E|D¢)P(D¢)

_ (:95)(.005)

T (.95)(.005) + (.01)(.995)

95

=291 323
Thus, only 32 percent of those persons whose test results are positive actually have
the disease. Many students are often surprised at this result (they expect the per-
centage to be much higher, since the blood test seems to be a good one), so it is
probably worthwhile to present a second argument that, although less rigorous than
the preceding one, is probably more revealing. We now do so.

Since .5 percent of the population actually has the disease, it follows that, on
the average, 1 person out of every 200 tested will have it. The test will correctly
confirm that this person has the disease with probability .95. Thus, on the aver-
age, out of every 200 persons tested, the test will correctly confirm that .95 person
has the disease. On the other hand, out of the (on the average) 199 healthy peo-
ple, the test will incorrectly state that (199)(.01) of these people have the disease.
Hence, for every .95 diseased person that the test correctly states is ill, there are (on
the average) (199)(.01) healthy persons who the test incorrectly states are ill. Thus,
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the proportion of time that the test result is correct when it states that a person is
ill is
95 95

= — ), 2 .
95 + (199)(.01) 294 323

Equation (3.1) is also useful when one has to reassess one’s personal probabil-
ities in the light of additional information. For instance, consider the examples that
follow.

Consider a medical practitioner pondering the following dilemma: “If I'm at least 80
percent certain that my patient has this disease, then I always recommend surgery,
whereas if I'm not quite as certain, then I recommend additional tests that are expen-
sive and sometimes painful. Now, initially I was only 60 percent certain that Jones
had the disease, so I ordered the series A test, which always gives a positive result
when the patient has the disease and almost never does when he is healthy. The test
result was positive, and [ was all set to recommend surgery when Jones informed me,
for the first time, that he was diabetic. This information complicates matters because,
although it doesn’t change my original 60 percent estimate of his chances of having
the disease in question, it does affect the interpretation of the results of the A test.
This is so because the A test, while never yielding a positive result when the patient
is healthy, does unfortunately yield a positive result 30 percent of the time in the case
of diabetic patients who are not suffering from the disease. Now what do I do? More
tests or immediate surgery?”

Solution In order to decide whether or not to recommend surgery, the doctor should
first compute her updated probability that Jones has the disease given that the A test
result was positive. Let D denote the event that Jones has the disease and E the event
that the A test result is positive. The desired conditional probability is then

P(DE)

P(DIE) = PE)

B P(D)P(E|D)

" P(EID)P(D) + P(E|D¢)P(D¢)
B (.6)1

T 1(6) + (3)(4)

= .833

Note that we have computed the probability of a positive test result by condition-
ing on whether or not Jones has the disease and then using the fact that because
Jones is a diabetic, his conditional probability of a positive result given that he
does not have the disease, P(E|D¢), equals .3. Hence, as the doctor should now
be more than 80 percent certain that Jones has the disease, she should recommend
surgery. |

At a certain stage of a criminal investigation, the inspector in charge is 60 percent
convinced of the guilt of a certain suspect. Suppose, however, that a new piece of
evidence which shows that the criminal has a certain characteristic (such as left-
handedness, baldness, or brown hair) is uncovered. If 20 percent of the population
possesses this characteristic, how certain of the guilt of the suspect should the inspec-
tor now be if it turns out that the suspect has the characteristic?
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Solution Letting G denote the event that the suspect is guilty and C the event that
he possesses the characteristic of the criminal, we have

P(GCO)

P(GIO) = PO

3 P(C|G)P(G)

~ P(C|G)P(G) + P(C|G°)P(G®)
B 1(.6)

T 1(6) + (2)(4)

~ .882

where we have supposed that the probability of the suspect having the characteristic
if he is, in fact, innocent is equal to .2, the proportion of the population possessing
the characteristic. n

In the world bridge championships held in Buenos Aires in May 1965, the famous
British bridge partnership of Terrence Reese and Boris Schapiro was accused of
cheating by using a system of finger signals that could indicate the number of hearts
held by the players. Reese and Schapiro denied the accusation, and eventually a
hearing was held by the British bridge league. The hearing was in the form of a legal
proceeding with prosecution and defense teams, both having the power to call and
cross-examine witnesses. During the course of the proceeding, the prosecutor exam-
ined specific hands played by Reese and Schapiro and claimed that their playing
these hands was consistent with the hypothesis that they were guilty of having illicit
knowledge of the heart suit. At this point, the defense attorney pointed out that
their play of these hands was also perfectly consistent with their standard line of
play. However, the prosecution then argued that as long as their play was consistent
with the hypothesis of guilt, it must be counted as evidence toward that hypothesis.
What do you think of the reasoning of the prosecution?

Solution The problem is basically one of determining how the introduction of new
evidence (in this example, the playing of the hands) affects the probability of a par-
ticular hypothesis. If we let H denote a particular hypothesis (such as the hypothesis
that Reese and Schapiro are guilty) and E the new evidence, then

P(H
PD) =
P(E|H)P(H)

~ P(EIH)P(H) + P(EIHO)[1 — P(H)]

(3.2)

where P(H) is our evaluation of the likelihood of the hypothesis before the intro-
duction of the new evidence. The new evidence will be in support of the hypothesis
whenever it makes the hypothesis more likely —that is, whenever P(H|E) = P(H).
From Equation (3.2), this will be the case whenever

P(E\H) = P(E|H)P(H) + P(E|H[1 — P(H)]
or, equivalently, whenever

P(E|H) = P(E\H°)
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In other words, any new evidence can be considered to be in support of a partic-
ular hypothesis only if its occurrence is more likely when the hypothesis is true
than when it is false. In fact, the new probability of the hypothesis depends on
its initial probability and the ratio of these conditional probabilities, since, from
Equation (3.2),

P(H)
P(H) + [1 — P(H)]

P(H|E) =

P(E\H)
P(E|H)

Hence, in the problem under consideration, the play of the cards can be con-
sidered to support the hypothesis of guilt only if such play would have been more
likely if the partnership were cheating than if it were not. As the prosecutor never
made this claim, his assertion that the evidence is in support of the guilt hypothesis is
invalid. [

Twins can be either identical or fraternal. Identical, also called monozygotic, twins
form when a single fertilized egg splits into two genetically identical parts. Con-
sequently, identical twins always have the same set of genes. Fraternal, also called
dizygotic, twins develop when two eggs are fertilized and implant in the uterus. The
genetic connection of fraternal twins is no more or less the same as siblings born at
separate times. A Los Angeles County, California, scientist wishing to know the cur-
rent fraction of twin pairs born in the county that are identical twins has assigned a
county statistician to study this issue. The statistician initially requested each hospital
in the county to record all twin births, indicating whether or not the resulting twins
were identical. The hospitals, however, told her that to determine whether newborn
twins were identical was not a simple task, as it involved the permission of the twins’
parents to perform complicated and expensive DNA studies that the hospitals could
not afford. After some deliberation, the statistician just asked the hospitals for data
listing all twin births along with an indication as to whether the twins were of the
same sex. When such data indicated that approximately 64 percent of twin births
were same-sexed, the statistician declared that approximately 28 percent of all twins
were identical. How did she come to this conclusion?

Solution The statistician reasoned that identical twins are always of the same sex,
whereas fraternal twins, having the same relationship to each other as any pair of
siblings, will have probability 1/2 of being of the same sex. Letting / be the event
that a pair of twins is identical, and SS be the event that a pair of twins is of the same
sex, she computed the probability P(SS) by conditioning on whether the twin pair
was identical. This gave

P(SS) = P(SSI)P(I) + P(SS|I)PI°)
or
1 1 1
PSS =1 X PI) + 5 X1 - P(I)]=§ + -2-P(I)
which, using that P(SS) =~ .64 yielded the result
P() ~ 28 : |
The change in the probability of a hypothesis when new evidence is introduced

can be expressed compactly in terms of the change in the odds of that hypothesis,
where the concept of odds is defined as follows.
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Definition
The odds of an event A are defined by
PA) _ PA)
P(A°) ~ 1 — P(A)
That is, the odds of an event A tell how much more likely it is that the event A
occurs than it is that it does not occur. For instance, if P(A) = %, then P(A) =

2P(A°), so the odds are 2. If the odds are equal to «, then it is common to say
that the odds are “a to 1” in favor of the hypothesis.

Consider now a hypothesis H that is true with probability P(H), and suppose
that new evidence E is introduced. Then, the conditional probabilities, given the
evidence E, that H is true and that H is not true are respectively given by
P(E|H)P(H) P(E|H)P(H®)

_ P(H|E) = ——————

P(E) B ==&,

Therefore, the new odds after the evidence E has been introduced are

PH|E) =

P(H\E) _ P(H) P(E|H)
P(HC\E) ~ P(H¢) P(E\H®)

(3.3)

That is, the new value of the odds of H is the old value multiplied by the ratio of the
conditional probability of the new evidence given that H is true to the conditional
probability given that H is not true. Thus, Equation (3.3) verifies the result of Exam-
ple 3f, since the odds, and thus the probability of H, increase whenever the new evi-
dence is more likely when H is true than when it is false. Similarly, the odds decrease
whenever the new evidence is more likely when H is false than when it is true.

An urn contains two type A coins and one type B coin. When a type A coin is flipped,
it comes up heads with probability 1/4, whereas when a type B coin is flipped, it
comes up heads with probability 3/4. A coin is randomly chosen from the urn and
flipped. Given that the flip landed on heads, what is the probability that it was a type
A coin?

Solution Let A be the event that a type A coin was flipped, and let B = A€ be the
event that a type B coin was flipped. We want P(A|heads), where heads is the event
that the flip landed on heads. From Equation (3.3), we see that

P(Alheads)  P(A) P(heads|A)
P(Aclheads) = P(B) P(heads|B)
_2/31/4
T 1/33/4
=2/3

Hence, the odds are 2/3 : 1, or, equivalently, the probability is 2/5 that a type A coin
was flipped.

Equation (3.1) may be generalized as follows: Suppose that Fy,F,...,F, are
mutually exclusive events such that

n
\JF=5s

i=1
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In other words, exactly one of the events 1, F>, . .., F, must occur. By writing
n
E=|JEF
i=1

and using the fact that the events EF;,i = 1,...,n are mutually exclusive, we obtain

P(E) = ) | P(EF)

i=1

= Z P(E|F;)P(F;) (34)
i=1

Thus, Equation (3.4), often referred to as the law of total probability, shows how,
for given events F1, F,, ..., F,, of which one and only one must occur, we can com-
pute P(E) by first conditioning on which one of the F; occurs. That is, Equation (3.4)
states that P(FE) is equal to a weighted average of P(E|F;), each term being weighted
by the probability of the event on which it is conditioned.

For example, for a randomly shuffled deck, if the card following the first ace is some
specified card, then as per a combatorial argument the probability is 317 Here is a
probabilistic argument based on conditioning: Let E be the event that the card fol-
lowing the first ace is some specified card, say, card x. To compute P(E), we ignore
card x and condition on the relative ordering of the other 51 cards in the deck. Let-
ting O be the ordering gives

P(E) = Z P(E|0)P(0)
o

Now, given O, there are 52 possible orderings of the cards, corresponding to hav-
ing card x being the ith card in the deck, i = 1,...,52. But because all 52! possible
orderings were initially equally likely, it follows that, conditional on O, each of the
52 remaining possible orderings is equally likely. Because card x will follow the
first ace for only one of these orderings, we have P(E|0Q) = 1/52, implying that
P(E) =1/52. |

Again, let Fi,..., F, be a set of mutually exclusive and exhaustive events (mean-
ing that exactly one of these events must occur).

Suppose now that E has occurred and we are interested in determining which
one of the F; also occurred. Then, by Equation (3.4), we have the following
proposition.

Proposition
3.1

P(EF))

P(E)
P(E|F)P(F))

P(FJ|E) =

- (3.5)
> P(E|F;)P(F)

i=1
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Equation (3.5) is known as Bayes’s formula, after the English philosopher Thomas
Bayes. If we think of the events F; as being possible “hypotheses” about some sub-
ject matter, then Bayes’s formula may be interpreted as showing us how opinions
about these hypotheses held before the experiment was carried out [that is, the
P(Fj)] should be modified by the evidence produced by the experiment.

A plane is missing, and it is presumed that it was equally likely to have gone down
in any of 3 possible regions. Let 1 — g;, i = 1, 2, 3, denote the probability that
the plane will be found upon a search of the ith region when the plane is, in fact,
in that region. (The constants g; are called overlook probabilities, because they rep-
resent the probability of overlooking the plane; they are generally attributable to
the geographical and environmental conditions of the regions.) What is the condi-
tional probability that the plane is in the ith region given that a search of region 1 is
unsuccessful?

Solution Let R;, i = 1, 2, 3, be the event that the plane is in region i, and let E be
the event that a search of region 1 is unsuccessful. From Bayes’s formula, we obtain

P(ERy)
P(E) B
P(E|R1)P(Ry)

P(Ry|E) =

3
Y P(EIR)P(R)
i=1
_ B3
(B} + O} + (D3

B
—‘ B+ 2

Forj=2, 3,
P(E|R))P(R))
P(E)
W3
By + 3+ 1
1
T B +2

j=2,3

Note that the updated (that is, the conditional) probability that the plane is in
region j, given the information that a search of region 1 did not find it, is greater
than the initial probability that it was in region j when j # 1 and is less than the
initial probability when j = 1. This statement is certainly intuitive, since not finding
the plane in region 1 would seem to decrease its chance of being in that region and
increase its chance of being elsewhere. Further, the conditional probability that the
plane is in region 1 given an unsuccessful search of that region is an increasing func-
tion of the overlook probability B;. This statement is also intuitive, since the larger
B1 is, the more it is reasonable to attribute the unsuccessful search to “bad luck”
as opposed to the plane’s not being there. Similarly, P(R;|E),j # 1, is a decreasing
function of B;. ||
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The next example has often been used by unscrupulous probability students to
win money from their less enlightened friends.

Suppose that we have 3 cards that are identical in form, except that both sides of the
first card are colored red, both sides of the second card are colored black, and one
side of the third card is colored red and the other side black. The 3 cards are mixed
up in a hat, and 1 card is randomly selected and put down on the ground. If the upper
side of the chosen card is colored red, what is the probability that the other side is
colored black?

Solution Let RR, BB, and RB denote, respectively, the events that the chosen card
is all red, all black, or the red-black card. Also, let R be the event that the upturned
side of the chosen card is red. Then, the desired probability is obtained by

P(RB N R
P(RBIR) = *(7(7%7—)
P(RIRB)P(RB)

~ P(RIRR)P(RR) + P(RIRB)P(RB) + P(R|BB)P(BB)
_ (3) ()
M (3) + (3) (3) +0(3)

Hence, the answer is % Some students guess % as the answer by incorrectly reasoning
that given that a red side appears, there are two equally likely possibilities: that the
card is the all-red card or the red-black card. Their mistake, however, is in assuming
that these two possibilities are equally likely. For, if we think of each card as con-
sisting of two distinct sides, then we see that there are 6 equally likely outcomes of
the experiment—namely, Ry, R;, B1, B2, R3, B3 —where the outcome is Ry if the first
side of the all-red card is turned face up, R; if the second side of the all-red card
is turned face up, Rj if the red side of the red-black card is turned face up, and so
on. Since the other side of the upturned red side will be black only if the outcome is
R3, we see that the desired probability is the conditional probability of R3 given that
either Ry or R; or R3 occurred, which obviously equals % |

Wi

A new couple, known to have two children, has just moved into town. Suppose that
the mother is encountered walking with one of her children. If this child is a girl,
what is the probability that both children are girls?

Solution Let us start by defining the following events:

G1: the first (that is, the oldest) child is a girl.
G>: the second child is a girl.
G: the child seen with the mother is a girl.

Also, let By, By, and B denote similar events, except that “girl” is replaced by “boy.”
Now, the desired probability is P(G1G2|G), which can be expressed as follows:

P(G1G,G
P(G1G,IG) = (—Pl(?j—’

_ P(G1Gy)
PG
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Also,
P(G) = P(G|G1G2)P(G1G2) + P(GIG1B2)P(G1By)
+ P(G|B1G2)P(B1G2) + P(G|B1B2)P(B1B3)
= P(G1Gz) + P(G|G1B2)P(G1By) + P(G|B1G2)P(B1G?)

where the final equation used the results P(G|G1G7) = 1 and P(G|B1B3) = 0. If we
now make the usual assumption that all 4 gender possibilities are equally likely, then
we see that

1
P(G1G2|G) = 5 !
7 t P(G|G1By)/4 + P(G|B1Gy)/4
_ 1
" 1 4+ P(G|G1B>) + P(G|B1G>)

Thus, the answer depends on whatever assumptions we want to make about the con-
ditional probabilities that the child seen with the mother is a girl given the event
G1B; and that the child seen with the mother is a girl given the event G,B;. For
instance, if we want to assume, on the one hand, that, independently of the gen-
ders of the children, the child walking with the mother is the elder child with some
probability p, then it would follow that

P(G|G1By) =p =1 — P(G|B1Gy)

implying under this scenario that
1
P(G1G2|G) = 5

If, on the other hand, we were to assume that if the children are of different genders,
then the mother would choose to walk with the girl with probability ¢, independently
of the birth order of the children, then we would have

P(G|G1B3) = P(G|B1G2) =¢q

implying that
1
1+ 2¢q

P(G1G2|G) =

For instance, if we took g = 1, meaning that the mother would always choose to walk
with a daughter, then the conditional probability that she has two daughters would
be %, which is in accord with Example 2b because seeing the mother with a daughter
is now equivalent to the event that she has at least one daughter.

Hence, as stated, the problem is incapable of solution. Indeed, even when the
usual assumption about equally likely gender probabilities is made, we still need to
make additional assumptions before a solution can be given. This is because the sam-
ple space of the experiment consists of vectors of the form sy, 53, i, where s7 is the
gender of the older child, s is the gender of the younger child, and i identifies the
birth order of the child seen with the mother. As a result, to specify the probabilities
of the events of the sample space, it is not enough to make assumptions only about
the genders of the children; it is also necessary to assume something about the con-
ditional probabilities as to which child is with the mother given the genders of the
children. 4 ]
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A bin contains 3 types of disposable flashlights. The probability that a type 1 flash-
light will give more than 100 hours of use is .7, with the corresponding probabilities
for type 2 and type 3 flashlights being .4 and .3, respectively. Suppose that 20 per-
cent of the flashlights in the bin are type 1, 30 percent are type 2, and 50 percent are
type 3.
(a) What is the probability that a randomly chosen flashlight will give more than
100 hours of use?

(b) Given that a flashlight lasted more than 100 hours, what is the conditional prob-
ability that it was a type j flashlight, j = 1,2,3?

Solution (a) Let A denote the event that the flashlight chosen will give more than
100 hours of use, and let F; be the event that a type j flashlight is chosen, j = 1,2,3.
To compute P(A), we condition on the type of the flashlight, to obtain

P(A) = P(A|F1)P(F1) + P(A|F2)P(F) + P(A|F3)P(F3)
= (7)(2) + (4)(3) + (3)(5) = .41

There is a 41 percent chance that the flashlight will last for more than 100 hours.
(b) The probability is obtained by using Bayes’s formula:

P(AF;
P(Fj|lA) = IE(A)’)

_ P(AIF)P(F)
- 41

Thus,

P(F1|A) = (.7)(:2)/.41 = 14/41
P(F>|A) = (4)(.3)/.41 = 12/41
P(F3|A) = (.3)(.5)/.41 = 15/41

For instance, whereas the initial probability that a type 1 flashlight is chosen is only
.2, the information that the flashlight has lasted more than 100 hours raises the prob-
ability of this event to 14/41 ~ .341. |

A crime has been committed by a solitary individual, who left some DNA at the
scene of the crime. Forensic scientists who studied the recovered DNA noted that
only five strands could be identified and that each innocent person, independently,
would have a probability of 10> of having his or her DNA match on all five strands.
The district attorney supposes that the perpetrator of the crime could be any of the
1 million residents of the town. Ten thousand of these residents have been released
from prison within the past 10 years; consequently, a sample of their DNA is on file.
Before any checking of the DNA file, the district attorney thinks that each of the
10,000 ex-criminals has probability « of being guilty of the new crime, whereas each
of the remaining 990,000 residents has probability 8, where @ = cB. (That is, the
district attorney supposes that each recently released convict is ¢ times as likely to
be the crime’s perpetrator as is each town member who is not a recently released
convict.) When the DNA that is analyzed is compared against the database of the
10,000 ex-convicts, it turns out that A. J. Jones is the only one whose DNA matches
the profile. Assuming that the district attorney’s estimate of the relationship between
« and B is accurate, what is the probability that A. J. is guilty?
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Solution To begin, note that because probabilities must sum to 1, we have
1 =10,000a + 990,0008 = (10,000c + 990,000)8

Thus,
1 c

P = 10,000c + 990000° * = 10,000¢ + 990,000

Now, let G be the event that A. J. is guilty, and let M denote the event that A. J. is
the only one of the 10,000 on file to have a match. Then,

P(GM)
P(M)

P(GIM) =

B P(G)P(M|G)
~ P(M|G)P(G) + P(M|G°)P(G°)

On the one hand, if A. J. is guilty, then he will be the only one to have a DNA match
if none of the others on file have a match. Therefore,

P(M|G) = (1 — 1073 =

On the other hand, if A. J. is innocent, then in order for him to be the only match, his
DNA must match (which will occur with probability 1073), all others in the database
must be innocent, and none of these others can have a match. Now, given that A. J.
is innocent, the conditional probability that all the others in the database are also
innocent is

P(all in database innocent)

P(A/J innocent)
_ 1 — 10,0000
- 1 -«

P(all others innocent|AJ innocent) =

Also, the conditional probability, given their innocence, that none of the others in
the database will have a match is (1 — 1075)%%, Therefore,

P(M|G®) = 1075 (—-———1 - 10’000“) 1 — 1075)%%

1l -«
Because P(G) = «a, the preceding formula gives

a 1

P(GIM) = =
(GIM) a + 10751 — 10,0000) 9 4+ l%'_s

Thus, if the district attorney’s initial thoughts were that an arbitrary ex-convict was
100 times more likely to have committed the crime than was a nonconvict (that is,
¢ = 100), then & = 155 and

1
P(GIM) = 155 = 0.909

If the district attorney initially thought that the appropriate ratio was ¢ = 10, then
1

a=mand

P(GIM) = -1—19—9- =~ 0.5025
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If the district attorney initially thought that the criminal was equally likely to be any
of the members of the town (c = 1), then & = 10~® and

1
P(GIM) = 09~ 0.0917
Thus, the probability ranges from approximately 9 percent when the district attor-
ney’s initial assumption is that all the members of the population have the same
chance of being the perpetrator to approximately 91 percent when she assumes
that each ex-convict is 100 times more likely to be the criminal than is a specified
townsperson who is not an ex-convict. n

4 Independent Events

Example
4a

Example
4b

Example
4c

The previous examples in this chapter show that P(E|F), the conditional probability
of E given F, is not generally equal to P(E), the unconditional probability of E.
In other words, knowing that F has occurred generally changes the chances of E’s
occurrence. In the special cases where P(E|F) does in fact equal P(E), we say that E
is independent of F. That is, E is independent of F if knowledge that F has occurred
does not change the probability that E occurs.

Since P(E|F) = P(EF)/P(F), it follows that E is independent of F if

P(EF) = P(E)P(F) (4.1)

The fact that Equation (4.1) is symmetric in E and F shows that whenever E is inde-
pendent of F, F is also independent of E. We thus have the following definition.

Definition

Two events E and F are said to be independent if Equation (4.1) holds.
Two events E and F that are not independent are said to be dependent.

A card is selected at random from an ordinary deck of 52 playing cards. If E is the
event that the selected card is an ace and F is the event that it is a spade, then E
and F are independent. This follows because P(EF) = 317, whereas P(E) = 532 and

P(F) = 1. |

Two coins are flipped, and all 4 outcomes are assumed to be equally likely. If E is
the event that the first coin lands on heads and F the event that the second lands
on tails, then E and F are independent, since P(EF) = P({(H,T)}) = %, whereas

P(E) = P{(H,H),H,T)}) = % and P(F) = P(H, T),(T, 7)) = % n

Suppose that we toss 2 fair dice. Let E; denote the event that the sum of the dice is
6 and F denote the event that the first die equals 4. Then

1
P(E\F) = P({(4,2)D) = =

5 1 5
P(E)P(F) = (3—6_) (6) =516

whereas
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Hence, E; and F are not independent. Intuitively, the reason for this is clear because
if we are interested in the possibility of throwing a 6 (with 2 dice), we shall be quite
happy if the first die lands on 4 (or, indeed, on any of the numbers 1, 2, 3, 4, and 5),
for then we shall still have a possibility of getting a total of 6. If, however, the first
die landed on 6, we would be unhappy because we would no longer have a chance
of getting a total of 6. In other words, our chance of getting a total of 6 depends on
the outcome of the first die; thus, £; and F cannot be independent.

Now, suppose that we let E5 be the event that the sum of the dice equals 7. Is E»
independent of F? The answer is yes, since

1
P(E2F) = P((4,3)D) = 3

1\ /1 1
P(Ey)P(F) = (-6-) (-6-) = 3%
We leave it for the reader to present the intuitive argument why the event that
the sum of the dice equals 7 is independent of the outcome on the first die. |

whereas

If we let E denote the event that the next president is a Republican and F the event
that there will be a major earthquake within the next year, then most people would
probably be willing to assume that E and F are independent. However, there would
probably be some controversy over whether it is reasonable to assume that E is
independent of G, where G is the event that there will be a recession within two
years after the election. |

We now show that if E is independent of F, then F is also independent of F€.

If E and F are independent, then so are E and F*.

Proof Assume that E and F are independent. Since E = EF U EF€ and EF and EF*
are obviously mutually exclusive, we have

P(E) = P(EF) + P(EF°)
= P(E)P(F) + P(EF°)

or, equivalently,

P(EF°) = P(E)[1 — P(F)]
= P(E)P(F°)

and the result is proved. O

Thus, if E is independent of F, then the probability of E’s occurrence is unchanged
by information as to whether or not F has occurred.

Suppose now that E is independent of F and is also independent of G. Is E
then necessarily independent of FG? The answer, somewhat surprisingly, is no, as
the following example demonstrates.

Two fair dice are thrown. Let E denote the event that the sum of the dice is 7. Let F
denote the event that the first die equals 4 and G denote the event that the second
die equals 3. From Example 4c, we know that E is independent of F, and the same
reasoning as applied there shows that E is also independent of G; but clearly, E is
not independent of FG [since P(E|FG) = 1]. |
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It would appear to follow from Example 4e that an appropriate definition of the
independence of three events E, F, and G would have to go further than merely
assuming that all of the g pairs of events are independent. We are thus led to

the following definition.

Definition
Three events E, F, and G are said to be independent if

P(EFG) = P(E)P(F)P(G)
P(EF) = P(E)P(F)
P(EG) = P(E)P(G)
P(FG) = P(F)P(G)

Note that if E, F, and G are independent, then E will be independent of any
event formed from F and G. For instance, E is independent of F U G, since

P[E(F U G)] = P(EF U EG)
= P(EF) + P(EG) — P(EFG)
= P(E)P(F) + P(E)P(G) — P(E)P(FG)
= P(E)[P(F) + P(G) — P(FG)]
= P(E)P(F U G)

Of course, we may also extend the definition of independence to more than
three events. The events E1, Es, ..., E, are said to be independent if for every subset
Ey,Ey,...,Ex,r = nof these events,

P(EyEy ---Ep) = P(Ev)P(Ey) - P(Ey)

Finally, we define an infinite set of events to be independent if every finite subset of
those events is independent.

Sometimes, a probability experiment under consideration consists of performing
a sequence of subexperiments. For instance, if the experiment consists of continually
tossing a coin, we may think of each toss as being a subexperiment. In many cases,
it is reasonable to assume that the outcomes of any group of the subexperiments
have no effect on the probabilities of the outcomes of the other subexperiments. If
such is the case, we say that the subexperiments are independent. More formally,
we say that the subexperiments are independent if Eq, Ej, ..., E,,... is necessarily
an independent sequence of events whenever E; is an event whose occurrence is
completely determined by the outcome of the ith subexperiment.

If each subexperiment has the same set of possible outcomes, then the subex-
periments are often called trials.

An infinite sequence of independent trials is to be performed. Each trial results in a
success with probability p and a failure with probability 1 — p. What is the proba-
bility that

(a) atleast 1 success occurs in the first » trials;

(b) exactly k successes occur in the first n trials;

(c) all trials result in successes?
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Solution In order to determine the probability of at least 1 success in the first n
trials, it is easiest to compute first the probability of the complementary event: that
of no successes in the first n trials. If we let E; denote the event of a failure on the ith
trial, then the probability of no successes is, by independence,

P(E\E;---En) = P(E))P(Ep)---P(En) = (1 — p)*

Hence, the answer to part (a)is1 — (1 — p)*.

To compute the answer to part (b), consider any particular sequence of the first
n outcomes containing k successes and n — k failures. Each one of these sequences
will, by the assumed independence of trials, occur with probability p¥(1 — p)*~*.
Since there are Z such sequences [there are n!/k!(n — k)! permutations of k

successes and n — k failures], the desired probability in part (b) is
P{exactly k successes} = ( Z ) p*a - py*
To answer part (c), we note that, by part (a), the probability of the first n trials
all resulting in success is given by

Thus, using the continuity property of probabilities, we see that the desired proba-

bility is given by
o0 n
P\ | =+ Jm (5
i=1 j

A system composed of n separate components is said to be a parallel system if it
functions when at least one of the components functions. (See Figure 2.) For such
a system, if component i, which is independent of the other components, functions
with probability p;,i = 1,...,n, what is the probability that the system functions?

Solution Let A; denote the event that component i functions. Then,

P{system functions} = 1 — P{system does not function}
=1 — P{all components do not function}

=1- P(OAg‘)

n
=1 - l_[(l — pi) by independence |

i=1
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:\W\N\"‘\

Figure 2 Parallel System: Functions if Current Flows from Ato B.

Independent trials consisting of rolling a pair of fair dice are performed. What is the
probability that an outcome of 5 appears before an outcome of 7 when the outcome
of a roll is the sum of the dice?

Solution If we let E, denote the event that no S or 7 appears on the first n — 1 trials
and a 5 appears on the nth trial, then the desired probability is

n=1

n=1

Now, since P{5 on any trial} = 3% and P{7 on any trial} = 363, we obtain, by the

independence of trials,

10\"*! 4
P(E,) = (1 - %) =
Thus,
o 1 713\ 1
p(UE,,) S
n= n=1
11
=9 13
91 -3
2
s

This result could also have been obtained by the use of conditional probabilities.
If we let E be the event that a 5 occurs before a 7, then we can obtain the desired
probability, P(E), by conditioning on the outcome of the first trial, as follows: Let
F be the event that the first trial results in a 5, let G be the event that it results in
a 7, and let H be the event that the first trial results in neither a 5 nor a 7. Then,
conditioning on which one of these events occurs gives

P(E) = P(E|F)P(F) + P(E|G)P(G) + P(E\H)P(H)

However,
PE|IF) =1
P(E|IG) =0
P(E\H) = P(E)

The first two equalities are obvious. The third follows because if the first outcome
results in neither a 5 nor a 7, then at that point the situation is exactly as it was when
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the problem first started —namely, the experimenter will continually roll a pair of fair
dice until either a 5 or 7 appears. Furthermore, the trials are independent; therefore,
the outcome of the first trial will have no effect on subsequent rolls of the dice. Since
P(F) = 3%,P(G) = %, and P(H) = &, it follows that

1 13

P(E) =5 + P
or )
P(E) =%

The reader should note that the answer is quite intuitive. That is, because a 5
occurs on any roll with probability % and a 7 with probability 3%, it seems intuitive
that the odds that a 5 appears before a 7 should be 6 to 4 against. The probability
should then be 1%, as indeed it is.

The same argument shows that if E and F are mutually exclusive events of an
experiment, then, when independent trials of the experiment are performed, the
event E will occur before the event F with probability

P(E)

I = ]
P(E) + P(F)

Suppose there are n types of coupons and that each new coupon collected is, inde-
pendent of previous selections, a type i coupon with probability p;, Y 71 p; = 1.
Suppose k coupons are to be collected. If A; is the event that there is at least one
type i coupon among those collected, then, for i # j, find

(a) P(A)
(b) P(A; U A))
(¢) P(AilA))

Solution
P(A) =1 — P(A))
=1 — P{no coupon is type i}
=1--p)

where the preceding used that each coupon is, independently, not of type i with prob-
ability 1 — p;. Similarly,

PA; U 4) =1 - P((4; U 4))°)
=1 — P{no coupon is either type i or type j}
=1-(-p —ppk
where the preceding used that each coupon is, independently, neither of type i nor
type j with probability 1 — p; — p;.
To determine P(A;|Aj), we will use the identity
P(A; U Aj) = P(A;) + P(Aj) — P(AiA))
which, in conjunction with parts (a) and (b), yields
PAAY =1 - A - p)* +1 -1 - pp* = [1 = A - pi — p)"]
=1-A-p) - -p)*+ 1 -pi—p)F
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Consequently,

PAidp _1-A-p)* - A -pp*+a-pi—p)

P(AjlAj) = |

The next example presents a problem that occupies an honored place in the his-
tory of probability theory. This is the famous problem of the points. In general terms,
the problem is this: Two players put up stakes and play some game, with the stakes
to go to the winner of the game. An interruption requires them to stop before either
has won and when each has some sort of a “partial score.” How should the stakes be
divided?

This problem was posed to the French mathematician Blaise Pascal in 1654 by
the Chevalier de Méré, who was a professional gambler at that time. In attacking
the problem, Pascal introduced the important idea that the proportion of the prize
deserved by the competitors should depend on their respective probabilities of win-
ning if the game were to be continued at that point. Pascal worked out some special
cases and, more importantly, initiated a correspondence with the famous French-
man Pierre de Fermat, who had a reputation as a great mathematician. The resulting
exchange of letters not only led to a complete solution to the problem of the points,
but also laid the framework for the solution to many other problems connected with
games of chance. This celebrated correspondence, considered by some as the birth
date of probability theory, was also important in stimulating interest in probability
among the mathematicians in Europe, for Pascal and Fermat were both recognized
as being among the foremost mathematicians of the time. For instance, within a short
time of their correspondence, the young Dutch mathematician Christiaan Huygens
came to Paris to discuss these problems and solutions, and interest and activity in
this new field grew rapidly.

The problem of the points

Independent trials resulting in a success with probability p and a failure with proba-
bility 1 — p are performed. What is the probability that n successes occur before m
failures? If we think of A and B as playing a game such that A gains 1 point when a
success occurs and B gains 1 point when a failure occurs, then the desired probability
is the probability that A would win if the game were to be continued in a position
where A needed n and B needed m more points to win.

Solution We shall present two solutions. The first comes from Pascal and the second
from Fermat.

Let us denote by P, the probability that n successes occur before m failures.
By conditioning on the outcome of the first trial, we obtain

Ppm =pPp_1n + a- D)Pnm—1 n=z1lm=1

(Why? Reason it out.) Using the obvious boundary conditions P, o = 0,Pg , = 1,
we can solve these equations for Pp,,. Rather than go through the tedious details,
let us instead consider Fermat’s solution.

Fermat argued that in order for # successes to occur before m failures, it is nec-
essary and sufficient that there be at least n successes in the firstm + n — 1 trials.
(Even if the game were to end before a total of m + n — 1 trials were completed, we
could still imagine that the necessary additional trials were performed.) This is true,
for if there are at least »n successes in the first m + n — 1 trials, there could be at
most m — 1 failures in those m + n — 1 trials; thus, n successes would occur before
m failures. If, however, there were fewer than n successes in the first m + n — 1
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trials, there would have to be at least m failures in that same number of trials; thus,
n successes would not occur before m failures.
Hence, since, as shown in Example 4f, the probability of exactly k£ successes in

m + n — 1trials is ( m+n—1 / prd — p)7 714 it follows that the desired

k
probability of n successes before m failures is
m+n—1 m+n—1
Prm = kX: ( k )Pk(l - p)m+n—1—k u
=n

The following example gives another instance where determining the probabil-
ity that a player wins a match is made easier by assuming that the play continues
even after the match winner has been determined.

Example Service protocol in a serve and rally game

k
4 Consider a serve and rally match (such as volleyball, badminton, or squash) between

two players, A and B. The match consists of a sequence of rallies, with each rally
beginning with a serve by one of the players and continuing until one of the players
has won the rally. The winner of the rally receives a point, and the match ends when
one of the players has won a total of n points, with that player being declared the
winner of the match. Suppose whenever a rally begins with A as the server, that A
wins that rally with probability p4 and that B wins it with probabilitygq =1 — pa,
and that a rally that begins with B as the server is won by A with probability pp and
by B with probability gg = 1 — ppg. Player A is to be the initial server. There are two
possible server protocols that are under consideration: “winner serves,” which means
that the winner of a rally is the server for the next rally, or “alternating serve,” which
means that the server alternates from rally to rally, so that no two consecutive rallies
have the same server. Thus, for instance, if # = 3, then the successive servers under
the “winner serves” protocol would be A, B, A, A if A wins the first point, then B the
next, then A wins the next two. On the other hand, the sequence of servers under the
“alternating serve” protocol will always be A, B, A, B, A, ... until the match winner is
decided. If you were player A, which protocol would you prefer?

Solution Surprisingly, it turns out that it makes no difference, in that the probability
that A is the match winner is the same under either protocol. To show that this is
the case, it is advantageous to suppose that the players continue to play until a total
of 2n — 1 rallies have been completed. The first player to win #n rallies would then
be the one who has won at least n of the 2n — 1 rallies. To begin, note that if the
alternating serve protocol is being used, then player A will serve exactly n times and
player B will serve exactly n — 1 times in the 2n — 1 rallies.

Now consider the winner serve protocol, again assuming that the players con-
tinue to play until 2n — 1 rallies have been completed. Because it makes no differ-
ence who serves the “extra rallies” after the match winner has been decided, suppose
that at the point at which the match has been decided (because one of the players
has won n points), the remainder (if there are any) of the 2n — 1 rallies are all served
by the player who lost the match. Note that this modified service protocol does not
change the fact that the winner of the match will still be the player who wins at least
n of the 2n — 1 rallies. We claim that under this modified service protocol, A will
always serve n times and B will always serve n — 1 times. Two cases show this.

Case 1: A wins the match.
Because A serves first, it follows that A’s second serve will immediately follow A’s
first point; A’s third serve will immediately follow A’s second point; and, in particular,
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A’s nth serve will immediately follow A’s (n — 1) point. But this will be the last serve
of A before the match result is decided. This is so because either A will win the point
on that serve and so have n points, or A will lose the point and so the serve will
switch to, and remain with, B until A wins point number n. Thus, provided that A
wins the match, it follows that A would have served a total of n times at the moment
the match is decided. Because, by the modified service protocol, A will never again
serve, it follows in this case that A serves exactly n times.

Case 2: B wins the match.

Because A serves first, B’s first serve will come immediately after B’s first point; B’s
second serve will come immediately after B’s second point; and, in particular, B’s
(n — 1) serve will come immediately after B’s (n — 1) point. But that will be the last
serve of B before the match is decided because either B will win the point on that
serve and so have n points, or B will lose the point and so the serve will switch to, and
remain with, A until B wins point number #. Thus, provided that B wins the match,
we see that B would have served a total of n — 1 times at the moment the match
is decided. Because, by the modified service protocol, B will never again serve, it
follows in this case that B serves exactly n — 1 times, and, as there are a total of
2n — 1 rallies, that A serves exactly n times.

Thus, we see that under either protocol, A will always serve n times and B will
serve n — 1 times and the winner of the match will be the one who wins at least
n points. But since A wins each rally that he serves with probability p4 and wins
each rally that B serves with probability pp it follows that the probability that A is
the match winner is, under either protocol, equal to the probability that there are at
least n successes in 2n — 1 independent trials, when » of these trials result in a success
with probability p4 and the other n — 1 trials result in a success with probability pp.
Consequently, the win probabilities for both protocols are the same. |

Our next two examples deal with gambling problems, with the first having a
surprisingly elegant analysis.*

Suppose that initially there are r players, with player i having »; units, n; > 0,i =
1,...,r. At each stage, two of the players are chosen to play a game, with the winner
of the game receiving 1 unit from the loser. Any player whose fortune drops to 0 is
eliminated, and this continues until a single player has all n = }__; n; units, with
that player designated as the victor. Assuming that the results of successive games
are independent and that each game is equally likely to be won by either of its two
players, find P;, the probability that player i is the victor.

Solution To begin, suppose that there are n players, with each player initially having
1 unit. Consider player i. Each stage she plays will be equally likely to result in her
either winning or losing 1 unit, with the results from each stage being independent.
In addition, she will continue to play stages until her fortune becomes either 0 or
n. Because this is the same for all n players, it follows that each player has the same
chance of being the victor, implying that each player has probability 1/n of being the
victor. Now, suppose these n players are divided into r teams, with team i containing
n; players, i = 1,...,r. Then, the probability that the victor is a member of team i is
n;/n. But because

(a) team i initially has a total fortune of n; units,i = 1,...,r, and

(b) each game played by members of different teams is equally likely to be won
by either player and results in the fortune of members of the winning team
increasing by 1 and the fortune of the members of the losing team decreasing
by 1,

*The remainder of this section should be considered 6ptional.
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it is easy to see that the probability that the victor is from team i is exactly the prob-
ability we desire. Thus, P; = n;/n. Interestingly, our argument shows that this result
does not depend on how the players in each stage are chosen. n

In the gambler’s ruin problem, there are only 2 gamblers, but they are not assumed
to be of equal skill.

The gambler’s ruin problem

Two gamblers, A and B, bet on the outcomes of successive flips of a coin. On each
flip, if the coin comes up heads, A collects 1 unit from B, whereas if it comes up tails,
A pays 1 unit to B. They continue to do this until one of them runs out of money.
If it is assumed that the successive flips of the coin are independent and each flip
results in a head with probability p, what is the probability that A ends up with all
the money if he starts with i units and B starts with N — i units?

Solution Let E denote the event that A ends up with all the money when he starts
with i and B starts with N — i, and to make clear the dependence on the initial
fortune of A, let P; = P(E). We shall obtain an expression for P(E) by conditioning
on the outcome of the first flip as follows: Let H denote the event that the first flip
lands on heads; then

P; = P(E) = P(E\H)P(H) + P(E|H°)P(H®)
=pP(E|H) + (1 — p)P(E|H®)

Now, given that the first flip lands on heads, the situation after the first bet is that
Ahasi + 1unitsand B has N — (i + 1). Since the successive flips are assumed to be
independent with a common probability p of heads, it follows that from that point
on, A’s probability of winning all the money is exactly the same as if the game were

just starting with A having an initial fortune of i + 1 and B having an initial fortune
of N — (i + 1). Therefore,

P(E\H) = P;y4

and similarly,
P(E|H®) = P;_4
Hence, lettingg =1 — p, we obtain
Pi=pPiy1 + qP;-1 + i=12,...,N -1 (4.2)

By making use of the obvious boundary conditions Py = 0 and Py = 1, we shall
now solve Equation (4.2). Since p + g = 1, these equations are equivalent to

pPi + qPi =pPi 1 + qP;—q
or

Piy1 — Pi=§(Pi - P)  i=12,...,N-1 (43)
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Hence, since Py = 0, we obtain, from Equation (4.3),
P, - P =% - Py = ip,
p p

2
P; — P = z(1"2 - P)= (2> Py
p p

(4.4)
q 7\"!
P; — Piy = —(Pi-1 — Pig) = (—) Py
p p
g (g N—-1
Py — Py_y==(PN-1 — PN-2) =\ = Py
p p
Adding the first i — 1 equations of (4.4) yields
2 i—1
e [(Q)+ @+ 0
p p p
or
_ i
1-@pyp 34 44
P, = 1 - (gq/p)
iPy ifd=1
p
Using the fact that Py = 1, we obtain
1-@p 1
— = ifp #
p T—@p® 772
1
L ifp =1
N P=z
Hence,
1 - (@/p) . 1
N ifp # 5
l . l
N ifp=5

Let Q; denote the probability that B winds up with all the money when A starts
with i and B starts with N — i. Then, by symmetry to the situation described, and on
replacing p by g and i by N — i, it follows that
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Moreover, since g = % is equivalent to p = %, we have, when g # %,
1 - @/ | 1-@/""
L— (/PN 1- @V
_ oV — pNg/p) I A )

Pi+ Qi=

pN - qN qN - pN
_pN — pN—iqi - qN + qipN—i
- pN — qN

=1
This result also holds whenp = g = %, so
P+ 0i=1

In words, this equation states that with probability 1, either A or B will wind
up with all of the money; in other words, the probability that the game continues
indefinitely with A’s fortune always being between 1 and N — 1 is zero. (The reader
must be careful because, a priori, there are three possible outcomes of this gambling
game, not two: Either A wins, or B wins, or the game goes on forever with nobody
winning. We have just shown that this last event has probability 0.)

As a numerical illustration of the preceding result, if A were to start with 5 units
and B with 10, then the probability of A’s winning would be % if p were %, whereas

it would jump to
5
1 — 2
——-———-—(3) =~ .87

1 (%)15
if p were .6.

A special case of the gambler’s ruin problem, which is also known as the prob-
lem of duration of play, was proposed to Huygens by Fermat in 1657. The version
Huygens proposed, which he himself solved, was that A and B have 12 coins each.
They play for these coins in a game with 3 dice as follows: Whenever 11 is thrown (by
either—it makes no difference who rolls the dice), A gives a coin to B. Whenever 14
is thrown, B gives a coin to A. The person who first wins all the coins wins the game.
Since P{roll 11} = Z& and P{roll 14} = 1%, we see from Example 4h that, for 4, this
is just the gambler’s ruin problem with p = %,i =12, and N = 24. The general form
of the gambler’s ruin problem was solved by the mathematician James Bernoulli and
published 8 years after his death in 1713.

For an application of the gambler’s ruin problem to drug testing, suppose that
two new drugs have been developed for treating a certain disease. Drug i has a cure
rate P;,i = 1,2, in the sense that each patient treated with drug i will be cured with
probability P;. These cure rates are, however, not known, and we are interested in
finding a method for deciding whether P; > P, or P, > P;. To decide on one of
these alternatives, consider the following test: Pairs of patients are to be treated
sequentially, with one member of the pair receiving drug 1 and the other drug 2.
The results for each pair are determined, and the testing stops when the cumulative
number of cures from one of the drugs exceeds the cumulative number of cures from
the other by some fixed, predetermined number. More formally, let

X — { 1 if the patient in the jth pair that receives drug 1 is cured
=

0 otherwise

y, — | 1 if the patient in the jth pair that receives drug 2 is cured
771 0 otherwise
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For a predetermined positive integer M, the test stops after pair N, where N is
the first value of n such that either

Xi+ - +X - Y+ +Y)=M

or
Xi4+ 4+ Xn— Y14+ Y)=-M

In the former case, we assert that P; > P; and in the latter that P, > P;.

In order to help ascertain whether the foregoing is a good test, one thing we
would like to know is the probability that it leads to an incorrect decision. That
is, for given P and P,, where P; > P,, what is the probability that the test will
incorrectly assert that P, > P;? To determine this probability, note that after each
pair is checked, the cumulative difference of cures using drug 1 versus drug 2 will go
up by 1 with probability P;(1 — P,)—since this is the probability that drug 1 leads
to a cure and drug 2 does not—or go down by 1 with probability (1 — P;)P5, or
remain the same with probability P1 P, + (1 — P1)(1 — P3). Hence, if we consider
only those pairs in which the cumulative difference changes, then the difference will
go up by 1 with probability

P = P{up 1|up 1 or down 1}
_ Pi(1 — Pp)
P11 — P) + (1 - PP,

and down by 1 with probability

Py(1 — Py)
Pi1 - P;) + (1 — PP,
Thus, the probability that the test will assert that P, > P is equal to the prob-
ability that a gambler who wins each (one-unit) bet with probability P will go down

M before going up M. But Equation (4.5), with i = M,N = 2M, shows that this
probability is given by

1-P=

Pftest asserts that P, > Py}
M
1 (1 P)
P
- — 2M
1 — (1 P)
P

where
P _ Pi(1 — Pp)

T1-P Pd =P

For instance, if P; = .6 and P, = .4, then the probability of an incorrect decision is
.017 when M = 5 and reduces to .0003 when M = 10. . ]

Y

Suppose that we are presented with a set of elements and we want to determine
whether at least one member of the set has a certain property. We can attack this
question probabilistically by randomly choosing an element of the set in such a way
that each element has a positive probability of being selected. Then the original
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question can be answered by a consideration of the probability that the randomly
selected element does not have the property of interest. If this probability is equal
to 1, then none of the elements of the set has the property; if it is less than 1, then at
least one element of the set has the property.

The final example of this section illustrates this technique.

The complete graph having n vertices is defined to be a set of n points (called ver-
tices) in the plane and the g lines (called edges) connecting each pair'of vertices.
The complete graph having 3 vertices is shown in Figure 3. Suppose now that each
edge in a complete graph having n vertices is to be colored either red or blue. For a
fixed integer k, a question of interest is, Is there a way of coloring the edges so that

2

no set of k vertices has all of its (k> connecting edges the same color? It can be
shown by a probabilistic argument that if z is not too large, then the answer is yes.

Figure 3

The argument runs as follows: Suppose that each edge is, independently, equally
likely to be colored either red or blue. That is, each edge is red with probability %

Number the Z) sets of k vertices and define the events E;,i = 1,..., (Z) as
follows:

E; = {all of the connecting edges of the ith set
of k vertices are the same color}

Now, since each of the ( Izc > connecting edges of a set of k vertices is equally likely

to be either red or blue, it follows that the probability that they are all the same
color is
1\ Kk=1)/2
PE) =2 (E)

Therefore, because

P (U Ei) = ZP(Ei) (Boole’s inequality)
l ]

we find that P | |J E; ], the probability that there is a set of k vertices all of whose
i

connecting edges are similarly colored, satisfies

)0
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(n) 1)\ kte=1)/2-1

= 1

k (2) =
(Z) < pk(k=1)/2-1

then the probability that at least one of the Z sets of k vertices has all of its

Hence, if

or, equivalently, if

connecting edges the same color is less than 1. Consequently, under the preceding
condition on #n and k, it follows that there is a positive probability that no set of k
vertices has all of its connecting edges the same color. But this conclusion implies
that there is at least one way of coloring the edges for which no set of k vertices has
all of its connecting edges the same color. |

Remarks (a) Whereas the preceding argument established a condition on n and k&
that guarantees the existence of a coloring scheme satisfying the desired property, it
gives no information about how to obtain such a scheme (although one possibility
would be simply to choose the colors at random, check to see if the resulting coloring
satisfies the property, and repeat the procedure until it does).

(b) The method of introducing probability into a problem whose statement is
purely deterministic has been called the probabilistic method.” Other examples
of this method are given in Theoretical Exercise 24.

5 P(-|F) Is a Probability

Conditional probabilities satisfy all of the properties of ordinary probabilities, as is
proved by Proposition 5.1, which shows that P(E|F) satisfies the three axioms of a
probability.

Proposition (a) 0 = P(E|F) = 1.
5.1 (b) P(S|F)=1.
(c) IfE;,i=1,2,...,are mutually exclusive events, then

P (G EiIF) = iP(EilF)

i=1 i=1

Proof To prove part (a), we must show that 0 =< P(EF)/P(F) =< 1. The left-side
inequality is obvious, whereas the right side follows because EF C F, which implies
that P(EF) = P(F). Part (b) follows because

TSee N. Alon, I. Spencer, and P. Erdos, The Probabilistic Method (New York: John Wiley & Sons, Inc., 1992).
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Part (c) follows from

P(F)

p(ij,.F) ) _
=Y 7 ince (U E,') F= U E;F

P(F) 1 1

i P(E;F)
1

_ P
=) _P(EilF)
1

where the next-to-last equality follows because E;E; = @ implies that
E,FE;F = @. O

If we define Q(E) = P(E|F), then, from Proposition 5.1, Q(E) may be regarded
as a probability function on the events of S. Hence, all of the propositions previously
proved for probabilities apply to Q(E). For instance, we have

O(E1 U Ep) = Q(Ey) + Q(E2) — Q(E1Ep)
or, equivalently,
P(E1 U E3|F) = P(E1|F) + P(E|F) — P(E1E,|F)

Also, if we define the conditional probability Q(E1|E;) by Q(E1|Ez) = Q(E1E,)/
Q(Ey), then, from Equation (3.1), we have

Q(E1) = Q(E11E2)Q(E2) + Q(E1|E5)Q(ES) (5.1)
Since

Q(E1Ey)
Q(E1|Er) = 0By
_ P(E1E,|F)
~ P(EylF)
P(E1ExF)
_ __P@F
~ P(E)F)
P(F)
= P(E1|ExF)

Equation (5.1) is equivalent to
P(E7|F) = P(E7|E2F)P(E2|F) + P(E1|EZF)P(E3|F)
Consider Example 3a, which is concerned with an insurance company that believes

that people can be divided into two distinct classes: those who are accident prone
and those who are not. During any given year, an accident-prone person will have an
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accident with probability .4, whereas the corresponding figure for a person who is not
prone to accidents is .2. What is the conditional probability that a new policyholder
will have an accident in his or her second year of policy ownership, given that the
policyholder has had an accident in the first year?

Solution If we let A be the event that the policyholder is accident prone and we let
A;,i = 1,2, be the event that he or she has had an accident in the ith year, then the
desired probability P(A3|A1) may be obtained by conditioning on whether or not
the policyholder is accident prone, as follows:

P(A2|A1) = P(A2]AADP(A|A1) + P(A2]A°A1)P(A%|Ay)

Now,
P(A1A) _ P(A1|A)P(A)

PA) ~ PAD

P(AlAy) =

However, P(A) is assumed to equal 13—0 , and it was shown in Example 3a that P(A1) =

.26. Hence,
(4(3) 6

PAlA) = —— =13

Thus,

PUAIAD =1 — P(AIAD = 5

Since P(A3|AA1) = .4 and P(A3]A°Aq) = .2, it follows that

6 7
P(A2]Ay) = ('4)ﬁ + (.Z)B ~ 29 n

A female chimp has given birth. It is not certain, however, which of two male chimps
is the father. Before any genetic analysis has been performed, it is believed that the
probability that male number 1 is the father is p and the probability that male num-
ber 2 is the father is 1 — p. DNA obtained from the mother, male number 1, and
male number 2 indicates that on one specific location of the genome, the mother has
the gene pair (A,A), male number 1 has the gene pair (a,a4), and male number 2
has the gene pair (A4, a). If a DNA test shows that the baby chimp has the gene pair
(A, a), what is the probability that male number 1 is the father?

Solution Let all probabilities be conditional on the event that the mother has the
gene pair (A, A), male number 1 has the gene pair (a,a), and male number 2 has
the gene pair (A4, a). Now, let M; be the event that male number i, i = 1,2, is the
father, and let B4 , be the event that the baby chimp has the gene pair (A, a). Then,
P(M1|B4,) is obtained as follows:
P(M1B4q)
P(M1|B4,q) P(Ban)

_ P(Ba q|M1)P(My)

P(BaalM1)P(M1) + P(BaalM2)P(M>)

_ 1-p

T 1-p+ (1/21 - p)
__»

)

Because 1—2_{5 > p when p < 1, the information that the baby’s gene pair is (A, a)
increases the probability that male number 1 is the father. This result is intuitive
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because it is more likely that the baby would have gene pair (A, a) if M; is true than
if M5 is true (the respective conditional probabilities being 1 and 1/2). u

The next example deals with a problem in the theory of runs.

Independent trials, each resulting in a success with probability p or a failure with
probability ¢ = 1 — p, are performed. We are interested in computing the prob-
ability that a run of n consecutive successes occurs before a run of m consecutive
failures.

Solution Let E be the event that a run of n consecutive successes occurs before a run
of m consecutive failures. To obtain P(E), we start by conditioning on the outcome
of the first trial. That is, letting H denote the event that the first trial results in a
success, we obtain

P(E) = pP(E|\H) + qP(E|H°) (5.2)

Now, given that the first trial was successful, one way we can get a run of n
successes before a run of m failures would be to have the next n — 1 trials all result
in successes. So, let us condition on whether or not that occurs. That is, letting F be
the event that trials 2 through » all are successes, we obtain

P(E|H) = P(E|FH)P(F|H) + P(E\FFH)P(F°|H) (5.3)

On the one hand, clearly, P(E|FH) = 1, on the other hand, if the event FH occurs,
then the first trial would result in a success, but there would be a failure some time
during the next n — 1 trials. However, when this failure occurs, it would wipe out
all of the previous successes, and the situation would be exactly as if we started out
with a failure. Hence,

P(E|F°H) = P(E|H")

Because the independence of trials implies that F and H are independent, and
because P(F) = p™~1, it follows from Equation (5.3) that

P(E\H) =p™ + (1 — p" HP(E|H®) (5.4)

We now obtain an expression for P(E|HC) in a similar manner. That is, we let G
denote the event that trials 2 through m are all failures. Then,

P(E|H®) = P(E|GH®)P(G|H ) + P(E|G°H®)P(G°|H®) (5.5)

Now, GHF is the event that the first m trials all result in failures, so P(E|GH®) = 0.
Also, if G°H® occurs, then the first trial is a failure, but there is at least one success
in the next m — 1 trials. Hence, since this success wipes out all previous failures, we
see that

P(E|G°H®) = P(E\H)

Thus, because P(G|H¢) = P(G°) =1 — g™, we obtain, from (5.5),
P(E\H) = (1 — ¢""")P(E|H) (5:6)
Solving Equations (5.4) and (5.6) yields

pn—-l
P(ElH) = pn-l + qm—l _ pn—-lqm—l
and —

pn—l + qm—l — pn—lqm—l
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Thus,

P(E) = pP(E|H) + qP(E|H")
LY )
- Pn—l + qm—l _ pn—lqm—l
_ "t - g™
- pn—l + qm—l _ pn—lqm—l

(5.7)

It is interesting to note that by the symmetry of the problem, the probability
of obtaining a run of m failures before a run of n successes would be given by
Equation (5.7) with p and q interchanged and n and m interchanged. Hence, this
probability would equal

P{run of m failures before a run of n successes}
_ I )

(5.8)

Since Equations (5.7) and (5.8) sum to 1, it follows that, with probability 1, either a
run of n successes or a run of m failures will eventually occur.

As an example of Equation (5.7), we note that, in tossing a fair coin, the proba-
bility that a run of 2 heads will precede a run of 3 tails is T76 For 2 consecutive heads

before 4 consecutive tails, the probability rises to % |

In our next example, we return to a matching problem and obtain a solution by
using conditional probabilities.

At a party, n men take off their hats. The hats are then mixed up, and each man
randomly selects one. We say that a match occurs if a man selects his own hat. What
is the probability of

(a) no matches?

(b) exactly k matches? -

Solution (a) Let E denote the event that no matches occur, and to make explicit the
dependence on n, write P,, = P(E). We start by conditioning on whether or not the
first man selects his own hat—call these events M and M€, respectively. Then,

P, = P(E) = P(EIM)P(M) + P(E|M°)P(M®)

Clearly, P(E|M) = 0, so
n—1
n

P, = P(E|M°) (5.9)
Now, P(E|M°®) is the probability of no matches when n — 1 men select from a set
of n — 1 hats that does not contain the hat of one of these men. This can hap-
pen in either of two mutually exclusive ways: Either there are no matches and the
extra man does not select the extra hat (this being the hat of the man who chose
first) or there are no matches and the extra man does select the extra hat. The
probability of the first of these events is just P,_1, which is seen by regarding the
extra hat as “belonging” to the extra man. Because the second event has probability
[1/(n — 1)]Pp—2, we have

P(EIMC) = Pn—l + Py

n-1
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Thus, from Equation (5.9),

n-1 1
Pn—1+_ n—-2
n

P, =

or, equivalently,

1
P, — n-1= “;(Pn—l - Py ) (5.10)

However, since P, is the probability of no matches when n men select among their
own hats, we have

1
P =0 P2=§
So, from Equation (5.10),
_ (P -Py 1 11
Bo-bP=-—m—=-5 o B=5-3
(P3 — P)) 1 1 1 1
Py — =—— % = = — — — —
4= Ps 4 TR Rl TR TR
and, in general, ~
1 1 1 -n"
i TH TR TR

(b) To obtain the probability of exactly k matches, we consider any fixed group
of k men. The probability that they, and only they, select their own hats is
1 1 1 (n — k!
- e g = ———=P,_
nn —1 n—(k—l)P"k n! n—k

where P,_ is the conditional probability that the other n — k men, selecting among

their own hats, have no matches. Since there are ( Z ) choices of a set of k men, the

desired probability of exactly k matches is

L1y
Poy 23T TG
K xl

An important concept in probability theory is that of the conditional indepen-
dence of events. We say that the events E; and E; are conditionally independent
given F if given that F occurs, the conditional probability that E; occurs is unchanged
by information as to whether or not E; occurs. More formally, E; and E; are said to
be conditionally independent given F if

P(E1|EyF) = P(Eq{|F) (5.11)

or, equivalently,
P(EE,|F) = P(E{|F)P(E,|F) (512)

The notion of conditional independence can easily be extended to more than
two events, and this extension is left as an exercise.

The reader should note that the concept of conditional independence was implic-
itly employed in Example 5a, where it was assumed that the events that a poli-
cyholder had an accident in his or her ith year, i = 1,2,..., were conditionally
independent given whether or not the person was accident prone. The following
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example, sometimes referred to as Laplace’s rule of succession, further illustrates
the concept of conditional independence.

Laplace’s rule of succession

There are k + 1 coins in a box. When flipped, the ith coin will turn up heads with
probability i/k,i = 0,1,...,k. A coin is randomly selected from the box and is then
repeatedly flipped. If the first » flips all result in heads, what is the conditional prob-
ability that the (n + 1) flip will do likewise?

Solution Let C; denote the event that the ith coin,i = 0,1,...,k, is initially selected;
let F,, denote the event that the first » flips all result in heads; and let H be the event
that the (n + 1) flip is a head. The desired probability, P(H|Fy), is now obtained as
follows:

k
P(H|F,) =) P(H|F,C;)P(Ci|Fy)
i=0

Now, given that the ith coin is selected, it is reasonable to assume that the out-
comes will be conditionally independent, with each one resulting in a head with
probability i/k. Hence,

i
P(H|F,C;) = P(H|C}) = %

Also,
P(CilFy) = & ;f;F;) _ kP(FnICi)P(Ci) _ k(i/k) [1/(k + 1)]
S PEICHPC) Y Gi/k"1/tk + 1]
j=0 j=0
Thus,
k
> Gkt
P(H|F,) = E’:““‘_
Y G/o"
j=0

But if & is large, we can use the integral approximations
k .\ n+1 1
1 i 1
- E - ~ xn+1 =
k = (k) /(; dx n+ 2
k.
1 A 1 1
i (f) = [ re=y

j=0

So, for k large,

n+1
n+2

P(H|Fy) ~
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Example Updating information sequentially

St Suppose there are n mutually exclusive and exhaustive possible hypotheses, with

initial (sometimes referred to as prior) probabilities P(H;), Y i1 P(H;) = 1. Now, if
information that the event E has occurred is received, then the conditional probabil-
ity that H; is the true hypothesis (sometimes referred to as the updated or posterior
probability of H;) is

P(E|H)P(H;)

PUIE) = = P EH) P(H))

(5.13)

Suppose now that we learn first that £1 has occurred and then that E; has occurred.
Then, given only the first piece of information, the conditional probability that H; is
the true hypothesis is

P(E1|H)P(H)) P(E{|H:)P(H,)

PHi|E) = —p s = _; P(E1|H})P(Hj)

whereas given both pieces of information, the conditional probability that H; is the
true hypothesis is P(H;|E1 E3), which can be computed by

P(E{E|H;)P(H;)

P(Hi|E\Ep) = Y P(E1E2|Hj)P(H;)

One might wonder, however, when one can compute P(H;|E1E;) by using the
right side of Equation (5.13) with E = E, and with P(H,) replaced by P(H;|E,),
j = 1,...,n. That is, when is it legitimate to regard P(H;|E;), j = 1, as the prior
probabilities and then use (5.13) to compute the posterior probabilities?

Solution The answer is that the preceding is legitimate, provided that for each j =
1,...,n, the events E; and E; are conditionally independent, given H;. For if this is
the case, then

P(E1Ez|Hj) = P(E;|H)P(E1|H)), j=1,...,n
Therefore,
P(E,|H;)P(E1|H;)P(H;)
P(E1E?)
__ P(E»|H;)P(E 1 H;)
B P(E E»)
_ P(Ey|H;)P(H;|E1)P(Eq)
B P(E1E»)
_ P(ER|H)P(Hi|Ey)
- 0(1,2)

where O(1,2) = %}1—3)22. Since the preceding equation is valid for all i, we obtain,
upon summing,

P(H||E1Ey) =

3 =\ P(E;|H;)P(Hi|E
1= PH|E\E) =) ( 2IQ()1 ;) |E7)

i=1 i=1

showing that
n
0(1,2) = ) P(E2|H)P(H;|Ey)

i=1
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and yielding the result

P(E>|H;)P(H;|Ey)

P(HAE\Ep) = =
HABAED) = S b B\ By PRI ED)

For instance, suppose that one of two coins is chosen to be flipped. Let H; be the
event that coin i, i = 1,2, is chosen, and suppose that when coin i is flipped, it lands
on heads with probability p;, i = 1,2. Then, the preceding equations show that to
sequentially update the probability that coin 1 is the one being flipped, given the
results of the previous flips, all that must be saved after each new flip is the condi-
tional probability that coin 1 is the coin being used. That is, it is not necessary to

keep track of all earlier results. |

Summary

For events E and F, the conditional probability of E given
that F has occurred is denoted by P(E|F) and is defined by

P(EF)

PEIF) = 5o

The identity
P(ELE; - -- Ep) = P(E\)P(E3|E1) - - - P(Ep|Ey - -- Eyq)

is known as the multiplication rule of probability.
A valuable identity is

P(E) = P(E|F)P(F) + P(E|F°)P(F°)

which can be used to compute P(E) by “conditioning” on
whether F occurs.
P(H)/P(H®) is called the odds of the event H. The
identity N
P(H|E) _ P(H) P(EIH)
P(HC|E) ~ P(H°)P(E|H®)

shows that when new evidence E is obtained, the value of
the odds of H becomes its old value multiplied by the ratio
of the conditional probability of the new evidence when H
is true to the conditional probability when H is not true.
Let F;, i = 1,...,n, be mutually exclusive events
whose union is the entire sample space. The identity

Problems

P(E|F))P(F)

> P(EIF)P(F)

i=1

P(FJ|E) =

is known as Bayes’s formula. If the events F;,i = 1,...,n,
are competing hypotheses, then Bayes’s formula shows
how to compute the conditional probabilities of these
hypotheses when additional evidence E becomes avail-
able.

The denominator of Bayes’s formula uses that

P(E) =) P(EIF)P(F)

i=1

which is called the law of total probability.

If P(EF) = P(E)P(F), then we say that the events
E and F are independent. This condition is equivalent to
P(E|F) = P(E) and to P(F|E) = P(F). Thus, the events E
and F are independent if knowledge of the occurrence of
one of them does not affect the probability of the other.

The events Ej,..., E, are said to be independent if,
for any subset E;,, ..., E;, of them,

P(Ej, --- E;,) = P(Ey)--- P(E;,)

For a fixed event F, P(E|F) can be considered to be a prob-
ability function on the events E of the sample space.

1. Two fair dice are rolled. What is the conditional proba-
bility that at least one lands on 6 given that the dice land
on different numbers?

2. If two fair dice are rolled, what is the conditional proba-
bility that the first one lands on 6 given that the sum of the
dice is i? Compute for all values of i between 2 and 12.

3. Use Equation (2.1) to compute in a hand of bridge the
conditional probability that East has 3 spades given that
North and South have a combined total of 8 spades.

4. What is the probability that at least one of a pair of
fair dice lands on 6, given that the sum of the dice is i,
i=23,..,12?
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5. An urn contains 6 white and 9 black balls. If 4 balls are
to be randomly selected without replacement, what is the
probability that the first 2 selected are white and the last 2
black?

6. Consider an urn containing 12 balls, of which 8 are
white. A sample of size 4 is to be drawn with replacement
(without replacement). What is the conditional probabil-
ity (in each case) that the first and third balls drawn will be
white given that the sample drawn contains exactly 3 white
balls?

7. The king comes from a family of 2 children. What is the
probability that the other child is his sister?

8. A couple has 2 children. What is the probability that
both are girls if the older of the two is a girl?

9. Consider 3 urns. Urn A contains 2 white and 4 red balls,
urn B contains 8 white and 4 red balls, and urn C contains
1 white and 3 red balls. If 1 ball is selected from each urn,
what is the probability that the ball chosen from urn A was
white given that exactly 2 white balls were selected?

10. Three cards are randomly selected, without replace-
ment, from an ordinary deck of 52 playing cards. Compute
the conditional probability that the first card selected is a
spade given that the second and third cards are spades.

I1. Two cards are randomly chosen without replacement
from an ordinary deck of 52 cards. Let B be the event that
both cards are aces, let A; be the event that the ace of
spades is chosen, and let A be the event that at least one
ace is chosen. Find

(a) P(B|As)
(b) P(B|A)

12. A recent college graduate is planning to take the first
three actuarial examinations in the coming summer. She
will take the first actuarial exam in June. If she passes
that exam, then she will take the second exam in July, and
if she also passes that one, then she will take the third
exam in September. If she fails an exam, then she is not
allowed to take any others. The probability that she passes
the first exam is .9. If she passes the first exam, then the
conditional probability that she passes the second one is
.8, and if she passes both the first and the second exams,
then the conditional probability that she passes the third
exam is .7.

(a) What is the probability that she passes all three exams?

(b) Given that she did not pass all three exams, what is the
conditional probability that she failed the second exam?

13. Suppose that an ordinary deck of 52 cards (which con-
tains 4 aces) is randomly divided into 4 hands of 13 cards
each. We are interested in determining p, the probability
that each hand has an ace. Let E; be the event that the ith
hand has exactly one ace. Determine p = P(E1EyE3Ey)
by using the multiplication rule.

14. An urn initially contains 5 white and 7 black balls. Each
time a ball is selected, its color is noted and it is replaced
in the urn along with 2 other balls of the same color. Com-
pute the probability that

(a) the first 2 balls selected are black and the next 2 are
white;
(b) of the first 4 balls selected, exactly 2 are black.

15. An ectopic pregnancy is twice as likely to develop
when the pregnant woman is a smoker as it is when she is
a nonsmoker. If 32 percent of women of childbearing age
are smokers, what percentage of women having ectopic
pregnancies are smokers?

16. Ninety-eight percent of all babies survive delivery.
However, 15 percent of all births involve Cesarean (C)
sections, and when a C section is performed, the baby sur-
vives 96 percent of the time. If a randomly chosen preg-
nant woman does not have a C section, what is the proba-
bility that her baby survives?

~

17. In a certain community, 36 percent of the families own
a dog and 22 percent of the families that own a dog also
own a cat. In addition, 30 percent of the families own a
cat. What is

(a) the probability that a randomly selected family owns
both a dog and a cat?

(b) the conditional probability that a randomly selected
family owns a dog given that it owns a cat?

18. A total of 46 percent of the voters in a certain city clas-
sify themselves as Independents, whereas 30 percent clas-
sify themselves as Liberals and 24 percent say that they are
Conservatives. In a recent local election, 35 percent of the
Independents, 62 percent of the Liberals, and 58 percent
of the Conservatives voted. A voter is chosen at random.
Given that this person voted in the local election, what is
the probability that he or she is

(a) an Independent?
(b) a Liberal?
(¢) a Conservative?

(d) What percent of voters participated in the local
election?

19. A total of 48 percent of the women and 37 percent of
the men who took a certain “quit smoking” class remained
nonsmokers for at least one year after completing the
class. These people then attended a success party at the
end of a year. If 62 percent of the original class was male,

(a) what percentage of those attending the party were
women?

(b) what percentage of the original class attended the
party?

20. Fifty-two percent of the students at a certain college
are females. Five percent of the students in this college are
majoring in computer science. Two percent of the students
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are women majoring in computer science. If a student is
selected at random, find the conditional probability that

(a) the student is female given that the student is majoring
in computer science;

(b) this student is majoring in computer science given that
the student is female.

21. A total of 500 married working couples were polled
about their annual salaries, with the following information
resulting:

Husband
Wife Less than Mdre than
$25,000 $25,000
Less than $25,000 212 198
More than $25,000 36 54

For instance, in 36 of the couples, the wife earned more
and the husband earned less than $25,000. If one of the
couples is randomly chosen, what is

(a) the probability that the husband earns less than
$25,000?
(b) the conditional probability that the wife earns more
than $25,000 given that the husband earns more than this
amount?

(c) the conditional probability that the wife earns more
than $25,000 given that the husband earns less than this
amount?

22. A red die, a blue die, and a yellow die (all six sided) are
rolled. We are interested in the probability that the num-
ber appearing on the blue die is less than that appearing
on the yellow die, which is less than that appearing on the
red die. That is, with B, Y, and R denoting, respectively,
the number appearing on the blue, yellow, and red die, we
are interested in P(B < Y < R).

(a) What is the probability that no two of the dice land on
the same number?

(b) Given that no two of the dice land on the same num-
ber, what is the conditional probability that B < Y < R?
(¢) WhatisP(B < Y < R)?

23. Urn I contains 2 white and 4 red balls, whereas urn II
contains 1 white and 1 red ball. A ball is randomly chosen
from urn I and put into urn II, and a ball is then randomly
selected from urn II. What is

(a) the probability that the ball selected from urn II is
white?

(b) the conditional probability that the transferred ball
was white given that a white ball is selected from urn I1?

24. Each of 2 balls is painted either black or gold and then
placed in an urn. Suppose that each ball is colored black
with probability % and that these events are independent.

(a) Suppose that you obtain information that the gold
paint has been used (and thus at least one of the balls is
painted gold). Compute the conditional probability that
both balls are painted gold.

(b) Suppose now that the urn tips over and 1 ball falls out.
It is painted gold. What is the probability that both balls
are gold in this case? Explain.

25. The following method was proposed to estimate the
number of people over the age of 50 who reside in a
town of known population 100,000: “As you walk along
the streets, keep a running count of the percentage of peo-
ple you encounter who are over 50. Do this for a few
days; then multiply the percentage you obtain by 100,000
to obtain the estimate.” Comment on this method.

Hint: Let p denote the proportion of people in the town
who are over 50. Furthermore, let «; denote the propor-
tion of time that a person under the age of 50 spends in
the streets, and let oy be the corresponding value for those
over 50. What quantity does the method suggested esti-
mate? When is the estimate approximately equal to p?

26. Suppose that 5 percent of men and 0.25 percent of
women are color blind. A color-blind person is chosen
at random. What is the probability of this person being
male? Assume that there are an equal number of males
and females. What if the population consisted of twice as
many males as females?

27. All the workers at a certain company drive to work and
park in the company’s lot. The company is interested in
estimating the average number of workers in a car. Which
of the following methods will enable the company to esti-
mate this quantity? Explain your answer.

1. Randomly choose n workers, find out how many were
in the cars in which they were driven, and take the aver-
age of the n values.

2. Randomly choose n cars in the lot, find out how many

were driven in those cars, and take the average of the n
values.

28. Suppose that an ordinary deck of 52 cards is shuffled
and the cards are then turned over one at a time until the
first ace appears. Given that the first ace is the 20th card
to appear, what is the conditional probability that the card
following it is the

(a) ace of spades?
(b) two of clubs?

29. There are 15 tennis balls in a box, of which 9 have
not previously been used. Three of the balls are randomly
chosen, played with, and then returned to the box. Later,
another 3 balls are randomly chosen from the box. Find
the probability that none of these balls has ever been
used.

30. Consider two boxes, one containing 1 black and 1
white marble, the other 2 black and 1 white marble. A
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box is selected at random, and a marble is drawn from
it at random. What is the probability that the marble is
black? What is the probability that the first box was the
one selected given that the marble is white?

31. Ms. Aquina has just had a biopsy on a possibly cancer-
ous tumor. Not wanting to spoil a weekend family event,
she does not want to hear any bad news in the next few
days. But if she tells the doctor to call only if the news
is good, then if the doctor does not call, Ms. Aquina can
conclude that the news is bad. So, being a student of prob-
ability, Ms. Aquina instructs the doctor to flip a coin. If it
comes up heads, the doctor is to call if the news is good and
not call if the news is bad. If the coin comes up tails, the
doctor is not to call. In this way, even if the doctor doesn’t
call, the news is not necessarily bad. Let o be the proba-
bility that the tumor is cancerous; let 8 be the conditional
probability that the tumor is cancerous given that the doc-
tor does not call.

(a) Which should be larger, @ or ?
(b) Find B in terms of «, and prove your answer in part (a).

32. A family has j children with probability p;, where p; =
1,p2 = .25,p3 = .35,p4 = 3. A child from this family is
randomly chosen. Given that this child is the eldest child in
the family, find the conditional probability that the family
has

(a) only 1 child;
(b) 4 children.

Redo (a) and (b) when the randomly selected child is the
youngest child of the family.

33. On rainy days, Joe is late to work with probability .3;
on nonrainy days, he is late with probability .1. With prob-
ability .7, it will rain tomorrow.

(a) Find the probability that Joe is early tomorrow.

(b) Given that Joe was early, what is the conditional prob-
ability that it rained?

34. In Example 3f, suppose that the new evidence is sub-
ject to different possible interpretations and in fact shows
only that it is 90 percent likely that the criminal pos-
sesses the characteristic in question. In this case, how likely
would it be that the suspect is guilty (assuming, as before,
that he has the characteristic)?

35. With probability .6, the present was hidden by mom;
with probability .4, it was hidden by dad. When mom hides
the present, she hides it upstairs 70 percent of the time and
downstairs 30 percent of the time. Dad is equally likely to
hide it upstairs or downstairs.

(a) What is the probability that the present is upstairs?

(b) Given that it is downstairs, what is the probability it
was hidden by dad?

36. Stores A, B, and C have 50, 75, and 100 employ-
ees, respectively, and 50, 60, and 70 percent of them

respectively are women. Resignations are equally likely
among all employees, regardless of sex. One woman
employee resigns. What is the probability that she works
in store C?

37. (a) A gambler has a fair coin and a two-headed coin in
his pocket. He selects one of the coins at random; when he
flips it, it shows heads. What is the probability that it is the
fair coin?

(b) Suppose that he flips the same coin a second time and,
again, it shows heads. Now what is the probability that it is
the fair coin?

(¢) Suppose that he flips the same coin a third time and it
shows tails. Now what is the probability that it is the fair
coin?

38. Urn A has 5 white and 7 black balls. Urn B has 3 white
and 12 black balls. We flip a fair coin. If the outcome is
heads, then a ball from urn A is selected, whereas if the
outcome is tails, then a ball from urn B is selected. Sup-
pose that a white ball is selected. What is the probability
that the coin landed tails?

39. In Example 3a, what is the probability that someone
has an accident in the second year given that he or she had
no accidents in the first year?

40. Consider a sample of size 3 drawn in the following
manner: We start with an urn containing 5 white and 7 red
balls. At each stage, a ball is drawn and its color is noted.
The ball is then returned to the urn, along with an addi-
tional ball of the same color. Find the probability that the
sample will contain exactly

(a) 0 white balls;
(b) 1 white ball;
(¢) 3 white balls;
(d) 2 white balls.

41. A deck of cards is shuffled and then divided into two
halves of 26 cards each. A card is drawn from one of the
halves; it turns out to be an ace. The ace is then placed in
the second half-deck. The half is then shuffled, and a card
is drawn from it. Compute the probability that this drawn
card is an ace.

Hint: Condition on whether or not the interchanged card
is selected.

42. Twelve percent of all U.S. households are in California.
A total of 1.3 percent of all U.S. households earn more
than $250,000 per year, while a total of 3.3 percent of all
California households earn more than $250,000 per year.

(a) What proportion of all non-California households earn
more than $250,000 per year?

(b) Given that a randomly chosen U.S. household earns
more than $250,000 per year, what is the probability it is
a California household?
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43. There are 3 coins in a box. One is a two-headed coin,
another is a fair coin, and the third is a biased coin that
comes up heads 75 percent of the time. When one of the
3 coins is selected at random and flipped, it shows heads.
What is the probability that it was the two-headed coin?

44. Three prisoners are informed by their jailer that one
of them has been chosen at random to be executed and
the other two are to be freed. Prisoner A asks the jailer to
tell him privately which of his fellow prisoners will be set
free, claiming that there would be no harm in divulging
this information because he already knows that at least
one of the two will go free. The jailer refuses to answer the
question, pointing out that if A knew which of his fellow
prisoners were to be set free, then his own probability of
being executed would rise from % to % because he would
then be one of two prisoners. What do you think of the
jailer’s reasoning?

45. Suppose we have 10 coins such that if the ith coin
is flipped, heads will appear with probability i/10,i =
1,2,...,10. When one of the coins is randomly selected
and flipped, it shows heads. What is the conditional prob-
ability that it was the fifth coin?

46.In any given year, a male automobile policyholder
will make a claim with probability p,, and a female pol-
icyholder will make a claim with probability ps, where
Ps # pm. The fraction of the policyholders that are male
isa,0 < @ < 1. A policyholder is randomly chosen. If A;
denotes the event that this policyholder will make a claim
in year i, show that

P(A3|A1) > P(A)

Give an intuitive explanation of why the preceding
inequality is true.

47. An urn contains 5 white and 10 black balls. A fair die
is rolled and that number of balls is randomly chosen from
the urn. What is the probability that all of the balls selected
are white? What is the conditional probability that the die
landed on 3 if all the balls selected are white?

48. Each of 2 cabinets identical in appearance has 2 draw-
ers. Cabinet A contains a silver coin in each drawer, and
cabinet B contains a silver coin in one of its drawers and a
gold coin in the other. A cabinet is randomly selected, one
of its drawers is opened, and a silver coin is found. What
is the probability that there is a silver coin in the other
drawer?

49. Prostate cancer is the most common type of cancer
found in males. As an indicator of whether a male has
prostate cancer, doctors often perform a test that measures
the level of the prostate-specific antigen (PSA) that is pro-
duced only by the prostate gland. Although PSA levels
are indicative of cancer, the test is notoriously unreliable.
Indeed, the probability that a noncancerous man will have
an elevated PSA level is approximately .135, increasing to

approximately .268 if the man does have cancer. If, on the
basis of other factors, a physician is 70 percent certain that
a male has prostate cancer, what is the conditional proba-
bility that he has the cancer given that

(a) the test indicated an elevated PSA level?
(b) the test did not indicate an elevated PSA level?

Repeat the preceding calculation, this time assuming that
the physician initially believes that there is a 30 percent
chance that the man has prostate cancer.

50. Suppose that an insurance company classifies people
into one of three classes: good risks, average risks, and
bad risks. The company’s records indicate that the prob-
abilities that good-, average-, and bad-risk persons will be
involved in an accident over a 1-year span are, respec-
tively, .05, .15, and .30. If 20 percent of the population is a
good risk, 50 percent an average risk, and 30 percent a bad
risk, what proportion of people have accidents in a fixed
year? If policyholder A had no accidents in 2012, what is
the probability that he or she is a good risk? is an average
risk?

51. A worker has asked her supervisor for a letter of
recommendation for a new job. She estimates that there
is an 80 percent chance that she will get the job if she
receives a strong recommendation, a 40 percent chance if
she receives a moderately good recommendation, and a
10 percent chance if she receives a weak recommendation.
She further estimates that the probabilities that the rec-
ommendation will be strong, moderate, and weak are .7,
.2, and .1, respectively.

(a) How certain is she that she will receive the new job
offer?

(b) Given that she does receive the offer, how likely
should she feel that she received a strong recommenda-
tion? a moderate recommendation? a weak recommenda-
tion? ,

(c) Given that she does not receive the job offer, how
likely should she feel that she received a strong recommen-
dation? a moderate recommendation? a weak recommen-
dation?

52. A high school student is anxiously waiting to receive
mail telling her whether she has been accepted to a certain
college. She estimates that the conditional probabilities of
receiving notification on each day of next week, given that
she is accepted and that she is rejected, are as follows:

Day P(mail|accepted) P(mailjrejected)
Monday 15 . .05
Tuesday 20 10
Wednesday 25 10
Thursday 15 A5

Friday 10 20




Conditional Probability and Independence

She estimates that her probability of being accepted is .6.

(a) What is the probability that she receives mail on Mon-
day?

(b) What is the conditional probability that she receives
mail on Tuesday given that she does not receive mail on
Monday?

(¢) If there is no mail through Wednesday, what is the con-
ditional probability that she will be accepted?

(d) What is the conditional probability that she will be
accepted if mail comes on Thursday?

(e) What is the conditional probability that she will be
accepted if no mail arrives that week?

53. A parallel system functions whenever at least one of its
components works. Consider a parallel system of » compo-
nents, and suppose that each component works indepen-
dently with probability % Find the conditional probability
that component 1 works given that the system is function-
ing.

54.If you had to construct a mathematical model for
events E and F, as described in parts (a) through (e),
would you assume that they were independent events?
Explain your reasoning,.

(a) Eis the event that a businesswoman has blue eyes, and
F is the event that her secretary has blue eyes.

(b) E is the event that a professor owns a car, and F is the
event that he is listed in the telephone book.

(c) E is the event that a man is under 6 feet tall, and F is
the event that he weighs more than 200 pounds.

(d) E is the event that a woman lives in the United States,
and F is the event that she lives in the Western Hemi-
sphere.

(e) E is the event that it will rain tomorrow, and F is the
event that it will rain the day after tomorrow.

55. In a class, there are 4 first-year boys, 6 first-year girls,
and 6 sophomore boys. How many sophomore girls must
be present if sex and class are to be independent when a
student is selected at random?

56. Suppose that you continually collect coupons and that
there are m different types. Suppose also that each time a
new coupon is obtained, it is a type i coupon with proba-
bility p;,i = 1,...,m. Suppose that you have just collected
your nth coupon. What is the probability that it is a new
type?

Hint: Condition on the type of this coupon.

57. A simplified model for the movement of the price of
a stock supposes that on each day the stock’s price either
moves up 1 unit with probability p or moves down 1 unit
with probability 1 — p. The changes on different days are
assumed to be independent.

(a) What is the probability that after 2 days the stock will
be at its original price?

(b) What is the probability that after 3 days the stock’s
price will have increased by 1 unit?

(c¢) Given that after 3 days the stock’s price has increased
by 1 unit, what is the probability that it went up on the first
day?

58. Suppose that we want to generate the outcome of the
flip of a fair coin, but that all we have at our disposal is a
biased coin that lands on heads with some unknown proba-
bility p that need not be equal to % Consider the following
procedure for accomplishing our task:

1. Flip the coin.

2. Flip the coin again.

3. If both flips land on heads or both land on tails, return
tostep 1.

4. Let the result of the last flip be the result of the experi-
ment.

(a) Show that the result is equally likely to be either heads
or tails.

(b) Could we use a simpler procedure that continues to flip
the coin until the last two flips are different and then lets
the result be the outcome of the final flip?

59. Independent flips of a coin that lands on heads with
probability p are made. What is the probability that the
first four outcomes are

(a) H,H,H,H?

(b)T,H,H,H?

(c) What is the probability that the pattern T, H, H, H
occurs before the pattern H, H, H, H?

Hint for part (c): How can the pattern H, H, H, H occur
first?

60. The color of a person’s eyes is determined by a single
pair of genes. If they are both blue-eyed genes, then the
person will have blue eyes; if they are both brown-eyed
genes, then the person will have brown eyes; and if one of
them is a blue-eyed gene and the other a brown-eyed gene,
then the person will have brown eyes. (Because of the
latter fact, we say that the brown-eyed gene is dominant
over the blue-eyed one.) A newborn child independently
receives one eye gene from each of its parents, and the
gene it receives from a parent is equally likely to be either
of the two eye genes of that parent. Suppose that Smith
and both of his parents have brown eyes, but Smith’s sister
has blue eyes.

(a) What is the probability that Smith possesses a blue-
eyed gene?

(b) Suppose that Smith’s wife has blue eyes. What is the
probability that their first child will have blue eyes?

(c) If their first child has brown eyes, what is the probabil-
ity that their next child will also have brown eyes?

61. Genes relating to albinism are denoted by A and a.
Only those people who receive the a gene from both
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parents will be albino. Persons having the gene pair A,
a are normal in appearance and, because they can pass
on the trait to their offspring, are called carriers. Sup-
pose that a normal couple has two children, exactly one
of whom is an albino. Suppose that the nonalbino child
mates with a person who is known to be a carrier for
albinism.

(a) What is the probability that their first offspring is an
albino?

(b) What is the conditional probability that their second
offspring is an albino given that their firstborn is not?

62. Barbara and Dianne go target shooting. Suppose that
each of Barbara’s shots hits a wooden duck target with
probability p1, while each shot of Dianne’s hits it with
probability p;. Suppose that they shoot simultaneously at
the same target. If the wooden duck is knocked over (indi-
cating that it was hit), what is the probability that

(a) both shots hit the duck?
(b) Barbara’s shot hit the duck?

What independence assumptions have you made?

63. A and B are involved in a duel. The rules of the duel
are that they are to pick up their guns and shoot at each
other simultaneously. If one or both are hit, then the duel
is over. If both shots miss, then they repeat the process.
Suppose that the results of the shots are independent and
that each shot of A will hit B with probability p 4, and each
shot of B will hit A with probability pg. What is

(a) the probability that A is not hit?
(b) the probability that both duelists are hit?

(¢) the probability that the duel ends after the nth round
of shots?

(d) the conditional probability that the duel ends after the
nth round of shots given that A is not hit?

(e) the conditional probability that the duel ends after the
nth round of shots given that both duelists are hit?

64. A true—false question is to be posed to a husband-and-
wife team on a quiz show. Both the husband and the wife
will independently give the correct answer with probabil-
ity p. Which of the following is a better strategy for the
couple?

(a) Choose one of them and let that person answer the
question.

(b) Have them both consider the question, and then either
give the common answer if they agree or, if they disagree,
flip a coin to determine which answer to give.

65. Assume, as in Example 3h, that 64 percent of twins are
of the same sex. Given that a newborn set of twins is of the
same sex, what is the conditional probability that the twins
are identical?

66. The probability of the closing of the ith relay in the cir-
cuits shown in Figure 4 is given by p;,i = 1,2, 3,4, 5. If
all relays function independently, what is the probability
that a current flows between A and B for the respective
circuits?

Hint for (b): Condition on whether relay 3 closes.

67. An engineering system consisting of # components is
said to be a k-out-of-n system (k =< n) if the system func-
tions if and only if at least k of the n components function.
Suppose that all components function independently of
one another.

(a) If the ith component functions with probability P;,i =
1,2, 3, 4, compute the probability that a 2-out-of-4 system
functions.

(b) Repeat part (a) for a 3-out-of-5 system.

(@)
/ /
A—— AN
/ / ’
3 4
(b)
A 1 3 ! >——>- B
=

Figure 4 Circuits for Problem 66.
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(¢) Repeat for a k-out-of-n system when all the P; equal p
(thatis, P; =p,i=1,2,...,n).

68. In Problem 66a, find the conditional probability that
relays 1 and 2 are both closed given that a current flows
from A to B.

69. A certain organism possesses a pair of each of 5 dif-
ferent genes (which we will designate by the first 5 letters
of the English alphabet). Each gene appears in 2 forms
(which we designate by lowercase and capital letters). The
capital letter will be assumed to be the dominant gene,
in the sense that if an organism possesses the gene pair
xX, then it will outwardly have the appearance of the X
gene. For instance, if X stands for brown eyes and x for
blue eyes, then an individual having either gene pair XX
or xX will have brown eyes, whereas one having gene pair
xx will have blue eyes. The characteristic appearance of
an organism is called its phenotype, whereas its genetic
constitution is called its genotype. (Thus, 2 organisms with
respective genotypes aA, bB, cc, dD, ee and AA, BB, cc,
DD, ee would have different genotypes but the same phe-
notype.) In a mating between 2 organisms, each one con-
tributes, at random, one of its gene pairs of each type.
The 5 contributions of an organism (one of each of the 5
types) are assumed to be independent and are also inde-
pendent of the contributions of the organism’s mate. In a
mating between organisms having genotypes aA, bB, cC,
dD, eE and aa, bB, cc, Dd, ee what is the probability that
the progeny will (i) phenotypically and (ii) genotypically
resemble

(a) the first parent?

(b) the second parent?

(c) either parent?

(d) neither parent?

70. There is a 50-50 chance that the queen carries the gene
for hemophilia. If she is a carrier, then each prince has a
50-50 chance of having hemophilia. If the queen has had
three princes without the disease, what is the probability
that the queen is a carrier? If there is a fourth prince, what
is the probability that he will have hemophilia?

71. On the morning of September 30, 1982, the won-lost
records of the three leading baseball teams in the Western
Division of the National League were as follows:

Team Won Lost
Atlanta Braves 87 72
San Francisco Giants 86 73
Los Angeles Dodgers 86 73

Each team had 3 games remaining. All 3 of the Giants’
games were with the Dodgers, and the 3 remaining games
of the Braves were against the San Diego Padres. Suppose
that the outcomes of all remaining games are independent

and each game is equally likely to be won by either par-
ticipant. For each team, what is the probability that it will
win the division title? If two teams tie for first place, they
have a playoff game, which each team has an equal chance
of winning.

72. A town council of 7 members contains a steering com-
mittee of size 3. New ideas for legislation go first to the
steering committee and then on to the council as a whole
if at least 2 of the 3 committee members approve the leg-
islation. Once at the full council, the legislation requires a
majority vote (of at least 4) to pass. Consider a new piece
of legislation, and suppose that each town council member
will approve it, independently, with probability p. What
is the probability that a given steering committee mem-
ber’s vote is decisive in the sense that if that person’s vote
were reversed, then the final fate of the legislation would
be reversed? What is the corresponding probability for a
given council member not on the steering committee?

73. Suppose that each child born to a couple is equally
likely to be a boy or a girl, independently of the sex dis-
tribution of the other children in the family. For a couple
having 5 children, compute the probabilities of the follow-
ing events:

(a) All children are of the same sex.

(b) The 3 eldest are boys and the others girls.
(c) Exactly 3 are boys.

(d) The 2 oldest are girls.

(e) There is at least 1 girl.

74. A and B alternate rolling a pair of dice, stopping either
when A rolls the sum 9 or when B rolls the sum 6. Assum-
ing that A rolls first, find the probability that the final roll
is made by A.

75. In a certain village, it is traditional for the eldest son
(or the older son in a two-son family) and his wife to be
responsible for taking care of his parents as they age. In
recent years, however, the women of this village, not want-
ing that responsibility, have not looked favorably upon
marrying an eldest son.

(a) If every family in the village has two children, what
proportion of all sons are older sons?

(b) If every family in the village has three children, what
proportion of all sons are eldest sons?

Assume that each child is, independently, equally likely to
be either a boy or a girl.

'76. Suppose that E and F are mutually exclusive events

of an experiment. Show that if independent trials of this
experiment are performed, then E will occur before F with
probability P(E)/[P(E) + P(F)].

77. Consider an unending sequence of independent trials,
where each trial is equally likely to result in any of the
outcomes 1, 2, or 3. Given that outcome 3 is the last of the
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three outcomes to occur, find the conditional probability
that

(a) the first trial results in outcome 1;

(b) the first two trials both result in outcome 1.

78. A and B play a series of games. Each game is indepen-
dently won by A with probability p and by B with prob-
ability 1 — p. They stop when the total number of wins
of one of the players is two greater than that of the other
player. The player with the greater number of total wins is
declared the winner of the series.

(a) Find the probability that a total of 4 games are played.

(b) Find the probability that A is the winner of the series.

79. In successive rolls of a pair of fair dice, what is the
probability of getting 2 sevens before 6 even numbers?

80. In a certain contest, the players are of equal skill and
the probability is % that a specified one of the two contes-
tants will be the victor. In a group of 2" players, the players
are paired off against each other at random. The 2"~ win
ners are again paired off randomly, and so on, until a single
winner remains. Consider two specified contestants, A and
B, and define the events A;,i < n, E by

A;: A playsin exactly i contests
E: A and B never play each other

(a) Find P(A),i=1,..., n.
(b) Find P(E).
(¢) Let P, = P(E). Show that

1 7~ 2 (1\?
Py = + (") Pn

-1 7 —1\2

and use this formula to check the answer you obtained in
part (b).

Hint: Find P(E) by conditioning on which of the events
A;,i = 1,...,n occur. In simplifying your answer, use the
algebraic identity

Sixi“l I e i Vi
i=1 1 - x?

For another approach to solving this problem, note that
there are a total of 2" — 1 games played.

(d) Explain why 2" — 1 games are played.

Number these games, and let B; denote the event that A
and B play each other in game i,i=1,...,2" — 1.

(e) What is P(B;)?

(D) Use part (e) to find P(E).

81. Aninvestor owns shares in a stock whose present value
is 25. She has decided that she must sell her stock if it
goes either down to 10 or up to 40. If each change of price
is either up 1 point with probability .55 or down 1 point

with probability .45, and the successive changes are inde-
pendent, what is the probability that the investor retires a
winner?

82. A and B flip coins. A starts and continues flipping until
a tail occurs, at which point B starts flipping and continues
until there is a tail. Then A takes over, and so on. Let P; be
the probability of the coin landing on heads when A flips
and P, when B flips. The winner of the game is the first
one to get

(a) 2 heads in a row;

(b) a total of 2 heads;

(¢) 3 heads in a row;

(d) a total of 3 heads.

In each case, find the probability that A wins.

83. Die A has 4 red and 2 white faces, whereas die B has 2
red and 4 white faces. A fair coin is flipped once. If it lands
on heads, the game continues with die A; if it lands on tails,
then die B is to be used.

(a) Show that the probability of red at any throw is %

(b) If the first two throws result in red, what is the proba-
bility of red at the third throw?

(c) If red turns up at the first two throws, what is the prob-
ability that it is die A that is being used?

84. An urn contains 12 balls, of which 4 are white. Three
players— A, B, and C—successively draw from the urn, A
first, then B, then C, then A, and so on. The winner is the
first one to draw a white ball. Find the probability of win-
ning for each player if

(a) each ball is replaced after it is drawn;

(b) the balls that are withdrawn are not replaced.

85. Repeat Problem 84 when each of the 3 players selects
from his own urn. That is, suppose that there are 3 differ-
ent urns of 12 balls with 4 white balls in each urn.

86.Let S = {1,2,...,n} and suppose that A and B are,
independently, equally likely to be any of the 2" subsets
(including the null set and § itself) of S.

(a) Show that n
P(A C B} = (3)

Hint: Let N(B) denote the number of elements in B. Use

P{A C BY=) P{A C BIN(B) = i}P{N(B) = i}
i=0

Show that P(4B = @} = (}).

87. Consider Example 2a, but now suppose that when the
key is in a certain pocket, there is a 10 percent chance that
a search of that pocket will not find the key. Let R and
L be, respectively, the events that the key is in the right-
hand pocket of the jacket and that it is in the left-hand
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pocket. Also, let Sk be the event that a search of the right-
hand jacket pocket will be successful in finding the key,
and let U, be the event that a search of the left-hand jacket
pocket will be unsuccessful and, thus, not find the key. Find
P(SrIUL), the conditional probability that a search of the
right-hand pocket will find the key given that a search of
the left-hand pocket did not, by
(a) using the identity
P(SrUL)

P(UL)
determining P(SrUL) by conditioning on whether or not
the key is in the right-hand pocket, and determining P(Ur)
by conditioning on whether or not the key is in the left-
hand pocket;
(b) using the identity

P(SRIUL) = P(SRIRUL)P(R|UL)
+ P(SRIR°UL)P(R|UL)

P(SgIUL) =

88. In Example Se, what is the conditional probability that
the ith coin was selected given that the first » trials all
result in heads?

Theoretical Exercises

89. In Laplace’s rule of succession (Example S¢), are the
outcomes of the successive flips independent? Explain.

90. A person tried by a 3-judge panel is declared guilty if
at least 2 judges cast votes of guilty. Suppose that when
the defendant is in fact guilty, each judge will indepen-
dently vote guilty with probability .7, whereas when the
defendant is in fact innocent, this probability drops to
2. If 70 percent of defendants are guilty, compute the
conditional probability that judge number 3 votes guilty
given that

(a) judges 1 and 2 vote guilty;
(b) judges 1 and 2 cast 1 guilty and 1 not guilty vote;
(c) judges 1 and 2 both cast not guilty votes.

Let E;,i = 1,2,3 denote the event that judge i casts a guilty
vote. Are these events independent? Are they condition-
ally independent? Explain.

91. Suppose that n independent trials, each of which
results in any of the outcomes 0, 1, or 2, with respective
probabilities pg, p1, and Pz,z,io pi = 1, are performed.
Find the probability that outcomes 1 and 2 both occur at
least once.

1. Show that if P(A) > 0, then

P(AB|A) = P(AB|A U B)

2. Let A C B. Express the following probabilities as simply
as possible:

P(A|B), P(A|B°), P(B|A), P(B|A)

3. Consider a school community of m families, with n; of
k
them having i children, i = 1,...,k, )" n; = m. Consider

i=1
the following two methods for choosilng a child:

1. Choose one of the m families at random and then ran-
domly choose a child from that family.

k
2. Choose one of the Y in; children at random.
i=1

Show that method 1 is more likely than method 2 to result
in the choice of a firstborn child.
Hint: In solving this problem, you will need to show that

k k k k

DT WD B

i=1 j=1 i=1 j=1

To do so, multiply the sums and show that for all pairs i, j,
the coefficient of the term n;n; is greater in the expression
on the left than in the one on the right.

4. A ball is in any one of # boxes and is in the ith box with
probability P;. If the ball is in box i, a search of that box will
uncover it with probability «;. Show that the conditional
probability that the ball is in box j, given that a search of
box i did not uncover it, is

P
ik
T—ap, 7°
aQa-a)P ... .
L TN pi—
1 — oq;P; =t

5. (a) Prove that if E and F are mutually exclusive, then

P(E)

PEIEU P = 50

(b) Prove that if E;,i = 1 are mutually exclusive, then

P(E))

A, N )
P(Ej| Uizt E;) = ?_.;1 PE)

1M1
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6. Prove that if Eq,E,...,E, are independent events,
then

P(Ey UE, U---UE)=1-[]l - PEN]

i=1

7. (a) An urn contains n white and m black balls. The balls
are withdrawn one at a time until only those of the same
color are left. Show that with probability n/(n + m), they
are all white.

Hint: Imagine that the experiment continues until all the
balls are removed, and consider the last ball withdrawn.

(b) A pond contains 3 distinct species of fish, which we
will call the Red, Blue, and Green fish. There are r Red, b
Blue, and g Green fish. Suppose that the fish are removed
from the pond in a random order. (That is, each selection is
equally likely to be any of the remaining fish.) What is the
probability that the Red fish are the first species to become
extinct in the pond?

Hint: Write P{R} = P{RBG} + P{RGB}, and compute the
probabilities on the right by first conditioning on the last
species to be removed.

8. Let A, B, and C be events relating to the experiment of
rolling a pair of dice.

(a) If
PA|C) > P(BIC) and P(A|C°) > P(B|CY

either prove that P(A) > P(B) or give a counterexample
by defining events A, B, and C for which that relationship
is not true.

(b) If
PA|C) > P(A|C°) and P(B|C) > P(B|CY)

either prove that P(AB|C) > P(AB|C®) or give a coun-
terexample by defining events A, B, and C for which that
relationship is not true.

Hint: Let C be the event that the sum of a pair of dice is
10; let A be the event that the first die lands on 6; let B be
the event that the second die lands on 6.

9. Consider two independent tosses of a fair coin. Let A
be the event that the first toss results in heads, let B be
the event that the second toss results in heads, and let
C be the event that in both tosses the coin lands on the
same side. Show that the events A, B, and C are pairwise
independent—that is, A and B are independent, A and C
are independent, and B and C are independent—but not
independent.

10. Two percent of women age 45 who participate in rou-
tine screening have breast cancer. Ninety percent of those
with breast cancer have positive mammographies. Eight
percent of the women who do not have breast cancer will
also have positive mammographies. Given that a woman

has a positive mammography, what is the probability she
has breast cancer?

11. In each of n independent tosses of a coin, the coin lands
on heads with probability p. How large need n be so that
the probability of obtaining at least one head is at least %?

12. Showthat0 < g; = 1,i=1,2,...,then

00 i-1 0
Ylafla —ap| + ] -ap=1
i=1 j=1 i=1

Hint: Suppose that an infinite number of coins are to be
flipped. Let a; be the probability that the ith coin lands on
heads, and consider when the first head occurs.

13. The probability of getting a head on a single toss of a
coin is p. Suppose that A starts and continues to flip the
coin until a tail shows up, at which point B starts flipping.
Then B continues to flip until a tail comes up, at which
point A takes over, and so on. Let P, denote the prob-
ability that A accumulates a total of n heads before B
accumulates m. Show that

Pyopm=pPpipm + 1 = p)A — Ppp)

*14. Suppose that you are gambling against an infinitely
rich adversary and at each stage you either win or lose 1
unit with respective probabilities p and 1 — p. Show that
the probability that you eventually go broke is

1 ifp=3}
a/p) iftp > }

where ¢ =1 — p and where i is your initial fortune.

15. Independent trials that result in a success with prob-
ability p are successively performed until a total of r suc-
cesses is obtained. Show that the probability that exactly n
trials are required is

(': - 11)1)’(1 -

Use this result to solve the problem of the points (Exam-
ple 4j).

Hint: In order for it to take # trials to obtain r successes,
how many successes must occur in the first n — 1 trials?

16. Independent trials that result in a success with
probability p and a failure with probability 1 — p
are called Bernoulli trials. Let P, denote the probability
that n Bernoulli trials result in an even number of suc-
cesses (0 being considered an even number). Show that

Pa=p(l = Pot) + (1 = Py n= 1
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and use this formula to prove (by induction) that

n
P, = 1+ A -2p)
2
17. Suppose that n independent trials are performed, with
trial i being a success with probability 1/(2i + 1). Let P,
denote the probability that the total number of successes
that result is an odd number.

(a) Find P, forn = 1,2,3,4,5.
(b) Conjecture a general formula for P,,.
(¢) Derive a formula for P, in terms of P,,_;.

(d) Verify that your conjecture in part (b) satisfies the
recursive formula in part (c). Because the recursive for-
mula has a unique solution, this then proves that your
conjecture is correct.

18. Let O, denote the probability that no run of 3 consec-
utive heads appears in # tosses of a fair coin. Show that

1 1 1
Qn = ‘Z'Qn—l + ZQn—Z + an—S
Q=01=0 =1
Find Qs.
Hint: Condition on the first tail.

19. Consider the gambler’s ruin problem, with the excep-
tion that A and B agree to play no more than n games.
Let P,; denote the probability that A winds up with all the
money when A starts with i and B starts with N — i. Derive
an equation for P, in terms of P,,_1, ;11 and P,_1, ;—1, and
compute P73, N = 5.

20. Consider two urns, each containing both white and
black balls. The probabilities of drawing white balls from
the first and second urns are, respectively, p and p’. Balls
are sequentially selected with replacement as follows:
With probability «, a ball is initially chosen from the first
urn, and with probability 1 — «, it is chosen from the sec-
ond urn. The subsequent selections are then made accord-
ing to the rule that whenever a white ball is drawn (and
replaced), the next ball is drawn from the same urn, but
when a black ball is drawn, the next ball is taken from the
other urn. Let o, denote the probability that the nth ball
is chosen from the first urn. Show that

tpri=an@ +p -1 +1-p n=1

and use this formula to prove that
1-p 1-p
wertrly (o

“2-p-p
X@+p - prt
Let P, denote the probability that the nth ball selected
is white. Find P,. Also, compute lim,— o, and
limp— oo Pn.

21. The Ballot Problem. In an election, candidate A
receives n votes and candidate B receives m votes, where
n > m. Assuming that all of the (n + m)!/n! m! orderings
of the votes are equally likely, let Pp, denote the proba-
bility that A is always ahead in the counting of the votes.

(a) Compute Py 1, P31, P32,P41,Pa2,Pa3.

(b) Find Py 1, Pp.

(¢) On the basis of your results in parts (a) and (b), con-
jecture the value of Py, .

(d) Derive a recursion for Py, in terms of P,_1,, and
Py -1 by conditioning on who receives the last vote.

(e) Use part (d) to verify your conjecture in part (c) by an
induction proofonn + m.

22. As asimplified model for weather forecasting, suppose
that the weather (either wet or dry) tomorrow will be the
same as the weather today with probability p. Show that
the weather is dry on January 1, then P,, the probability
that it will be dry n days later, satisfies

Po=@2p —1Py1+ 1A -p) n=1
Py=1
Prove that
1 1
Pn=5+§(2p—1)n n=0

23. A bag contains a white and b black balls. Balls are cho-
sen from the bag according to the following method:

1. A ballis chosen at random and is discarded.

2. A second ball is then chosen. If its color is different
from that of the preceding ball, it is replaced in the
bag and the process is repeated from the beginning. If
its color is the same, it is discarded and we start from
step 2.

In other words, balls are sampled and discarded until a
change in color occurs, at which point the last ball is
returned to the urn and the process starts anew. Let P, p
denote the probability that the last ball in the bag is white.
Prove that

P,p =

Hint: Use inductiononk =a + b.

*24. A round-robin tournament of n contestants is a tour-

nament in which each of the ; pairs of contestants

play each other exactly once, with the outcome of any
play being that one of the contestants wins and the other
loses. For a fixed integer k, k < n, a question of interest is
whether it is possible that the tournament outcome is such
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that for every set of k players, there is a player who beat
each member of that set. Show that if

B -G -

then such an outcome is possible.

Hint: Suppose that the results of the games are indepen-
dent and that each game is equally likely to be won by

either contestant. Number the Z sets of k contestants,

and let B; denote the event that no contestant beat all of
the k players in the ith set. Then use Boole’s inequality to

bound P (U Bi).
i

25. Prove directly that
P(E|F) = P(E|FG)P(G|F) + P(E|FG°)P(G°|F)

26. Prove the equivalence of Equations (5.11) and (5.12).

27. Extend the definition of conditional independence to
more than 2 events.

28. Prove or give a counterexample. If 1 and E; are inde-
pendent, then they are conditionally independent given F.

29. In Laplace’s rule of succession (Example Se), show
that if the first n flips all result in heads, then the
conditional probability that the next m flips also result in
all headsis (n + 1)/(n + m + 1).

Self-Test Problems and Exercises

30. In Laplace’s rule of succession (Example 5e), suppose
that the first n flips resulted in r heads and n — r tails. Show
that the probability that the (n + 1) flip turns up heads is
(r + 1)/(n + 2). To do so, you will have to prove and use
the identity

1 n!m!
n 1 —_ md -
/oy( N = e m D
Hint: To prove the identity, let C(n,m) = fol y*(l — y)™dy.
Integrating by parts yields

m

Cn,m) = P

Cn+1m-1)

Starting with C(n,0) = 1/(n + 1), prove the identity by
induction on m.

31. Suppose that a nonmathematical, but philosophically
minded, friend of yours claims that Laplace’s rule of suc-
cession must be incorrect because it can lead to ridicu-
lous conclusions. “For instance,” says he, “the rule states
that if a boy is 10 years old, having lived 10 years, the
boy has probability }—% of living another year. On the
other hand, if the boy has an 80-year-old grandfather,
then, by Laplace’s rule, the grandfather has probability
8. of surviving another year. However, this is ridiculous.
Clearly, the boy is more likely to survive an additional
year than the grandfather is.” How would you answer your
friend?

1. In a game of bridge, West has no aces. What is the prob-
ability of his partner’s having (a) no aces? (b) 2 or more
aces? (c) What would the probabilities be if West had
exactly 1 ace?

2. The probability that a new car battery functions for
more than 10,000 miles is .8, the probability that it func-
tions for more than 20,000 miles is .4, and the probability
that it functions for more than 30,000 miles is .1. If a new
car battery is still working after 10,000 miles, what is the
probability that

(a) its total life will exceed 20,000 miles?
(b) its additional life will exceed 20,000 miles?

3. How can 20 balls, 10 white and 10 black, be put into two
urns so as to maximize the probability of drawing a white
ball if an urn is selected at random and a ball is drawn at
random from it?

4. Urn A contains 2 white balls and 1 black ball, whereas
urn B contains 1 white ball and 5 black balls. A ball is
drawn at random from urn A and placed in urn B. A

ball is then drawn from urn B. It happens to be white.
What is the probability that the ball transferred was
white?

5. An urn has r red and w white balls that are randomly
removed one at a time. Let R; be the event that the ith ball
removed is red. Find

(a) P(R)
(b) P(Rs|R3)
(¢) P(R3|Rs)

6. An urn contains b black balls and r red balls. One of the
balls is drawn at random, but when it is put back in the urn,
c additional balls of the same color are put in with it. Now,
suppose that we draw another ball. Show that the prob-
ability that the first ball was black, given that the second
ball drawn was red,is b/(b + r + ¢).

7. A friend randomly chooses two cards, without replace-
ment, from an ordinary deck of 52 playing cards. In each of
the following situations, determine the conditional proba-
bility that both cards are aces.
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(a) You ask your friend if one of the cards is the ace of
spades, and your friend answers in the affirmative.

(b) You ask your friend if the first card selected is an ace,
and your friend answers in the affirmative.

(¢) You ask your friend if the second card selected is an
ace, and your friend answers in the affirmative.

(d) You ask your friend if either of the cards selected is an
ace, and your friend answers in the affirmative.

8. Show that

PH|E) _ P(H) P(E|H)
P(GIE)  P(G) P(E|G)

Suppose that, before new evidence is observed, the
hypothesis H is three times as likely to be true as is the
hypothesis G. If the new evidence is twice as likely when
G is true than it is when H is true, which hypothesis is more
likely after the evidence has been observed?

9. You ask your neighbor to water a sickly plant while you
are on vacation. Without water, it will die with probability
.8; with water, it will die with probability .15. You are 90
percent certain that your neighbor will remember to water
the plant.

(a) What is the probability that the plant will be alive when
you return?

(b) If the plant is dead upon your return, what is the prob-
ability that your neighbor forgot to water it?

10. Six balls are to be randomly chosen from an urn con-
taining 8 red, 10 green, and 12 blue balls.

(a) What is the probability at least one red ball is chosen?
(b) Given that no red balls are chosen, what is the con-

ditional probability that there are exactly 2 green balls
among the 6 chosen?

11. A type C battery is in working condition with proba-
bility .7, whereas a type D battery is in working condition
with probability .4. A battery is randomly chosen from a
bin consisting of 8 type C and 6 type D batteries.

(a) What is the probability that the battery works?

(b) Given that the battery does not work, what is the con-
ditional probability that it was a type C battery?

12. Maria will take two books with her on a trip. Suppose
that the probability that she will like book 1 is .6, the prob-
ability that she will like book 2 is .5, and the probability
that she will like both books is .4. Find the conditional
probability that she will like book 2 given that she did not
like book 1.

13. Balls are randomly removed from an urn that initially
contains 20 red and 10 blue balls.

(a) What is the probability that all of the red balls are
removed before all of the blue ones have been removed?
Now suppose that the urn initially contains 20 red, 10 blue,
and 8 green balls.

(b) Now what is the probability that all of the red balls are
removed before all of the blue ones have been removed?

(c) What is the probability that the colors are depleted in
the order blue, red, green?

(d) What is the probability that the group of blue balls is
the first of the three groups to be removed?

14. A coin having probability .8 of landing on heads is
flipped. A observes the result—either heads or tails—and
rushes off to tell B. However, with probability .4, A will
have forgotten the result by the time he reaches B. If A
has forgotten, then, rather than admitting this to B, he is
equally likely to tell B that the coin landed on heads or
that it landed tails. (If he does remember, then he tells B
the correct result.)

(a) What is the probability that B is told that the coin
landed on heads?

(b) What is the probability that B is told the correct result?

(¢) Given that B is told that the coin landed on heads, what
is the probability that it did in fact land on heads?

15.In a certain species of rats, black dominates over
brown. Suppose that a black rat with two black parents
has a brown sibling.

(a) What is the probability that this rat is a pure black
rat (as opposed to being a hybrid with one black and one
brown gene)?

(b) Suppose that when the black rat is mated with a brown
rat, all 5 of their offspring are black. Now what is the prob-
ability that the rat is a pure black rat?

16. (a) In Problem 66b, find the probability that a current
flows from A to B, by conditioning on whether relay 1
closes.

(b) Find the conditional probability that relay 3 is closed
given that a current flows from A to B.

17. For the k-out-of-n system described in Problem 67,
assume that each component independently works with
probability % Find the conditional probability that com-
ponent 1 is working, given that the system works, when

(a)k=1,n=2;
b)k=2,n=3.

18. Mr. Jones has devised a gambling system for winning at
roulette. When he bets, he bets on red and places a bet only
when the 10 previous spins of the roulette have landed on
a black number. He reasons that his chance of winning is
quite large because the probability of 11 consecutive spins
resulting in black is quite small. What do you think of this
system?

19. Three players simultaneously toss coins. The coin
tossed by A(B)[C] turns up heads with probability
P1(P)[P3]. If one person gets an outcome different from
those of the other two, then he is the odd man out. If there
is no odd man out, the players flip again and continue to do
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so until they get an odd man out. What is the probability
that A will be the odd man?

20. Suppose that there are n possible outcomes of a
trial, with outcome i resulting with probability p;,i =

1,...,n, Z pi = 1. If two independent trials are observed,

what is the probability that the result of the second trial is
larger than that of the first?

21.If A flips n + 1 and B flips # fair coins, show that the
probability that A gets more heads than B is %

Hint: Condition on which player has more heads after each
has flipped 7 coins. (There are three possibilities.)

22. Prove or give counterexamples to the following state-
ments:

(a) If E is independent of F and E is independent of G,
then E is independent of F U G.

(b) If E is independent of F, and E is independent of G,
and FG = @, then E is independent of F U G.

(¢) If E is independent of F, and F is independent of G,
and E is independent of FG, then G is independent of EF.

23.Let A and B be events having positive probability.
State whether each of the following statements is (i) nec-
essarily true, (ii) necessarily false, or (iii) possibly true.

(a) If A and B are mutually exclusive, then they are inde-
pendent.

(b) If A and B are independent, then they are mutually
exclusive.
(©) P(A) =
@) P(A) =

P(B) = .6,and A and B are mutually exclusive.
P(B) = .6, and A and B are independent.

24. Rank the following from most likely to least likely to
occur:

~

1. A fair coin lands on heads.

2. Three independent trials, each of which is a success with
probability .8, all result in successes.

3. Sevenindependent trials, each of which is a success with
probability .9, all result in successes.

25. Two local factories, A and B, produce radios. Each
radio produced at factory A is defective with probability
.05, whereas each one produced at factory B is defective
with probability .01. Suppose you purchase two radios that
were produced at the same factory, which is equally likely
to have been either factory A or factory B. If the first radio

Answers to Selected Problems

that you check is defective, what is the conditional proba-
bility that the other one is also defective?

26. Show that if P(A|B) = 1, then P(B€|A€) = 1.

27. An urn initially contains 1 red and 1 blue ball. At each
stage, a ball is randomly withdrawn and replaced by two
other balls of the same color. (For instance, if the red ball
is initially chosen, then there would be 2 red and 1 blue
balls in the urn when the next selection occurs.) Show by
mathematical induction that the probability that there are
exactly i red balls in the urn after » stages have been com-

pleted is n+1,1 =si=n+ L

28. A total of 2n cards, of which 2 are aces, are to be ran-
domly divided among two players, with each player receiv-
ing n cards. Each player is then to declare, in sequence,
whether he or she has received any aces. What is the
conditional probability that the second player has no
aces, given that the first player declares in the affirma-
tive, when (a) n = 2? (b) n = 10? (c) n = 100? To
what does the probability converge as n goes to infinity?
Why?

29. There are n distinct types of coupons, and each coupon
obtained is, independently of prior types collected, of type
i with probability p;, Y i ;1 pi = 1.

(a) If n coupons are collected, what is the probability that
one of each type is obtained?

(b) Now suppose that p; = p2 = --- = p, = 1/n. Let E;
be the event that there are no type i coupons among the
n collected. Apply the inclusion—exclusion identity for the
probability of the union of events to P(U;E;) to prove the

identity
Z( 1)"( )(n -k

k=0

30. Show that for any events E and F,
P(E\E U F) = P(E\F)

Hint: Compute P(E|E U F) by conditioning on whether F
occurs.

31. There is a 60 percent chance that event A will occur. If
A does not occur, then there is a 10 percent chance that B
will occur.

What is the probability that at least one of the events A or
B will occur?

1.1/3 2. 1/6;1/5; 1/4; 1/3; 1/2; 1 3..339
6.12 7.273 812 9.711 10..22
1/33  12. .504; 3629  14. 35/768; 210/768

5. 6/91
11. 1/17;
15. .4848

16. .9835  17..0792; 264  18..331; .383; .286; .4862
19. 44.29; 41.18  20. .4; 1/26  21. .496; 3/14; 9/62
22.5/9; 1/6; 5/54  23. 4/9; 172 24.1/3; 1/2  26. 20/21;
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40/41  28. 3/128; 29/1536  29..0893  30. 7/12; 3/5
33..76, 49/76  34.27/31  35..62, 10/19  36.1/2
37.1/3; 1/5; 1 38.12/37  39. 46/185  40. 3/13; 5/13;

5/52;15/52 41, 43/459 42. 1.03 percent; .3046  43. 4/9
45.1/11  48.2/3  50..175; 38/165; 17/33  51. .65;
56/65; 8/65; 1/65; 14/35; 12/35; 9/35  52..11; 16/89;
12/27; 3/5; 9/25 55.9 57.(c) 2/3  60. 2/3; 1/3; 3/4

Solutions to Self-Test Problems and Exercises

61. 1/6; 3/20 65. .4375 69.9; 9; 18; 110; 4; 4; 8; 120
all over 128 70. 1/9; 1/18  71. 38/64; 13/64; 13/64
73. 1/16; 1/32; 5/16; 1/4; 31/32 74.9/19 75, 3/4, 712
78. 2p3(1 — p) + 2p(1 — p)3:p2/(1 — 2p +2p?)  1719. 5550
81. 9530 83..5;.6;.8 84.9/19; 6/19; 4/19; 7/15; 53/165;
7/33  87.9/16  90. 97/142; 15/26; 33/102

1. (a) P(no aces) = (i;)/(ig)
35
()

(b) 1 — P(no aces) —

(¢) P(i aces) =

2. Let L; denote the event that the life of the battery is
greater than 10,000 X i miles.

(@) P(Lz|L1) = P(L1L2)/P(L1) = P(L2)/P(L1) = 1/2

() P(L3|L1) = P(L1L3)/P(L1) = P(L3)/P(L1) = 1/8

3. Put 1 white and 0 black balls in urn one, and the remain-
ing 9 white and 10 black balls in urn two.

4. Let T be the event that the transferred ball is white, and
let W be the event that a white ball is drawn from urn
B. Then
P(W|T)P(T)
P(W|\T)P(T) + P(W|T)P(T°)
___oemen .
2/N2/3) + A/7(1/3)

5.(a) P(EIE U F) = B2EZ) = o L8
since E(EU F) = Eand P(E U F) = P(E) + P(F) because
E and F are mutually exclusive.

_ P(EWURE) _  PE)
) PEj| U2y E) = 5=ty = 72, 7@
6. Let B; denote the event that ball i is black, and let
R; = Bl?. Then

P(T\W) =

P(Ry|B1)P(B1)
P(R3|B1)P(B1) + P(R2IR1)P(Ry)
_ [r/[B + r + Ollb/B + N]
[r/® + 7+ OB/ + D]+ [(r + /(B + r +O)l[r/(b + 1]
b
“brr+c

P(B1|Ry) =

7. Let B denote the event that both cards are aces.

P{B, yes to ace of spades}
Pfyes to ace of spades}

_1)G),6)(E)
() " (%)

=3/51

(b) Since the second card is equally likely to be any of the
remaining 51, of which 3 are aces, we see that the answer
in this situation is also 3/51.

(¢) Because we can always interchange which card is con-
sidered first and which is considered second, the result
should be the same as in part (b). A more formal argument
is as follows:

(a) P{Blyes to ace of spades} =

P{B,second is ace}

PiBlsecond is ace} = P{second is ace}

_ P(B)
~ P(B) + Pffirst is not ace, second is ace}
_ 4/52)(3/51)
T (4/52)(3/51) + (48/52)(4/51)
=3/51
P(B)
d) P{B|at least one} = P_{m
_ 4/52)(3/51)
T 1 — (48/52)(47/51)

=1/33
PHIE) _ P(HE) _ P(H)P(E|\H)
8 %GB = HCB = ROPER
Hypothesis H is 1.5 times as likely.

9. Let A denote the event that the plant is alive and let W
be the event that it was watered.

(a) P(A) = P(AIW)P(W) + P(A|W°)P(W®)
= (.85)(.9) + (2)(.1) =.785
¢ gor _ PASIWOP(WO)
(b) P(WEIA) = —P@y
_ (B 16
T 215 T 43
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10. (a) Let R be the event that at least one red ball is cho-
sen. Then

(%)
6
(%)
(b) Let G, be the event there are exactly 2 green balls cho-
sen. Working with the reduced sample space yields

0 12
o (D)

2
(?)
11. Let W be the event that the battery works, and let C
and D denote the events that the battery is a type C and
that it is a type D battery, respectively.

(a) P(W) = P(W|C)P(C) + P(W|D)P(D) = .7(8/14) +
A(6/14) = 4/7

(b) P(CIW®) = it = FOHEHE = 3070 = 4

12. Let L; be the event that Maria likes book i,i = 1,2.
Then
P(L§L) _ P(L{L>)

P(LS 4

P(Lz]Li) =

Using that L, is the union of the mutually exclusive events
L1L; and L{L,, we see that

S=P(Ly) =P(1Ly) + P(LiLz) =4+ P(LiLz)

Thus,
P(L2|L§) = -‘11 =.25

13. (a) This is the probability that the last ball removed is
blue. Because each of the 30 balls is equally likely to be the
last one removed, the probability is 1/3.

(b) This is the probability that the last red or blue ball to
be removed is a blue ball. Because it is equally likely to
be any of the 30 red or blue balls, the probability that it is
blue is 1/3.

(¢) Let By, R;, G5 denote, respectively, the events that the

first color removed is blue, the second is red, and the third
is green. Then

where P(G3) is just the probability that the very last ball is
green and P(R;|G3) is computed by noting that given that
the last ball is green, each of the 20 red and 10 blue balls is
equally likely to be the last of that group to be removed, so
the probability that it is one of the red balls is 20/30. (Of
course, P(B1|R;G3) =1.)

) 6{:(31) = P(B1G3R3) + P(B1R:G3) = R & + &

= 1m

14. Let H be the event that the coin lands heads, let T, be
the event that B is told that the coin landed heads, let F
be the event that A forgets the result of the toss, and let C
be the event that B is told the correct result. Then

(@) P(Tp) = P(Ty|F)P(F) + P(Ty|F*)P(F°)
= (.5)(4) + P(H)(:6)
= .68

(b) P(C) = P(C|F)P(F) + P(C|F)P(F°)
= (.5)(4) + 1(.6) = .80

(¢) P(H|Ty) = 50

Now,

P(HTy) = P(HTH|F)P(F) + P(HTy|F)P(F)
= P(H|F)P(Ty|HF)P(F) + P(H)P(F°)
= (.8)(:5)(4) + (8)(.6) = .64

giving the result P(H|Ty) = .64/.68 = 16/17.

15. Since the black rat has a brown sibling, we can con-
clude that both of its parents have one black and one
brown gene.

_ P2 _ Y4 _ 1
(a) P(2 black|at least one) = m = 3/L4 =3

(b) Let F be the event that all 5 offspring are black, let B,
be the event that the black rat has 2 black genes, and let
By be the event that it has 1 black and 1 brown gene. Then

B P(F|By)P(B>)
P(By|F) = P(F|B2)P(B;) + P(F|B1)P(B1)
1)(1/3) _16

“Oa3) + /2523 - 17

16. Let F be the event that a current flows from A to B,
and let C; be the event that relay i closes. Then

P(F) = P(FIC)p1 + P(FIC5)(1 — p1)
Now,
P(F|Cy) = P(C4 U C,Cs5 U C3Cs)

=p4 + paps5 + p3ps — pap2ps
— P4p3pPs — p2P3Ps5 + pap2psp3

Also,
P(FICS) = P(C2Cs U C3C3Cy)
=Pp2Ps + P2P3P4 — P2DP3DP4Ds
Hence, for part (a), we obtain
P(F) = p1(ps + paps + p3ps — Papaps

— D4P3p5s — pa2p3ps + P4apapsp3)
+ (1 — p1)p2(ps + p3pa — pP3paps)
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For part (b), letg; =1 — p;. Then

P(C3|F) = P(F|C3)P(C3)/P(F)
=p3[1 — P(C5C5 U C{C9)]/P(F)
=p3(1 — 192 — qaq95 + q19294495)/P(F)

17. Let A be the event that component 1 is working, and
let F be the event that the system functions.

@ PAP =5 =5 = = =3

where P(F) was computed by noting that it is equal to 1
minus the probability that components 1 and 2 are both
failed.

— PgAgz _ PFIAPA) _ _G/HA/2) 3
(b) PAIF) = F — T PR T /3331727 — 4

where P(F) was computed by noting that it is equal to
the probability that all 3 components work plus the three
probabilities relating to exactly 2 of the components work-
ing.

18. If we assume that the outcomes of the successive spins
are independent, then the conditional probability of the
next outcome is unchanged by the result that the previous
10 spins landed on black.

19. Condition on the outcome of the initial tosses:
P(Aodd) =Pi(1 — P,)(1 — P3) + (1 — P))P,P3

+ P1P,P3P(A odd)
+ (1 — P1)(1 — Py)(1 — P3)P(A odd)

SO,

Pyl — P)( — P3) + (1 — P1)PPs3

P(a oddy = Py + P, + P3 — PiP, — P1P3; — PP

20. Let A and B be the events that the first trial is larger
and that the second is larger, respectively. Also, let E be
the event that the results of the trials are equal. Then

1=P(A) + P(B) + P(E)
But, by symmetry, P(A) = P(B): thus,
n
1-Y p?
1

1-PE) _ i

PB) = — :

Another way of solving the problem is to note that

PB) = Z Z Pffirst trial results in i, second trial results in j}

i j>i

=YY pipj

i i

To see that the two expressions derived for P(B) are equal,

observe that
n n
1= "pi) pj
i=1 j=1

=YY pipj
T

=) PP+ ).> pipj
i i A

=P +23 ) pipj
i

i j>i
21. Let E = {A gets more heads than B}; then
P(E) = P(E|A leads after both flip n) P(A leads after both flip n)

+ P(E] even after both flip n) P(even after both flip n)
+ P(E|B leads after both flip n) P(B leads after both flip )

= P(A leads) + %P(even)

Now, by symmetry, =
P(A leads) = P(B leads)
1 — P(even)
=
Hence, .
P(E) = 3

22. (a) Not true: In rolling 2 dice, let E = {sumis 7},
F = {1st die does not land on 4}, and G = {2nd die does
not land on 3}. Then

P{7,not (4,3)} _ 5/36

PEF VG =g @ ~ 336 /P *PE
(b) P(E(F U G)) = P(EF U EG)
= P(EF) + P(EG) since EFG =0
= P(E)[P(F) + P(G)]
= P(E)P(F U G) since FG =@
_ P(EFG)
(c) P(GIEF) = PEP
_ P(E)P(FG) . -
= "PEF since E is independent of FG
_PBPBPG) .
=~ PEHPH by independence
= P(G).

23. (a) necessarily false; if they were mutually exclusive,
then we would have

0= P(AB) # P(A)P(B)
(b) necessarily false; if they were independent, then we

would have
P(AB) = P(A)P(B) > 0
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(¢) necessarily false; if they were mutually exclusive, then
we would have

P(A U B)=P(A) + P(B) =12

(d) possibly true

24. The probabilities in parts (a), (b), and (c) are .5, (.8)% =
512, and (.9)7 ~ .4783, respectively.

25. Let D;,i = 1,2, denote the event that radio i is defec-
tive. Also, let A and B be the events that the radios were
produced at factory A and at factory B, respectively. Then

P(D1D»)

P(D,|Dy) = PDY)
_ P(D1D,|A)P(A) + P(D1D,|B)P(B)
~ P(Di|A)P(A) + P(D1|B)P(B)
_(05)%(1/2) + (01)%(1/2)
T (05)(1/2) + (01)(1/2)
=13/300

26. We are given that P(AB) = P(B) and must show that
this implies that P(B°A€) = P(A€). One way is as follows:

P(B°A°) = P((A U B)%)

=1- P(A U B)

=1 — P(A) — P(B) + P(AB)
=1 - P(A)

= P(A%)

27. The result is true for n = 0. With A; denoting the
event that there are i red balls in the urn after stage n,
assume that

1

PA) = P

Now let Bj,j = 1,...,n + 2, denote the event that there
are j red balls in the urn after stage n + 1. Then

n+l
P(B)) = ) P(BjlA)P(A)
i=1
1 n+1

i=1

1
= m[P(leAj—ﬂ + P(Bj|A))]

Because there are n + 2 balls in the urn after stage n, it
follows that P(Bj|A;_1) is the probability that a red ball is
chosen when j — 1 of the n + 2 balls in the urn are red
and P(Bj|A)) is the probability that a red ball is not chosen
when j of the n + 2 balls in the urn are red. Consequently,

i-1
n+2

n+2—j
n+2

P(Bj|Aj_1) = P(BjIAj) =

Substituting these results into the equation for P(B;) gives

n+2-j]1_ 1
n+2

1 j—1
P(B’)_n+1[n+2 T n+2
This completes the induction proof.

28. If A; is the event that player i receives an ace, then

(Zn - 2)
n
PA)=1 - ~——~ =1
2n
(%)
By arbitrarily numbering the aces and noting that the

player who does not receive ace number one will receive n
of the remaining 2n — 1 cards, we see that

1n-1 _3n-1
22— 1 4n -2

P(A147) =

n
2n -1
Therefore,

P(A1A)) _n- 1

¢ = — = _ =
PAZIAD =1 = Pdoldy =1 ~ 7= = 2oy

We may regard the card division outcome as the result
of two trials, where trial i,i = 1,2, is said to be a suc-
cess if ace number i goes to the first player. Because the
locations of the two aces become independent as n goes
to infinity, with each one being equally likely to be given
to either player, it follows that the trials become indepen-
dent, each being a success with probability 1/2. Hence, in
the limiting case where n— oo, the problem becomes one
of determining the conditional probability that two heads
result, given that at least one does, when two fair coins are
flipped. Because 3';‘711 converges to 1/3, the answer agrees
with that of Example 2b.

29. (a) For any permutation ij,...,ip of 1,2,...,n, the
probability that the successive types collected is iy, .. ., iy is
Pi, -+ - Pin = [ 171 pi. Consequently, the desired probability
is n! [T, pi-

(b) For iy,..., i all distinct,

— k\"
P(E;, -+ Ey) = (” — )

which follows because there are no coupons of types
i1,...,ix when each of the n independent selections is one
of the other n — k types. It now follows by the inclusion—
exclusion identity that

n N ‘ 1 k1 n n__f "
P(uizlE,)—l;( 1) (k)( - )

Because 1 — P(UL, E)) is the probability that one of each
type is obtained, by part (a) it is equal to ,',’—,'. Substituting
this into the preceding equation gives
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- a-for )5

nl=n" = ) (-nkH (Z)(n - k"
k=1

or

or

n! = Z( l)k( ) n — k)"

k=0
30. P(E|E U F)=P(E|F(E U F))P(FIE U F)
+ P(E|FS(E U F))P(F'|E U F)

Using

F(EEUF)=F and F(EU F)=FE

glVCS

P(E\E U F) = P(E|\F)P(F|E U F)+P(E|EF°)P(F|E U F)
= P(E|F)P(FIE U F)+P(F’|E U F)
= P(E|F)P(FIE U F)+P(E|F)P(F°|E U F)
= P(E|F)

31. P(A U B)=P(A U BJA)P(A)+P(A U BJA®)P(A°)
=1(6) + .1(4) =
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Random Variables

Example
Ia

When an experiment is performed, we are frequently interested mainly in some func-
tion of the outcome as opposed to the actual outcome itself. For instance, in tossing
dice, we are often interested in the sum of the two dice and are not really concerned
about the separate values of each die. That is, we may be interested in knowing
that the sum is 7 and may not be concerned over whether the actual outcome was
(1,6),(2,95), (3,4), (4,3), (5, 2), or (6,1). Also, in flipping a coin, we may be inter-
ested in the total number of heads that occur and not care at all about the actual
head-tail sequence that results. These quantities of interest, or, more formally, these
real-valued functions defined on the sample space, are known as random variables.

Because the value of a random variable is determined by the outcome of the
experiment, we may assign probabilities to the possible values of the random
variable.

Suppose that our experiment consists of tossing 3 fair coins. If we let Y denote the
number of heads that appear, then Y is a random variable taking on one of the values
0,1, 2, and 3 with respective probabilities

P{Y =0} = P(T,T,T)} = %

3
P{Y'__ 1} = P{(T» T,H)’(TaH9 T),(H, T9 T)} = g
PIY =2} = PUCT, H, H), (H, T, H), (H, H, T)} = 3

PIY =3) = P H,H)) = 5

From Chapter 4 of A First Course in Probability, Ninth Edition. Sheldon Ross.
Copyright © 2014 by Pearson Education, Inc. All rights reserved.
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Example
Ib

Example
Ic

Example
1d

Random Variables

Since Y must take on one of the values 0 through 3, we must have

3 3
=P (U{Y = i}) = ZP{Y: i}
i=0

i=0

which, of course, is in accord with the preceding probabilities. ]

A life insurance agent has 2 elderly clients, each of whom has a life insurance policy
that pays $100,000 upon death. Let Y be the event that the younger one dies in the
following year, and let O be the event that the older one dies in the following year.
Assume that Y and O are independent, with respective probabilities P(Y) = .05
and P(O) = .10. If X denotes the total amount of money (in units of $100,000) that
will be paid out this year to any of these clients’ beneficiaries, then X is a random
variable that takes on one of the possible values 0, 1,2 with respective probabilities

P{X =0} = P(Y°O°) = P(Y*)P(O°) = (.95)(.9) = .855
P{X =1} = P(YO®) + P(Y°O) = (.05)(.9) + (.95)(.1) = .140
P{X =2} = P(YO) = (.05)(.1) = .005 u

Four balls are to be randomly selected, without replacement, from an urn that con-
tains 20 balls numbered 1 through 20. If X is the largest numbered ball selected, then
X is a random variable that takes on one of the values 4,5, ...,20. Because each of
the (240) possible selections of 4 of the 20 balls is equally likely, the probability that X
takes on each of its possible values is

)
PX=i}=-5~, i=4,..,20
(2)
This is so because the number of selections that result in X = i is the number of
selections that result in ball numbered i and three of the balls numbered 1 through
i — 1 being selected. As there are (}) (’gl) such selections, the preceding equation
follows.

Suppose now that we want to determine P{X > 10}. One way, of course, is to
just use the preceding to obtain

20 (—1)
P(X > 10} = ZP{X—:}_Z .
i=11 i=11 (2 )

However, a more direct approach for determining P(X > 10) would be to use

@)
PX > 10)=1 - P(X <10} =1 —

6]

where the preceding results because X will be less than or equal to 10 when the 4
balls chosen are among balls numbered 1 through 10. |

Independent trials consisting of the flipping of a coin having probability p of coming
up heads are continually performed until either a head occurs or a total of » flips is
made. If we let X denote the number of times the coin is flipped, then X is a random
variable taking on one of the values 1,2,3,...,n with respective probabilities
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P X=1}=P{H}=p
P{X =2} =P(T,H)} =1 - p)p

P{X =3} =P((T,T,H)} =1 — p)*p

PiX=n - 1}=P(T,T,...,T,H)}=(1 — p)"?p
n-2

PIX =n}=P((T,T,...,T,D,(T,T,..., T,M} =1 - p)*”!

~

n-1 n-1

As a check, note that

P(U{){:i}) =iP{X=i} b

n-1
=Y p —pyt + @ - p!

i=1

_|1-a-p*! _ oyl
——p[———l_(l_p)]+(1 p)

=1-1-p"1+d-p!
=1 | |

Suppose that there are N distinct types of coupons and that each time one obtains
a coupon, it is, independently of previous selections, equally likely to be any one of
the N types. One random variable of interest is 7', the number of coupons that need
to be collected until one obtains a complete set of at least one of each type. Rather
than derive P{T = n} directly, let us start by considering the probability that T is
greater than n. To do so, fix n and define the events Ay, A3,...,An as follows: A;
is the event that no type j coupon is contained among the first n coupons collected,
j=1,...,N. Hence,

N
P(T > n}=P|| 4
j=1
=ZP(A]') - ZZP(AilAfz) + ..
j h<i2
+ DY P4 A A
1<ja<--<Jk
+ (-DNPA14, - Ap)
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Now, A;j will occur if each of the n coupons collected is not of type j. Since each of the
coupons will not be of type j with probability (N — 1)/N, we have, by the assumed
independence of the types of successive coupons,

N - 1"
Py = (57)

Also, the event A;; Aj, will occur if none of the first #n coupons collected is of either
type j; or type j,. Thus, again using independence, we see that

N - 2\"
P(Aj Aj) = (T)

The same reasoning gives

N — k\"
Pty a0 = (V)

and we see that forn > 0,
N — 1\" N N —2\" N N - 3\"
P{T>n}=N(——]V—) _<2)(T> +<3)(T) -
N N 1y
()3

-2 (V) (5 o

i=1

The probability that T equals # can now be obtained from the preceding formula by
the use of

P{T >n - 1}=P{T=n} + P{T > n}

or, equivalently,
P{T=n}=P{T >n - 1} — P{T > n}

Another random variable of interest is the number of distinct types of coupons
that are contained in the first n selections —call this random variable D,,. To compute
P{D, = k}, let us start by fixing attention on a particular set of k distinct types,
and let us then determine the probability that this set constitutes the set of distinct
types obtained in the first z selections. Now, in order for this to be the situation, it is
necessary and sufficient that of the first n coupons obtained,

A: eachis one of these k types
B: each of these k types is represented

Now, each coupon selected will be one of the k types with probability k&/N, so the
probability that A will be valid is (k/N)". Also, given that a coupon is of one of the
k types under consideration, it is easy to see that it is equally likely to be of any one
of these k types. Hence, the conditional probability of B given that A occurs is the
same as the probability that a set of n coupons, each equally likely to be any of k
possible types, contains a complete set of all k types. But this is just the probability
that the number needed to amass a complete set, when choosing among k types, is
less than or equal to » and is thus obtainable from Equation (1.1) with k replacing
N. Thus, we have
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k n
P(A) = (N)

k-1
k—i\" .
P(BIA) =1 — Z(’:)( - t) (—1)itl

i=1

Finally, as there are ( IZ ) possible choices for the set of k types, we arrive at

P(D, = k} = (IZ ) P(AB)

(BB e

i=1

Remark Since one must collect at least N coupons to obtain a complete set, it
follows that P{T > n} =1ifn < N. Therefore, from Equation (1.1), we obtain the
interesting combinatorial identity that for integers1 = n < N,

N-1 N\ n
2 () (5 v

i=1

which can be written as
N-1 n
B () () v
l N
i=0

or, upon multiplying by (=1)¥N" and lettingj =N — i,

N N )
Z(.)'"(—n!—l:o 1=n<N [ |

j=1 !
For a random variable X, the function F defined by
F(x) = P{X = x} —00 <X <

is called the cumulative distribution function or, more simply, the distribution func-
tion of X. Thus, the distribution function specifies, for all real values x, the probabil-
ity that the random variable is less than or equal to x.

Now, suppose that a = b. Then, because the event {X = a} is contained in the
event {X = b}, it follows that F(a), the probability of the former, is less than or equal
to F(b), the probability of the latter. In other words, F(x) is a nondecreasing function
of x. Other general properties of the distribution function are given in Section 10.

2 Discrete Random Variables

A random variable that can take on at most a countable number of possible values is
said to be discrete. For a discrete random variable X, we define the probability mass
function p(a) of X by

p@ = P{X =a}

127



128

Random Variables

The probability mass function p(a) is positive for at most a countable number of
values of a. That is, if X must assume one of the values x{,x»,..., then

px) =0 fori=1,2,...
p(x) =0 for all other values of x

Since X must take on one of the values x;, we have

> pey=1
i=1

It is often instructive to present the probability mass function in a graphical
format by plotting p(x;) on the y-axis against x; on the x-axis. For instance, if the
probability mass function of X is

1 1 1
p0) = 7 p(l) = 5 p2) = 1

we can represent this function graphically as shown in Figure 1. Similarly, a graph

of the probability mass function of the random variable representing the sum when
two dice are rolled looks like Figure 2.

p(x)

N

-

g Ble R

K=
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2a

Random Variables

The probability mass function of a random variable X is given by p(i) = cAi/i!,
i= 0,1,2,..., where A is some positive value. Find (a) P{X = 0} and (b) P{X > 2}.

o0
Solution Since }_ p(i) = 1, we have
i=0

m .
which, because e* = Y_ x'/i!, implies that
i=0
c*=1 or c=e*

Hence,
(a) PX =0} =e*20/0! = ¢
(b) PIX >2}=1 - P X =2}=1- P X=0} - P(X=1)

— P{X =2}
AZe—2
=1 — e _ e _ 2~ __
=1—¢ Ae 5 -
The cumulative distribution function F can be expressed in terms of p(a) by
F@y= Y p®)
alx=<a
If X is a discrete random variable whose possible values are x1,x2,x3,. .., Where

X1 < x2 < x3 < ---, then the distribution function F of X is a step function. That
is, the value of F is constant in the intervals (x;_1,x;) and then takes a step (or jump)
of size p(x;) at x;. For instance, if X has a probability mass function given by

pr() = % r@@= % r@3 = % p@) = %
then its cumulative distribution function is
0a<l1
% l1=a<?2
Fa@y={22=a<3
% 3=a<4
1 4=a

This function is depicted graphically in Figure 3.

F(a)
1L —
i —_—
3L —_—
4
1
3 —
| I 1 | a
1 2 3 4
Figure 3
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Note that the size of the step at any of the values 1, 2, 3, and 4 is equal to the
probability that X assumes that particular value.

3 Expected Value

One of the most important concepts in probability theory is that of the expectation
of a random variable. If X is a discrete random variable having a probability mass
function p(x), then the expectation, or the expected value, of X, denoted by E[X], is
defined by

E[X]= ) xpw)

x:p(x)>0

In words, the expected value of X is a weighted average of the possible values that
X can take on, each value being weighted by the probability that X assumes it. For
instance, on the one hand, if the probability mass function of X is given by

1
p(0) = 3 =p1)

E[X]=0(%) + 1(%):%

is just the ordinary average of the two possible values, 0 and 1, that X can assume.
On the other hand, if

then

1 2
p0) = 3 p() = 3

an=a(3) 1(3)3

is a weighted average of the two possible values 0 and 1, where the value 1 is given
twice as much weight as the value 0, since p(1) = 2p(0).

- Another motivation of the definition of expectation is provided by the frequency
interpretation of probabilities. This interpretation (partially justified by the strong
law of large numbers) assumes that if an infinite sequence of independent replica-
tions of an experiment is performed, then, for any event E, the proportion of time
that E occurs will be P(E). Now, consider a random variable X that must take on
one of the values x1,x3,...x, with respective probabilities p(x1),p(x2),...,pxn),
and think of X as representing our winnings in a single game of chance. That is,
with probability p(x;), we shall win x; units i = 1,2,...,n. By the frequency inter-
pretation, if we play this game continually, then the proportion of time that we win
x; will be p(x;). Since this is true for all i,i = 1,2,...,n, it follows that our average
winnings per game will be

then

> xip(xi) = E[X]

i=1

Example Find E[X], where X is the outcome when we roll a fair die.

3a Solution Since p(1) =p(2) = p(3) = p(4) = p(5) = p(6) = (1-), we obtain

an-1(3)20) @) Q)50 o)
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We say that ] is an indicator variable for the event A if

I= 1 if A occurs
~ ] 0 if A€ occurs

Find E[I].
Solution Since p(1) = P(A),p(0) =1 — P(A), we have
E[I] = P(A)

That is, the expected value of the indicator variable for the event A is equal to the
probability that A occurs. ]

A contestant on a quiz show is presented with two questions, questions 1 and 2,
which he is to attempt to answer in some order he chooses. If he decides to try
question i first, then he will be allowed to go on to question j, j # i, only if his answer
to question i is correct. If his initial answer is incorrect, he is not allowed to answer
the other question. The contestant is to receive V; dollars if he answers question
i correctly, i = 1,2. For instance, he will receive V1 + V3, dollars if he answers
both questions correctly. If the probability that he knows the answer to question i is
P;,i = 1,2, which question should he attempt to answer first so as to maximize his
expected winnings? Assume that the events E;,i = 1,2, that he knows the answer to
question i are independent events.

Solution On the one hand, if he attempts to answer question 1 first, then he will win
0 with probability 1 — Py
Vi with probability P1(1 — P»)
Vi + V, with probability P P,

Hence, his expected winnings in this case will be

ViPi(1 — Py) + (V1 + V)PP,

On the other hand, if he attempts to answer question 2 first, his expected winnings
will be

VaP(1 — P1) + (Vi + V)PP
Therefore, it is better to try question 1 first if
ViPi(1 — Pp) = VoP(1 — Py)

or, equivalently, if
Viby _ VaPy
1-P 1-P

For example, if he is 60 percent certain of answering question 1, worth $200, correctly
and he is 80 percent certain of answering question 2, worth $100, correctly, then he
should attempt to answer question 2 first because

(100)(.8) (200)(.6)

400 = > > 7

= 300 |

131



132

Example
3d

Random Variables

A school class of 120 students is driven in 3 buses to a symphonic performance. There
are 36 students in one of the buses, 40 in another, and 44 in the third bus. When the
buses arrive, one of the 120 students is randomly chosen. Let X denote the number
of students on the bus of that randomly chosen student, and find E[X].

Solution Since the randomly chosen student is equally likely to be any of the 120
students, it follows that

PIX =36) = -0 PlX =40} = -0 pix = a4y = 4
120 120 120

Hence,

3 1 11 1208
= — - — | = — =40.
E[X] 36(10) +4O(3) +44(30) 0 0.2667

However, the average number of students on a bus is 120/3 = 40, showing that
the expected number of students on the bus of a randomly chosen student is larger
than the average number of students on a bus. This is a general phenomenon, and
it occurs because the more students there are on a bus, the more likely it is that
a randomly chosen student would have been on that bus. As a result, buses with
many students are given more weight than those with fewer students. (See Self-Test
Problem 4) [ |

Remark The probability concept of expectation is analogous to the physical con-
cept of the center of gravity of a distribution of mass. Consider a discrete random
variable X having probability mass function p(x;), i = 1. If we now imagine a weight-
less rod in which weights with mass p(x;),i = 1, are located at the points x;,i = 1
(see Figure 4), then the point at which the rod would be in balance is known as the
center of gravity. For those readers acquainted with elementary statics, it is now a
simple matter to show that this point is at E[X]. [ |

. ) e O

-1 0 Al 2

p(-1)=.10, p(0)=25, p(1)=.30, p(2)=.35

A = center of gravity =.9

Figure 4

4 Expectation of a Function of a Random Variable

Suppose that we are given a discrete random variable along with its probability mass
function and that we want to compute the expected value of some function of X, say,
g(X). How can we accomplish this? One way is as follows: Since g(X) is itself a dis-
crete random variable, it has a probability mass function, which can be determined
from the probability mass function of X. Once we have determined the probability
mass function of g(X), we can compute E[g(X)] by using the definition of expected
value.

o prove this, we must show that the sum of the torques tending to turn the point around E[X] is equal to 0.
That is, we must show that 0 = }"(x; — E[X])p(x;), which is immediate.
i .
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Let X denote a random variable that takes on any of the values —1, 0, and 1 with
respective probabilities

PIX=-1}=2 P{X=0=.5 PX=1}=
Compute E[X?].
Solution Let Y = X2. Then the probability mass function of Y is given by
P{Y =0} = P{X 0} =
Hence,
E[X?]) = E[Y] = 1(.5) + 0(.5) =
Note that
5= E[X?] # (E[X])? = .01 [ |

Although the preceding procedure will always enable us to compute the expec-
ted value of any function of X from a knowledge of the probability mass function
of X, there is another way of thinking about E[g(X)]: Since g(X) will equal g(x)
whenever X is equal to x, it seems reasonable that E[g(X)] should just be a weighted
average of the values g(x), with g(x) being weighted by the probability that X is equal
to x. That is, the following result is quite intuitive.

If X is a discrete random variable that takes on one of the values x;,i = 1, with
respective probabilities p(x;), then, for any real-valued function g,

E[g(X)] = Zg(x,)p(xz)

Before proving this proposition, let us check that it is in accord with the results
of Example 4a. Applying it to that example yields

E{X?%} = (=1)2(2) + 0%(.5) + 12(.3)
=1(2 + .3) + 0(.5)
=5

which is in agreement with the result given in Example 4a.

Proof of Proposition 4.1 The proof of Proposition 4.1 proceeds, as in the preceding
verification, by grouping together all the terms in ) g(x;)p(x;) having the same value

i
of g(x;). Specifically, suppose that y;,j = 1, represent the different values of g(x;),i =
1. Then, grouping all the g(x;) having the same value gives

D ogxp) =) Y gx)px)

jiglxi)=yj

=Y > yip&)

j o igkx)=y;

—Zy, > px)

ig(x))=y;j

=) yiP(X) = yj}
j

= E[g(X)] O
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A product that is sold seasonally yields a net profit of b dollars for each unit sold and
a net loss of £ dollars for each unit left unsold when the season ends. The number
of units of the product that are ordered at a specific department store during any
season is a random variable having probability mass function p(i),i = 0. If the store
must stock this product in advance, determine the number of units the store should
stock so as to maximize its expected profit.

Solution Let X denote the number of units ordered. If s units are stocked, then the
profit—call it P(s)—can be expressed as

P =bX — (s — X)¢ fX =5
=sb ifX > s

Hence, the expected profit equals

E[P(s)] =) _[bi — (s — Delp®) + Y sbp(i)
i=0 i=s+1

=b+0) ipl) — sty p@) +sb|[1 - p@)
=0 i=0 i=0

=0+ 0) ipi) — (b + £)s)_ pG) + sb
i=0 i=0

=sb + (b + £ (i — 9)pQ)

i=0

To determine the optimum value of s, let us investigate what happens to the profit
when we increase s by 1 unit. By substitution, we see that the expected profit in this
case is given by

s+1
E[PGs + D]=bs + D) + (b + 0 Y (i —s — Lp®
i=0

=bs+ 1+ ®+0)Y (—s— pG)
=0
Therefore,
E[P(s + 1)] — E[P()] =b — (b + &) )_p()
i=0

Thus, stocking s + 1 units will be better than stocking s units whenever

s b
g"(’) <33 (4.1)

Because the left-hand side of Equation (4.1) is increasing in s while the right-hand
side is constant, the inequality will be satisfied for all values of s < s*, where s* is the
largest value of s satisfying Equation (4.1). Since "

E[P0)] < --- < E[P(s")] < E[P(s* + 1)] > E[P(s* + 2)] > ---

it follows that stocking s* + 1 items will lead to a maximum expected profit. |
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Utility
Suppose that you must choose one of two possible actions, each of which can result
in any of n consequences, denoted as Cj,...,C,. Suppose that if the first action is

chosen, then consequence C; will result with probability p;,i = 1,...,n, whereas
if the second action is chosen, then consequence C; will result with probability g;,
n

n

i=1,...,n,where ) p; = Y g; = 1. The following approach can be used to deter-
mine which action ltol chootseg Start by assigning numerical values to the different
consequences. First, identify the least and the most desirable consequences—call
them c and C, respectively; give consequence ¢ the value 0 and give C the value 1.
Now consider any of the other n — 2 consequences, say, C;. To value this conse-
quence, imagine that you are given the choice between either receiving C; or taking
part in a random experiment that either earns you consequence C with probabil-
ity u or consequence ¢ with probability 1 — u. Clearly, your choice will depend on
the value of u. On the one hand, if # = 1, then the experiment is certain to result
in consequence C, and since C is the most desirable consequence, you will prefer
participating in the experiment to receiving C;. On the other hand, if u = 0, then
the experiment will result in the least desirable consequence —namely, c—so in this
case you will prefer the consequence C; to participating in the experiment. Now,
as u decreases from 1 to 0, it seems reasonable that your choice will at some point
switch from participating in the experiment to the certain return of C;, and at that
critical switch point you will be indifferent between the two alternatives. Take that
indifference probability u as the value of the consequence C;. In other words, the
value of C; is that probability u such that you are indifferent between either receiv-
ing the consequence C; or taking part in an experiment that returns consequence C
with probability u or consequence ¢ with probability 1 — u. We call this indifference
probability the utility of the consequence C;, and we designate it as u(C;).

To determine which action is superior, we need to evaluate each one. Consider
the first action, which results in consequence C; with probability p;,i = 1,...,n. We
can think of the result of this action as being determined by a two-stage experiment.
In the first stage, one of the values 1,...,n is chosen according to the probabilities
D1,.--,Pn; if value i is chosen, you receive consequence C;. However, since C; is
equivalent to obtaining consequence C with probability u(C;) or consequence ¢ with
probability 1 — u(C;), it follows that the result of the two-stage experiment is equiv-
alent to an experiment in which either consequence C or consequence c is obtained,
with C being obtained with probability

Y pau(Cy)

i=1

Similarly, the result of choosing the second action is equivalent to taking part in an
experiment in which either consequence C or consequence c is obtained, with C
being obtained with probability

> qu(C)
i=1

Since C is preferable to c, it follows that the first action is preferable to the
second action if

Y pu(C) > Y qu(C)

i=1 i=1
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In other words, the worth of an action can be measured by the expected value of the
utility of its consequence, and the action with the largest expected utility is the most
preferable. |

A simple logical consequence of Proposition 4.1 is Corollary 4.1.
If a and b are constants, then

E[aX + b] =aE[X] + b
Proof

ElaX + b= ) (ax + b)p(x)

x:p(x)>0
=a Y xp@®+b Y pk
x:p(x)>0 xp(x)>0
=aE[X] + b a

The expected value of a random variable X, E[X], is also referred to as the mean
or the first moment of X. The quantity E[X"],n = 1, is called the nth moment of X.
By Proposition 4.1, we note that

EX"= ) 2pw)

x:p(x)>0

Given a random variable X along with its distribution function F, it would be
extremely useful if we were able to summarize the essential properties of F by
certain suitably defined measures. One such measure would be E[X], the expected
value of X. However, although E[X] yields the weighted average of the possible
values of X, it does not tell us anything about the variation, or spread, of these val-
ues. For instance, although random variables W, Y, and Z having probability mass
functions determined by

W =0 with probability 1
y I—l with probability 1

+1 with probability

4 _ | 100 with probability 5
| +100 with probabiity 1

all have the same expectation—namely, 0—there is a much greater spread in the
possible values of Y than in those of W (which is a constant) and in the possible
values of Z than in those of Y.

Because we expect X to take on values around its mean E[X], it would appear
that a reasonable way of measuring the possible variation of X would be to look
at how far apart X would be from its mean, on the average. One possible way to
measure this variation would be to consider the quantity E[|X — ul], where p =
E[X]. However, it turns out to be mathematically inconvenient to deal with this
quantity, so a more tractable quantity is usually considered —namely, the expectation
of the square of the difference between X and its mean. We thus have the following
definition.
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Definition ,
If X is a random variable with mean u, then the variance of X, denoted by
Var(X), is defined by

Var(X) = E[(X — w)?]

An alternative formula for Var(X) is derived as follows:
Var(X) = E[(X — p)?]
=) (& — wpE)
X

=) (% — 2ux + pPp(x)

= Zx’-p(x) - 2u pr(x) + u"ZP(X)

= E[X?] — 2u? + 12
= E[x?] — u?
That is,

Var(X) = E[X?] — (E[X])?

In words, the variance of X is equal to the expected value of X2 minus the square
of its expected value. In practice, this formula frequently offers the easiest way to
compute Var(X).

Calculate Var(X) if X represents the outcome when a fair die is rolled.

Solution It was shown in Example 3a that E[X] = % Also,
1 1 1 1 1 1
21_12(2 2(1 2 (1 2 (2 2 (2 2 (L
1= (g) +2(5) +# (5) + 2 (5) + 2 (5) + ¢ ()
1
={=-)©1
(5)on

Hence, 91 7\? 35
VarlX) = ¢ = (z) v

A useful identity is that for any constants @ and b,
Var(aX + b) = a*Var(X)

To prove this equality, let © = E[X] and note from Corollary 4.1 that E[aX + b] =
apn + b. Therefore,
Var(aX + b) = E[(aX + b — au — b)?]
= E[a®(X — )]
= E[(X - wY
= a®Var(X)
Remarks (a) Analogous to the means being the center of gravity of a distribution

of mass, the variance represents, in the terminology of mechanics, the moment of
inertia.
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(b) The square root of the Var(X) is called the standard deviation of X, and we
denote it by SD(X). That is,

SD(X) = y/Var(X)

Discrete random variables are often classified according to their probability
mass functions. In the next few sections, we consider some of the more common

types.

6 The Bernoulli and Binomial Random Variables

Suppose that a trial, or an experiment, whose outcome can be classified as either a
success or a failure is performed. If we let X = 1 when the outcome is a success and
X = 0 when it is a failure, then the probability mass function of X is given by

6.1

p)=PX=1}=p ©D
where p, 0 = p = 1, is the probability that the trial is a success.

A random variable X is said to be a Bernoulli random variable (after the Swiss
mathematician James Bernoulli) if its probability mass function is given by Equa-
tions (6.1) for some p € (0,1).

Suppose now that n independent trials, each of which results in a success with
probability p or in a failure with probability 1 — p, are to be performed. If X repre-
sents the number of successes that occur in the » trials, then X is said to be a binomial
random variable with parameters (n, p). Thus, a Bernoulli random variable is just a
binomial random variable with parameters (1, p).

The probability mass function of a binomial random variable having parameters
(n, p) is given by

P = (’; )p"(l - i=01,.n (62)

The validity of Equation (6.2) may be verified by first noting that the probability of
any particular sequence of n outcomes containing i successes and n — i failures is, by
the assumed independence of trials, p*(1 — p)"~'. Equation (6.2) then follows, since

there are (7) different sequences of the n outcomes leading to i successes and

n — i failures. This perhaps can most easily be seen by noting that there are
different choices of the i trials that result in successes. For instance, if n = 4,i = 2,

4 . . . .
then there are 2] = 6 ways in which the four trials can result in two successes,

namely, any of the outcomes (s, s, f, f), (s, f, 5, ), (s, f. > 8), (f, 8,8, ), (f, s, f, 5), and
(f,f, s, s), where the outcome (s, s, f, f) means, for instance, that the first two trials
are successes and the last two failures. Since each of these outcomes has probability
p*>(1 — p)? of occurring, the desired probability of two successes in the four trials

(4
5|, P - p.
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Note that, by the binomial theorem, the probabilities sum to 1; that is,

n

Zp(i)=Z('})p"<1 -p)" =+ A -pI"=1

i=0 i=0
Five fair coins are flipped. If the outcomes are assumed independent, find the prob-
ability mass function of the number of heads obtained.

Solution If we let X equal the number of heads (successes) that appear, then X
is a binomial random variable with parameters (n =5p= %) Hence, by Equa-

r=0=(3) () () -
riw=n=(3) () () -2

PX=2) = (3) (%)2 (%)3 -5 -

== (3)6) ) -5
ror=a=(3) () () -

=a=(3) () ) -5 .

It is known that screws produced by a certain company will be defective with prob-
ability .01, independently of one another. The company sells the screws in packages
of 10 and offers a money-back guarantee that at most 1 of the 10 screws is defective.
What proportion of packages sold must the company replace?

Solution If X is the number of defective screws in a package, then X is a binomial
random variable with parameters (10, .01). Hence, the probability that a package
will have to be replaced is

1-PX=0-PX=1=1- (1(? ) (0109910 — (110> (0D1(.99)°
~ .004
Thus, only .4 percent of the packages will have to be replaced. |

The following gambling game, known as the wheel of fortune (or chuck-a-luck), is
quite popular at many carnivals and gambling casinos: A player bets on one of the
numbers 1 through 6. Three dice are then rolled, and if the number bet by the player
appears i times, i = 1,2, 3, then the player wins i units; if the number bet by the player
does not appear on any of the dice, then the player loses 1 unit. Is this game fair to
the player? (Actually, the game is played by spinning a wheel that comes to rest on
a slot labeled by three of the numbers 1 through 6, but this variant is mathematically
equivalent to the dice version.)
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Solution If we assume that the dice are fair and act independently of one another,
then the number of times that the number bet appears is a binomial random variable

with parameters (3,1 ). Hence, letting X denote the player’s winnings in the game,
p 6 g play g

we have
roe===(3) ) ) -
== () ) ©) -
== (3) () () -
re==(3) 6) () -3

In order to determine whether or not this is a fair game for the player, let us
calculate E[X]. From the preceding probabilities, we obtain
—125 + 75 + 30 + 3

Ex] = 216

-17

T 216
Hence, in the long run, the player will lose 17 units per every 216 games he plays. B

In the next example, we consider the simplest form of the theory of inheritance
as developed by Gregor Mendel (1822-1884).

Suppose that a particular trait (such as eye color or left-handedness) of a person is
classified on the basis of one pair of genes, and suppose also that d represents a domi-
nant gene and r a recessive gene. Thus, a person with dd genes is purely dominant,
one with rr is purely recessive, and one with rd is hybrid. The purely dominant and
the hybrid individuals are alike in appearance. Children receive 1 gene from each
parent. If, with respect to a particular trait, 2 hybrid parents have a total of 4 children,
what is the probability that 3 of the 4 children have the outward appearance of the
dominant gene?

Pure yellow Pure green

Hybrid Hybrid

Yellow hybrid Pure yellow Hybrid Hybrid Pure green
(a) (b)

Figure 5 (a) Crossing pure yellow seeds with pure green seeds; (b) Crossing hybrid
first-generation seeds. .
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The preceding Figure 5a and b shows what can happen when hybrid yellow (domi-
nant) and green (recessive) seeds are crossed.

Solution If we assume that each child is equally likely to inherit either of 2 genes
from each parent, the probabilities that the child of 2 hybrid parents will have dd,
rr, and rd pairs of genes are, respectively, ;1{, ;1{, and % Hence, since an offspring will
have the outward appearance of the dominant gene if its gene pair is either dd or rd,
it follows that the number of such children is binomially distributed with parameters

(4, %) Thus, the desired probability is

()6 6)-Z .

Consider a jury trial in which it takes 8 of the 12 jurors to convict the defendant;
that is, in order for the defendant to be convicted, at least 8 of the jurors must vote
him guilty. If we assume that jurors act independently and that whether or not the
defendant is guilty, each makes the right decision with probability 6, what is the
probability that the jury renders a correct decision?

Solution The problem, as stated, is incapable of solution, for there is not yet enough
information. For instance, if the defendant is innocent, the probability of the jury
rendering a correct decision is

12
Z (112 ) 9!(1 _ 9)12—i

i=5

whereas, if he is guilty, the probability of a correct decision is

12
Z ( 1l2 ) 91(1 _ 0)12—1

i=8

Therefore, if @ represents the probability that the defendant is guilty, then, by condi-
tioning on whether or not he is guilty, we obtain the probability that the jury renders
a correct decision:

12 12
aZ(1i2>0i(1 - 4 1 - a)Z(liz)Oi(l — g1z ]

i=8 =5

A communication system consists of n components, each of which will, indepen-
dently, function with probability p. The total system will be able to operate effec-
tively if at least one-half of its components function.

(a) For what values of p is a 5-component system more likely to operate effectively
than a 3-component system?

(b) In general, when is a (2k + 1)-component system better than a 2k — 1)-
component system?

Solution (a) Because the number of functioning components is a binomial random
variable with parameters (n, p), it follows that the probability that a 5-component
system will be effective is

(g)ﬁ(l -p’ + (Z)p“(l -p+7p
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whereas the corresponding probability for a 3-component system is

(g)pz(l -p+p

Hence, the 5-component system is better if

10p°1 - p)? + 5p* - p) + p° > 3p* - p) + p°
which reduces to
3p — D’Qp - 1) > 0
or N 1
p=>3

(b) In general, a system with 2k + 1 components will be better than one with
2k — 1 components if (and only if) p > % To prove this, consider a system of 2k + 1
components and let X denote the number of the first 2k — 1 that function. Then

P41 (effective) = P{IX = k + 1} + PIX =k}(1 — (1 — p)?)
+ P(X =k — 1}p?
which follows because the (2k + 1)-component system will be effective if either
G X=k+1;
(ii) X = k and at least one of the remaining 2 components function; or
(ili) X =k — 1 and both of the next 2 components function.

Since

Py (effective) = P{X = k}
=P(X=k} + PIX=k + 1}

we obtain

Py q(effective) — Pop_q (effective)
=P X=k — 1}p* = (1 — p)’P(X =k}

—(E 1) a2 — - P ) ok - pyet!
k 1 k

1

6.1 Properties of Binomial Random Variables

We will now examine the properties of a binomial random variable with parameters
n and p. To begin, let us compute its expected value and variance. To begin, note that

Elx¥]=} i (’} )p"a -

i=0

— Zlk (':)pl(l _ p)n—i

i=1
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Using the identity

gives

n
x—1fn -1\ ;. —i
E[Xk]=npzl:lk l(i 1 )pl 1(1 _P)n i
=
n—1 _ i by letting
=np) G+ ¥ (” : 1),,1(1 -p" =i
j=0 !
= npE[(Y + D*]
where Y is a binomial random variable with parameters n — 1, p. Setting k = 1 in

the preceding equation yields
E[X]=np

That is, the expected number of successes that occur in » independent trials when
each is a success with probability p is equal to np. Setting k = 2 in the preced-
ing equation and using the preceding formula for the expected value of a binomial
random variable yields

E[X?] = npE[Y + 1]
=np[(n — Dp + 1]
Since E[X] = np, we obtain
Var(X) = E[X?] — (E[X])®

=np[(n — Dp + 1] — (wp)’

=np(l — p)
Summing up, we have shown the following:

If X is a binomial random variable with parameters » and p, then
E[X]=np
Var(X) =np(1 — p)

The following proposition details how the binomial probability mass function
first increases and then decreases.

If X is a binomial random variable with parameters (n, p), where 0 < p < 1, then
as k goes from O to n, P{X = k} first increases monotonically and then decreases
monotonically, reaching its largest value when k is the largest integer less than or
equal to (n + 1)p.

Proof We prove the proposition by considering P{X = k}/P{X = k — 1} and deter-
mining for what values of k it is greater or less than 1. Now,

n!

k n—k
PX=k _ w—om? P
PX=k -1} n! 1 e
n—k+ DIk — 1)!pk - p
_(n - k+ p
T k(1 - p)
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1024 X p(k)

252

210

120

45
10

10
Figure 6 Graph of p(k) = (V) (%)

Hence, P{X = k} = P{X =k — 1} if and only if
n—k+Dp=k(1 - p)

or, equivalently, if and only if
k=m+ 1p

and the proposition is proved. d

As an illustration of Proposition 6.1, consider Figure 6, the graph of the proba-
bility mass function of a binomial random variable with parameters (10, %).

In a US. presidential election, the candidate who gains the maximum number of
votes in a state is awarded the total number of electoral college votes allocated to
that state. The number of electoral college votes of a given state is roughly propor-
tional to the population of that state —that is, a state with population n has roughly
nc electoral votes. (Actually, it is closer to nc + 2, as a state is given an electoral
vote for each member it has in the House of Representatives, with the number of
such representatives being roughly proportional to the population of the state, and
one electoral college vote for each of its two senators.) Let us determine the average
power of a citizen in a state of size » in a close presidential election, where, by aver-
age power in a close election, we mean that a voter in a state of size n = 2k + 1 will be
decisive if the other n — 1 voters split their votes evenly between the two candidates.
(We are assuming here that z is odd, but the case where »n is even is quite similar.)
Because the election is close, we shall suppose that each of the othern — 1 = 2k
voters acts independently and is equally likely to vote for either candidate. Hence,
the probability that a voter in a state of size n = 2k + 1 will make a difference to
the outcome is the same as the probability that 2k tosses of a fair coin land heads
and tails an equal number of times. That is,

P{voter in state of size 2k + 1 makes a difference}
3 2% 1 k 1 k
T\ k 2 2
@
T k122
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To approximate the preceding equality, we make use of Stirling’s approximation,
which says that for k large,
k! ~ k¥12¢7k /25

where we say that ay ~ by when the ratio ay /by approaches 1 as k approaches oc.
Hence, it follows that

P{voter in state of size 2k + 1 makes a difference}
(2k)2k+1 /2 e—2k 27 1

~ KAk Q)22 Jkm

Because such a voter (if he or she makes a difference) will affect nc electoral votes,
the expected number of electoral votes a voter in a state of size n will affect—or the
voter’s average power—is given by
average power = ncP{makes a difference}
nc

nw/2

=cy/2n/n

Thus, the average power of a voter in a state of size n is proportional to the square
root of n, showing that in presidential elections, voters in large states have more
power than do those in smaller states. |

~

g

6.2 Computing the Binomial Distribution Function

Suppose that X is binomial with parameters (n, p). The key to computing its distri-
bution function

i
, n _ ,
P{Xst}=kz(:)(k>pk(1—p)”k i=0,1,...,n
is to utilize the following relationship between P{X = k + 1} and P{X = k}, which
was established in the proof of Proposition 6.1:

PX=k+1)=—2 "—k

T3 TPX = k) (6.3)

Let X be a binomial random variable with parameters n = 6, p = .4. Then, starting
with P{X = 0} = (.6)° and recursively employing Equation (6.3), we obtain

P{X =0} = (.6)° ~ .0467

46

PIX=1)= EIP{X = 0} = .1866
5

PiX=2)= %EP{X =1} ~ 3110

P{X =3}= %gP{X =2} ~ 2765

P X =4} = %?—‘P{X =3} = .1382
42
P X =5}= -6--5-P{X =4} =~ .0369
41
P{X =6} = EEP{X =5} = .0041 [ |
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A computer program that utilizes the recursion (6.3) to compute the binomial
distribution function is easily written. To compute P{X = i}, the program should
first compute P{X = i} and then use the recursion to successively compute P{X =
i — 1},P{X =i — 2}, and so on.

Historical note

Independent trials having a common probability of success p were first stud-
ied by the Swiss mathematician Jacques Bernoulli (1654-1705). In his book Ars
Conjectandi (The Art of Conjecturing), published by his nephew Nicholas eight
years after his death in 1713, Bernoulli showed that if the number of such trials
were large, then the proportion of them that were successes would be close to p
with a probability near 1.

Jacques Bernoulli was from the first generation of the most famous mathe-
matical family of all time. Altogether, there were between 8 and 12 Bernoullis,
spread over three generations, who made fundamental contributions to proba-
bility, statistics, and mathematics. One difficulty in knowing their exact number
is the fact that several had the same name. (For example, two of the sons of
Jacques’s brother Jean were named Jacques and Jean.) Another difficulty is that
several of the Bernoullis were known by different names in different places.
Our Jacques (sometimes written Jaques) was, for instance, also known as Jakob
(sometimes written Jacob) and as James Bernoulli. But whatever their num-
ber, their influence and output were prodigious. Like the Bachs of music, the
Bernoullis of mathematics were a family for the ages!

Example If X is a binomial random variable with parameters n = 100 and p = .75, find
6i P{X =70} and P{X = 70}.

Solution A binomial calculator can be used to obtain the following solutions:

Binomial Distribution

Enter Value For p Start
Enter Value For n

Enter Value For i|70 Quit

Probability (Number of Successes = i) = .04575381
Probability (Number of Successes < = i) = .14954105
Figure 7

The Poisson Random Variable

A random variable X that takes on one of the values 0,1, 2, ... is said to be a Poisson
random variable with parameter A if, for some A > 0,
i

A
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Equation (7.1) defines a probability mass function, since

Yo =ety T =ete =1

i=0 i=0
The Poisson probability distribution was introduced by Siméon Denis Poisson in a
book he wrote regarding the application of probability theory to lawsuits, criminal
trials, and the like. This book, published in 1837, was entitled Recherches sur la prob-
abilité des jugements en matiére criminelle et en matiére civile (Investigations into the
Probability of Verdicts in Criminal and Civil Matters).

The Poisson random variable has a tremendous range of applications in diverse
areas because it may be used as an approximation for a binomial random variable
with parameters (n, p) when n is large and p is small enough so that np is of moderate
size. To see this, suppose that X is a binomial random variable with parameters (n, p),
and let A = np. Then

PX =i} = P’ = P

T (- ! (E)( n) -

- —i+ HNA - A/
B ni it (1 — A/n)

Now, for n large and A moderate,

n nt n

Hence, for n large and A moderate,

A.i

PX =i} ~ e—*i—'
In other words, if n independent trials, each of which results in a success with
probability p, are performed, then when # is large and p is small enough to make

np moderate, the number of successes occurring is approximately a Poisson random -

variable with parameter A = np. This value A (which will later be shown to equal the
expected number of successes) will usually be determined empirically.

Some examples of random variables that generally obey the Poisson probability
law [that is, they obey Equation (7.1)] are as follows:

1. The number of misprints on a page (or a group of pages) of a book

The number of people in a community who survive to age 100
The number of wrong telephone numbers that are dialed in a day
The number of packages of dog biscuits sold in a particular store each day
The number of customers entering a post office on a given day
The number of vacancies occurring during a year in the federal judicial system

The number of a-particles discharged in a fixed period of time from some
radioactive material

N LN

Each of the preceding and numerous other random variables are approximately
Poisson for the same reason —namely, because of the Poisson approximation to the
binomial. For instance, we can suppose that there is a small probability p that each
letter typed on a page will be misprinted. Hence, the number of misprints on a page
will be approximately Poisson with A = np, where # is the number of letters on a
page. Similarly, we can suppose that each person in a community has some small
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probability of reaching age 100. Also, each person entering a store may be thought
of as having some small probability of buying a package of dog biscuits, and so on.

Suppose that the number of typographical errors on a single page of this book has a
Poisson distribution with parameter A = % Calculate the probability that there is at
least one error on this page.

Solution Letting X denote the number of errors on this page, we have

PX=1=1-PX=0=1- ¢~ 393 [ ]

Suppose that the probability that an item produced by a certain machine will be
defective is .1. Find the probability that a sample of 10 items will contain at most 1
defective item.

Solution The desired probability is (1(? ) (129 + 110 (D9 = .7361,

whereas the Poisson approximation yields the value e™! 4 e~! ~ .7358.

Consider an experiment that consists of counting the number of « particles given
off in a 1-second interval by 1 gram of radioactive material. If we know from past
experience that on the average, 3.2 such « particles are given off, what is a good
approximation to the probability that no more than 2 « particles will appear?

Solution If we think of the gram of radioactive material as consisting of a large
number n of atoms, each of which has probability of 3.2/n of disintegrating and send-
ing off an « particle during the second considered, then we see that to a very close
approximation, the number of & particles given off will be a Poisson random variable
with parameter A = 3.2. Hence, the desired probability is

2
P{X =2} = e 32 + 3.2¢732 + (322) e—32

~ 3799 | |

Compute the expected value and variance of the Poisson random variable with
parameter A; this random variable approximates a binomial random variable with
parameters n and p when n is large, p is small, and > = np. Since such a binomial
random variable has expected value np = A and variance np(1 — p) = A(1 — p) = A
(since p is small), it would seem that both the expected value and the variance of a
Poisson random variable would equal its parameter ». We now verify this result:

2, ie Al
E[X] = Z il
i=0 :
IR S |
e\
=A —_—
Z @-1n!

i=1

o .

N by lettin
— 3 p—A A y g
=he ng j=i-1
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Thus, the expected value of a Poisson random variable X is indeed equal to its
parameter A. To determine its variance, we first compute E[X?]:

) o0 2 —A'A.l
ElX7) = Z il
i=0 ’
o ie——lli—l

=*Z(i_1)!

Z g+ 1)6_)‘)»’ by letting

= j=i -1
—Aqj R —Aqjf
]e A e N
=X Z j! + Z j!
j=0 j=0
=AA + 1)

where the final equality follows because the first sum is the expected value of a
Poisson random variable with parameter A and the second is the sum of the proba-
bilities of this random variable. Therefore, since we have shown that E[X] = A, we
obtain

Var(X) = E[X*] — (E[X])?
=A

Hence, the expected value and variance of a Poisson random variable are both
equal to its parameter A.

We have shown that the Poisson distribution with parameter np is a very good
approximation to the distribution of the number of successes in n independent trials
when each trial has probability p of being a success, provided that » is large and p
small. In fact, it remains a good approximation even when the trials are not inde-
pendent, provided that their dependence is weak. For instance, consider a matching
problem in which n men randomly select hats from a set consisting of one hat from

each person. From the point of view of the number of men who select their own .

hat, we may regard the random selection as the result of n trials where we say that
trial i is a success if person i selects his own hat, i = 1,...,n. Defining the events
E,i=1,...,nby

E; = {trial i is a success}

it is easy to see that
1 1 .
P{E;} = ’—1 and P{EllE]} = ;l—-:-—l-, ] * i

Thus, we see that although the events E;,i = 1,...,n are not independent, their
dependence, for large n, appears to be weak. Because of this, it seems reasonable to
expect that the number of successes will approximately have a Poisson distribution
with parametern X 1/n = 1.

For a second illustration of the strength of the Poisson approximation when the
trials are weakly dependent, let us consider an example, suppose that each of #n peo-
ple is equally likely to have any of the 365 days of the year as his or her birthday,
and the problem is to determine the probability that a set of # independent people
all have different birthdays.
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We can approximate the probability by using the Poisson approximation as fol-
lows: Imagine that we have a trial for each of the '21 pairs of individuals i and
Jj»i # j, and say that trial i, j is a success if persons i and j have the same birthday.

If we let E;; denote the event that trial i, j is a success, then, whereas the '21

events E;;,1 < i < j < n, are not independent (see Theoretical Exercise 21), their
dependence appears to be rather weak. (Indeed, these events are even pairwise
independent, in that any 2 of the events E;; and Ey are independent—again, see
Theoretical Exercise 21). Since P(E;j) = 1/365, it is reasonable to suppose that the
number of successes should approximately have a Poisson distribution with mean

( '21 ) / 365 = n(n — 1)/730. Therefore,

P{no 2 people have the same birthday} = P{0 successes}

—-nn - 1)
~ e"p{ 730 }

To determine the smallest integer n for which this probability is less than %, note that

—nn — 1 1
exp[_%)—)_} < —

N

is equivalent to

exp{-’-’-g%—oj} =2

Taking logarithms of both sides, we obtain

n(n — 1) = 730log2
~ 505.997

which yields the solution n = 23.

Suppose now that we wanted the probability that among the n people, no 3 of
them have their birthday on the same day. Whereas this now becomes a difficult
combinatorial problem, it is a simple matter to obtain a good approximation. To

n
3
j < k = n, and call the i, j, k trial a success if persons i, j, and k all have their birthday
on the same day. As before, we can then conclude that the number of successes is
approximately a Poisson random variable with parameter

n . . n 1\?
( 3 ) P{i,j, k have the same birthday} = ( 3 ) (E)

begin, imagine that we have a trial for each of the triplets i, j, k, where 1 <i <

R )
T 6 X (3652
Hence,
. —-n(n — H(n - 2)
P ~
{no 3 have the same birthday} ’ exp { 799350
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This probability will be less than % when n is such that
nn — 1)(n — 2) = 799350log2 ~ 554067.1

which is equivalent to n = 84. Thus, the approximate probability that at least 3 people
in a group of size 84 or larger will have the same birthday exceeds %

For the number of events to occur to approximately have a Poisson distribution,
it is not essential that all the events have the same probability of occurrence, but
only that all of these probabilities be small. The following is referred to as the Pois-
son paradigm.

Poisson Paradigm. Consider n events, with p; equal to the probability that
event i occurs, i = 1,...,n. If all the p; are “small” and the trials are either inde-
pendent or at most “weakly dependent,” then the number of these events that occur
approximately has a Poisson distribution with mean Y 7. ; p;.

Our next example not only makes use of the Poisson paradigm, but also illus-
trates a variety of the techniques we have studied so far.

Length of the longest run

~

A coin is flipped n times. Assuming that the flips are independent, with each one
coming up heads with probability p, what is the probability that there is a string of k
consecutive heads?

Solution We will first use the Poisson paradigm to approximate this probability.
Now, iffori=1,...,n — k + 1, we let H; denote the event that flipsi,i + 1,...,i +
k — 1 all land on heads, then the desired probability is that at least one of the events
H; occur. Because H; is the event that starting with flip i, the next k flips all land
on heads, it follows that P(H;) = pk. Thus, when p" is small, we might think that
the number of the H; that occur should have an approximate Poisson distribution.
However, such is not the case, because, although the events all have small proba-
bilities, some of their dependencies are too great for the Poisson distribution to be
a good approximation. For instance, because the conditional probability that flips
2,...,k + 1 are all heads given that flips 1,.. ., k are all heads is equal to the proba-
bility that flip k + 1 is a head, it follows that

P(H3|Hy) =p

which is far greater than the unconditional probability of H,.

The trick that enables us to use a Poisson approximation is to note that there
will be a string of k consecutive heads either if there is such a string that is imme-
diately followed by a tail or if the final k flips all land on heads. Consequently, for
i=1,...,n — k,let E; be the event that flipsi,...,i + k — 1 are all heads and flip
i + kisatail; also, let E, ;1 be the event that flipsn — k + 1,...,n are all heads.
Note that

P(E)=p*Q1 - p), i=n—k
P(Ep—j11) = p*
Thus, when p* is small, each of the events E; has a small probability of occurring.
Moreover, for i # j, if the events E; and E;j refer to nonoverlapping sequences of flips,

then P(E;|Ej) = P(E)); if they refer to overlapping sequences, then P(E;|Ej) = 0.
Hence, in both cases, the conditional probabilities are close to the unconditional
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ones, indicating that N, the number of the events E; that occur, should have an
approximate Poisson distribution with mean

n—k+1
E[Nl= Y P®E)=@n — kp*d - p) + p*

i=1
Because there will not be a run of k heads if (and only if) N = 0, thus the preceding
gives
P(no head strings of length k) = P(N = 0) = exp{—(n — k)pk(l - p) — pk}

If we let L, denote the largest number of consecutive heads in the » flips, then,
because L, will be less than k if (and only if) there are no head strings of length %,
the preceding equation can be written as

P{L, < k} ~ exp{—(n — k)p*(1 — p) — p¥}

Now, let us suppose that the coin being flipped is fair; that is, suppose that p = 1/2.
Then the preceding gives

n—k+2 n
P{L, < k} %exp[—-—-%—l——] zexp{—-zk—_i_l]

k-2
where the final approximation supposes that e2*T ~ 1 (that is, that ;—‘E';—Zf =~ 0). Let
j = log, n, and assume that j is an integer. For k =j + i,

n n 1

Consequently,
P{L, < j + i} ~ exp{—(1/2)"""}

which implies that

PlLpn=j+iy=P{Lp <j+i+1 — P{L, <j+ i}
~ exp{—(1/2)"*?} — exp{—(1/2)""}

For instance,
P{L, <j -3} ~e*= 018
PL,=j—3}~e? —e*~.1170
PlLp=j—2}~e ! — e2~ 2325
PL,=j— 1} =e 12 — ¢l ~ 2387

PL,=j} ~e /% — ¢ 12 = 1723

PlLn=j+ 1}~ e 18 — ¢4~ 1037
PLp=j + 2}~ e /16 _ ¢71/8 & 0569
PlLy=j + 3} ~ e 13 — ¢71/16 » 0298
PL,=j+ 4} ~1— e ~ 0308

Thus, we observe the rather interesting fact that no matter how large n is, the length

of the longest run of heads in a sequence of n flips of a fair coin will be within 2 of
log,(n) — 1 with a probability approximately equal to .86.
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We now derive an exact expression for the probability that there is a string of
k consecutive heads when a coin that lands on heads with probability p is flipped
n times. With the events E;,i = 1,...,n — k + 1, as defined earlier, and with L,
denoting, as before, the length of the longest run of heads,

P(L, = k) = P(there is a string of k consecutive heads) = P(U§’=’lk+1 E)

The inclusion—exclusion identity for the probability of a union can be written as

n—k+1
P E)= ) (=)™ Y P(Ey - Ep)
r=1 iy <<y

Let S; denote the set of flip numbers to which the event E; refers. (So, for instance,
S1 ={1,...,k + 1}.) Now, consider one of the r-way intersection probabilities that
does not include the event E, ;1. That is, consider P(E;; - - - E;,) where iy < --- <
ir < n — k + 1. On the one hand, if there is any overlap in the sets S;;,...,S;,
then this probability is 0. On the other hand, if there is no overlap, then the events
E;,...,E, are independent. Therefore,

~

‘ L_J)0 if there is any overlap in S;;,...,S;,
P(E; ---E;) = [ p™*@1 — p)y’, if there is no overlap
We must now determine the number of different choicesof iy <--- <, <n—k+1
for which there is no overlap in the sets Sj,,...,S;,. To do so, note first that each
of the S,~j, j=1,...,r, refer to k + 1 flips, so, without any overlap, they together
refer to r(k + 1) flips. Now consider any permutation of r identical letters a and
of n — r(k + 1) identical letters b. Interpret the number of b’s before the first a
as the number of flips before S;;, the number of b’s between the first and second
a as the number of flips between S;, and S;,, and so on, with the number of b’s
after the final a representing the number of flips after S;,. Because there are ("7" k)
permutations of r letters a and of n — r(k + 1) letters b, with every such permuta-
tion corresponding (in a one-to-one fashion) to a different nonoverlapping choice, it
follows that

~ rk
> PE,--E)= (n , ’ )p”‘(l -py

ij<--<ip<n—k+1
We must now consider r-way intersection probabilities of the form
P(Ej, --- Ei,_ Epn_k41),

where iy < -+ < i,y < n — k + 1. Now, this probability will equal O if there
is any overlap in S;,,...,Si_,,Sn—k; if there is no overlap, then the events of the
intersection will be independent, so

P(E;, -+ E;_ Ept11) = [P*( = p~p* =pF@ - py!

By a similar argument as before, the number of nonoverlapping sets S;;,...,S;_;,
Sp—k will equal the number of permutations of r — 1 letters a (one for each of the
sets S;;,...,8;,_;)andofn — (r — )(k + 1) — k=n — rk — (r — 1) letters b (one
for each of the trials that are not part of any of S, ..., S;,_,,Sn—k+1). Since there are
("r:’lk) permutations of r — 1lettersaand of n — rk — (r — 1) letters b, we have
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— rk

n
Z P(E;; - E;, Ep_k+1) = (r 1 )Pk’(l -prt

i <..<lp_y<n—k+1

Putting it all together yields the exact expression, namely,

n—k+1 _ _
T
r=1

where we utilize the convention that (']") =0ifm < j.

From a computational point of view, a more efficient method for computing the
desired probability than the use of the preceding identity is to derive a set of recur-
sive equations. To do so, let A, be the event that there is a string of k consecutive
heads in a sequence of n flips of a fair coin, and let P, = P(A,). We will derive a
set of recursive equations for P, by conditioning on when the first tail appears. For
j =1,...,k, let F; be the event that the first tail appears on flip j, and let H be the
event that the first k flips are all heads. Because the events Fi,. .., Fg, H are mutually
exclusive and exhaustive (that is, exactly one of these events must occur), we have

k
P(An) =) P(An|F)P(F)) + P(An|H)P(H)
j=1
Now, given that the first tail appears on flip j, where j < k, it follows that those j
flips are wasted as far as obtaining a string of k heads in a row; thus, the conditional

probability of this event is the probability that such a string will occur among the
remaining n — j flips. Therefore,

P(An|Fy) = Py

Because P(A,|H) = 1, the preceding equation gives

Py = P(A,)
k
=) _PnjP(F) + P(H)
j=1
k .
=Y Pujp/d = p) + pt
j=1

Starting with P; = 0,j < k, and Py = p", we can use the latter formula to recur-
sively compute Pj1, Pry2, and so on, up to P,. For instance, suppose we want the
probability that there is a run of 2 consecutive heads when a fair coin is flipped 4
times. Then, with k = 2, we have P; = 0, P, = (1/2)?. Because, when p = 1/2, the
recursion becomes

k
Py=Y Pnj(1/2y + (1/2)F
j=1
we obtain
Py =Py(1/2) + P1(1/2)* + (1/2)* =3/8

and
Py=P3(1/2) + Pa(1/2* + (1/2)* =1/2
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which is clearly true because there are 8 outcomes that result in a string of 2 consecu-
tive heads: hhhh, hhht, hhth, hthh, thhh, hhtt, thht, and tthh. Each of these outcomes
occurs with probability 1/16. | |

Another use of the Poisson probability distribution arises in situations where
“events” occur at certain points in time. One example is to designate the occurrence
of an earthquake as an event; another possibility would be for events to correspond
to people entering a particular establishment (bank, post office, gas station, and so
on); and a third possibility is for an event to occur whenever a war starts. Let us
suppose that events are indeed occurring at certain (random) points of time, and let
us assume that for some positive constant A, the following assumptions hold true:

1. The probability that exactly 1 event occurs in a given interval of length 4 is
equal to Ak + o(h), where o(h) stands for any function f(h) for which
hli_r)no f(h)/h = 0. [For instance, f(h) = h? is o(h), whereas f(h) = h is not.]

2. The probability that 2 or more events occur in an interval of length 4 is equal
to o(h).

3. For any integers n, ji, j2,..., jn and any set of » nonoverlapping intervals, if
we define E; to be the event that exactly j; of the events under consideration
occur in the ith of these intervals, then events Eq, E»,. .., E, are independent.

Loosely put, assumptions 1 and 2 state that for small values of A, the probability
that exactly 1 event occurs in an interval of size k equals Ah plus something that is
small compared with h, whereas the probability that 2 or more events occur is small
compared with A. Assumption 3 states that whatever occurs in one interval has no
(probability) effect on what will occur in other, nonoverlapping intervals.

We now show that under assumptions 1,2, and 3, the number of events occurring
in any interval of length ¢ is a Poisson random variable with parameter At. To be
precise, let us call the interval [0, f] and denote the number of events occurring in
that interval by N(¢). To obtain an expression for P{N(¢) = k}, we start by breaking
the interval [0, 7] into n nonoverlapping subintervals, each of length /n (Figure 8).

N~ 4+

Figure 8
Now,

P{N(t) = k} = P{k of the n subintervals contain exactly 1 event
and the other n — k contain 0 events} (7.2)
+ P{N(¢t) = k and at least 1 subinterval contains
2 or more events}

The preceding equation holds because the event on the left side of Equation (7.2),
that is, {N(f) = k}, is clearly equal to the union of the two mutually exclusive events
on the right side of the equation. Letting A and B denote the two mutually exclusive
events on the right side of Equation (7.2), we have
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P(B) = P{at least one subinterval contains 2 or more events}

n
=P (U{ith subinterval contains 2 or more events})
i=1
n
= Z P{ith subinterval contains 2 or more events}
i=1

n
= Z o (é) by assumption 2

i=1

()
=no| -
n
_, o(t/n)
7
Now, in addition, for any ¢,¢/n—0 as n— o0, so o(t/n)/(t/n)—0 as n—o0, by the def-
inition of o(h). Hence,

by Boole’s
inequality

P(B)-»0 as n—>o (7.3)
Moreover, since assumptions 1 and 2 imply that'

P{0 events occur in an interval of length A}
=1— [+ oh) + o(h)]=1 — Ak — o(h)

we see from the independence assumption (number 3) that

P(A) = P{k of the subintervals contain exactly 1 event and the other
n — k contain 0 events}

N k n—k
(1) [E @] - ) - ()]
k n n n n
However, since
n [E + 0 (f)] =At + t[o(t/n)] —>At as n—>00
n n t/n

it follows, by the same argument that verified the Poisson approximation to the bino-
mial, that

Ak
P(A)—-»e’)"% as n—0o (7.4)
Thus, from Equations (7.2), (7.3), and (7.4), by letting n— oo, we obtain
k
PING =k =X o1, (1.5)

Hence, if assumptions 1, 2, and 3 are satisfied, then the number of events occur-
ring in any fixed interval of length ¢ is a Poisson random variable with mean At, and
we say that the events occur in accordance with a Poisson process having rate A. The
value A, which can be shown to equal the rate per unit time at which events occur, is
a constant that must be empirically determined.

TThe sum of two functions, both of which are o(h), is also o(h). This is so because if limy—>of(h)/h =
limp—» ¢ g(h)/h = 0, then limp—>o[f () + g(h)]/h =0.
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The preceding discussion explains why a Poisson random variable is usually a
good approximation for such diverse phenomena as the following:
1. The number of earthquakes occurring during some fixed time span
2. The number of wars per year
3. The number of electrons emitted from a heated cathode during a fixed time
period

4. The number of deaths, in a given period of time, of the policyholders of a life
insurance company

Suppose that earthquakes occur in the western portion of the United States in accor-
dance with assumptions 1, 2, and 3, with A = 2 and with 1 week as the unit of time.
(That is, earthquakes occur in accordance with the three assumptions at a rate of 2
per week.)

(a) Find the probability that at least 3 earthquakes occur during the next 2 weeks.
(b) Find the probability distribution of the time, starting from now, until the next

earthquake.
Solution (a) From Equation (7.5), we have ~
PINQ) = 3} =1-P{N(2) = 0} — P{NQ2) =1} — P{N(Q2) = 2}
42
=1—e* - 4% - Ee“‘

(b) Let X denote the amount of time (in weeks) until the next earthquake.
Because X will be greater than ¢ if and only if no events occur within the next ¢
units of time, we have, from Equation (7.5),

PIX >} =PIN®) =0} =V
so the probability distribution function F of the random variable X is given by

FO=PX<=t=1-PX>t=1-¢™
=1—e_2t .

7.1 Computing the Poisson Distribution Function
If X is Poisson with parameter A, then

PIX=i+1) e+
PX =i} e~ A/l Ti41

(1.6)

Starting with P{X = 0} = e~*, we can use (7.6) to compute successively
P{X =1} = AP{X =0}
A
P(X =2)= EP{X =1}

P{X=i+1}=£—1P{X=i}

We can use a module to compute the Poisson probabilities for Equation (7.6).
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(a) Determine P{X = 90} when X is Poisson with mean 100.
(b) Determine P{Y = 1075} when Y is Poisson with mean 1000.

Solution Using the Poisson calculator of StatCrunch yields the solutions:
(a) P{X = 90} =.17138
(b) P{Y = 1075} = .99095 |

8 Other Discrete Probability Distributions

Example
8a

8.1 The Geometric Random Variable

Suppose that independent trials, each having a probability p,0 < p < 1, of being a
success, are performed until a success occurs. If we let X equal the number of trials
required, then

PX=n=1-p"p n=12,... 8.1)

Equation (8.1) follows because, in order for X to equal n, it is necessary and suffi-
cient that the first n — 1 trials are failures and the nth trial is a success. Equation (8.1)
then follows, since the outcomes of the successive trials are assumed to be indepen-
dent.

Since

S P(X = ) = 1 — o P
;{ n} prg( p) g

it follows that with probability 1, a success will eventually occur. Any random vari-
able X whose probability mass function is given by Equation (8.1) is said to be a
geometric random variable with parameter p.

An urn contains N white and M black balls. Balls are randomly selected, one at a
time, until a black one is obtained. If we assume that each ball selected is replaced
before the next one is drawn, what is the probability that

(a) exactly n draws are needed?

(b) atleast k draws are needed?

Solution If we let X denote the number of draws needed to select a black ball, then
X satisfies Equation (8.1) with p = M/(M + N). Hence,

(a)
P = }_( N )"-1 M MN!
SUE\M+N) MINT M+ Ny
(b)
M 00 N n-1
P{X—k}=M+NnZ=;C(M+N>
- (i) ) - )
“"\M+N)\M+N [ " M+ N
—(M+N)
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Of course, part (b) could have been obtained directly, since the probability that at
least k trials are necessary to obtain a success is equal to the probability that the first
k — 1 trials are all failures. That is, for a geometric random variable,

PX = k=1 - p)*! L
Example  Find the expected value of a geometric random variable.
8b

Solution With g =1 — p, we have
w .
ElX] =Y ig™'p
i=1

m o
= Z(i -1+ 1)q"1p

i=1

© . s .
=>G-Dgp + Y q7p

i=1 i=1
m .
=) jdp + 1
j=0 h
w .
=qy j¢d'p + 1
j=1
=qE[X] + 1
Hence,
pE[X] =1
yielding the result
1
E[X] = -
X1=2

In other words, if independent trials having a common probability p of being suc-
cessful are performed until the first success occurs, then the expected number of
required trials equals 1/p. For instance, the expected number of rolls of a fair die
that it takes to obtain the value 1 is 6. |

Example Find the variance of a geometric random variable.

8c Solution To determine Var(X), let us first compute E[X?]. With g = 1 — p, we have

()
E[XZ] — Z ith—lp
i=1

© .
=) G -1+ 1%

i=1

m . w . w .
=Y G- 1% + ) 26-1gp + > ¢7'p

i=1 i=1 i=1
o0 . o0 .

=) FPap +2> jdp + 1
j=0 j=1

= qE[X?] + 2qE[X] + 1
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Using E[X] = 1/p, the equation for E[X?] yields
2
PE[X?] = ;q +1

Hence,

29q+p _q+1
=

E[X?] =
p p?

giving the result

8.2 The Negative Binomial Random Variable

Suppose that independent trials, each having probability p,0 < p < 1, of being a
success are performed until a total of » successes is accumulated. If we let X equal
the number of trials required, then

P{X:n}:(?:})pr(l—p)n_r n=rr+1,... 82)

Equation (8.2) follows because, in order for the rth success to occur at the nth trial,
there must be r — 1 successes in the first n — 1 trials and the nth trial must be a
success. The probability of the first event is

(: : 11>pr—1(1 _ p)n—r

and the probability of the second is p; thus, by independence, Equation (8.2) is estab-
lished. To verify that a total of r successes must eventually be accumulated, either
we can prove analytically that

ZP{X=n}=Z(',‘I})p’(1 - =1 (83)

n=r n=r

or we can give a probabilistic argument as follows: The number of trials required
to obtain r successes can be expressed as Y1 + Y, + --- + Y,, where Y7 equals
the number of trials required for the first success, Y, the number of additional trials
after the first success until the second success occurs, Y3 the number of additional
trials until the third success, and so on. Because the trials are independent and all
have the same probability of success, it follows that Y, Y>,...,Y; are all geometric

r
random variables. Hence, each is finite with probability 1,s0 )_ Y; must also be finite,
i=1
establishing Equation (8.3).

Any random variable X whose probability mass function is given by
Equation (8.2) is said to be a negative binomial random variable with parameters
(r,p). Note that a geometric random variable is just a negative binomial with param-
eter (1, p).

In the next example, we use the negative binomial to obtain another solution of
the problem of the points.
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If independent trials, each resulting in a success with probability p, are performed,
what is the probability of r successes occurring before m failures?

Solution The solution will be arrived at by noting that r successes will occur before
m failures if and only if the rth success occurs no later than the (r + m — 1) trial.
This follows because if the rth success occurs before or at the (r + m — 1) trial, then
it must have occurred before the mth failure, and conversely. Hence, from Equa-
tion (8.2), the desired probability is

n=r

The Banach match problem

At all times, a pipe-smoking mathematician carries 2 matchboxes—1 in his left-hand
pocket and 1 in his right-hand pocket. Each time he needs a match, he is equally
likely to take it from either pocket. Consider the moment when the mathematician
first discovers that one of his matchboxes is empty. If it is assumed that both match-
boxes initially contained N matches, what is the probability that there are exactly k
matches, k = 0,1,...,N, in the other box?

Solution Let E denote the event that the mathematician first discovers that the
right-hand matchbox is empty and that there are k matches in the left-hand box
at the time. Now, this event will occur if and only if the (N + 1) choice of the right-
hand matchbox is made at the (N + 1 + N — k) trial. Hence, from Equation (8.2)
(withp = %,r: N + l,andn =2N — k + 1), we see that

_ 1 2N—-k+1
PE) = (ZNN k) (E)

Since there is an equal probability that it is the left-hand box that is first discovered
to be empty and there are k matches in the right-hand box at that time, the desired

result is
IN — k\ (1\D*
2P(E) = ( N ) (§> |

Compute the expected value and the variance of a negative binomial random vari-
able with parameters r and p.

Solution We have

o0
_f_ k-1 [ 1 r+1 _ \n—T : n-1 _ n
_ann <r)p a-p since n(r—l)_r(r)

_ by setting
(m _ 1)k—1 (m . 1 )pr+l(1 _ p)m—-(f+1) m=n + 1
1

r+m-—1 n—1
> (,_1)p’<1—p)"-' n
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where Y is a negative binomial random variable with parameters r + 1,p. Setting
k = 1in the preceding equation yields

Hﬂ:é

Setting k = 2 in the equation for E[X*] and using the formula for the expected value
of a negative binomial random variable gives

Emﬁ=£qy—u

(5 )

2
Var(X)=—r-<r+ 1 - 1) - (_r_)
p p p

_rd -p

==

Thus, from Example 8f, if independent trials, each of which is a success with

probability p, are performed, then the expected value and variance of the number
of trials that it takes to amass r successes is 7/p and r(1 — p)/p?, respectively.

Since a geometric random variable is just a negative binomial with parameter

r =1, it follows from the preceding example that the variance of a geometric random

variable with parameter p is equal to (1 — p)/p?, which checks with the result of
Example 8c.

Therefore,

Find the expected value and the variance of the number of times one must throw a
die until the outcome 1 has occurred 4 times.

Solution Since the random variable of interest is a negative binomial with parame-
tersr=4andp = %, it follows that

E[X] =24
()
3

8.3 The Hypergeometric Random Variable

Var(X) = =120 ||

Suppose that a sample of size n is to be chosen randomly (without replacement)
from an urn containing N balls, of which m are white and N — m are black. If we let
X denote the number of white balls selected, then

i n-—i
P{X =i} = i=0,1,...,n 84)
N .
A random variable X whose probability mass function is given by Equation (8.4) for
some values of n, N, m is said to be a hypergeometric random variable.
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Remark Although we have written the hypergeometric probability mass function
with i going from 0 to n, P{X = i} will actually be 0, unless i satisfies the inequalities
n — (N — m) =i < min(n, m). However, Equation (8.4) is always valid because of

our convention that IZ is equal to O when either k < Oorr < k. |

An unknown number, say, N, of animals inhabit a certain region. To obtain some
information about the size of the population, ecologists often perform the follow-
ing experiment: They first catch a number, say, m, of these animals, mark them in
some manner, and release them. After allowing the marked animals time to disperse
throughout the region, a new catch of size, say, n, is made. Let X denote the number
of marked animals in this second capture. If we assume that the population of ani-
mals in the region remained fixed between the time of the two catches and that each
time an animal was caught it was equally likely to be any of the remaining uncaught
animals, it follows that X is a hypergeometric random variable such that

i n—1i
PX =i}= = Pi(N)_
(N)
n

Suppose now that X is observed to equal i. Then, since P;(N) represents the
probability of the observed event when there are actually N animals present in the
region, it would appear that a reasonable estimate of N would be the value of N
that maximizes P;(N). Such an estimate is called a maximum likelihood estimate.
(See Theoretical Exercises 13 and 18 for other examples of this type of estimation
procedure.)

The maximization of P;(N) can be done most simply by first noting that

PNy  (N-—m(N —n)
P(IN—-1 NN-m-—n+1i

Now, the preceding ratio is greater than 1 if and only if
N-m©N-n=NN-m-—n+1i

or, equivalently, if and only if
mn

N=—
i
Thus, P;(N) is first increasing and then decreasing and reaches its maximum value at
the largest integral value not exceeding mn/i. This value is the maximum
likelihood estimate of N. For example, suppose that the initial catch consisted of
m = 50 animals, which are marked and then released. If a subsequent catch consists
of n = 40 animals of which i = 4 are marked, then we would estimate that there are
some 500 animals in the region. (Note that the preceding estimate could also have
been obtained by assuming that the proportion of marked animals in the region,
m/N, is approximately equal to the proportion of marked animals in our second
catch, i/n.) [ |

A purchaser of electrical components buys them in lots of size 10. It is his policy
to inspect 3 components randomly from a lot and to accept the lot only if all 3 are
nondefective. If 30 percent of the lots have 4 defective components and 70 percent
have only 1, what proportion of lots does the purchaser reject?
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Solution Let A denote the event that the purchaser accepts a lot. Now,

P(A) = P(A|lot has 4 defectives)-i% + P(Allothas 1 defective)—l%
4 6 1 9
_\J\) (1) RASVAYS (1)
- 10 10 10 10
3 3

Hence, 46 percent of the lots are rejected. ]

If n balls are randomly chosen without replacement from a set of N balls of
which the fraction p = m/N is white, then the number of white balls selected is
hypergeometric. Now, it would seem that when m and N are large in relation to
n, it shouldn’t make much difference whether the selection is being done with or
without replacement, because, no matter which balls have previously been selected,
when m and N are large, each additional selection will be white with a probability
approximately equal to p. In other words, it seems intuitive that when m and N are
large in relation to n, the probability mass function of X should approximately be
that of a binomial random variable with parameters n and p. To verify this intuition,
note that if X is hypergeometric, then, for i < n,

(e
(%)

_ m! (N — m)! (N — n)!'n!

T m-)IIWN-m—n+i)n -0 N!

_[n\mm -1 m-—-i+1N-mN-m-1
B "\iJNN-1 N-i+1N-iN-i-1

N-m-(n-i-1
N-i-@m-i-1
(n) ; - when p = m/N and m and N are

~
~

large in relation to n and i

Example Determine the expected value and the variance of X, a hypergeometric random vari-
8j able with parameters n, N, and m.

Solution

E[xF =) iP(x =i
i=0

£ (1) (25) /()

Using the identities
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we obtain

ez () (12721
= i m-1 N - —
= () () /(05

_ hm k-1
=5 E[(Y + 1)1

where Y is a hypergeometric random variable with parametersn — 1, N — 1, and
m — 1. Hence, upon setting k = 1, we have

EX] = 2

In words, if n balls are randomly selected from a set of N balls, of which m are white,
then the expected number of white balls selected is nm/N.
Upon setting k = 2 in the equation for E[X*], we obtain

E[X2]=%E[Y + 1] -
_hmm[@n—DHm-1)
_N[ N -1 +1]

where the final equality uses our preceding result to compute the expected value of
the hypergeometric random variable Y.
Because E[X] = nm/N, we can conclude that

_nm[(n — Dm - 1) nm
Var(X)—N[ N —1 +1-W]
Letting p = m/N and using the identity
m-1_ Np—-1_ 1-p
N-1 N-1 P NZ1
shows that
1 —
Var(X) = np[(n — Dp — (n = D _pl + 1 — np]
n—1
=np(1l — 1 - |
np( p)( N_1>

Remark We have shown in Example 8j that if # balls are randomly selected with-
out replacement from a set of N balls, of which the fraction p are white, then the
expected number of white balls chosen is np. In addition, if N is large in relation to
n [so that (N — n)/(N — 1) is approximately equal to 1], then

Var(X) =~ np(1 - p)

In other words, E[X] is the same as when the selection of the balls is done with
replacement (so that the number of white balls is binomial with parameters n
and p), and if the total collection of balls is large, then Var(X) is approximately equal
to what it would be if the selection were done with replacement. This is, of course,
exactly what we would have guessed, given our earlier result that when the number
of balls in the urn is large, the number of white balls chosen approximately has the
mass function of a binomial random variable. , ]
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8.4 The Zeta (or Zipf) Distribution

A random variable is said to have a zeta (sometimes called the Zipf) distribution if
its probability mass function is given by

P{X=k}=FC+-1- k=1,2,...

for some value of @ > 0. Since the sum of the foregoing probabilities must equal 1,

it follows that .
i 1 a+1 B

e-[£6)

k=1 k

The zeta distribution owes its name to the fact that the function

= ) G ¢ )
L(s) = +(2) + 3) ) T

is known in mathematical disciplines as the Riemann zeta function (after the
German mathematician G. F. B. Riemann).

The zeta distribution was used by the Italian economist V. Pareto to describe
the distribution of family incomes in a given country. However, it was G. K. Zipf
who applied zeta distribution to a wide variety of problems in different areas and, in
doing so, popularized its use.

9 Expected Value of Sums of Random Variables

Example
9a

A very important property of expectations is that the expected value of a sum of
random variables is equal to the sum of their expectations. In this section, we will
prove this result under the assumption that the set of possible values of the proba-
bility experiment—that is, the sample space S—is either finite or countably infinite.
Although the result is true without this assumption (and a proof is outlined in the
theoretical exercises), not only will the assumption simplify the argument, but it will
also result in an enlightening proof that will add to our intuition about expectations.
So, for the remainder of this section, suppose that the sample space S is either a finite
or a countably infinite set.

For a random variable X, let X(s) denote the value of X when s € S is the
outcome of the experiment. Now, if X and Y are both random variables, then so
is their sum. That is, Z = X + Y is also a random variable. Moreover, Z(s) =
X(s) + Y(s).

Suppose that the experiment consists of flipping a coin 5 times, with the outcome
being the resulting sequence of heads and tails. Suppose X is the number of heads
in the first 3 flips and Y is the number of heads in the final 2 flips. Let Z =X + Y.
Then, for instance, for the outcome s = (h,t,h,t, h),

X(s)=2
Y(S) =1
Z(s)=X(@) + Y(s5)=3

meaning that the outcome (h, ¢, h, t, h) results in 2 heads in the first three flips, 1 head
in the final two flips, and a total of 3 heads in the five flips. [ |
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Let p(s) = P({s}) be the probability that s is the outcome of the experiment.
Because we can write any event A as the finite or countably infinite union of the
mutually exclusive events {s},s € A, it follows by the axioms of probability that

PA) = " p(s)
seA
When A = S, the preceding equation gives
1= pGs)
seS

Now, let X be a random variable, and consider E[X]. Because X (s) is the value of X
when s is the outcome of the experiment, it seems intuitive that E[X]—the weighted
average of the possible values of X, with each value weighted by the probability that
X assumes that value —should equal a weighted average of the values X(s),s € S,
with X (s) weighted by the probability that s is the outcome of the experiment. We
now prove this intuition.

E[X]=) X(©)p(©
seS =
Proof Suppose that the distinct values of X are x;,i = 1. For each i, let S; be the
event that X is equal to x;. That is, S; = {s : X(s) = x;}. Then,

E[X] =) xP{X =x;
=Y xP(S)

= in ZP(S)

i SGS,‘

=Y "> xp(s)

i seS;

=YY X@s)ps)

i seS;

=Y X(s)p(s)

seS

where the final equality follows because Si,S7,... are mutually exclusive events
whose union is S. 0O

Suppose that two independent flips of a coin that comes up heads with probability p
are made, and let X denote the number of heads obtained. Because

P(X =0)=P¢t,n=(1 - py,
P(X =1) = P(h,t) + P(t,h) =2p(1 — p)
P(X =2) = P(h,h) = p*

it follows from the definition of expected value that

EX]=0-1-p?+1-2p0d-p)+2 -p*=2p
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which agrees with

E[X] =X(h,h)p? + X(h,0p(1 — p) + X(@t,h)A — p)p + X(t,H)1 — p)?
=2p2 +pdl-p+d - pp
=2p ]

We now prove the important and useful result that the expected value of a sum of
random variables is equal to the sum of their expectations.

For random variables X1, X5,...,X,,
n n
E|> Xi| =) E[X]
i=1 i=1
Proof Let Z =) !, X;. Then, by Proposition 9.1,
E[Z) =) Z(s)p(s)

seS
=) (X1(6) + X2(5) + ... + Xn(s)) p(s)
seS
=) " Xip6) + )_XOP6) + ... + ) Xn($)P(s)
seS seS seS
= E[X1] + E[X2] + ... + E[Xp] n

Find the expected value of the sum obtained when # fair dice are rolled.
Solution Let X be the sum. We will compute E[X] by using the representation
n
X= ZX,’
i=1

where X; is the upturned value on die i. Because X; is equally likely to be any of the
values from 1 to 6, it follows that

6

E[X]] =) i1/6)=21/6=1/2
i=1
which yields the result
n n
EX]=E|) X;|=) E[X]=35n n
i=1 i=1

Find the expected total number of successes that result from # trials when trial i is a
success with probability p;, i = 1,...,n.

Solution Letting
x. — | L iftrialiisasuccess
') 0, iftrialiis a failure

we have the representation

X=Zn:Xi

i=1,
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Consequently, n n
E[X]=) E[X]=) pi
i=1 i=1

Note that this result does not require that the trials be independent. It includes as
a special case the expected value of a binomial random variable, which assumes
independent trials and all p; = p, and thus has mean np. It also gives the expected
value of a hypergeometric random variable representing the number of white balls
selected when n balls are randomly selected, without replacement, from an urn of
N balls of which m are white. We can interpret the hypergeometric as representing
the number of successes in # trials, where trial i is said to be a success if the ith ball
selected is white. Because the ith ball selected is equally likely to be any of the N balls
and thus has probability m/N of being white, it follows that the hypergeometric is
the number of successes in # trials in which each trial is a success with probability
p = m/N. Hence, even though these hypergeometric trials are dependent, it follows
from the result of Example 9d that the expected value of the hypergeometric is np =
nm/N. |

Derive an expression for the variance of the number of successful trials in Example
9d, and apply it to obtain the variance of a binomial random variable with parame-
ters n and p, and of a hypergeometric random variable equal to the number of white
balls chosen when #n balls are randomly chosen from an urn containing N balls of
which m are white.

Solution Letting X be the number of successful trials, and using the same represen-
tation for X —namely, X = ) ; X;—as in the previous example, we have

EX}|=E (f:xi) ix,-
i=1 j=1

n
=E|) X (X,- + ZX,)
| =1 J#i ]

[ n n ]
=E|Y X7+ ) > XX

| i=1 i=1 i

=) EIX71 + )Y E[XiX]

i=1 i=1 j#i

i=1 j#i

where the final equation used that Xi2 = X;. However, because the possible values
of both X; and Xj are 0 or 1, it follows that

1, fX;=1,X;=1

XiXj = [ 0, otherwise

Hence,

E[X;Xj] = P{X; = 1,'Xj = 1} = P(trials i and j are successes)
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Now, on the one hand, if X is binomial, then, for i # j, the results of trial i and trial j
are independent, with each being a success with probability p. Therefore,

EX;Xj]=p%, i#j

Together with Equation (9.1), the preceding equation shows that for a binomial ran-
dom variable X,

E[X*]=np + n(n — 1)p*
implying that
Var(X) = E[X?] — (E[X])* =np + n(n — 1)p* — n*p? =np(1 - p)

On the other hand, if X is hypergeometric, then, given that a white ball is chosen
in trial i, each of the other N — 1 balls, of which m — 1 are white, is equally likely
to be the jth ball chosen, for j # i. Consequently, for j # i,

mm—1
P{Xi=1»Xj=1}=P{Xi=1}P{Xj=1|Xi=1}=I—V'N_—l
Using p; = m/N, we now obtain, from Equation (9.1),
1
E[X?] = — _pmm- 2
[X°] +nn -1 55—
Consequently,
Var) =™ 4 nn — =1 _ (mmY’
- N NN -1 N
which, as shown in Example §j, can be simplified to yield
n—1
Var(X) =np(1 — 1 -
ar(X) = np( p)( N—l)
- where p =m/N. ]

10 Properties of the Cumulative Distribution Function

For the distribution function F of X, F(b) denotes the probability that the random
variable X takes on a value that is less than or equal to b. Following are some prop-
erties of the cumulative distribution function (c.d.f.) F:

1. Fis a nondecreasing function; that is,if a < b, then F(a) < F(b).
2. lim F()=1.
b—>o0
3. lim F(b)=0.
b—> —oc0
4

. Fis right continuous. That is, for any b and any decreasing sequence b,,n = 1,
that converges to b,nlir)n00 F(by) = F(b).

Property 1 follows, as was noted in Section 1, because, for a < b, the event
{X = a} is contained in the event {X = b} and so cannot have a larger probability.
Properties 2, 3, and 4 all follow from the continuity property of probabilities. For
instance, to prove property 2, we note that if b, increases to oo, then the events
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{X = by},n = 1, are increasing events whose union is the event {X < oo}. Hence,
by the continuity property of probabilities,

lim P{X < b,}=P{X <o} =1
n—»o00

which proves property 2.

The proof of property 3 is similar and is left as an exercise. To prove property 4,
we note that if b, decreases to b, then {X =< b,},n = 1, are decreasing events whose
intersection is {X = b}. The continuity property then, yields

lim P(X = by} = P(X = b}

which verifies property 4.
All probability questions about X can be answered in terms of the c.d.f, F. For
example,

~

Pla < X =b}=F@®b) — F(a foralla <b (10.1)

This equation can best be seen to hold if we write the event {X = b} as the union of
the mutually exclusive events {X =< a} and {¢ < X = b}. That s,

(X =b}={X=a}lU{a < X =0»>)

SO

P{X <b}=P(X < a} + Pla < X < b}

which establishes Equation (10.1).
If we want to compute the probability that X is strictly less than b, we can again
apply the continuity property to obtain

P{X < b}=P(lim {Xsb - l])
n—>o0o n
. 1
= lim P(XSb——)
n—>oo n

lim F(b - 1)
n—>o00 n

Note that P{X < b} does not necessarily equal F(b), since F(b) also includes the
probability that X equals b.

171



Random Variables

Example The distribution function of the random variable X is given by
10a

x <0

0=x<1

Fix) = 1=x<2

_- W NIR O

- 2=x<3

L1 3=x

A graph of F(x) is presented in Figure 9. Compute (a) P{X < 3}, (b) P{X =1}, (c)
P{X > 1},and (d) P2 < X = 4}.

1\ 11
Solution (a) P{X < 3}=limP{X =3 - 1} =limF(3 - —) =—
n n n n

12
(b) PIX=1}=P{X =1} — P[X < 1}
) 1 2 1 1
=FQ1) —ll’llnF(l - ;)—5 ~3%%
C
© P[X>%}=1—P{XS%}
1\ 3
=1—F(§)=z
(d) P2 < X <4)=F@) — FQ)
~ 1
- [
F(x)
1L —_
ny o e ——
12
2 —
3
1
2
| 1 1 X
1 2 3

Figure 9 Graph of F(x).
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Summary

A real-valued function defined on the outcome of a prob-
ability experiment is called a random variable.

If X is a random variable, then the function F(x)
defined by

F(x) = P{X = x}

is called the distribution function of X. All probabilities
concerning X can be stated in terms of F.

A random variable whose set of possible values is
either finite or countably infinite is called discrete. If X is a
discrete random variable, then the function

p(x) = P{X = x}

is called the probability mass function of X. Also, the
quantity E[X] defined by

EX]= ) xp®

x:p(x)>0

is called the expected value of X. E[X] is also commonly
called the mean or the expectation of X.
A useful identity states that for a function g,

EgX]= ) gxpw)

x:p(x)>0

The variance of a random variable X, denoted by Var(X),
is defined by

Var(X) = E[(X — E[X])?]

The variance, which is equal to the expected square of
the difference between X and its expected value, is a mea-
sure of the spread of the possible values of X. A useful
identity is ‘

Var(X) = E[X?] — (E[X])?

The quantity «/Var(X) is called the standard deviation
of X.

‘We now note some common types of discrete random
variables. The random variable X whose probability mass
function is given by

pG) = (’,.’)p"a -p" i=0,...,n

is said to be a binomial random variable with parameters n
and p. Such a random variable can be interpreted as being
the number of successes that occur when »n independent
trials, each of which results in a success with probability p,
are performed. Its mean and variance are given by

E[X]=np Var(X)=npl - p)

The random variable X whose probability mass function is
given by
e

- i=0
i!

p(® =

is said to be a Poisson random variable with parameter A.
If a large number of (approximately) independent trials
are performed, each having a small probability of being
successful, then the number of successful trials that result
will have a distribution that is approximately that of a Pois-
son random variable. The mean and variance of a Poisson
random variable are both equal to its parameter A. That is,

E[X] = Var(X) = A

The random variable X whose probability mass function is
given by

PO =p - p! i=12,...

is said to be a geometric random variable with parameter
p- Such a random variable represents the trial number of
the first success when each trial is independently a success
with probability p. Its mean and variance are given by

1-p

Var(X) = 3
p

E[X] = 117

The random variable X whose probability mass function is
given by

p@) = (i - })p’(l -p) iz

is said to be a negative binomial random variable with
parameters r and p. Such a random variable represents the
trial number of the rth success when each trial is indepen-
dently a success with probability p. Its mean and variance
are given by

E[X]= Var(X)= 1(_1_;_1;)
P P

A hypergeometric random variable X with parameters n,
N, and m represents the number of white balls selected
when n balls are randomly chosen from an urn that con-
tains N balls of which m are white. The probability mass
function of this random variable is given by

(D) (=)

i) = | = 0, ceey
p) N i m
n
With p = m/N, its mean and variance are
N-—-n
E[X]=np Var(X)= '17:—1'117(1 - p)
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An important property of the expected value is that the
expected value of a sum of random variables is equal to
the sum of their expected values. That is,

Problems

E [ini| = iE[Xi]
i=1 i=1

1. Two balls are chosen randomly from an urn containing
8 white, 4 black, and 2 orange balls. Suppose that we win
$2 for each black ball selected and we lose $1 for each
white ball selected. Let X denote our winnings. What are
the possible values of X, and what are the probabilities
associated with each value?

2. Two fair dice are rolled. Let X equal the
product of the 2 dice. Compute P{X =i} fori=1,...,36.

3. Three dice are rolled. By assuming that each of the
6> = 216 possible outcomes is equally likely, find the
probabilities attached to the possible values that X can
take on, where X is the sum of the 3 dice.

4. Five men and 5 women are ranked according to their
scores on an examination. Assume that no two scores are
alike and all 10! possible rankings are equally likely. Let
X denote the highest ranking achieved by a woman. (For
instance, X = 1 if the top-ranked person is female.) Find
PX=ili=12,3,..., 8,9, 10.

5. Let X represent the difference between the number of
heads and the number of tails obtained when a coin is
tossed n times. What are the possible values of X?

6. In Problem 5, for n = 3, if the coin is assumed fair, what
are the probabilities associated with the values that X can
take on?

7. Suppose that a die is rolled twice. What are the possible
values that the following random variables can take on:

(a) the maximum value to appear in the two rolls;
(b) the minimum value to appear in the two rolls;
(¢) the sum of the two rolls;

(d) the value of the first roll minus the value of the second
roll?

8. If the die in Problem 7 is assumed fair, calculate the
probabilities associated with the random variables in parts
(a) through (d).

9. Repeat Example 1c when the balls are selected with
replacement.

10. Let X be the winnings of a gambler. Let p(i) = P(X =
i) and suppose that

p©) = 1/3;p(1) = p(-1) = 13/55;
P2 = p(=2) = 1/11; p(3) = p(~3) = 1/165

Compute the conditional probability that the gambler
wins i, i = 1,2,3, given that he wins a positive amount.

11. (a) An integer N is to be selected at random from
{1,2,...,(10)%} in the sense that each integer has the same
probability of being selected. What is the probability that
N will be divisible by 3? by 5? by 7? by 15? by 105? How
would your answer change if (10)3 is replaced by (10)% as
k became larger and larger?

(b) An important function in number theory—one whose
properties can be shown to be related to what is proba-
bly the most important unsolved problem of mathemat-
ics, the Riemann hypothesis—is the Mobius function w(n),
defined for all positive integral values n as follows: Factor n
into its prime factors. If there is a repeated prime factor, as
in12=2-2-30r49 =7 - 7, then u(n) is defined to equal
0. Now let N be chosen at random from {1,2,... (10)%},
where k is large. Determine P{u(N) = 0} as k—oo.

Hint: To compute P{u(N) # 0}, use the identity

ﬁpg—l_ 3) (8 [(24\ (48 _ 6
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where P; is the ith-smallest prime. (The number 1 is not a

prime.)

12. In the game of Two-Finger Morra, 2 players show 1
or 2 fingers and simultaneously guess the number of fin-
gers their opponent will show. If only one of the players
guesses correctly, he wins an amount (in dollars) equal to
the sum of the fingers shown by him and his opponent. If
both players guess correctly or if neither guesses correctly,
then no money is exchanged. Consider a specified player,
and denote by X the amount of money he wins in a single
game of Two-Finger Morra.

(a) If each player acts independently of the other, and if
each player makes his choice of the number of fingers he
will hold up and the number he will guess that his oppo-
nent will hold up in such a way that each of the 4 possibili-
ties is equally likely, what are the possible values of X and
what are their associated probabilities?

(b) Suppose that each player acts independently of the
other. If each player decides to hold up the same num-
ber of fingers that he guesses his opponent will hold up,
and if each player is equally likely to hold up 1 or 2 fin-
gers, what are the possible values of X and their associated
probabilities?

13. A salesman has scheduled two appointments to sell
encyclopedias. His first appointment will lead to a sale with
probability .3, and his second will lead independently to a
sale with probability .6. Any sale made is equally likely to
be either for the deluxe model, which costs $1000, or the
standard model, which costs $500. Determine the proba-
bility mass function of X, the total dollar value of all sales.
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14. Five distinct numbers are randomly distributed to play-
ers numbered 1 through 5. Whenever two players compare
their numbers, the one with the higher one is declared the
winner. Initially, players 1 and 2 compare their numbers;
the winner then compares her number with that of player
3, and so on. Let X denote the number of times player 1 is
a winner. Find P{X =i},i=0,1,2,3,4.

15. The National Basketball Association (NBA) draft lot-
tery involves the 11 teams that had the worst won-lost
records during the year. A total of 66 balls are placed in
an urn. Each of these balls is inscribed with the name of a
team: Eleven have the name of the team with the worst
record, 10 have the name of the team with the second-
worst record, 9 have the name of the team with the third-
worst record, and so on (with 1 ball having the name of
the team with the 11th-worst record). A ball is then cho-
sen at random, and the team whose name is on the ball is
given the first pick in the draft of players about to enter the
league. Another ball is then chosen, and if it “belongs” to
a team different from the one that received the first draft
pick, then the team to which it belongs receives the second
draft pick. (If the ball belongs to the team receiving the
first pick, then it is discarded and another one is chosen;
this continues until the ball of another team is chosen.)
Finally, another ball is chosen, and the team named on the
ball (provided that it is different from the previous two
teams) receives the third draft pick. The remaining draft
picks 4 through 11 are then awarded to the 8 teams that
did not “win the lottery,” in inverse order of their won-lost
records. For instance, if the team with the worst record did
not receive any of the 3 lottery picks, then that team would
receive the fourth draft pick. Let X denote the draft pick
of the team with the worst record. Find the probability
mass function of X.

16. In Problem 15, let team number 1 be the team with
the worst record, let team number 2 be the team with the
second-worst record, and so on. Let Y; denote the team
that gets draft pick number i. (Thus, Y1 = 3 if the first ball
chosen belongs to team number 3.) Find the probability
mass function of (a) Y1, (b) Y>, and (c) Y3.

17. Suppose that the distribution function of X is given by

0 b <0

% 0=<b<1
F(b) = %+3%i 1<b<2

11

o 2<b<3

1 3<b

() Find P(X = i},i =1,2,3.
(b) Find P(3 < X < 3}

18. Four independent flips of a fair coin are made. Let X
denote the number of heads obtained. Plot the probability
mass function of the random variable X — 2.

19. If the distribution function of X is given by

0 b <0

% 0=<b <1

g 1=b<?2
F(b)=44

9

I 3=<bh <35

1 b =35

calculate the probability mass function of X.

20. A gambling book recommends the following “winning
strategy” for the game of roulette: Bet $1 on red. If red
appears (which has probability %—g), then take the $1 profit
and quit. If red does not appear and you lose this bet
(which has probability 23 of occurring), make additional
$1 bets on red on each of the next two spins of the roulette
wheel and then quit. Let X denote your winnings when
you quit.

(a) Find P{X > 0}.

(b) Are you convinced that the strategy is indeed a “win-
ning” strategy? Explain your answer!

(¢) Find E[X].

21. Four buses carrying 148 students from the same school
arrive at a football stadium. The buses carry, respectively,
40, 33, 25, and 50 students. One of the students is randomly
selected. Let X denote the number of students who were
on the bus carrying the randomly selected student. One of
the 4 bus drivers is also randomly selected. Let Y denote
the number of students on her bus.

(a) Which of E[X] or E[Y] do you think is larger? Why?
(b) Compute E[X] and E[Y].

22. Suppose that two teams play a series of games that
ends when one of them has won i games. Suppose that
each game played is, independently, won by team A with
probability p. Find the expected number of games that are
played when (a) i = 2 and (b) i = 3. Also, show in both
cases that this number is maximized when p = %

23. You have $1000, and a certain commodity presently
sells for $2 per ounce. Suppose that after one week the
commodity will sell for either $1 or $4 an ounce, with these
two possibilities being equally likely.

(a) If your objective is to maximize the expected amount
of money that you possess at the end of the week, what
strategy should you employ? .
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(b) If your objective is to maximize the expected amount
of the commodity that you possess at the end of the week,
what strategy should you employ?

24. A and B play the following game: A writes down either
number 1 or number 2, and B must guess which one. If the
number that A has written down is i and B has guessed
correctly, B receives i units from A. If B makes a wrong
guess, B pays % unit to A. If B randomizes his decision
by guessing 1 with probability p and 2 with probability
1 — p, determine his expected gain if (a) A has written
down number 1 and (b) A has written down number 2.

‘What value of p maximizes the minimum possible value
of B’s expected gain, and what is this maximin value?
(Note that B’s expected gain depends not only on p, but
also on what A does.)

Consider now player A. Suppose that she also random-
izes her decision, writing down number 1 with probability
g. What is A’s expected loss if (c) B chooses number 1 and
(d) B chooses number 2?

What value of g minimizes A’s maximum expected loss?
Show that the minimum of A’s maximum expected loss
is equal to the maximum of B’s minimum expected gain.
This result, known as the minimax theorem, was first
established in generality by the mathematician John von
Neumann and is the fundamental result in the mathemati-
cal discipline known as the theory of games. The common
value is called the value of the game to player B.

25. Two coins are to be flipped. The first coin will land on
heads with probability .6, the second with probability .7.
Assume that the results of the flips are independent, and
let X equal the total number of heads that result.

(a) Find P{X = 1}.
(b) Determine E[X].

26. One of the numbers 1 through 10 is randomly cho-
sen. You are to try to guess the number chosen by asking
questions with “yes-no” answers. Compute the expected
number of questions you will need to ask in each of the
following two cases:

(a) Your ith question is to be
1,2,3,4,5,6,7, 8,9, 10.

(b) With each question you try to eliminate one-half of the
remaining numbers, as nearly as possible.

7”0 =

“Is it

27. An insurance company writes a policy to the effect
that an amount of money A must be paid if some event
E occurs within a year. If the company estimates that E
will occur within a year with probability p, what should it
charge the customer in order that its expected profit will
be 10 percent of A?

28. A sample of 3 items is selected at random from a box
containing 20 items of which 4 are defective. Find the
expected number of defective items in the sample.

29. There are two possible causes for a breakdown of a
machine. To check the first possibility would cost C; dol-
lars, and, if that were the cause of the breakdown, the
trouble could be repaired at a cost of R; dollars. Similarly,
there are costs C; and R; associated with the second pos-
sibility. Let p and 1 — p denote, respectively, the probabil-
ities that the breakdown is caused by the first and second
possibilities. Under what conditions on p,C;, R;,i = 1,2,
should we check the first possible cause of breakdown
and then the second, as opposed to reversing the check-
ing order, so as to minimize the expected cost involved in
returning the machine to working order?

Note: If the first check is negative, we must still check the
other possibility.

30. A person tosses a fair coin until a tail appears for the
first time. If the tail appears on the nth flip, the person wins
2" dollars. Let X denote the player’s winnings. Show that
E[X] = +o0. This problem is known as the St. Petersburg
paradox.

(a) Would you be willing to pay $1 million to play this
game once?

(b) Would you be willing to pay $1 million for each game
if you could play for as long as you liked and only had to
settle up when you stopped playing?

31. Each night different meteorologists give us the proba-
bility that it will rain the next day. To judge how well these
people predict, we will score each of them as follows: If a
meteorologist says that it will rain with probability p, then
he or she will receive a score of

1-(@1 - p?
1-p?

if it does rain
if it does not rain

We will then keep track of scores over a certain time span
and conclude that the meteorologist with the highest aver-
age score is the best predictor of weather. Suppose now
that a given meteorologist is aware of our scoring mecha-
nism and wants to maximize his or her expected score. If
this person truly believes that it will rain tomorrow with
probability p*, what value of p should he or she assert so
as to maximize the expected score?

32. To determine whether they have a certain disease, 100
people are to have their blood tested. However, rather
than testing each individual separately, it has been decided
first to place the people into groups of 10. The blood sam-
ples of the 10 people in each group will be pooled and
analyzed together. If the test is negative, one test will suf-
fice for the 10 people, whereas if the test is positive, each
of the 10 people will also be individually tested and, in all,
11 tests will be made on this group. Assume that the prob-
ability that a person has the disease is .1 for all people,
independently of one another, and compute the expected
number of tests necessary for each group. (Note that we
are assuming that the pooled test will be positive if at least
one person in the pool has the disease.)
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33. A newsboy purchases papers at 10 cents and sells them
at 15 cents. However, he is not allowed to return unsold
papers. If his daily demand is a binomial random vari-
able withn = 10,p = %, approximately how many papers
should he purchase so as to maximize his expected profit?

34. In Example 4b, suppose that the department store
incurs an additional cost of ¢ for each unit of unmet
demand. (This type of cost is often referred to as a good-
will cost because the store loses the goodwill of those
customers whose demands it cannot meet.) Compute the
expected profit when the store stocks s units, and deter-
mine the value of s that maximizes the expected profit.

35. A box contains 5 red and 5 blue marbles. Two marbles
are withdrawn randomly. If they are the same color, then
you win $1.10; if they are different colors, then you win
—$1.00. (That is, you lose $1.00.) Calculate

(a) the expected value of the amount you win;
(b) the variance of the amount you win.

36. Consider Problem 22 with i = 2. Find the variance of
the number of games played, and show that this number is
maximized when p = %

37. Find Var(X) and Var(Y) for X and Y as given in Prob-
lem 21.

38. If E[X] =1 and Var(X) =5, find
(@ E[2 + X)%];
(b) Var(4 + 3X).

39. A ball is drawn from an urn containing 3 white and
3 black balls. After the ball is drawn, it is replaced and
another ball is drawn. This process goes on indefinitely.
What is the probability that of the first 4 balls drawn,
exactly 2 are white?

40. On a multiple-choice exam with 3 possible answers for
each of the 5 questions, what is the probability that a stu-
dent will get 4 or more correct answers just by guessing?

41. A man claims to have extrasensory perception. As a
test, a fair coin is flipped 10 times and the man is asked to
predict the outcome in advance. He gets 7 out of 10 cor-
rect. What is the probability that he would have done at
least this well if he did not have ESP?

42. A and B will take the same 10-question examination.
Each question will be answered correctly by A with prob-
ability .7, independently of her results on other questions.
Each question will be answered correctly by B with prob-
ability .4, independently both of her results on the other
questions and on the performance of A.

(a) Find the expected number of questions that are
answered correctly by both A and B.

(b) Find the variance of the number of questions that are
answered correctly by either A or B.

43. A communications channel transmits the digits 0 and
1. However, due to static, the digit transmitted is incor-
rectly received with probability .2. Suppose that we want
to transmit an important message consisting of one binary
digit. To reduce the chance of error, we transmit 00000
instead of 0 and 11111 instead of 1. If the receiver of the
message uses “majority” decoding, what is the probabil-
ity that the message will be wrong when decoded? What
independence assumptions are you making?

44. A satellite system consists of n components and func-
tions on any given day if at least £ of the n compo-
nents function on that day. On a rainy day, each of the
components independently functions with probability p4,
whereas on a dry day, each independently functions with
probability p,. If the probability of rain tomorrow is
o, what is the probability that the satellite system will
function?

45. A student is getting ready to take an important oral
examination and is concerned about the possibility of hav-
ing an “on” day or an “off” day. He figures that if he has
an on day, then each of his examiners will pass him, inde-
pendently of one another, with probability .8, whereas if
he has an off day, this probability will be reduced to .4.
Suppose that the student will pass the examination if a
majority of the examiners pass him. If the student believes
that he is twice as likely to have an off day as he is to have
an on day, should he request an examination with 3 exam-
iners or with 5 examiners?

46. Suppose that it takes at least 9 votes from a 12-member
jury to convict a defendant. Suppose also that the prob-
ability that a juror votes a guilty person innocent is .2,
whereas the probability that the juror votes an innocent
person guilty is .1. If each juror acts independently and if
65 percent of the defendants are guilty, find the probability
that the jury renders a correct decision. What percentage
of defendants is convicted?

47. In some military courts, 9 judges are appointed. How-
ever, both the prosecution and the defense attorneys are
entitled to a peremptory challenge of any judge, in which
case that judge is removed from the case and is not
replaced. A defendant is declared guilty if the majority
of judges cast votes of guilty, and he or she is declared
innocent otherwise. Suppose that when the defendant is,
in fact, guilty, each judge will (independently) vote guilty
with probability .7, whereas when the defendant is, in fact,
innocent, this probability drops to .3.

(a) What is the probability that a guilty defendant is
declared guilty when there are (i) 9, (ii) 8, and (iii) 7
judges?

(b) Repeat part (a) for an innocent defendant.

(¢) If the prosecuting attorney does not exercise the right
to a peremptory challenge of a judge, and if the defense
is limited to at most two such challenges, how many chal-
lenges should the defense attorney make if he or she is 60
percent certain that the client is guilty?
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48. It is known that diskettes produced by a certain com-
pany will be defective with probability .01, independently
of one another. The company sells the diskettes in pack-
ages of size 10 and offers a money-back guarantee that at
most 1 of the 10 diskettes in the package will be defective.
The guarantee is that the customer can return the entire
package of diskettes if he or she finds more than 1 defec-
tive diskette in it. If someone buys 3 packages, what is the
probability that he or she will return exactly 1 of them?

49. When coin 1 is flipped, it lands on heads with prob-
ability .4; when coin 2 is flipped, it lands on heads with
probability .7. One of these coins is randomly chosen and
flipped 10 times.

(a) What is the probability that the coin lands on heads on
exactly 7 of the 10 flips?

(b) Given that the first of these 10 flips lands heads, what
is the conditional probability that exactly 7 of the 10 flips
land on heads?

50. Suppose that a biased coin that lands on heads with
probability p is flipped 10 times. Given that a total of 6
heads results, find the conditional probability that the first
3 outcomes are

(a) h, t, t (meaning that the first flip results in heads, the
second in tails, and the third in tails);

M)t At

51. The expected number of typographical errors on a
page of a certain magazine is .2. What is the probability
that the next page you read contains (a) 0 and (b) 2 or
more typographical errors? Explain your reasoning!

52. The monthly worldwide average number of airplane
crashes of commercial airlines is 3.5. What is the probabil-
ity that there will be -

(a) at least 2 such accidents in the next month,;

(b) at most 1 accident in the next month?
Explain your reasoning!

53. Approximately 80,000 marriages took place in the
state of New York last year. Estimate the probability that
for at least one of these couples,

(a) both partners were born on April 30;

(b) both partners celebrated their birthday on the same
day of the year.
State your assumptions.

54. Suppose that the average number of cars abandoned
weekly on a certain highway is 2.2. Approximate the prob-
ability that there will be

(a) no abandoned cars in the next week;

(b) at least 2 abandoned cars in the next week.

55. A certain typing agency employs 2 typists. The average
number of errors per article is 3 when typed by the first
typist and 4.2 when typed by the second. If your article is

equally likely to be typed by either typist, approximate the
probability that it will have no errors.

56. How many people are needed so that the probability
that at least one of them has the same birthday as you is
greater than %?

57. Suppose that the number of accidents occurring on
a highway each day is a Poisson random variable with
parameter A = 3.

(a) Find the probability that 3 or more accidents occur
today.

(b) Repeat part (a) under the assumption that at least 1
accident occurs today.

58. Compare the Poisson approximation with the correct
binomial probability for the following cases:

(@) P{X =2} whenn=28,p =.1;

(b) P{X =9} whenn =10,p = .95;

(c) P{IX =0} whenn =10,p = .1;

(d) P{IX =4} whenn=9,p = .2.

59. If you buy a lottery ticket in 50 lotteries, in each of
which your chance of winning a prize is ﬁ, what is the
(approximate) probability that you will win a prize

(a) at least once?
(b) exactly once?
(c) at least twice?

60. The number of times that a person contracts a cold in
a given year is a Poisson random variable with parame-
ter A = 5. Suppose that a new wonder drug (based on
large quantities of vitamin C) has just been marketed that
reduces the Poisson parameter to A = 3 for 75 percent of
the population. For the other 25 percent of the population,
the drug has no appreciable effect on colds. If an individ-
ual tries the drug for a year and has 2 colds in that time,
how likely is it that the drug is beneficial for him or her?

61. The probability of being dealt a full house in a hand of
poker is approximately .0014. Find an approximation for
the probability that in 1000 hands of poker, you will be
dealt at least 2 full houses.

62. Consider n independent trials, each of which results
in one of the outcomes 1,...,k with respective probabil-
ities p1,...,Pk, 25‘:1 pi = 1. Show that if all the p; are
small, then the probability that no trial outcome occurs
more than once is approximately equal to exp(—n(n — 1)
>.p2/2).

63. People enter a gambling casino at a rate of 1 every 2
minutes.

(a) What is the probability that no one enters between
12:00 and 12:05?

(b) What is the probability that at least 4 people enter the
casino during that time?
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64. The suicide rate in a certain state is 1 suicide per
100,000 inhabitants per month.

(a) Find the probability that in a city of 400,000 inhabitants
within this state, there will be 8 or more suicides in a given
month.

(b) What is the probability that there will be at least 2
months during the year that will have 8 or more suicides?

(c¢) Counting the present month as month number 1, what
is the probability that the first month to have 8 or more
suicides will be month number i,i = 1?

‘What assumptions are you making?

65. Each of 500 soldiers in an army company indepen-
dently has a certain disease with probability 1/103. This
disease will show up in a blood test, and to facilitate mat-
ters, blood samples from all 500 soldiers are pooled and
tested.

(a) What is the (approximate) probability that the blood
test will be positive (that is, at least one person has the
disease)?

Suppose now that the blood test yields a positive result.

(b) What is the probability, under this circumstance, that
more than one person has the disease?

Now, suppose one of the 500 people is Jones, who knows
that he has the disease.

(¢) What does Jones think is the probability that more than
one person has the disease?

Because the pooled test was positive, the authorities have
decided to test each individual separately. The firsti — 1
of these tests were negative, and the ith one—which was
on Jones—was positive.

(d) Given the preceding scenario, what is the probability,
as a function of i, that any of the remaining people have
the disease?

66. A total of 2n people, consisting of n married couples,
are randomly seated (all possible orderings being equally
likely) at a round table. Let C; denote the event that
the members of couple i are seated next to each other,
i=1,...,n

(a) Find P(C;).

(b) For j # i, find P(C;j|C;).

(c) Approximate the probability, for »n large, that there
are no married couples who are seated next to each
other.

67. Repeat the preceding problem when the seating is ran-
dom but subject to the constraint that the men and women
alternate.

68. In response to an attack of 10 missiles, 500 antiballistic
missiles are launched. The missile targets of the antiballis-
tic missiles are independent, and each antiballstic missile
is equally likely to go towards any of the target missiles. If

each antiballistic missile independently hits its target with
probability .1, use the Poisson paradigm to approximate
the probability that all missiles are hit.

69. A fair coin is flipped 10 times. Find the probability that
there is a string of 4 consecutive heads by

(a) using the formula derived in the text;
(b) using the recursive equations derived in the text.

(¢) Compare your answer with that given by the Poisson
approximation.

70. At time 0, a coin that comes up heads with prob-
ability p is flipped and falls to the ground. Suppose it
lands on heads. At times chosen according to a Poisson
process with rate A, the coin is picked up and flipped.
(Between these times, the coin remains on the ground.)
What is the probability that the coin is on its head side at
time ?

Hint: What would be the conditional probability if there
were no additional flips by time ¢, and what would it be if
there were additional flips by time ¢?

71. Consider a roulette wheel consisting of 38 numbers 1
through 36, 0, and double 0. If Smith always bets that the
outcome will be one of the numbers 1 through 12, what is
the probability that

(a) Smith will lose his first 5 bets;
(b) his first win will occur on his fourth bet?
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