

Operating Systems
Principles & Practice

Volume III: Memory Management
Second Edition

Thomas Anderson
University of Washington

Mike Dahlin
University of Texas and Google

Recursive Books
recursivebooks.com

Operating Systems: Principles and Practice (Second Edition) Volume III: Memory
Management by Thomas Anderson and Michael Dahlin
Copyright ©Thomas Anderson and Michael Dahlin, 2011-2015.

ISBN 978-0-9856735-5-0
Publisher: Recursive Books, Ltd., http://recursivebooks.com/
Cover: Reflection Lake, Mt. Rainier
Cover design: Cameron Neat
Illustrations: Cameron Neat
Copy editors: Sandy Kaplan, Whitney Schmidt
Ebook design: Robin Briggs
Web design: Adam Anderson

SUGGESTIONS, COMMENTS, and ERRORS. We welcome suggestions, comments and
error reports, by email to suggestions@recursivebooks.com

Notice of rights. All rights reserved. No part of this book may be reproduced, stored in a
retrieval system, or transmitted in any form by any means — electronic, mechanical,
photocopying, recording, or otherwise — without the prior written permission of the
publisher. For information on getting permissions for reprints and excerpts, contact
permissions@recursivebooks.com

Notice of liability. The information in this book is distributed on an “As Is" basis, without
warranty. Neither the authors nor Recursive Books shall have any liability to any person or
entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information or instructions contained in this book or by the computer
software and hardware products described in it.

Trademarks: Throughout this book trademarked names are used. Rather than put a
trademark symbol in every occurrence of a trademarked name, we state we are using the
names only in an editorial fashion and to the benefit of the trademark owner with no
intention of infringement of the trademark. All trademarks or service marks are the property
of their respective owners.

http://recursivebooks.com/

To Robin, Sandra, Katya, and Adam
Tom Anderson

To Marla, Kelly, and Keith
Mike Dahlin

Contents
 Preface

I: Kernels and Processes
1. Introduction

2. The Kernel Abstraction

3. The Programming Interface

II: Concurrency
4. Concurrency and Threads

5. Synchronizing Access to Shared Objects

6. Multi-Object Synchronization

7. Scheduling

III Memory Management
8 Address Translation

8.1 Address Translation Concept

8.2 Towards Flexible Address Translation

 8.2.1 Segmented Memory
 8.2.2 Paged Memory
 8.2.3 Multi-Level Translation
 8.2.4 Portability

8.3 Towards Efficient Address Translation

 8.3.1 Translation Lookaside Buffers
 8.3.2 Superpages
 8.3.3 TLB Consistency
 8.3.4 Virtually Addressed Caches
 8.3.5 Physically Addressed Caches

8.4 Software Protection

 8.4.1 Single Language Operating Systems
 8.4.2 Language-Independent Software Fault Isolation
 8.4.3 Sandboxes Via Intermediate Code

8.5 Summary and Future Directions

 Exercises

9 Caching and Virtual Memory

9.1 Cache Concept

9.2 Memory Hierarchy

9.3 When Caches Work and When They Do Not

 9.3.1 Working Set Model
 9.3.2 Zipf Model

9.4 Memory Cache Lookup

9.5 Replacement Policies

 9.5.1 Random
 9.5.2 First-In-First-Out (FIFO)
 9.5.3 Optimal Cache Replacement (MIN)
 9.5.4 Least Recently Used (LRU)
 9.5.5 Least Frequently Used (LFU)
 9.5.6 Belady’s Anomaly

9.6 Case Study: Memory-Mapped Files

 9.6.1 Advantages
 9.6.2 Implementation
 9.6.3 Approximating LRU

9.7 Case Study: Virtual Memory

 9.7.1 Self-Paging
 9.7.2 Swapping

9.8 Summary and Future Directions

 Exercises

10 Advanced Memory Management

10.1 Zero-Copy I/O

10.2 Virtual Machines

 10.2.1 Virtual Machine Page Tables
 10.2.2 Transparent Memory Compression

10.3 Fault Tolerance

 10.3.1 Checkpoint and Restart
 10.3.2 Recoverable Virtual Memory
 10.3.3 Deterministic Debugging

10.4 Security

10.5 User-Level Memory Management

10.6 Summary and Future Directions

 Exercises

IV: Persistent Storage
11. File Systems: Introduction and Overview

12. Storage Devices

13. Files and Directories

14. Reliable Storage

 References

 Glossary

 About the Authors

Preface

Preface to the eBook Edition

Operating Systems: Principles and Practice is a textbook for a first course in
undergraduate operating systems. In use at over 50 colleges and universities worldwide,
this textbook provides:

A path for students to understand high level concepts all the way down to working
code.
Extensive worked examples integrated throughout the text provide students concrete
guidance for completing homework assignments.
A focus on up-to-date industry technologies and practice

The eBook edition is split into four volumes that together contain exactly the same material
as the (2nd) print edition of Operating Systems: Principles and Practice, reformatted for
various screen sizes. Each volume is self-contained and can be used as a standalone text,
e.g., at schools that teach operating systems topics across multiple courses.

Volume 1: Kernels and Processes. This volume contains Chapters 1-3 of the print
edition. We describe the essential steps needed to isolate programs to prevent buggy
applications and computer viruses from crashing or taking control of your system.
Volume 2: Concurrency. This volume contains Chapters 4-7 of the print edition. We
provide a concrete methodology for writing correct concurrent programs that is in
widespread use in industry, and we explain the mechanisms for context switching and
synchronization from fundamental concepts down to assembly code.
Volume 3: Memory Management. This volume contains Chapters 8-10 of the print
edition. We explain both the theory and mechanisms behind 64-bit address space
translation, demand paging, and virtual machines.
Volume 4: Persistent Storage. This volume contains Chapters 11-14 of the print
edition. We explain the technologies underlying modern extent-based, journaling, and
versioning file systems.

A more detailed description of each chapter is given in the preface to the print edition.

Preface to the Print Edition

Why We Wrote This Book

Many of our students tell us that operating systems was the best course they took as an
undergraduate and also the most important for their careers. We are not alone — many of
our colleagues report receiving similar feedback from their students.

Part of the excitement is that the core ideas in a modern operating system — protection,
concurrency, virtualization, resource allocation, and reliable storage — have become
widely applied throughout computer science, not just operating system kernels. Whether
you get a job at Facebook, Google, Microsoft, or any other leading-edge technology
company, it is impossible to build resilient, secure, and flexible computer systems without
the ability to apply operating systems concepts in a variety of settings. In a modern world,
nearly everything a user does is distributed, nearly every computer is multi-core, security
threats abound, and many applications such as web browsers have become mini-operating
systems in their own right.

It should be no surprise that for many computer science students, an undergraduate
operating systems class has become a de facto requirement: a ticket to an internship and
eventually to a full-time position.

Unfortunately, many operating systems textbooks are still stuck in the past, failing to keep
pace with rapid technological change. Several widely-used books were initially written in
the mid-1980’s, and they often act as if technology stopped at that point. Even when new
topics are added, they are treated as an afterthought, without pruning material that has
become less important. The result are textbooks that are very long, very expensive, and
yet fail to provide students more than a superficial understanding of the material.

Our view is that operating systems have changed dramatically over the past twenty years,
and that justifies a fresh look at both how the material is taught and what is taught. The
pace of innovation in operating systems has, if anything, increased over the past few
years, with the introduction of the iOS and Android operating systems for smartphones, the
shift to multicore computers, and the advent of cloud computing.

To prepare students for this new world, we believe students need three things to succeed
at understanding operating systems at a deep level:

Concepts and code. We believe it is important to teach students both principles and
practice, concepts and implementation, rather than either alone. This textbook takes
concepts all the way down to the level of working code, e.g., how a context switch
works in assembly code. In our experience, this is the only way students will really
understand and master the material. All of the code in this book is available from the
author’s web site, ospp.washington.edu.

Extensive worked examples. In our view, students need to be able to apply concepts
in practice. To that end, we have integrated a large number of example exercises,
along with solutions, throughout the text. We uses these exercises extensively in our
own lectures, and we have found them essential to challenging students to go beyond
a superficial understanding.

Industry practice. To show students how to apply operating systems concepts in a
variety of settings, we use detailed, concrete examples from Facebook, Google,
Microsoft, Apple, and other leading-edge technology companies throughout the
textbook. Because operating systems concepts are important in a wide range of
computer systems, we take these examples not only from traditional operating
systems like Linux, Windows, and OS X but also from other systems that need to
solve problems of protection, concurrency, virtualization, resource allocation, and

reliable storage like databases, web browsers, web servers, mobile applications, and
search engines.

Taking a fresh perspective on what students need to know to apply operating systems
concepts in practice has led us to innovate in every major topic covered in an
undergraduate-level course:

Kernels and Processes. The safe execution of untrusted code has become central to
many types of computer systems, from web browsers to virtual machines to operating
systems. Yet existing textbooks treat protection as a side effect of UNIX processes, as
if they are synonyms. Instead, we start from first principles: what are the minimum
requirements for process isolation, how can systems implement process isolation
efficiently, and what do students need to know to implement functions correctly when
the caller is potentially malicious?

Concurrency. With the advent of multi-core architectures, most students today will
spend much of their careers writing concurrent code. Existing textbooks provide a
blizzard of concurrency alternatives, most of which were abandoned decades ago as
impractical. Instead, we focus on providing students a single methodology based on
Mesa monitors that will enable students to write correct concurrent programs — a
methodology that is by far the dominant approach used in industry.

Memory Management. Even as demand-paging has become less important,
virtualization has become even more important to modern computer systems. We
provide a deep treatment of address translation hardware, sparse address spaces,
TLBs, and on-chip caches. We then use those concepts as a springboard for
describing virtual machines and related concepts such as checkpointing and copy-on-
write.

Persistent Storage. Reliable storage in the presence of failures is central to the
design of most computer systems. Existing textbooks survey the history of file
systems, spending most of their time ad hoc approaches to failure recovery and de-
fragmentation. Yet no modern file systems still use those ad hoc approaches. Instead,
our focus is on how file systems use extents, journaling, copy-on-write, and RAID to
achieve both high performance and high reliability.

Intended Audience

Operating Systems: Principles and Practice is a textbook for a first course in
undergraduate operating systems. We believe operating systems should be taken as early
as possible in an undergraduate’s course of study; many students use the course as a
springboard to an internship and a career. To that end, we have designed the textbook to
assume minimal pre-requisites: specifically, students should have taken a data structures
course and one on computer organization. The code examples are written in a combination
of x86 assembly, C, and C++. In particular, we have designed the book to interface well
with the Bryant and O’Halloran textbook. We review and cover in much more depth the
material from the second half of that book.

We should note what this textbook is not: it is not intended to teach the API or internals of
any specific operating system, such as Linux, Android, Windows 8, OS X, or iOS. We use
many concrete examples from these systems, but our focus is on the shared problems
these systems face and the technologies these systems use to solve those problems.

A Guide to Instructors

One of our goals is enable instructors to choose an appropriate level of depth for each
course topic. Each chapter begins at a conceptual level, with implementation details and
the more advanced material towards the end. The more advanced material can be omitted
without compromising the ability of students to follow later material. No single-quarter or
single-semester course is likely to be able to cover every topic we have included, but we
think it is a good thing for students to come away from an operating systems course with
an appreciation that there is always more to learn.

For each topic, we attempt to convey it at three levels:

How to reason about systems. We describe core systems concepts, such as
protection, concurrency, resource scheduling, virtualization, and storage, and we
provide practice applying these concepts in various situations. In our view, this
provides the biggest long-term payoff to students, as they are likely to need to apply
these concepts in their work throughout their career, almost regardless of what project
they end up working on.

Power tools. We introduce students to a number of abstractions that they can apply in
their work in industry immediately after graduation, and that we expect will continue to
be useful for decades such as sandboxing, protected procedure calls, threads, locks,
condition variables, caching, checkpointing, and transactions.

Details of specific operating systems. We include numerous examples of how
different operating systems work in practice. However, this material changes rapidly,
and there is an order of magnitude more material than can be covered in a single
semester-length course. The purpose of these examples is to illustrate how to use the
operating systems principles and power tools to solve concrete problems. We do not
attempt to provide a comprehensive description of Linux, OS X, or any other particular
operating system.

The book is divided into five parts: an introduction (Chapter 1), kernels and processes
(Chapters 2-3), concurrency, synchronization, and scheduling (Chapters 4-7), memory
management (Chapters 8-10), and persistent storage (Chapters 11-14).

Introduction. The goal of Chapter 1 is to introduce the recurring themes found in the
later chapters. We define some common terms, and we provide a bit of the history of
the development of operating systems.

The Kernel Abstraction. Chapter 2 covers kernel-based process protection — the
concept and implementation of executing a user program with restricted privileges.
Given the increasing importance of computer security issues, we believe protected
execution and safe transfer across privilege levels are worth treating in depth. We

have broken the description into sections, to allow instructors to choose either a quick
introduction to the concepts (up through Section 2.3), or a full treatment of the kernel
implementation details down to the level of interrupt handlers. Some instructors start
with concurrency, and cover kernels and kernel protection afterwards. While our
textbook can be used that way, we have found that students benefit from a basic
understanding of the role of operating systems in executing user programs, before
introducing concurrency.

The Programming Interface. Chapter 3 is intended as an impedance match for
students of differing backgrounds. Depending on student background, it can be
skipped or covered in depth. The chapter covers the operating system from a
programmer’s perspective: process creation and management, device-independent
input/output, interprocess communication, and network sockets. Our goal is that
students should understand at a detailed level what happens when a user clicks a link
in a web browser, as the request is transferred through operating system kernels and
user space processes at the client, server, and back again. This chapter also covers
the organization of the operating system itself: how device drivers and the hardware
abstraction layer work in a modern operating system; the difference between a
monolithic and a microkernel operating system; and how policy and mechanism are
separated in modern operating systems.

Concurrency and Threads. Chapter 4 motivates and explains the concept of threads.
Because of the increasing importance of concurrent programming, and its integration
with modern programming languages like Java, many students have been introduced
to multi-threaded programming in an earlier class. This is a bit dangerous, as students
at this stage are prone to writing programs with race conditions, problems that may or
may not be discovered with testing. Thus, the goal of this chapter is to provide a solid
conceptual framework for understanding the semantics of concurrency, as well as how
concurrent threads are implemented in both the operating system kernel and in user-
level libraries. Instructors needing to go more quickly can omit these implementation
details.

Synchronization. Chapter 5 discusses the synchronization of multi-threaded
programs, a central part of all operating systems and increasingly important in many
other contexts. Our approach is to describe one effective method for structuring
concurrent programs (based on Mesa monitors), rather than to attempt to cover
several different approaches. In our view, it is more important for students to master
one methodology. Monitors are a particularly robust and simple one, capable of
implementing most concurrent programs efficiently. The implementation of
synchronization primitives should be included if there is time, so students see that
there is no magic.

Multi-Object Synchronization. Chapter 6 discusses advanced topics in concurrency
— specifically, the twin challenges of multiprocessor lock contention and deadlock.
This material is increasingly important for students working on multicore systems, but
some courses may not have time to cover it in detail.

Scheduling. This chapter covers the concepts of resource allocation in the specific
context of processor scheduling. With the advent of data center computing and
multicore architectures, the principles and practice of resource allocation have

renewed importance. After a quick tour through the tradeoffs between response time
and throughput for uniprocessor scheduling, the chapter covers a set of more
advanced topics in affinity and multiprocessor scheduling, power-aware and deadline
scheduling, as well as basic queueing theory and overload management. We conclude
these topics by walking students through a case study of server-side load
management.

Address Translation. Chapter 8 explains mechanisms for hardware and software
address translation. The first part of the chapter covers how hardware and operating
systems cooperate to provide flexible, sparse address spaces through multi-level
segmentation and paging. We then describe how to make memory management
efficient with translation lookaside buffers (TLBs) and virtually addressed caches. We
consider how to keep TLBs consistent when the operating system makes changes to
its page tables. We conclude with a discussion of modern software-based protection
mechanisms such as those found in the Microsoft Common Language Runtime and
Google’s Native Client.

Caching and Virtual Memory. Caches are central to many different types of computer
systems. Most students will have seen the concept of a cache in an earlier class on
machine structures. Thus, our goal is to cover the theory and implementation of
caches: when they work and when they do not, as well as how they are implemented
in hardware and software. We then show how these ideas are applied in the context of
memory-mapped files and demand-paged virtual memory.

Advanced Memory Management. Address translation is a powerful tool in system
design, and we show how it can be used for zero copy I/O, virtual machines, process
checkpointing, and recoverable virtual memory. As this is more advanced material, it
can be skipped by those classes pressed for time.

File Systems: Introduction and Overview. Chapter 11 frames the file system portion
of the book, starting top down with the challenges of providing a useful file abstraction
to users. We then discuss the UNIX file system interface, the major internal elements
inside a file system, and how disk device drivers are structured.

Storage Devices. Chapter 12 surveys block storage hardware, specifically magnetic
disks and flash memory. The last two decades have seen rapid change in storage
technology affecting both application programmers and operating systems designers;
this chapter provides a snapshot for students, as a building block for the next two
chapters. If students have previously seen this material, this chapter can be skipped.

Files and Directories. Chapter 13 discusses file system layout on disk. Rather than
survey all possible file layouts — something that changes rapidly over time — we use
file systems as a concrete example of mapping complex data structures onto block
storage devices.

Reliable Storage. Chapter 14 explains the concept and implementation of reliable
storage, using file systems as a concrete example. Starting with the ad hoc techniques
used in early file systems, the chapter explains checkpointing and write ahead logging
as alternate implementation strategies for building reliable storage, and it discusses

how redundancy such as checksums and replication are used to improve reliability
and availability.

We welcome and encourage suggestions for how to improve the presentation of the
material; please send any comments to the publisher’s website,
suggestions@recursivebooks.com.

Acknowledgements

We have been incredibly fortunate to have the help of a large number of people in the
conception, writing, editing, and production of this book.

We started on the journey of writing this book over dinner at the USENIX NSDI conference
in 2010. At the time, we thought perhaps it would take us the summer to complete the first
version and perhaps a year before we could declare ourselves done. We were very wrong!
It is no exaggeration to say that it would have taken us a lot longer without the help we
have received from the people we mention below.

Perhaps most important have been our early adopters, who have given us enormously
useful feedback as we have put together this edition:

Carnegie-Mellon David Eckhardt and Garth Gibson
Clarkson Jeanna Matthews
Cornell Gun Sirer
ETH Zurich Mothy Roscoe
New York University Laskshmi Subramanian
Princeton University Kai Li
Saarland University Peter Druschel
Stanford University John Ousterhout
University of California Riverside Harsha Madhyastha
University of California Santa Barbara Ben Zhao
University of Maryland Neil Spring
University of Michigan Pete Chen
University of Southern California Ramesh Govindan
University of Texas-Austin Lorenzo Alvisi
Universtiy of Toronto Ding Yuan
University of Washington Gary Kimura and Ed Lazowska

In developing our approach to teaching operating systems, both before we started writing
and afterwards as we tried to put our thoughts to paper, we made extensive use of lecture
notes and slides developed by other faculty. Of particular help were the materials created
by Pete Chen, Peter Druschel, Steve Gribble, Eddie Kohler, John Ousterhout, Mothy
Roscoe, and Geoff Voelker. We thank them all.

Our illustrator for the second edition, Cameron Neat, has been a joy to work with. We
would also like to thank Simon Peter for running the multiprocessor experiments
introducing Chapter 6.

We are also grateful to Lorenzo Alvisi, Adam Anderson, Pete Chen, Steve Gribble, Sam
Hopkins, Ed Lazowska, Harsha Madhyastha, John Ousterhout, Mark Rich, Mothy Roscoe,
Will Scott, Gun Sirer, Ion Stoica, Lakshmi Subramanian, and John Zahorjan for their helpful
comments and suggestions as to how to improve the book.

We thank Josh Berlin, Marla Dahlin, Rasit Eskicioglu, Sandy Kaplan, John Ousterhout,
Whitney Schmidt, and Mike Walfish for helping us identify and correct grammatical or
technical bugs in the text.

We thank Jeff Dean, Garth Gibson, Mark Oskin, Simon Peter, Dave Probert, Amin Vahdat,
and Mark Zbikowski for their help in explaining the internal workings of some of the
commercial systems mentioned in this book.

We would like to thank Dave Wetherall, Dan Weld, Mike Walfish, Dave Patterson, Olav
Kvern, Dan Halperin, Armando Fox, Robin Briggs, Katya Anderson, Sandra Anderson,
Lorenzo Alvisi, and William Adams for their help and advice on textbook economics and
production.

The Helen Riaboff Whiteley Center as well as Don and Jeanne Dahlin were kind enough to
lend us a place to escape when we needed to get chapters written.

Finally, we thank our families, our colleagues, and our students for supporting us in this
larger-than-expected effort.

 III
Memory Management

8. Address Translation
There is nothing wrong with your television set. Do not attempt to adjust the picture. We
are controlling transmission. If we wish to make it louder, we will bring up the volume. If we
wish to make it softer, we will tune it to a whisper. We will control the horizontal. We will
control the vertical. We can roll the image, make it flutter. We can change the focus to a
soft blur or sharpen it to crystal clarity. For the next hour, sit quietly and we will control all
that you see and hear. We repeat: there is nothing wrong with your television set. —
Opening narration, The Outer Limits

The promise of virtual reality is compelling. Who wouldn’t want the ability to travel
anywhere without leaving the holodeck? Of course, the promise is far from becoming a
reality. In theory, by adjusting the inputs to all of your senses in response to your actions, a
virtual reality system could perfectly set the scene. However, your senses are not so easily
controlled. We might soon be able to provide an immersive environment for vision, but
balance, hearing, taste, and smell will take a lot longer. Touch, prioperception (the sense of
being near something else), and g-forces are even farther off. Get a single one of these
wrong and the illusion disappears.

Can we create a virtual reality environment for computer programs? We have already seen
an example of this with the UNIX I/O interface, where the program does not need to know,
and sometimes cannot tell, if its inputs and outputs are files, devices, or other processes.

In the next three chapters, we take this idea a giant step further. An amazing number of
advanced system features are enabled by putting the operating system in control of
address translation, the conversion from the memory address the program thinks it is
referencing to the physical location of that memory cell. From the programmer’s
perspective, address translation occurs transparently — the program behaves correctly
despite the fact that its memory is stored somewhere completely different from where it
thinks it is stored.

You were probably taught in some early programming class that a memory address is just
an address. A pointer in a linked list contains the actual memory address of what it is
pointing to. A jump instruction contains the actual memory address of the next instruction
to be executed. This is a useful fiction! The programmer is often better off not thinking
about how each memory reference is converted into the data or instruction being
referenced. In practice, there is quite a lot of activity happening beneath the covers.

Address translation is a simple concept, but it turns out to be incredibly powerful. What can
an operating system do with address translation? This is only a partial list:

Process isolation. As we discussed in Chapter 2, protecting the operating system
kernel and other applications against buggy or malicious code requires the ability to
limit memory references by applications. Likewise, address translation can be used by
applications to construct safe execution sandboxes for third party extensions.

Interprocess communication. Often processes need to coordinate with each other,
and an efficient way to do that is to have the processes share a common memory
region.

Shared code segments. Instances of the same program can share the program’s
instructions, reducing their memory footprint and making the processor cache more
efficient. Likewise, different programs can share common libraries.

Program initialization. Using address translation, we can start a program running
before all of its code is loaded into memory from disk.

Efficient dynamic memory allocation. As a process grows its heap, or as a thread
grows its stack, we can use address translation to trap to the kernel to allocate
memory for those purposes only as needed.

Cache management. As we will explain in the next chapter, the operating system can
arrange how programs are positioned in physical memory to improve cache efficiency,
through a system called page coloring.

Program debugging. The operating system can use memory translation to prevent a
buggy program from overwriting its own code region; by catching pointer errors earlier,
it makes them much easier to debug. Debuggers also use address translation to install
data breakpoints, to stop a program when it references a particular memory location.

Efficient I/O. Server operating systems are often limited by the rate at which they can
transfer data to and from the disk and the network. Address translation enables data to
be safely transferred directly between user-mode applications and I/O devices.

Memory mapped files. A convenient and efficient abstraction for many applications is
to map files into the address space, so that the contents of the file can be directly
referenced with program instructions.

Virtual memory. The operating system can provide applications the abstraction of
more memory than is physically present on a given computer.

Checkpointing and restart. The state of a long-running program can be periodically
checkpointed so that if the program or system crashes, it can be restarted from the
saved state. The key challenge is to be able to perform an internally consistent
checkpoint of the program’s data while the program continues to run.

Persistent data structures. The operating system can provide the abstraction of a
persistent region of memory, where changes to the data structures in that region
survive program and system crashes.

Process migration. An executing program can be transparently moved from one
server to another, for example, for load balancing.

Information flow control. An extra layer of security is to verify that a program is not
sending your private data to a third party; e.g., a smartphone application may need
access to your phone list, but it shouldn’t be allowed to transmit that data. Address
translation can be the basis for managing the flow of information into and out of a
system.

Distributed shared memory. We can transparently turn a network of servers into a
large-scale shared-memory parallel computer using address translation.

In this chapter, we focus on the mechanisms needed to implement address translation, as
that is the foundation of all of these services. We discuss how the operating system and
applications use the mechanisms to provide these services in the following two chapters.

For runtime efficiency, most systems have specialized hardware to do address translation;
this hardware is managed by the operating system kernel. In some systems, however, the
translation is provided by a trusted compiler, linker or byte-code interpreter. In other
systems, the application does the pointer translation as a way of managing the state of its
own data structures. In still other systems, a hybrid model is used where addresses are
translated both in software and hardware. The choice is often an engineering tradeoff
between performance, flexibility, and cost. However, the functionality provided is often the
same regardless of the mechanism used to implement the translation. In this chapter, we
will cover a range of hardware and software mechanisms.

Chapter roadmap:

Address Translation Concept. We start by providing a conceptual framework for
understanding both hardware and software address translation. (Section 8.1)

Flexible Address Translation. We focus first on hardware address translation; we
ask how can we design the hardware to provide maximum flexibility to the operating
system kernel? (Section 8.2)

Efficient Address Translation. The solutions we present will seem flexible but terribly
slow. We next discuss mechanisms that make address translation much more efficient,
without sacrificing flexibility. (Section 8.3)

Software Protection. Increasingly, software compilers and runtime interpreters are
using address translation techniques to implement operating system functionality.
What changes when the translation is in software rather than in hardware?
(Section 8.4)

8.1 Address Translation Concept

Figure 8.1: Address translation in the abstract. The translator converts (virtual) memory addresses
generated by the program into physical memory addresses.

Considered as a black box, address translation is a simple function, illustrated in
Figure 8.1. The translator takes each instruction and data memory reference generated by
a process, checks whether the address is legal, and converts it to a physical memory
address that can be used to fetch or store instructions or data. The data itself — whatever
is stored in memory — is returned as is; it is not transformed in any way. The translation is
usually implemented in hardware, and the operating system kernel configures the
hardware to accomplish its aims.

The task of this chapter is to fill in the details about how that black box works. If we asked
you right now how you might implement it, your first several guesses would probably be on
the mark. If you said we could use an array, a tree, or a hash table, you would be right —
all of those approaches have been taken by real systems.

Given that a number of different implementations are possible, how should we evaluate the
alternatives? Here are some goals we might want out of a translation box; the design we
end up with will depend on how we balance among these various goals.

Memory protection. We need the ability to limit the access of a process to certain
regions of memory, e.g., to prevent it from accessing memory not owned by the
process. Often, however, we may want to limit access of a program to its own memory,
e.g., to prevent a pointer error from overwriting the code region or to cause a trap to
the debugger when the program references a specific data location.

Memory sharing. We want to allow multiple processes to share selected regions of
memory. These shared regions can be large (e.g., if we are sharing a program’s code
segment among multiple processes executing the same program) or relatively small
(e.g., if we are sharing a common library, a file, or a shared data structure).

Flexible memory placement. We want to allow the operating system the flexibility to
place a process (and each part of a process) anywhere in physical memory; this will
allow us to pack physical memory more efficiently. As we will see in the next chapter,
flexibility in assigning process data to physical memory locations will also enable us to
make more effective use of on-chip caches.

Sparse addresses. Many programs have multiple dynamic memory regions that can
change in size over the course of the execution of the program: the heap for data
objects, a stack for each thread, and memory mapped files. Modern processors have
64-bit address spaces, allowing each dynamic object ample room to grow as needed,
but making the translation function more complex.

Runtime lookup efficiency. Hardware address translation occurs on every instruction
fetch and every data load and store. It would be impractical if a lookup took, on
average, much longer to execute than the instruction itself. At first, many of the
schemes we discuss will seem wildly impractical! We will discuss ways to make even
the most convoluted translation systems efficient.

Compact translation tables. We also want the space overhead of translation to be
minimal; any data structures we need should be small compared to the amount of
physical memory being managed.

Portability. Different hardware architectures make different choices as to how they
implement translation; if an operating system kernel is to be easily portable across
multiple processor architectures, it needs to be able to map from its (hardware-
independent) data structures to the specific capabilities of each architecture.

We will end up with a fairly complex address translation mechanism, and so our discussion
will start with the simplest possible mechanisms and add functionality only as needed. It
will be helpful during the discussion for you to keep in mind the two views of memory: the
process sees its own memory, using its own addresses. We will call these virtual
addresses, because they do not necessarily correspond to any physical reality. By
contrast, to the memory system, there are only physical addresses — real locations in
memory. From the memory system perspective, it is given physical addresses and it does
lookups and stores values. The translation mechanism converts between the two views:
from a virtual address to a physical memory address.

Address translation in linkers and loaders

Even without the kernel-user boundary, multiprogramming requires some form of address translation. On a
multiprogramming system, when a program is compiled, the compiler does not know which regions of
physical memory will be in use by other applications; it cannot control where in physical memory the
program will land. The machine instructions for a program contains both relative and absolute addresses;
relative addresses, such as to branch forward or backward a certain number of instructions, continue to work
regardless of where in memory the program is located. However, some instructions contain absolute
addresses, such as to load a global variable or to jump to the start of a procedure. These will stop working
unless the program is loaded into memory exactly where the compiler expects it to go.

Before hardware translation became commonplace, early operating systems dealt with this issue by using a
relocating loader for copying programs into memory. Once the operating system picked an empty region of

physical memory for the program, the loader would modify any instructions in the program that used an
absolute address. To simplify the implementation, there was a table at the beginning of the executable
image that listed all of the absolute addresses used in the program. In modern systems, this is called a
symbol table.

Today, we still have something similar. Complex programs often have multiple files, each of which can be
compiled independently and then linked together to form the executable image. When the compiler
generates the machine instructions for a single file, it cannot know where in the executable this particular file
will go. Instead, the compiler generates a symbol table at the beginning of each compiled file, indicating
which values will need to be modified when the individual files are assembled together.

Most commercial operating systems today support the option of dynamic linking, taking the notion of a
relocating loader one step further. With a dynamically linked library (DLL), a library is linked into a running
program on demand, when the program first calls into the library. We will explain in a bit how the code for a
DLL can be shared between multiple different processes, but the linking procedure is straightforward. A table
of valid entry points into the DLL is kept by the compiler; the calling program indirects through this table to
reach the library routine.

8.2 Towards Flexible Address Translation

Our discussion of hardware address translation is divided into two steps. First, we put the
issue of lookup efficiency aside, and instead consider how best to achieve the other goals
listed above: flexible memory assignment, space efficiency, fine-grained protection and
sharing, and so forth. Once we have the features we want, we will then add mechanisms to
gain back lookup efficiency.

Figure 8.2: Address translation with base and bounds registers. The virtual address is added to the base to
generate the physical address; the bound register is checked against the virtual address to prevent a
process from reading or writing outside of its allocated memory region.

In Chapter 2, we illustrated the notion of hardware memory protection using the simplest
hardware imaginable: base and bounds. The translation box consists of two extra registers
per process. The base register specifies the start of the process’s region of physical
memory; the bound register specifies the extent of that region. If the base register is added

to every address generated by the program, then we no longer need a relocating loader —
the virtual addresses of the program start from 0 and go to bound, and the physical
addresses start from base and go to base + bound. Figure 8.2 shows an example of base
and bounds translation. Since physical memory can contain several processes, the kernel
resets the contents of the base and bounds registers on each process context switch to the
appropriate values for that process.

Base and bounds translation is both simple and fast, but it lacks many of the features
needed to support modern programs. Base and bounds translation supports only coarse-
grained protection at the level of the entire process; it is not possible to prevent a program
from overwriting its own code, for example. It is also difficult to share regions of memory
between two processes. Since the memory for a process needs to be contiguous,
supporting dynamic memory regions, such as for heaps, thread stacks, or memory mapped
files, becomes difficult to impossible.

8.2.1 Segmented Memory

Figure 8.3: Address translation with a segment table. The virtual address has two components: a segment
number and a segment offset. The segment number indexes into the segment table to locate the start of the
segment in physical memory. The bound register is checked against the segment offset to prevent a process
from reading or writing outside of its allocated memory region. Processes can have restricted rights to
certain segments, e.g., to prevent writes to the code segment.

Many of the limitations of base and bounds translation can be remedied with a small
change: instead of keeping only a single pair of base and bounds registers per process,
the hardware can support an array of pairs of base and bounds registers, for each process.
This is called segmentation. Each entry in the array controls a portion, or segment, of the
virtual address space. The physical memory for each segment is stored contiguously, but
different segments can be stored at different locations. Figure 8.3 shows segment
translation in action. The high order bits of the virtual address are used to index into the

array; the rest of the address is then treated as above — added to the base and checked
against the bound stored at that index. In addition, the operating system can assign
different segments different permissions, e.g., to allow execute-only access to code and
read-write access to data. Although four segments are shown in the figure, in general the
number of segments is determined by the number of bits for the segment number that are
set aside in the virtual address.

It should seem odd to you that segmented memory has gaps; program memory is no
longer a single contiguous region, but instead it is a set of regions. Each different segment
starts at a new segment boundary. For example, code and data are not immediately
adjacent to each other in either the virtual or physical address space.

What happens if a program branches into or tries to load data from one of these gaps? The
hardware will generate an exception, trapping into the operating system kernel. On UNIX
systems, this is still called a segmentation fault, that is, a reference outside of a legal
segment of memory. How does a program keep from wandering into one of these gaps?
Correct programs will not generate references outside of valid memory. Put another way,
trying to execute code or reading data that does not exist is probably an indication that the
program has a bug in it.

Figure 8.4: Two processes sharing a code segment, but with separate data and stack segments. In this
case, each process uses the same virtual addresses, but these virtual addresses map to either the same
region of physical memory (if code) or different regions of physical memory (if data).

Although simple to implement and manage, segmented memory is both remarkably
powerful and widely used. For example, the x86 architecture is segmented (with some
enhancements that we will describe later). With segments, the operating system can allow
processes to share some regions of memory while keeping other regions protected. For
example, two processes can share a code segment by setting up an entry in their segment
tables to point to the same region of physical memory — to use the same base and
bounds. The processes can share the same code while working off different data, by
setting up the segment table to point to different regions of physical memory for the data
segment. We illustrate this in Figure 8.4.

Likewise, shared library routines, such as a graphics library, can be placed into a segment
and shared between processes. As before, the library data would be in a separate, non-
shared segment. This is frequently done in modern operating systems with dynamically
linked libraries. A practical issue is that different processes may load different numbers of
libraries, and so may assign the same library a different segment number. Depending on
the processor architecture, sharing can still work, if the library code uses segment-local
addresses, addresses that are relative to the current segment.

UNIX fork and copy-on-write

In Chapter 3, we described the UNIX fork system call. UNIX creates a new process by making a complete
copy of the parent process; the parent process and the child process are identical except for the return value
from fork. The child process can then set up its I/O and eventually use the UNIX exec system call to run a
new program. We promised at the time we would explain how this can be done efficiently.

With segments, this is now possible. To fork a process, we can simply make a copy of the parent’s segment
table; we do not need to copy any of its physical memory. Of course, we want the child to be a copy of the
parent, and not just point to the same memory as the parent. If the child changes some data, it should
change only its copy, and not its parent’s data. On the other hand, most of the time, the child process in
UNIX fork simply calls UNIX exec; the shared data is there as a programming convenience.

We can make this work efficiently by using an idea called copy-on-write. During the fork, all of the segments
shared between the parent and child process are marked “read-only” in both segment tables. If either side
modifies data in a segment, an exception is raised and a full memory copy of that segment is made at that
time. In the common case, the child process modifies only its stack before calling UNIX exec, and if so, only
the stack needs to be physically copied.

We can also use segments for interprocess communication, if processes are given read
and write permission to the same segment. Multics, an operating system from the 1960’s
that contained many of the ideas we now find in Microsoft’s Windows 7, Apple’s Mac OS X,
and Linux, made extensive use of segmented memory for interprocess sharing. In Multics,
a segment was allocated for every data structure, allowing fine-grained protection and
sharing between processes. Of course, this made the segment table pretty large! More
modern systems tend to use segments only for coarser-grained memory regions, such as
the code and data for an entire shared library, rather than for each of the data structures
within the library.

As a final example of the power of segments, they enable the efficient management of
dynamically allocated memory. When an operating system reuses memory or disk space

that had previously been used, it must first zero out the contents of the memory or disk.
Otherwise, private data from one application could inadvertently leak into another,
potentially malicious, application. For example, you could enter a password into one web
site, say for a bank, and then exit the browser. However, if the underlying physical memory
used by the browser is then re-assigned to a new process, then the password could be
leaked to a malicious web site.

Of course, we only want to pay the overhead of zeroing memory if it will be used. This is
particularly an issue for dynamically allocated memory on the heap and stack. It is not clear
when the program starts how much memory it will use; the heap could be anywhere from a
few kilobytes to several gigabytes, depending on the program. The operating system can
address this using zero-on-reference. With zero-on-reference, the operating system
allocates a memory region for the heap, but only zeroes the first few kilobytes. Instead, it
sets the bound register in the segment table to limit the program to just the zeroed part of
memory. If the program expands its heap, it will take an exception, and the operating
system kernel can zero out additional memory before resuming execution.

Given all these advantages, why not stop here? The principal downside of segmentation is
the overhead of managing a large number of variable size and dynamically growing
memory segments. Over time, as processes are created and finish, physical memory will
be divided into regions that are in use and regions that are not, that is, available to be
allocated to a new process. These free regions will be of varying sizes. When we create a
new segment, we will need to find a free spot for it. Should we put it in the smallest open
region where it will fit? The largest open region?

However we choose to place new segments, as more memory becomes allocated, the
operating system may reach a point where there is enough free space for a new segment,
but the free space is not contiguous. This is called external fragmentation. The operating
system is free to compact memory to make room without affecting applications, because
virtual addresses are unchanged when we relocate a segment in physical memory. Even
so, compaction can be costly in terms of processor overhead: a typical server configuration
would take roughly a second to compact its memory.

All this becomes even more complex when memory segments can grow. How much
memory should we set aside for a program’s heap? If we put the heap segment in a part of
physical memory with lots of room, then we will have wasted memory if that program turns
out to need only a small heap. If we do the opposite — put the heap segment in a small
chunk of physical memory — then we will need to copy it somewhere else if it changes
size.

Figure 8.5: Logical view of page table address translation. Physical memory is split into page frames, with a
page-size aligned block of virtual addresses assigned to each frame. Unused addresses are not assigned
page frames in physical memory.

Figure 8.6: Address translation with a page table. The virtual address has two components: a virtual page
number and an offset within the page. The virtual page number indexes into the page table to yield a page
frame in physical memory. The physical address is the physical page frame from the page table,
concatenated with the page offset from the virtual address. The operating system can restrict process
access to certain pages, e.g., to prevent writes to pages containing instructions.

8.2.2 Paged Memory

An alternative to segmented memory is paged memory. With paging, memory is allocated
in fixed-sized chunks called page frames. Address translation is similar to how it works with
segmentation. Instead of a segment table whose entries contain pointers to variable-sized
segments, there is a page table for each process whose entries contain pointers to page
frames. Because page frames are fixed-sized and a power of two, the page table entries
only need to provide the upper bits of the page frame address, so they are more compact.
There is no need for a “bound” on the offset; the entire page in physical memory is
allocated as a unit. Figure 8.6 illustrates address translation with paged memory.

What will seem odd, and perhaps cool, about paging is that while a program thinks of its
memory as linear, in fact its memory can be, and usually is, scattered throughout physical
memory in a kind of abstract mosaic. The processor will execute one instruction after
another using virtual addresses; its virtual addresses are still linear. However, the
instruction located at the end of a page will be located in a completely different region of
physical memory from the next instruction at the start of the next page. Data structures will
appear to be contiguous using virtual addresses, but a large matrix may be scattered
across many physical page frames.

An apt analogy is what happens when you shuffle several decks of cards together. A single
process in its virtual address space sees the cards of a single deck in order. A different
process sees a completely different deck, but it will also be in order. In physical memory,
however, the decks of all the processes currently running will be shuffled together,
apparently at random. The page tables are the magician’s assistant: able to instantly find
the queen of hearts from among the shuffled decks.

Paging addresses the principal limitation of segmentation: free-space allocation is very
straightforward. The operating system can represent physical memory as a bit map, with
each bit representing a physical page frame that is either free or in use. Finding a free
frame is just a matter of finding an empty bit.

Sharing memory between processes is also convenient: we need to set the page table
entry for each process sharing a page to point to the same physical page frame. For a
large shared region that spans multiple page frames, such as a shared library, this may
require setting up a number of page table entries. Since we need to know when to release
memory when a process finishes, shared memory requires some extra bookkeeping to
keep track of whether the shared page is still in use. The data structure for this is called a
core map; it records information about each physical page frame such as which page table
entries point to it.

Many of the optimizations we discussed under segmentation can also be done with paging.
For copy-on-write, we need to copy the page table entries and set them to read-only; on a
store to one of these pages, we can make a real copy of the underlying page frame before
resuming the process. Likewise, for zero-on-reference, we can set the page table entry at
the top of the stack to be invalid, causing a trap into the kernel. This allows us to extend
the stack only as needed.

Page tables allow other features to be added. For example, we can start a program
running before all of its code and data are loaded into memory. Initially, the operating
system marks all of the page table entries for a new process as invalid; as pages are
brought in from disk, it marks those pages as read-only (for code pages) or read-write (for
data pages). Once the first few pages are in memory, however, the operating system can
start execution of the program in user-mode, while the kernel continues to transfer the rest
of the program’s code in the background. As the program starts up, if it happens to jump to
a location that has not been loaded yet, the hardware will cause an exception, and the
kernel can stall the program until that page is available. Further, the compiler can
reorganize the program executable for more efficient startup, by coalescing the initialization
pages into a few pages at the start of the program, thus overlapping initialization and
loading the program from disk.

As another example, a data breakpoint is request to stop the execution of a program when
it references or modifies a particular memory location. It is helpful during debugging to
know when a data structure has been changed, particularly when tracking down pointer
errors. Data breakpoints are sometimes implemented with special hardware support, but
they can also be implemented with page tables. For this, the page table entry containing
the location is marked read-only. This causes the process to trap to the operating system
on every change to the page; the operating system can then check if the instruction
causing the exception affected the specific location or not.

A downside of paging is that while the management of physical memory becomes simpler,
the management of the virtual address space becomes more challenging. Compilers
typically expect the execution stack to be contiguous (in virtual addresses) and of arbitrary
size; each new procedure call assumes the memory for the stack is available. Likewise, the
runtime library for dynamic memory allocation typically expects a contiguous heap. In a
single-threaded process, we can place the stack and heap at opposite ends of the virtual
address space, and have them grow towards each other, as shown in Figure 8.5. However,
with multiple threads per process, we need multiple thread stacks, each with room to grow.

This becomes even more of an issue with 64-bit virtual address spaces. The size of the
page table is proportional to the size of the virtual address space, not to the size of
physical memory. The more sparse the virtual address space, the more overhead is
needed for the page table. Most of the entries will be invalid, representing parts of the
virtual address space that are not in use, but physical memory is still needed for all of
those page table entries.

We can reduce the space taken up by the page table by choosing a larger page frame.
How big should a page frame be? A larger page frame can waste space if a process does
not use all of the memory inside the frame. This is called internal fragmentation. Fixed-size
chunks are easier to allocate, but waste space if the entire chunk is not used.
Unfortunately, this means that with paging, either pages are very large (wasting space due

to internal fragmentation), or the page table is very large (wasting space), or both. For
example, with 16 KB pages and a 64 bit virtual address space, we might need 250 page
table entries!

8.2.3 Multi-Level Translation

If you were to design an efficient system for doing a lookup on a sparse keyspace, you
probably would not pick a simple array. A tree or a hash table are more appropriate, and
indeed, modern systems use both. We focus in this subsection on trees; we discuss hash
tables afterwards.

Many systems use tree-based address translation, although the details vary from system to
system, and the terminology can be a bit confusing. Despite the differences, the systems
we are about to describe have similar properties. They support coarse and fine-grained
memory protection and memory sharing, flexible memory placement, efficient memory
allocation, and efficient lookup for sparse address spaces, even for 64-bit machines.

Almost all multi-level address translation systems use paging as the lowest level of the
tree. The main differences between systems are in how they reach the page table at the
leaf of the tree — whether using segments plus paging, or multiple levels of paging, or
segments plus multiple levels of paging. There are several reasons for this:

Efficient memory allocation. By allocating physical memory in fixed-size page
frames, management of free space can use a simple bitmap.

Efficient disk transfers. Hardware disks are partitioned into fixed-sized regions called
sectors; disk sectors must be read or written in their entirety. By making the page size
a multiple of the disk sector, we simplify transfers to and from memory, for loading
programs into memory, reading and writing files, and in using the disk to simulate a
larger memory than is physically present on the machine.

Efficient lookup. We will describe in the next section how we can use a cache called
a translation lookaside buffer to make lookups fast in the common case; the translation
buffer caches lookups on a page by page basis. Paging also allows the lookup tables
to be more compact, especially important at the lowest level of the tree.

Efficient reverse lookup. Using fixed-sized page frames also makes it easy to
implement the core map, to go from a physical page frame to the set of virtual
addresses that share the same frame. This will be crucial for implementing the illusion
of an infinite virtual memory in the next chapter.

Page-granularity protection and sharing. Typically, every table entry at every level
of the tree will have its own access permissions, enabling both coarse-grained and
fine-grained sharing, down to the level of the individual page frame.

Figure 8.7: Address translation with paged segmentation. The virtual address has three components: a
segment number, a virtual page number within the segment, and an offset within the page. The segment
number indexes into a segment table that yields the page table for that segment. The page number from the
virtual address indexes into the page table (from the segment table) to yield a page frame in physical
memory. The physical address is the physical page frame from the page table, concatenated with the page
offset from the virtual address. The operating system can restrict access to an entire segment, e.g., to
prevent writes to the code segment, or to an individual page, e.g., to implement copy-on-write.

Paged Segmentation

Let us start a system with only two levels of a tree. With paged segmentation, memory is
segmented, but instead of each segment table entry pointing directly to a contiguous
region of physical memory, each segment table entry points to a page table, which in turn
points to the memory backing that segment. The segment table entry “bound” describes
the page table length, that is, the length of the segment in pages. Because paging is used
at the lowest level, all segment lengths are some multiple of the page size. Figure 8.7
illustrates translation with paged segmentation.

Although segment tables are sometimes stored in special hardware registers, the page
tables for each segment are quite a bit larger in aggregate, and so they are normally stored
in physical memory. To keep the memory allocator simple, the maximum segment size is
usually chosen to allow the page table for each segment to be a small multiple of the page
size.

For example, with 32-bit virtual addresses and 4 KB pages, we might set aside the upper
ten bits for the segment number, the next ten bits for the page number, and twelve bits for
the page offset. In this case, if each page table entry is four bytes, the page table for each
segment would exactly fit into one physical page frame.

Multi-Level Paging

Figure 8.8: Address translation with three levels of page tables. The virtual address has four components:
an index into each level of the page table and an offset within the physical page frame.

A nearly equivalent approach to paged segmentation is to use multiple levels of page
tables. On the Sun Microsystems SPARC processor for example, there are three levels of
page table. As shown in Figure 8.8, the top-level page table contains entries, each of which
points to a second-level page table whose entries are pointers to page tables. On the
SPARC, as with most other systems that use multiple levels of page tables, each level of
page table is designed to fit in a physical page frame. Only the top-level page table must
be filled in; the lower levels of the tree are allocated only if those portions of the virtual
address space are in use by a particular process. Access permissions can be specified at
each level, and so sharing between processes is possible at each level.

Multi-Level Paged Segmentation

We can combine these two approaches by using a segmented memory where each
segment is managed by a multi-level page table. This is the approach taken by the x86, for
both its 32-bit and 64-bit addressing modes.

We describe the 32-bit case first. The x86 terminology differs slightly from what we have
used here. The x86 has a per-process Global Descriptor Table (GDT), equivalent to a
segment table. The GDT is stored in memory; each entry (descriptor) points to the (multi-
level) page table for that segment along with the segment length and segment access
permissions. To start a process, the operating system sets up the GDT and initializes a
register, the Global Descriptor Table Register (GDTR), that contains the address and
length of the GDT.

Because of its history, the x86 uses separate processor registers to specify the segment
number (that is, the index into the GDT) and the virtual address for use by each instruction.
For example, on the “32-bit” x86, there is both a segment number and 32 bits of virtual
address within each segment. On the 64-bit x86, the virtual address within each segment is
extended to 64 bits. Most applications only use a few segments, however, so the per-
process segment table is usually short. The operating system kernel has its own segment
table; this is set up to enable the kernel to access, with virtual addresses, all of the per-
process and shared segments on the system.

For encoding efficiency, the segment register is often implicit as part of the instruction. For
example, the x86 stack instructions such as push and pop assume the stack segment (the
index stored in the stack segment register), branch instructions assume the code segment
(the index stored in the code segment register), and so forth. As an optimization, whenever
the x86 initializes a code, stack, or data segment register it also reads the GDT entry (that
is, the top-level page table pointer and access permissions) into the processor, so the
processor can go directly to the page table on each reference.

Many instructions also have an option to specify the segment index explicitly. For example,
the ljmp, or long jump, instruction changes the program counter to a new segment number
and offset within that segment.

For the 32-bit x86, the virtual address space within a segment has a two-level page table.
The first 10 bits of the virtual address index the top level page table, called the page
directory, the next 10 bits index the second level page table, and the final 12 bits are the
offset within a page. Each page table entry takes four bytes and the page size is 4 KB, so
the top-level page table and each second-level page table fits in a single physical page.
The number of second-level page tables needed depends on the length of the segment;
they are not needed to map empty regions of virtual address space. Both the top-level and
second-level page table entries have permissions, so fine-grained protection and sharing is
possible within a segment.

Today, the amount of memory per computer is often well beyond what can 32 bits can
address; for example, a high-end server could have two terabytes of physical memory. For
the 64-bit x86, virtual addresses within a segment can be up to 64 bits. However, to
simplify address translation, current processors only allow 48 bits of the virtual address to
be used; this is sufficient to map 128 terabytes, using four levels of page tables. The lower
levels of the page table tree are only filled in if that portion of the virtual address space is in
use.

As an optimization, the 64-bit x86 has the option to eliminate one or two levels of the page
table. Each physical page frame on the x86 is 4 KB. Each page of fourth level page table
maps 2 MB of data, and each page of the third level page table maps 1 GB of data. If the
operating system places data such that the entire 2 MB covered by the fourth level page
table is allocated contiguously in physical memory, then the page table entry one layer up
can be marked to point directly to this region instead of to a page table. Likewise, a page of
third level page table can be omitted if the operating system allocates the process a 1 GB
chunk of physical memory. In addition to saving space needed for page table mappings,
this improves translation buffer efficiency, a point we will discuss in more detail in the next
section.

8.2.4 Portability

The diversity of different translation mechanisms poses a challenge to the operating
system designer. To be widely used, we want our operating system to be easily portable to
a wide variety of different processor architectures. Even within a given processor family,
such as an x86, there are a number of different variants that an operating system may
need to support. Main memory density is increasing both the physical and virtual address
space by almost a bit per year. In other words, for a multi-level page table to be able to
map all of memory, an extra level of the page table is needed every decade just to keep up
with the increasing size of main memory.

A further challenge is that the operating system often needs to keep two sets of books with
respect to address translation. One set of books is the hardware view — the processor
consults a set of segment and multi-level page tables to be able to correctly and securely
execute instructions and load and store data. A different set of books is the operating
system view of the virtual address space. To support features such as copy-on-write, zero-
on-reference, and fill-on-reference, as well as other applications we will describe in later
chapters, the operating system must keep track of additional information about each virtual
page beyond what is stored in the hardware page table.

This software memory management data structures mirror, but are not identical to, the
hardware structures, consisting of three parts:

List of memory objects. Memory objects are logical segments. Whether or not the
underlying hardware is segmented, the kernel memory manager needs to keep track
of which memory regions represent which underlying data, such as program code,
library code, shared data between two or more processes, a copy-on-write region, or a
memory-mapped file. For example, when a process starts up, the kernel can check the
object list to see if the code is already in memory; likewise, when a process opens a
library, it can check if it has already been linked by some other process. Similarly, the
kernel can keep reference counts to determine which memory regions to reclaim on
process exit.

Virtual to physical translation. On an exception, and during system call parameter
copying, the kernel needs to be able to translate from a process’s virtual addresses to
its physical locations. While the kernel could use the hardware page tables for this, the
kernel also needs to keep track of whether an invalid page is truly invalid, or simply not

loaded yet (in the case of fill-on-reference) or if a read-only page is truly read-only or
just simulating a data breakpoint or a copy-on-write page.

Physical to virtual translation. We referred to this above as the core map. The
operating system needs to keep track of the processes that map to a specific physical
memory location, to ensure that when the kernel updates a page’s status, it can also
updated every page table entry that refers to that physical page.

The most interesting of these are the data structures used for the virtual to physical
translation. For the software page table, we have all of the same options as before with
respect to segmentation and multiple levels of paging, as well as some others. The
software page table need not use the same structure as the underlying hardware page
table; indeed, if the operating system is to be easily portable, the software data structures
may be quite different from the underlying hardware.

Linux models the operating system’s internal address translation data structures after the
x86 architecture of segments plus multi-level page tables. This has made porting Linux to
new x86 architectures relatively easy, but porting Linux to other architectures somewhat
more difficult.

A different approach, taken first in a research system called Mach and later in Apple OS X,
is to use a hash table, rather than a tree, for the software translation data. For historical
reasons, the use of a hash table for paged address translation is called an inverted page
table. Particularly as we move to deeper multi-level page tables, using a hash table for
translation can speed up translation.

With an inverted page table, the virtual page number is hashed into a table of size
proportional to the number of physical page frames. Each entry in the hash table contains
tuples of the form (in the figure, the physical page is implicit):

 inverted page table entry = {
 process or memory object ID,
 virtual page number,
 physical page frame number,
 access permissions
 }

Figure 8.9: Address translation with a software hash table. The hardware page tables are omitted from the
picture. The virtual page number is hashed; this yields a position in the hash table that indicates the physical
page frame. The virtual page number must be checked against the contents of the hash entry to handle
collisions and to check page access permissions.

As shown in Figure 8.9, if there is a match on both the virtual page number and the
process ID, then the translation is valid. Some systems do a two stage lookup: they first
map the virtual address to a memory object ID, and then do the hash table lookup on the
relative virtual address within the memory object. If memory is mostly shared, this can save
space in the hash table without unduly slowing the translation.

An inverted page table does need some way to handle hash collisions, when two virtual
addresses map to the same hash table entry. Standard techniques — such as chaining or
rehashing — can be used to handle collisions.

A particularly useful consequence of having a portability layer for memory management is
that the contents of the hardware multi-level translation table can be treated as a hint. A
hint is a result of some computation whose results may no longer be valid, but where using
an invalid hint will trigger an exception.

With a portability layer, the software page table is the ground truth, while the hardware
page table is a hint. The hardware page table can be safely used, provided that the
translations and permissions are a subset of the translations in the software page table.

Is an inverted page table enough?

The concept of an inverted page table raises an intriguing question: do we need to have a multi-level page
table in hardware? Suppose, in hardware, we hash the virtual address. But instead of using the hash value
to look up in a table where to find the physical page frame, suppose we just use the hash value as the
physical page. For this to work, we need the hash table size to have exactly as many entries as physical
memory page frames, so that there is a one-to-one correspondence between the hash table entry and the
page frame.

We still need a table to store permissions and to indicate which virtual page is stored in each entry; if the
process does not have permission to access the page, or if two virtual pages hash to the same physical
page, we need to be able to detect this and trap to the operating system kernel to handle the problem. This
is why a hash table for managing memory is often called called an inverted page table: the entries in the
table are virtual page numbers, not physical page numbers. The physical page number is just the position of
that virtual page in the table.

The drawback to this approach? Handling hash collisions becomes much harder. If two pages hash to the
same table entry, only one can be stored in the physical page frame. The other has to be elsewhere —
either in a secondary hash table entry or possibly stored on disk. Copying in the new page can take time,
and if the program is unlucky enough to need to simultaneously access two virtual pages that both hash to
the same physical page, the system will slow down even further. As a result, on modern systems, inverted
page tables are typically used in software to improve portability, rather than in hardware, to eliminate the
need for multi-level page tables.

8.3 Towards Efficient Address Translation

At this point, you should be getting a bit antsy. After all, most of the hardware mechanisms
we have described involve at least two and possibly as many as four memory extra
references, on each instruction, before we even reach the intended physical memory
location! It should seem completely impractical for a processor to do several memory
lookups on every instruction fetch, and even more that for every instruction that loads or
stores data.

In this section, we will discuss how to improve address translation performance without
changing its logical behavior. In other words, despite the optimization, every virtual address
is translated to exactly the same physical memory location, and every permission
exception causes a trap, exactly as would have occurred without the performance
optimization.

For this, we will use a cache, a copy of some data that can be accessed more quickly than
the original. This section concerns how we might use caches to improve translation
performance. Caches are widely used in computer architecture, operating systems,
distributed systems, and many other systems; in the next chapter, we discuss more
generally when caches work and when they do not. For now, however, our focus is just on
the use of caches for reducing the overhead of address translation. There is a reason for
this: the very first hardware caches were used to improve translation performance.

8.3.1 Translation Lookaside Buffers

If you think about how a processor executes instructions with address translation, there are
some obvious ways to improve performance. After all, the processor normally executes
instructions in a sequence:

 ...
 add r1, r2
 mult r1, 2
 ...

The hardware will first translate the program counter for the add instruction, walking the
multi-level translation table to find the physical memory where the add instruction is stored.
When the program counter is incremented, the processor must walk the multiple levels
again to find the physical memory where the mult instruction is stored. If the two
instructions are on the same page in the virtual address space, then they will be on the
same page in physical memory. The processor will just repeat the same work — the table
walk will be exactly the same, and again for the next instruction, and the next after that.

A translation lookaside buffer (TLB) is a small hardware table containing the results of
recent address translations. Each entry in the TLB maps a virtual page to a physical page:

 TLB entry = {
 virtual page number,
 physical page frame number,
 access permissions
 }

Figure 8.10: Operation of a translation lookaside buffer. In the diagram, each virtual page number is
checked against all of the entries in the TLB at the same time; if there is a match, the matching table entry
contains the physical page frame and permissions. If not, the hardware multi-level page table lookup is
invoked; note the hardware page tables are omitted from the picture.

Figure 8.11: Combined operation of a translation lookaside buffer and hardware page tables.

Instead of finding the relevant entry by a multi-level lookup or by hashing, the TLB
hardware (typically) checks all of the entries simultaneously against the virtual page. If
there is a match, the processor uses that entry to form the physical address, skipping the
rest of the steps of address translation. This is called a TLB hit. On a TLB hit, the hardware
still needs to check permissions, in case, for example, the program attempts to write to a
code-only page or the operating system needs to trap on a store instruction to a copy-on-
write page.

A TLB miss occurs if none of the entries in the TLB match. In this case, the hardware does
the full address translation in the way we described above. When the address translation
completes, the physical page is used to form the physical address, and the translation is
installed in an entry in the TLB, replacing one of the existing entries. Typically, the replaced
entry will be one that has not been used recently.

The TLB lookup is illustrated in Figure 8.10, and Figure 8.11 shows how a TLB fits into the
overall address translation system.

Although the hardware cost of a TLB might seem large, it is modest compared to the
potential gain in processor performance. To be useful, the TLB lookup needs to be much
more rapid than doing a full address translation; thus, the TLB table entries are
implemented in very fast, on-chip static memory, situated near the processor. In fact, to
keep lookups rapid, many systems now include multiple levels of TLB. In general, the
smaller the memory, the faster the lookup. So, the first level TLB is small and close to the
processor (and often split for engineering reasons into one for instruction lookups and a
separate one for data lookups). If the first level TLB does not contain the translation, a
larger second level TLB is consulted, and the full translation is only invoked if the
translation misses both levels. For simplicity, our discussion will assume a single-level TLB.

A TLB also requires an address comparator for each entry to check in parallel if there is a
match. To reduce this cost, some TLBs are set associative. Compared to fully associative
TLBs, set associative ones need fewer comparators, but they may have a higher miss rate.
We will discuss set associativity, and its implications for operating system design, in the
next chapter.

What is the cost of address translation with a TLB? There are two factors. We pay the cost
of the TLB lookup regardless of whether the address is in the TLB or not; in the case of an
unsuccessful TLB lookup, we also pay the cost of the full translation. If P(hit) is the
likelihood that the TLB has the entry cached:

Cost (address translation) = Cost (TLB lookup)
 + Cost (full translation) × (1 - P(hit))

In other words, the processor designer needs to include a sufficiently large TLB that most
addresses generated by a program will hit in the TLB, so that doing the full translation is
the rare event. Even so, TLB misses are a significant cost for many applications.

Software-loaded TLB

If the TLB is effective at amortizing the cost of doing a full address translation across many memory
references, we can ask a radical question: do we need hardware multi-level page table lookup on a TLB
miss? This is the concept behind a software-loaded TLB. A TLB hit works as before, as a fast path. On a
TLB miss, instead of doing hardware address translation, the processor traps to the operating system
kernel. In the trap handler, the kernel is responsible for doing the address lookup, loading the TLB with the
new translation, and restarting the application.

This approach dramatically simplifies the design of the operating system, because it no longer needs to
keep two sets of page tables, one for the hardware and one for itself. On a TLB miss, the operating system
can consult its own portable data structures to determine what data should be loaded into the TLB.

Although convenient for the operating system, a software-loaded TLB is somewhat slower for executing
applications, as the cost of trapping to the kernel is significantly more than the cost of doing hardware
address translation. As we will see in the next chapter, the contents of page table entries can be stored in
on-chip hardware caches; this means that even on a TLB miss, the hardware can often find every level of
the multi-level page table already stored in an on-chip cache, but not in the TLB. For example, a TLB miss
on a modern generation x86 can be completed in the best case in the equivalent of 17 instructions. By
contrast, a trap to the operating system kernel will take several hundred to a few thousand instructions to
process, even in the best case.

Figure 8.12: Operation of a translation lookaside buffer with superpages. In the diagram, some entries in the
TLB can be superpages; these match if the virtual page is in the superpage. The superpage in the diagram
covers an entire memory segment, but this need not always be the case.

8.3.2 Superpages

One way to improve the TLB hit rate is using a concept called superpages. A superpage is
a set of contiguous pages in physical memory that map a contiguous region of virtual
memory, where the pages are aligned so that they share the same high-order (superpage)
address. For example, an 8 KB superpage would consist of two adjacent 4 KB pages that
lie on an 8 KB boundary in both virtual and physical memory. Superpages are at the
discretion of the operating system — small programs or memory segments that benefit
from a smaller page size can still operate with the standard, smaller page size.

Superpages complicate operating system memory allocation by requiring the system to
allocate chunks of memory in different sizes. However, the upside is that a superpage can
drastically reduce the number of TLB entries needed to map large, contiguous regions of
memory. Each entry in the TLB has a flag, signifying whether the entry is a page or a
superpage. For superpages, the TLB matches the superpage number — that is, it ignores
the portion of the virtual address that is the page number within the superpage. This is
illustrated in Figure 8.12.

To make this concrete, the x86 skips one or two levels of the page table when there is a 2
MB or 1 GB region of physical memory that is mapped as a unit. When the processor
references one of these regions, only a single entry is loaded into the TLB. When looking
for a match against a superpage, the TLB only considers the most significant bits of the
address, ignoring the offset within the superpage. For a 2 MB superpage, the offset is the
lowest 21 bits of the virtual address. For a 1 GB superpage it is the lowest 30 bits.

Figure 8.13: Layout of a high-resolution frame buffer in physical memory. Each line of the pixel display can
take up an entire page, so that adjacent pixels in the vertical dimension lie on different pages.

A common use of superpages is to map the frame buffer for the computer display. When
redrawing the screen, the processor may touch every pixel; with a high-resolution display,
this can involve stepping through many megabytes of memory. If each TLB entry maps a 4
KB page, even a large on-chip TLB with 256 entries would only be able to contain
mappings for 1 MB of the frame buffer at the same time. Thus, the TLB would need to
repeatedly do page table lookups to pull in new TLB entries as it steps through memory. An
even worse case occurs when drawing a vertical line. The frame buffer is a two-
dimensional array in row-major order, so that each horizontal line of pixels is on a separate
page. Thus, modifying each separate pixel in a vertical line would require loading a
separate TLB entry! With superpages, the entire frame buffer can be mapped with a single
TLB entry, leaving more room for the other pages needed by the application.

Similar issues occur with large matrices in scientific code.

8.3.3 TLB Consistency

Whenever we introduce a cache into a system, we need to consider how to ensure
consistency of the cache with the original data when the entries are modified. A TLB is no
exception. For secure and correct program execution, the operating system must ensure
that the each program sees its memory and no one else’s. Any inconsistency between the
TLB, the hardware multi-level translation table, and the portable operating system layer is a
potential correctness and security flaw.

There are three issues to consider:

Figure 8.14: Operation of a translation lookaside buffer with process ID’s. The TLB contains entries for
multiple processes; only the entries for the current process are valid. The operating system kernel must

change the current process ID when performing a context switch between processes.

Process context switch. What happens on a process context switch? The virtual
addresses of the old process are no longer valid, and should no longer be valid, for the
new process. Otherwise, the new process will be able to read the old process’s data
structures, either causing the new process to crash, or potentially allowing it to
scavenge sensitive information such as passwords stored in memory.

On a context switch, we need to change the hardware page table register to point to
the new process’s page table. However, the TLB also contains copies of the old
process’s page translations and permissions. One approach is to flush the TLB —
discard its contents — on every context switch. Since emptying the cache carries a
performance penalty, modern processors have a tagged TLB, shown in Figure 8.14.
Entries in a tagged TLB contain the process ID that produced each translation:

 tagged TLB entry = {
 process ID,
 virtual page number,
 physical page frame number,
 access permissions
 }

With a tagged TLB, the operating system stores the current process ID in a hardware
register on each context switch. When performing a lookup, the hardware ignores TLB
entries from other processes, but it can reuse any TLB entries that remain from the
last time the current process executed.

Permission reduction. What happens when the operating system modifies an entry
in a page table? For the processor’s regular data cache of main memory, special-
purpose hardware keeps cached data consistent with the data stored in memory.
However, hardware consistency is not usually provided for the TLB; keeping the TLB
consistent with the page table is the responsibility of the operating system kernel.

Software involvement is needed for several reasons. First, page table entries can be
shared between processes, so a single modification can affect multiple TLB entries
(e.g., one for each process sharing the page). Second, the TLB contains only the
virtual to physical page mapping — it does not record the address where the mapping
came from, so it cannot tell if a write to memory would affect a TLB entry. Even if it did
track this information, most stores to memory do not affect the page table, so
repeatedly checking each memory store to see if it affects any TLB entry would involve
a large amount of overhead that would rarely be needed.

Instead, whenever the operating system changes the page table, it ensures that the
TLB does not contain an incorrect mapping.

Nothing needs to be done when the operating system adds permissions to a portion of
the virtual address space. For example, the operating system might dynamically

extend the heap or the stack by allocating physical memory and changing invalid page
table entries to point to the new memory, or the operating system might change a
page from read-only to read-write. In these cases, the TLB can be left alone because
any references that require the new permissions will either cause the hardware load
the new entries or cause an exception, allowing the operating system to load the new
entries.

However, if the operating system needs to reduce permissions to a page, then the
kernel needs to ensure the TLB does not have a copy of the old translation before
resuming the process. If the page was shared, the kernel needs to ensure that the
TLB does not have the copy for any of the process ID’s that might have referenced the
page. For example, to mark a region of memory as copy-on-write, the operating
system must reduce permissions to the region to read-only, and it must remove any
entries for that region from the TLB, since the old TLB entries would still be read-write.

Early computers discarded the entire contents of the TLB whenever there was a
change to a page table, but more modern architectures, including the x86 and the
ARM, support the removal of individual TLB entries.

Figure 8.15: Illustration of the need for TLB shootdown to preserve correct translation behavior. In
order for processor 1 to change the translation for page 0x53 in process 0 to read-only, it must remove
the entry from its TLB, and it must ensure that no other processor has the old translation in its TLB. To
do this, it sends an interprocessor interrupt to each processor, requesting it to remove the old
translation. The operating system does not know if a particular TLB contains an entry (e.g., processor
3’s TLB does not contain page 0x53), so it must remove it from all TLBs. The shootdown is complete
only when all processors have verified that the old translation has been removed.

TLB shootdown. On a multiprocessor, there is a further complication. Any processor
in the system may have a cached copy of a translation in its TLB. Thus, to be safe and
correct, whenever a page table entry is modified, the corresponding entry in every
processor’s TLB has to be discarded before the change will take effect. Typically, only
the current processor can invalidate its own TLB, so removing the entry from all
processors on the system requires that the operating system interrupt each processor
and request that it remove the entry from its TLB.

This heavyweight operation has its own name: it is a TLB shootdown, illustrated in
Figure 8.15. The operating system first modifies the page table, then sends a TLB
shootdown request to all of the other processors. Once another processor has
ensured that its TLB has been cleaned of any old entries, that processor can resume.
The original processor can continue only when all of the processors have
acknowledged removing the old entry from their TLB. Since the overhead of a TLB
shootdown increases linearly with the number of processors on the system, many
operating systems batch TLB shootdown requests, to reduce the frequency of
interprocess interrupts at some increased cost in latency to complete the shootdown.

8.3.4 Virtually Addressed Caches

Figure 8.16: Combined operation of a virtually addressed cache, translation lookaside buffer, and hardware
page table.

Another step to improving the performance of address translation is to include a virtually
addressed cache before the TLB is consulted, as shown in Figure 8.16. A virtually
addressed cache stores a copy of the contents of physical memory, indexed by the virtual
address. When there is a match, the processor can use the data immediately, without
waiting for a TLB lookup or page table translation to generate a physical address, and
without waiting to retrieve the data from main memory. Almost all modern multicore chips
include a small, virtually addressed on-chip cache near each processor core. Often, like
the TLB, the virtually addressed cache will be split in half, one for instruction lookups and
one for data.

The same consistency issues that apply to TLBs also apply to virtually addressed caches:

Process context switch. Entries in the virtually addressed cache must either be
either with the process ID or they must be invalidated on a context switch to prevent
the new process from accessing the old process’s data.

Permission reduction and shootdown. When the operating system changes the
permission for a page in the page table, the virtual cache will not reflect that change.
Invalidating the affected cache entries would require either flushing the entire cache or
finding all memory locations stored in the cache on the affected page, both relatively
heavyweight operations.

Instead, most systems with virtually addressed caches use them in tandem with the
TLB. Each virtual address is looked up in both the cache and the TLB at the same
time; the TLB specifies the permissions to use, while the cache provides the data if the
access is permitted. This way, only the TLB’s permissions need to be kept up to date.
The TLB and virtual cache are co-designed to take the same amount of time to
perform a lookup, so the processor does not stall waiting for the TLB.

A further issue is aliasing. Many operating systems allow processes sharing memory to
use different virtual addresses to refer to the same memory location. This is called a
memory address alias. Each process will have its own TLB entry for that memory, and the
virtual cache may store a copy of the memory for each process. The problem occurs when
one process modifies its copy; how does the system know to update the other copy?

The most common solution to this issue is to store the physical address along with the
virtual address in the virtual cache. In parallel with the virtual cache lookup, the TLB is
consulted to generate the physical address and page permissions. On a store instruction
modifying data in the virtual cache, the system can do a reverse lookup to find all the
entries that match the same physical address, to allow it to update those entries.

8.3.5 Physically Addressed Caches

Figure 8.17: Combined operation of a virtually addressed cache, translation lookaside buffer, hardware
page table, and physically addressed cache.

Many processor architectures include a physically addressed cache that is consulted as a
second-level cache after the virtually addressed cache and TLB, but before main memory.
This is illustrated in Figure 8.17. Once the physical address of the memory location is
formed from the TLB lookup, the second-level cache is consulted. If there is a match, the
value stored at that location can be returned directly to the processor without the need to
go to main memory.

With today’s chip densities, an on-chip physically addressed cache can be quite large. In
fact, many systems include both a second-level and a third-level physically addressed
cache. Typically, the second-level cache is per-core and is optimized for latency; a typical
size is 256 KB. The third-level cache is shared among all of the cores on the same chip
and will be optimized for size; it can be as large as 2 MB on a modern chip. In other words,
the entire UNIX operating system from the 70’s, and all of its applications, would fit on a
single modern chip, with no need to ever go to main memory.

Together, these physically addressed caches serve a dual purpose:

Faster memory references. An on-chip physically addressed cache will have a
lookup latency that is ten times (2nd level) or three times (3rd level) faster than main
memory.

Faster TLB misses. In the event of a TLB miss, the hardware will generate a
sequence of lookups through its multiple levels of page tables. Because the page
tables are stored in physical memory, they can be cached. Thus, even a TLB miss and
page table lookup may be handled entirely on chip.

8.4 Software Protection

An increasing number of systems complement hardware-based address translation with
software-based protection mechanisms. Obviously, software-only protection is possible. A
machine code interpreter, implemented in software, can simulate the exact behavior of
hardware protection. The interpreter could fetch each instruction, interpret it, look each
address up in a page table to determine if the instruction is permitted, and if so, execute
the instruction. Of course, that would be very slow!

In this section, we ask: are there practical software techniques to execute code within a
restricted domain, without relying on hardware address translation? The focus of our
discussion will be on using software for providing an efficient protection boundary, as a way
of improving computer security. However, the techniques we describe can also be used to
provide other operating system services, such as copy-on-write, stack extensibility,
recoverable memory, and user-level virtual machines. Once you have the infrastructure to
reinterpret references to code and data locations, whether in software or hardware, a
number of services become possible.

Hardware protection is nearly universal on modern computers, so it is reasonable to ask,
why do we need to implement protection in software?

Simplify hardware. One goal is simple curiosity. Do we really need hardware address
translation, or is it just an engineering tradeoff? If software can provide efficient

protection, we could eliminate a large amount of hardware complexity and runtime
overhead from computers, with a substantial increase in flexibility.

Application-level protection. Even if we need hardware address translation to
protect the operating system from misbehaving applications, we often want to run
untrusted code within an application. An example is inside a web browser; web pages
can contain code to configure the display for a web site, but the browser needs to
protect itself against malicious or buggy code provided by web sites.

Protection inside the kernel. We also sometimes need to run untrusted, or at least
less trusted, code inside kernel. Examples include third-party device drivers and code
to customize the behavior of the operating system on behalf of applications. Because
the kernel runs with the full capability of the entire machine, any user code run inside
the kernel must be protected in software rather than in hardware.

Portable security. The proliferation of consumer devices poses a challenge to
application portability. No single operating system runs on every embedded sensor,
smartphone, tablet, netbook, laptop, desktop, and server machine. Applications that
want to run across a wide range of devices need a common runtime environment that
isolates the application from the specifics of the underlying operating system and
hardware device. Providing protection as part of the runtime system means that users
can download and run applications without concern that the application will corrupt the
underlying operating system.

Figure 8.18: Execution of untrusted code inside a region of trusted code. The trusted region can be a
process, such as a browser, executing untrusted JavaScript, or the trusted region can be the operating
system kernel, executing untrusted packet filters or device drivers.

The need for software protection is widespread enough that it has its own term: how do we
provide a software sandbox for executing untrusted code so that it can do its work without
causing harm to the rest of the system?

8.4.1 Single Language Operating Systems

A very simple approach to software protection is to restrict all applications to be written in a
single, carefully designed programming language. If the language and its environment
permits only safe programs to be expressed, and the compiler and runtime system are
trustworthy, then no hardware protection is needed.

Figure 8.19: Execution of a packet filter inside the kernel. A packet filter can be installed by a network
debugger to trace packets for a particular user or application. Packet headers matching the filter are copied
to the debugger, while normal packet processing continues unaffected.

A practical example of this approach that is still in wide use is UNIX packet filters, shown in
Figure 8.19. UNIX packet filters allow users to download code into the operating system
kernel to customize kernel network processing. For example, a packet filter can be
installed in the kernel to make a copy of packet headers arriving for a particular connection
and to send those to a user-level debugger.

A UNIX packet filter is typically only a small amount of code, but because it needs to run in
kernel-mode, the system cannot rely on hardware protection to prevent a misbehaving
packet filter from causing havoc to unrelated applications. Instead, the system restricts the
packet filter language to permit only safe packet filters. For example, filters may only
branch on the contents of packets and no loops are allowed. Since the filters are typically
short, the overhead of using an interpreted language is not prohibitive.

Figure 8.20: Execution of a JavaScript program inside a modern web browser. The JavaScript interpreter is
responsible for containing effects of the JavaScript program to its specific page. JavaScript programs can
call out to a broad set of routines in the browser, so these routines must also be protected against malicious
JavaScript programs.

Another example of the same approach is the use of JavaScript in modern web browsers,
illustrated in Figure 8.20. A JavaScript program customizes the user interface and
presentation of a web site; it is provided by the web site, but it executes on the client
machine inside the browser. As a result, the browser execution environment for JavaScript
must prevent malicious JavaScript programs from taking control over the browser and
possibly the rest of the client machine. Since JavaScript programs tend to be relatively
short, they are often interpreted; JavaScript can also call into a predefined set of library
routines. If a JavaScript program attempts to call a procedure that does not exist or
reference arbitrary memory locations, the interpreter will cause a runtime exception and
stop the program before any harm can be done.

Several early personal computers were single language systems with protection
implemented in software rather than hardware. Most famously, the Xerox Alto research
prototype used software and not hardware protection; the Alto inspired the Apple
Macintosh, and the language it used, Mesa, was a forerunner of Java. Other systems
included the Lisp Machine, a computer that executed only programs written in Lisp, and
computers that executed only Smalltalk (a precursor to Python).

Language protection and garbage collection

JavaScript, Lisp, and Smalltalk all provide memory-compacting garbage collection for dynamically created
data structures. One motivation for this is programmer convenience and to reduce avoidable programmer
error. However, there is a close relationship between software protection and garbage collection. Garbage

collection requires the runtime system to keep track of all valid pointers visible to the program, so that data
structures can be relocated without affecting program behavior. Programs expressible in the language
cannot point to or jump to arbitrary memory locations, as then the behavior of the program would be altered
by the garbage collector. Every address generated by the program is necessarily within the region of the
application’s code, and every load and store instruction is to the program’s data, and no one else’s. In other
words, this is exactly what is needed for software protection!

Unfortunately, language-based software protection has some practical limitations, so that
on modern systems, it is often used in tandem with, rather than as a replacement for,
hardware protection. Using an interpreted language seems like a safe option, but it
requires trust in both the interpreter and its runtime libraries. An interpreter is a complex
piece of software, and any flaw in the interpreter could provide a way for a malicious
program to gain control over the process, that is, to escape its protection boundary. Such
attacks are common for browsers running JavaScript, although over time JavaScript
interpreters have become more robust to these types of attacks.

Worse, because running interpreted code is often slow, many interpreted systems put most
of their functionality into system libraries that can be compiled into machine code and run
directly on the processor. For example, commercial web browsers provide JavaScript
programs a huge number of user interface objects, so that the interpreted code is just a
small amount of glue. Unfortunately, this raises the attack surface — any library routine that
does not completely protect itself against malicious use can be a vector for the program to
escape its protection. For example, a JavaScript program could attempt to cause a library
routine to overwrite the end of a buffer, and depending on what was stored in memory, that
might provide a way for the JavaScript program to gain control of the system. These types
of attacks against JavaScript runtime libraries are widespread.

This leads most systems to use both hardware and software protection. For example,
Microsoft Windows runs its web browser in a special process with restricted permissions.
This way, if a system administrator visits a web site containing a malicious JavaScript
program, even if the program takes over the browser, it cannot store files or do other
operations that would normally be available to the system administrator. We know a
computer security expert who runs each new web page in a separate virtual machine; even
if the web page contains a virus that takes over the browser, and the browser is able to
take over the operating system, the original, uninfected, operating system can be
automatically restored by resetting the virtual machine.

Cross-site scripting

Another JavaScript attack makes use of the storage interface provided to JavaScript programs. To allow
JavaScript programs to communicate with each other, they can store data in cookies in the browser. For
some web sites, these cookies can contain sensitive information such as the user’s login authentication. A
JavaScript program that can gain access to a user’s cookies can potentially pretend to be the user, and
therefore access the user’s sensitive data stored at the server. If a web site is compromised, it can be
modified to serve pages containing a JavaScript program that gathers and exploits the user’s sensitive data.
These are called cross-site scripting attacks, and they are widespread.

Figure 8.21: Design of the Xerox Alto operating system. Application programs and most of the operating
system were implemented in a type-safe programming language called Mesa; Mesa isolated most errors to
the module that caused the error.

A related approach is to write all the software on a system in a single, safe language, and
then to compile the code into machine instructions that execute directly on the processor.
Unlike interpreted languages, the libraries themselves can be written in the safe language.
The Xerox Alto took this approach: both applications and the entire operating system were
written in the same language, Mesa. Like Java, Mesa had support for thread
synchronization built directly into the language. Even with this, however, there are practical
issues. You still need to do defensive programming at the trust boundary — between
untrusted application code (written in the safe language) and trusted operating system
code (written in the safe language). You also need to be able to trust the compiler to
generate correct code that enforces protection; any weakness in the compiler could allow a
buggy program to crash the system. The designers of the Alto built a successor system,
called the Digital Equipment Firefly, which used a successor language to Mesa, called
Modula-2, for implementing both applications and the operating system. However, for an
extra level of protection, the Firefly also used hardware protection to isolate applications
from the operating system kernel.

8.4.2 Language-Independent Software Fault Isolation

A limitation of trusting a language and its interpreter or compiler to provide safety is that
many programmers value the flexibility to choose their own programming language. For
example, some might use Ruby for configuring web servers, Matlab or Python for writing
scientific code, or C++ for large software engineering efforts.

Since it would be impractical for the operating system to trust every compiler for every
possible language, can we efficiently isolate application code, in software without hardware
support, in a programming language independent fashion?

One reason for considering this is that there are many cases where systems need an extra
level of protection within a process. We saw an example of this with web browsers needing
to safely execute JavaScript programs, but there are many other examples. With software
protection, we could give users the ability to customize the operating system by
downloading code into the kernel, as with packet filters, but on a more widespread basis.
Kernel device drivers have been shown to be the primary cause of operating system
crashes; providing a way for the kernel to execute device drivers in a restricted
environment could potentially cut down on the severity of these faults. Likewise, many
complex software packages such as databases, spreadsheets, desktop publishing
systems, and systems for computer-aided design, provide their users a way to download
code into the system to customize and configure the system’s behavior to meet the user’s
specific needs. If this downloaded code causes the system to crash, the user will not be
able to tell who is really at fault and is likely to end up blaming the vendor.

Of course, one way to do this is to rely on the JavaScript interpreter. Tools exist to compile
code written in one language, like C or C++, into JavaScript. This lets applications written
in those languages to run on any browser that supports JavaScript. If executing JavaScript
were safe and fast enough, then we could declare ourselves done.

In this section, we discuss an alternate approach: can we take any chunk of machine
instructions and modify it to ensure that the code does not touch any memory outside of its
own region of data? That way, the code could be written in any language, compiled by any
compiler, and directly execute at the full speed of the processor.

Both Google and Microsoft have products that accomplish this: a sandbox that can run
code written in any programming language, executed safely inside a process. Google’s
product is called Native Client; Microsoft’s is called Application Domains. These
implementations are efficient: Google reports that the runtime overhead of executing code
safely inside a sandbox is less than 10%.

For simplicity of our discussion, we will assume that the memory region for the sandbox is
contiguous, that is, the sandbox has a base and bound that needs to be enforced in
software. Because we can disallow the execution of obviously malicious code, we can start
by checking that the code in the sandbox does not use self-modifying instructions or
privileged instructions.

We proceed in two steps. First, we insert machine instructions into the executable to do
what hardware protection would have done, that is, to check that each address is legally
within the region specified by the base and bounds, and to raise an exception if not.
Second, we use control and data flow analysis to remove checks that are not strictly
necessary for the sandbox to be correct. This mirrors what we did for hardware translation
— first, we designed a general-purpose and flexible mechanism, and then we showed how
to optimize it using TLBs so that the full translation mechanism was not needed on every
instruction.

The added instructions for every load and store instruction are simple: just add a check
that the address to be used by each load or store instruction is within the correct region of
data. In the code, r1 is a machine register.

 test r1, data.base
 if less-than, branch to exception
 test r1, data.bound
 if greater-than, branch to exception
 store data at r1

Note that the store instructions must be limited to just the data region of the sandbox;
otherwise a store could modify the instruction sequence, e.g., to cause a jump out of the
protected region.

We also need to check indirect branch instructions. We need to make sure the program
cannot branch outside of the sandbox except for predefined entry and exit points. Relative
branches and named procedure calls can be directly verified. Indirect branches and
procedure returns jump to a location stored in a register or in memory; the address must be
checked before use.

 test r1, code.base
 if less-than, branch to exception
 test r1, code.bound
 if greater-than, branch to exception
 jump to r1

As a final detail, the above code verifies that indirect branch instructions stay within the
code region. This turns out to be insufficient for protection, for two reasons. First, x86 code
is byte addressable, and if you allow a jump to the middle of an instruction, you cannot be
guaranteed as to what the code will do. In particular, an erroneous or malicious program
might jump to the middle of an instruction, whose bytes would cause the processor to jump
outside of the protected region. Although this may seem unlikely, remember that the
attacker has the advantage; the attacker can try various code sequences to see if that
causes an escape from the sandbox. A second issue is that an indirect branch might jump
past the protection checks for a load or store instruction. We can prevent both of these by
doing all indirect jumps through a table that only contains valid entry points into the code;
of course, the table must also be protected from being modified by the code in the
sandbox.

Now that we have logical correctness, we can run control and data flow analysis to
eliminate many of the extra inserted instructions, if it can be proven that they are not
needed. Examples of possible optimizations include:

Loop invariants. If a loop strides through memory, the sandbox may be able to prove
with a simple test at the beginning of the loop that all memory accesses in the loop will

be within the protected region.

Return values. If static code analysis of a procedure can prove that the procedure
does not modify the return program counter stored on the stack, the return can be
made safely without further checks.

Cross-procedure checks. If the code analysis can prove that a parameter is always
checked before it is passed as an argument to a subroutine, it need not be checked
when it is used inside the procedure.

Virtual machines without kernel support

Modifying machine code to transparently change the behavior of a program, while still enforcing protection,
can be used for other purposes. One application is transparently executing a guest operating system inside
a user-level process without kernel support.

Normally, when we run a guest operating system in a virtual machine, the hardware catches any privileged
instructions executed by the guest kernel and traps into the host kernel. The host kernel emulates the
instructions and returns control back to the guest kernel at the instruction immediately after the hardware
exception. This allows the host kernel to emulate privilege levels, interrupts, exceptions, and kernel
management of hardware page tables.

What happens if we are running on top of an operating system that does not support a virtual machine? We
can still emulate a virtual machine by modifying the machine code of the guest operating system kernel. For
example, we can convert instructions to enable and disable interrupts to a no op. We can convert an
instruction to start executing a user program to take the contents of the application memory, re-write those
contents into a user-level sandbox, and start it executing. From the perspective of the guest kernel, the
application program execution looks normal; it is the sandbox that keeps the application program from
corrupting kernel’s data structures and passes control to the guest kernel when the application makes a
system call.

Because of the widespread use of virtual machines, some hardware architectures have begun to add
support for directly executing guest operating systems in user-mode without kernel support. We will return to
this issue in a later chapter, as it is closely related to the topic of stackable virtual machines: how do we
manipulate page tables to handle the case where the guest operating system is itself a virtual machine
monitor running a virtual machine.

8.4.3 Sandboxes Via Intermediate Code

To improve portability, both Microsoft and Google can construct their sandboxes from
intermediate code generated by the compiler. This makes it easier for the system to do the
code modification and data flow analysis to enforce the sandbox. Instead of generating x86
or ARM code directly, the various compilers generate their code in the intermediate
language, and the sandbox runtime converts that into sandboxed code on the specific
processor architecture.

The intermediate representation can be thought of as a virtual machine, with a simpler
instruction set. From the compiler perspective, it is as easy to generate code for the virtual
machine as it would be to go directly to x86 or ARM instructions. From the sandbox
perspective though, using a virtual machine as the intermediate representation is much

simpler. The intermediate code can include annotations as to which pointers can be proven
to be safe and which must be checked before use. For example, pointers in a C program
would require runtime checks while the memory references in a Java program may be able
to be statically proven as safe from the structure of the code.

Microsoft has compilers for virtually every commercially important programming language.
To avoid trusting all of these compilers with the safety of the system, the runtime is
responsible for validating any of the type information needed for efficient code generation
for the sandbox. Typically, verifying the correctness of static analysis is much simpler than
generating it in the first place.

The Java virtual machine (JVM) is also a kind of sandbox; Java code is translated into
intermediate byte code instructions that can be verified at runtime as being safely
contained in the sandbox. Several languages have been compiled into Java byte code,
such as Python, Ruby, and JavaScript. Thus, a JVM can also be considered a language-
independent sandbox. However, because of the structure of the intermediate
representation in Java, it is more difficult to generate correct Java byte code for languages
such as C or Fortran.

8.5 Summary and Future Directions

Address translation is a powerful abstraction enabling a wide variety of operating system
services. It was originally designed to provide isolation between processes and to protect
the operating system kernel from misbehaving applications, but it is more widely
applicable. It is now used to simplify memory management, to speed interprocess
communication, to provide for efficient shared libraries, to map files directly into memory,
and a host of other uses.

A huge challenge to effective hardware address translation is the cumulative effect of
decades of Moore’s Law: both servers and desktop computers today contain vast amounts
of memory. Processes are now able to map their code, data, heap, shared libraries, and
files directly into memory. Each of these segments can be dynamic; they can be shared
across processes or private to a single process. To handle these demands, hardware
systems have converged on a two-tier structure: a multi-level segment and page table to
provide very flexible but space-efficient lookup, along with a TLB to provide time-efficient
lookup for repeated translations of the same page.

Much of what we can do in hardware we can also do in software; a combination of
hardware and software protection has proven attractive in a number of contexts. Modern
web browsers execute code embedded in web pages in a software sandbox that prevents
the code from infecting the browser; the operating system uses hardware protection to
provide an extra level of defense in case the browser itself is compromised.

The future trends are clear:

Very large memory systems. The cost of a gigabyte of memory is likely to continue
to plummet, making ever larger memory systems practical. Over the past few
decades, the amount of memory per system has almost doubled each year. We are
likely to look back at today’s computers and wonder how we could have gotten by with

as little as a gigabyte of DRAM! These massive memories will require ever deeper
multi-level page tables. Fortunately, the same trends that make it possible to build
gigantic memories also make it possible to design very large TLBs to hide the
increasing depth of the lookup trees.

Multiprocessors. On the other hand, multiprocessors will mean that maintaining TLB
consistency will become increasingly expensive. A key assumption for using page
table protection hardware for implementing copy-on-write and fill-on-demand is that
the cost of modifying page table entries is modest. One possibility is that hardware will
be added to systems to make TLB shootdown a much cheaper operation, e.g., by
making TLBs cache coherent. Another possibility is to follow the trend towards
software sandboxes. If TLB shootdown remains expensive, we may start to see copy-
on-write and other features implemented in software rather than hardware.

User-level sandboxes. Applications like browsers that run untrusted code are
becoming increasingly prevalent. Operating systems have only recently begun to
recognize the need to support these types of applications. Software protection has
become common, both at the language level with JavaScript, and in the runtime
system with Native Client and Application Domains. As these technologies become
more widely used, it seems likely we may direct hardware support for application-level
protection — to allow each application to set up its own protected execution
environment, but enforced in hardware. If so, we may come to think of many
applications as having their own embedded operating system, and the underlying
operating system kernel as mediating between these operating systems.

Exercises

1. True or false. A virtual memory system that uses paging is vulnerable to external
fragmentation. Why or why not?

2. For systems that use paged segmentation, what translation state does the kernel need
to change on a process context switch?

3. For the three-level SPARC page table, what translation state does the kernel need to
change on a process context switch?

4. Describe the advantages of an architecture that incorporates segmentation and paging
over ones that are either pure paging or pure segmentation. Present your answer as
separate lists of advantages over each of the pure schemes.

5. For a computer architecture with multi-level paging, a page size of 4 KB, and 64-bit
physical and virtual addresses:

a. List the required and optional fields of its page table entry, along with the number
of bits per field.

b. Assuming a compact encoding, what is the smallest possible size for a page table
entry in bytes, rounded up to an even number.

c. Assuming a requirement that each page table fits into a single page, and given
your answer above, how many levels of page tables would be required to

completely map the 64-bit virtual address space?
6. Consider the following piece of code which multiplies two matrices:

 float a[1024][1024], b[1024][1024], c[1024][1024];

 multiply() {
 unsigned i, j, k;

 for (i = 0; i < 1024; i++)
 for (j = 0; j < 1024; j++)
 for (k = 0; k < 1024; k++)
 c[i][j] += a[i,k] * b[k,j];
 }

Assume that the binary for executing this function fits in one page and that the stack
also fits in one page. Assume that storing a floating point number takes 4 bytes of
memory. If the page size is 4 KB, the TLB has 8 entries, and the TLB always keeps the
most recently used pages, compute the number of TLB misses assuming the TLB is
initially empty.

7. Of the following items, which are stored in the thread control block, which are stored in
the process control block, and which in neither?

a. Page table pointer
b. Page table
c. Stack pointer
d. Segment table
e. Ready list
f. CPU registers

g. Program counter

8. Draw the segment and page table for the 32-bit Intel architecture.
9. Draw the segment and page table for the 64-bit Intel architecture.

10. For a computer architecture with multi-level paging, a page size of 4 KB, and 64-bit
physical and virtual addresses:

a. What is the smallest possible size for a page table entry, rounded up to a power of
two?

b. Using your result above, and assuming a requirement that each page table fits
into a single page, how many levels of page tables would be required to
completely map the 64-bit virtual address space?

11. Suppose you are designing a system with paged segmentation, and you anticipate the
memory segment size will be uniformly distributed between 0 and 4 GB. The overhead
of the design is the sum of the internal fragmentation and the space taken up by the
page tables. If each page table entry uses four bytes per page, what page size
minimizes overhead?

12. In an architecture with paged segmentation, the 32-bit virtual address is divided into
fields as follows:

| 4 bit segment number | 12 bit page number | 16 bit offset |

The segment and page tables are as follows (all values in hexadecimal):

Segment Table Page Table A Page Table B
0 Page Table A 0 CAFE 0 F000
1 Page Table B 1 DEAD 1 D8BF
x (rest invalid) 2 BEEF 2 3333

3 BA11 x (rest invalid)
x (rest invalid)

Find the physical address corresponding to each of the following virtual addresses
(answer "invalid virtual address" if the virtual address is invalid):

a. 00000000
b. 20022002
c. 10015555

13. Suppose a machine with 32-bit virtual addresses and 40-bit physical addresses is
designed with a two-level page table, subdividing the virtual address into three pieces
as follows:

| 10 bit page table number | 10 bit page number | 12 bit offset |

The first 10 bits are the index into the top-level page table, the second 10 bits are the
index into the second-level page table, and the last 12 bits are the offset into the page.
There are 4 protection bits per page, so each page table entry takes 4 bytes.

a. What is the page size in this system?
b. How much memory is consumed by the first and second level page tables and

wasted by internal fragmentation for a process that has 64K of memory starting at
address 0?

c. How much memory is consumed by the first and second level page tables and
wasted by internal fragmentation for a process that has a code segment of 48K
starting at address 0x1000000, a data segment of 600K starting at address
0x80000000 and a stack segment of 64K starting at address 0xf0000000 and
growing upward (towards higher addresses)?

14. Write pseudo-code to convert a 32-bit virtual address to a 32-bit physical address for a
two-level address translation scheme using segmentation at the first level of
translation and paging at the second level. Explicitly define whatever constants and
data structures you need (e.g., the format of the page table entry, the page size, and
so forth).

9. Caching and Virtual Memory
Cash is king. —Per Gyllenhammar

Some may argue that we no longer need a chapter on caching and virtual memory in an
operating systems textbook. After all, most students will have seen caches in an earlier
machine structures class, and most desktops and laptops are configured so that they only
very rarely, if ever, run out of memory. Maybe caching is no longer an operating systems
topic?

We could not disagree more. Caches are central to the design of a huge number of
hardware and software systems, including operating systems, Internet naming, web clients,
and web servers. In particular, smartphone operating systems are often memory
constrained and must manage memory carefully. Server operating systems make
extensive use of remote memory and remote disk across the data center, using the local
server memory as a cache. Even desktop operating systems use caching extensively in
the implementation of the file system. Most importantly, understanding when caches work
and when they do not is essential to every computer systems designer.

Consider a typical Facebook page. It contains information about you, your interests and
privacy settings, your posts, and your photos, plus your list of friends, their interests and
privacy settings, their posts, and their photos. In turn, your friends’ pages contain an
overlapping view of much of the same data, and in turn, their friends’ pages are
constructed the same way.

Now consider how Facebook organizes its data to make all of this work. How does
Facebook assemble the data needed to display a page? One option would be to keep all of
the data for a particular user’s page in one place. However, the information that I need to
draw my page overlaps with the information that my friends’ friends need to draw their
pages. My friends’ friends’ friends’ friends include pretty much the entire planet. We can
either store everyone’s data in one place or spread the data around. Either way,
performance will suffer! If we store all the data in California, Facebook will be slow for
everyone from Europe, and vice versa. Equally, integrating data from many different
locations is also likely to be slow, especially for Facebook’s more cosmopolitan users.

To resolve this dilemma, Facebook makes heavy use of caches; it would not be practical
without them. A cache is a copy of a computation or data that can be accessed more
quickly than the original. While any object on my page might change from moment to
moment, it seldom does. In the common case, Facebook relies on a local, cached copy of
the data for my page; it only goes back to the original source if the data is not stored locally
or becomes out of date.

Caches work because both users and programs are predictable. You (probably!) do not
change your friend list every nanosecond; if you did, Facebook could still cache your friend
list, but it would be out of date before it could be used again, and so it would not help. If
everyone changed their friends every nanosecond, Facebook would be out of luck! In most
cases, however, what users do now is predictive of what they are likely to do soon, and
what programs do now is predictive of what they will do next. This provides an opportunity
for a cache to save work through reuse.

Facebook is not alone in making extensive use of caches. Almost all large computer
systems rely on caches. In fact, it is hard to think of any widely used, complex hardware or
software system that does not include a cache of some sort.

We saw three examples of hardware caches in the previous chapter:

TLBs. Modern processors use a translation lookaside buffer, or TLB, to cache the
recent results of multi-level page table address translation. Provided programs
reference the same pages repeatedly, translating an address is as fast as a single
table lookup in the common case. The full multi-level lookup is needed only in the case
where the TLB does not contain the relevant address translation.

Virtually addressed caches. Most modern processor designs take this idea a step
farther by including a virtually addressed cache close to the processor. Each entry in
the cache stores the memory value associated with a virtual address, allowing that
value to be returned more quickly to the processor when needed. For example, the
repeated instruction fetches inside a loop are well handled by a virtually addressed
cache.

Physically addressed caches. Most modern processors complement the virtually
addressed cache with a second- (and sometimes third-) level physically addressed
cache. Each entry in a physically addressed cache stores the memory value
associated with a physical memory location. In the common case, this allows the
memory value to be returned directly to the processor without the need to go to main
memory.

There are many more examples of caches:

Internet naming. Whenever you type in a web request or click on a link, the client
computer needs to translate the name in the link (e.g., amazon.com) to an IP network
address of where to send each packet. The client gets this information from a network
service, called the Domain Name System (DNS), and then caches the translation so
that the client can go directly to the web server in the common case.

Web content. Web clients cache copies of HTML, images, JavaScript programs, and
other data so that web pages can be refreshed more quickly, using less bandwidth.
Web servers also keep copies of frequently requested pages in memory so that they
can be transmitted more quickly.

Web search. Both Google and Bing keep a cached copy of every web page they
index. This allows them to provide the copy of the web page if the original is
unavailable for some reason. The cached copy may be out of date — the search

engines do not guarantee that the copy instantaneously reflects any change in the
original web page.

Email clients. Many email clients store a copy of mail messages on the client
computer to improve the client performance and to allow disconnected operation. In
the background, the client communicates with the server to keep the two copies in
sync.

Incremental compilation. If you have ever built a program from multiple source files,
you have used caching. The build manager saves and reuses the individual object
files instead of recompiling everything from scratch each time.

Just in time translation. Some memory-constrained devices such as smartphones
do not contain enough memory to store the entire executable image for some
programs. Instead, systems such as the Google Android operating system and the
ARM runtime store programs in a more compact intermediate representation, and
convert parts of the program to machine code as needed. Repeated use of the same
code is fast because of caching; if the system runs out of memory, less frequently
used code may be converted each time it is needed.

Virtual memory. Operating systems can run programs that do not fit in physical
memory by using main memory as a cache for disk. Application pages that fit in
memory have their page table entries set to valid; these pages can be accessed
directly by the processor. Those pages that do not fit have their permissions set to
invalid, triggering a trap to the operating system kernel. The kernel will then fetch the
required page from disk and resume the application at the instruction that caused the
trap.

File systems. File systems also treat memory as a cache for disk. They store copies
in memory of frequently used directories and files, reducing the need for disk
accesses.

Conditional branch prediction. Another use of caches is in predicting whether a
conditional branch will be taken or not. In the common case of a correct prediction, the
processor can start decoding the next instruction before the result of the branch is
known for sure; if the prediction turns out to be wrong, the decoding is restarted with
the correct next instruction.

In other words, caches are a central design technique to making computer systems faster.
However, caches are not without their downsides. Caches can make understanding the
performance of a system much harder. Something that seems like it should be fast — and
even something that usually is fast — can end up being very slow if most of the data is not
in the cache. Because the details of the cache are often hidden behind a level of
abstraction, the user or the programmer may have little idea as to what is causing the poor
performance. In other words, the abstraction of fast access to data can cause problems if
the abstraction does not live up to its promise. One of our aims is to help you understand
when caches do and do not work well.

In this chapter, we will focus on the caching of memory values, but the principles we
discuss apply much more widely. Memory caching is common in both hardware (by the

processor to improve memory latency) and in software (by the operating system to hide
disk and network latency). Further, the structure and organization of processor caches
requires special care by the operating system in setting up page tables; otherwise, much of
the advantage of processor caches can evaporate.

Regardless of the context, all caches face three design challenges:

Locating the cached copy. Because caches are designed to improve performance, a
key question is often how to quickly determine whether the cache contains the needed
data or not. Because the processor consults at least one hardware cache on every
instruction, hardware caches in particular are organized for efficient lookup.

Replacement policy. Most caches have physical limits on how many items they can
store; when new data arrives in the cache, the system must decide which data is most
valuable to keep in the cache and which can be replaced. Because of the high relative
latency of fetching data from disk, operating systems and applications have focused
more attention on the choice of replacement policy.

Coherence. How do we detect, and repair, when a cached copy becomes out of date?
This question, cache coherence, is central to the design of multiprocessor and
distributed systems. Despite being very important, cache coherence beyond the scope
of this version of the textbook. Instead, we focus on the first two of these issues.

Chapter roadmap:

Cache Concept. What operations does a cache do and how can we evaluate its
performance? (Section 9.1)

Memory Hierarchy. What hardware building blocks do we have in constructing a
cache in an application or operating system? (Section 9.2)

When Caches Work and When They Do Not. Can we predict how effective a cache
will be in a system we are designing? Can we know in advance when caching will not
work? (Section 9.3)

Memory Cache Lookup. What options do we have for locating whether an item is
cached? How can we organize hardware caches to allow for rapid lookup, and what
are the implications of cache organization for operating systems and applications?
(Section 9.4)

Replacement Policies. What options do we have for choosing which item to replace
when there is no more room? (Section 9.5)

Case Study: Memory-Mapped Files. How does the operating system provide the
abstraction of file access without first reading the entire file into memory? (Section 9.6)

Case Study: Virtual Memory. How does the operating system provide the illusion of a
near-infinite memory that can be shared between applications? What happens if both
applications and the operating system want to manage memory at the same time?
(Section 9.7)

9.1 Cache Concept

Figure 9.1: Abstract operation of a memory cache on a read request. Memory read requests are sent to the
cache; the cache either returns the value stored at that memory location, or it forwards the request onward
to the next level of cache.

We start by defining some terms. The simplest kind of a cache is a memory cache. It stores
(address, value) pairs. As shown in Figure 9.1, when we need to read value of a certain
memory location, we first consult the cache, and it either replies with the value (if the cache
knows it) and otherwise it forwards the request onward. If the cache has the value, that is
called a cache hit. If the cache does not, that is called a cache miss.

For a memory cache to be useful, two properties need to hold. First, the cost of retrieving
data out of the cache must be significantly less than fetching the data from memory. In
other words, the cost of a cache hit must be less than a cache miss, or we would just skip
using the cache.

Second, the likelihood of a cache hit must be high enough to make it worth the effort. One
source of predictability is temporal locality: programs tend to reference the same
instructions and data that they had recently accessed. Examples include the instructions
inside a loop, or a data structure that is repeatedly accessed. By caching these memory
values, we can improve performance.

Another source of predictability is spatial locality. Programs tend to reference data near
other data that has been recently referenced. For example, the next instruction to execute
is usually near to the previous one, and different fields in the same data structure tend to
be referenced at nearly the same time. To exploit this, caches are often designed to load a
block of data at the same time, instead of only a single location. Hardware memory caches
often store 4-64 memory words as a unit; file caches often store data in powers of two of
the hardware page size.

A related design technique that also takes advantage of spatial locality is to prefetch data
into the cache before it is needed. For example, if the file system observes the application
reading a sequence of blocks into memory, it will read the subsequent blocks ahead of
time, without waiting to be asked.

Putting these together, the latency of a read request is as follows:

Latency(read request) = Prob(cache hit) × Latency(cache hit)
 + Prob(cache miss) × Latency(cache miss)

Figure 9.2: Abstract operation of a memory cache write. Memory requests are buffered and then sent to the
cache in the background. Typically, the cache stores a block of data, so each write ensures that the rest of
the block is in the cache before updating the cache. If the cache is write through, the data is then sent
onward to the next level of cache or memory.

The behavior of a cache on a write operation is shown in Figure 9.2. The operation is a bit
more complex, but the latency of a write operation is easier to understand. Most systems
buffer writes. As long as there is room in the buffer, the computation can continue
immediately while the data is transferred into the cache and to memory in the background.
(There are certain restrictions on the use of write buffers in a multiprocessor system, so for
this chapter, we are simplifying matters to some degree.) Subsequent read requests must
check both the write buffer and the cache — returning data from the write buffer if it is the
latest copy.

In the background, the system checks if the address is in the cache. If not, the rest of the
cache block must be fetched from memory and then updated with the changed value.
Finally, if the cache is write-through, all updates are sent immediately onward to memory. If
the cache is write-back, updates can be stored in the cache, and only sent to memory

when the cache runs out of space and needs to evict a block to make room for a new
memory block.

Since write buffers allow write requests to appear to complete immediately, the rest of our
discussion focuses on using caches to improve memory reads.

We first discuss the part of the equation that deals with the latency of a cache hit and a
cache miss: how long does it take to access different types of memory? We caution,
however, that the issues that affect the likelihood of a cache hit or miss are just as
important to the overall memory latency. In particular, we will show that application
characteristics are often the limiting factor to good cache performance.

9.2 Memory Hierarchy

When we are deciding whether to use a cache in the operating system or some new
application, it is helpful to start with an understanding of the cost and performance of
various levels of memory and disk storage.

Cache Hit Cost Size
1st level cache / 1st level TLB 1 ns 64 KB

2nd level cache / 2nd level TLB 4 ns 256 KB

3rd level cache 12 ns 2 MB

Memory (DRAM) 100 ns 10 GB

Data center memory (DRAM) 100 μs 100 TB

Local non-volatile memory 100 μs 100 GB

Local disk 10 ms 1 TB

Data center disk 10 ms 100 PB

Remote data center disk 200 ms 1 XB

Figure 9.3: Memory hierarchy, from on-chip processor caches to disk storage at a remote data center. On-
chip cache size and latency is typical of a high-end processor. The entries for data center DRAM and disk
latency assume the access is from one server to another in the same data center; remote data center disk
latency if for access to a geographically distant data center.

From a hardware perspective, there is a fundamental tradeoff between the speed, size,
and cost of storage. The smaller memory is, the faster it can be; the slower memory is, the
cheaper it can be.

This motivates systems to have not just one cache, but a whole hierarchy of caches, from
the nanosecond memory possible inside a chip to the multiple exabytes of worldwide data
center storage. This hierarchy is illustrated by the table in Figure 9.3. We should caution
that this list is just a snapshot; additional layers keep being added over time.

First-level cache. Most modern processor architectures contain a small first-level,
virtually addressed, cache very close to the processor, designed to keep the processor
fed with instructions and data at the clock rate of the processor.

Second-level cache. Because it is impossible to build a large cache as fast as a small
one, the processor will often contain a second-level, physically addressed cache to
handle cache misses from the first-level cache.

Third-level cache. Likewise, many processors include an even larger, slower third-
level cache to catch second-level cache misses. This cache is often shared across all
of the on-chip processor cores.

First- and second-level TLB. The translation lookaside buffer (TLB) will also be
organized with multiple levels: a small, fast first-level TLB designed to keep up with the
processor, backed up by a larger, slightly slower, second-level TLB to catch first-level
TLB misses.

Main memory (DRAM). From a hardware perspective, the first-, second-, and third-
level caches provide faster access to main memory; from a software perspective,
however, main memory itself can be viewed as a cache.

Data center memory (DRAM). With a high-speed local area network such as a data
center, the latency to fetch a page of data from the memory of a nearby computer is
much faster than fetching it from disk. In aggregate, the memory of nearby nodes will
often be larger than that of the local disk. Using the memory of nearby nodes to avoid
the latency of going to disk is called cooperative caching, as it requires the cooperative
management of the nodes in the data center. Many large scale data center services,
such as Google and Facebook, make extensive use of cooperative caching.

Local disk or non-volatile memory. For client machines, local disk or non-volatile
flash memory can serve as backing store when the system runs out of memory. In
turn, the local disk serves as a cache for remote disk storage. For example, web
browsers store recently fetched web pages in the client file system to avoid the cost of
transferring the data again the next time it is used; once cached, the browser only
needs to validate with the server whether the page has changed before rendering the
web page for the user.

Data center disk. The aggregate disks inside a data center provide enormous storage
capacity compared to a computer’s local disk, and even relative to the aggregate
memory of the data center.

Remote data center disk. Geographically remote disks in a data center are much
slower because of wide-area network latencies, but they provide access to even larger
storage capacity in aggregate. Many data centers also store a copy of their data on a
remote robotic tape system, but since these systems have very high latency
(measured in the tens of seconds), they are typically accessed only in the event of a
failure.

If caching always worked perfectly, we could provide the illusion of instantaneous access to
all the world’s data, with the latency (on average) of a first level cache and the size and the

cost (on average) of disk storage.

However, there are reasons to be skeptical. Even with temporal and spatial locality, there
are thirteen orders of magnitude difference in storage capacity from the first level cache to
the stored data of a typical data center; this is the equivalent of the smallest visible dot on
this page versus those dots scattered across the pages of a million textbooks just like this
one. How can a cache be effective if it can store only a tiny amount of the data that could
be stored?

The cost of a cache miss can also be high. There are eight orders of magnitude difference
between the latency of the first-level cache and a remote data center disk; that is
equivalent to the difference between the shortest latency a human can perceive — roughly
one hundred milliseconds — versus one year. How can a cache be effective if the cost of a
cache miss is enormous compared to a cache hit?

9.3 When Caches Work and When They Do Not

How do we know whether a cache will be effective for a given workload? Even the same
program will have different cache behavior depending on how it is used.

Suppose you write a program that reads and writes items into a hash table. How well does
that interact with caching? It depends on the size of the hash table. If the hash table fits in
the first-level cache, once the table is loaded into the cache, each access will be very
rapid. If on the other hand, the hash table is too large to store in memory, each lookup may
require a disk access.

Thus, neither the cache size nor the program behavior alone governs the effectiveness of
caching. Rather, the interaction between the two determines cache effectiveness.

Figure 9.4: Cache hit rate as a function of cache size for a million instruction run of a C compiler. The hit
rate vs. cache size graph has a similar shape for many programs. The knee of the curve is called the

working set of the program.

9.3.1 Working Set Model

A useful graph to consider is the cache hit rate versus the size of the cache. We give an
example in Figure 9.4; of course, the precise shape of the graph will vary from program to
program.

Regardless of the program, a sufficiently large cache will have a high cache hit rate. In the
limit, if the cache can fit all of the program’s memory and data, the miss rate will be zero
once the data is loaded into the cache. At the other extreme, a sufficiently small cache will
have a very low cache hit rate. Anything other than a trivial program will have multiple
procedures and multiple data structures; if the cache is sufficiently small, each new
instruction and data reference will push out something from the cache that will be used in
the near future. For the hash table example, if the size of the cache is much smaller than
the size of the hash table, each time we do a lookup, the hash bucket we need will no
longer be in the cache.

Most programs will have an inflection point, or knee of the curve, where a critical mass of
program data can just barely fit in the cache. This critical mass is called the program’s
working set. As long as the working set can fit in the cache, most references will be a
cache hit, and application performance will be good.

Thrashing

A closely related concept to the working set is thrashing. A program thrashes if the cache is too small to hold
its working set, so that most references are cache misses. Each time there is a cache miss, we need to evict
a cache block to make room for the new reference. However, the new cache block may in turn be evicted
before it is reused.

The word “thrash” dates from the 1960’s, when disk drives were as large as washing machines. If a
program’s working set did not fit in memory, the system would need to shuffle memory pages back and forth
to disk. This burst of activity would literally make the disk drive shake violently, making it very obvious to
everyone nearby why the system was not performing well.

The notion of a working set can also apply to user behavior. Consider what happens when
you are developing code for a homework assignment. If the files you need fit in memory,
compilation will be rapid; if not, compilation will be slow as each file is brought in from disk
as it is used.

Different programs, and different users, will have working sets of different sizes. Even
within the same program, different phases of the program may have different size working
sets. For example, the parser for a compiler needs different data in cache than the code
generator. In a text editor, the working set shifts when we switch from one page to the next.
Users also change their focus from time to time, as when you shift from a programming
assignment to a history assignment.

Figure 9.5: Example cache hit rate over time. At a phase change within a process, or due to a context
switch between processes, there will be a spike of cache misses before the system settles into a new
equilibrium.

The result of this phase change behavior is that caches will often have bursty miss rates:
periods of low cache misses interspersed with periods of high cache misses, as shown in
Figure 9.5. Process context switches will also cause bursty cache misses, as the cache
discards the working set from the old process and brings in the working set of the new
process.

We can combine the graph in Figure 9.4 with the table in Figure 9.3 to see the impact of
the size of the working set on computer system performance. A program whose working
set fits in the first level cache will run four times faster than one whose working set fits in
the second level cache. A program whose working set does not fit in main memory will run
a thousand times slower than one who does, assuming it has access to data center
memory. It will run a hundred thousand times slower if it needs to go to disk.

Because of the increasing depth and complexity of the memory hierarchy, an important
area of work is the design of algorithms that adapt their working set to the memory
hierarchy. One focus has been on algorithms that manage the gap between main memory
and disk, but the same principles apply at other levels of the memory hierarchy.

Figure 9.6: Algorithm to sort a large array that does not fit into main memory, by breaking the problem into
pieces that do fit into memory.

A simple example is how to efficiently sort an array that does not fit in main memory.
(Equivalently, we could consider how to sort an array that does not fit in the first level
cache.) As shown in Figure 9.6, we can break the problem up into chunks each of which
does fit in memory. Once we sort each chunk, we can merge the sorted chunks together
efficiently. To sort a chunk that fits in main memory, we can in turn break the problem into
sub-chunks that fit in the on-chip cache.

We will discuss later in this chapter what the operating system needs to do when managing
memory between programs that in turn adapt their behavior to manage memory.

9.3.2 Zipf Model

Although the working set model often describes program and user behavior quite well, it is
not always a good fit. For example, consider a web proxy cache. A web proxy cache stores
frequently accessed web pages to speed web access and reduce network traffic. Web
access patterns cause two challenges to a cache designer:

New data. New pages are being added to the web at a rapid rate, and page contents
also change. Every time a user accesses a page, the system needs to check whether
the page has changed in the meantime.

No working set. Although some web pages are much more popular than others, there
is no small subset of web pages that, if cached, give you the bulk of the benefit. Unlike
with a working set, even very small caches have some value. Conversely, increasing
cache size yields diminishing returns: even very large caches tend to have only

modest cache hit rates, as there are an enormous group of pages that are visited from
time to time.

A useful model for understanding the cache behavior of web access is the Zipf distribution.
Zipf developed the model to describe the frequency of individual words in a text, but it also
applies in a number of other settings.

Figure 9.7: Zipf distribution

Suppose we have a set of web pages (or words), and we rank them in order of popularity.
Then the frequency users visit a particular web page is (approximately) inversely
proportional to its rank:

Frequency of visits to the kth most popular page ∝ 1 / kα

where α is value between 1 and 2. A Zipf probability distribution is illustrated in Figure 9.7.

The Zipf distribution fits a surprising number of disparate phenomena: the popularity of
library books, the population of cities, the distribution of salaries, the size of friend lists in
social networks, and the distribution of references in scientific papers. The exact cause of
the Zipf distribution in many of these cases is unknown, but they share a theme of
popularity in human social networks.

Figure 9.8: Cache hit rate as a function of the percentage of total items that can fit in the cache, on a log
scale, for a Zipf distribution.

A characteristic of a Zipf curve is a heavy-tailed distribution. Although a significant number
of references will be to the most popular items, a substantial portion of references will be to
less popular ones. If we redraw Figure 9.4 of the relationship between cache hit rate and
cache size, but for a Zipf distribution, we get Figure 9.8. Note that we have rescaled the x-
axis to be log scale. Rather than a threshold as we see in the working set model,
increasing the cache size continues to improve cache hit rates, but with diminishing
returns.

9.4 Memory Cache Lookup

Now that we have outlined the available technologies for constructing caches, and the
usage patterns that lend (or do not lend) themselves to effective caching, we turn to cache
design. How do we find whether an item is in the cache, and what do we do when we run
out of room in the cache? We answer the first question here, and we defer the second
question to the next section.

A memory cache maps a sparse set of addresses to the data values stored at those
addresses. You can think of a cache as a giant table with two columns: one for the address
and one for the data stored at that address. To exploit spatial locality, each entry in the
table will store the values for a block of memory, not just the value for a single memory
word. Modern Intel processors cache data in 64 byte chunks. For operating systems, the
block size is typically the hardware page size, or 4 KB on an Intel processor.

We need to be able to rapidly convert an address to find the corresponding data, while
minimizing storage overhead. The options we have for cache lookup are all of the same
ones we explored in the previous chapter for address lookup: we can use a linked list, a
multi-level tree, or a hash table. Operating systems use each of those techniques in
different settings, depending on the size of the cache, its access pattern, and how
important it is to have very rapid lookup.

For hardware caches, the design choices are more limited. The latency gap between
cache levels is very small, so any added overhead in the lookup procedure can swamp the
benefit of the cache. To make lookup faster, hardware caches often constrain where in the
table we might find any specific address. This constraint means that there could be room in
one part of the table, but not in another, raising the cache miss rate. There is a tradeoff
here: a faster cache lookup needs to be balanced against the cost of increased cache
misses.

Three common mechanisms for cache lookup are:

Figure 9.9: Fully associative cache lookup. The cache checks the address against every entry and returns
the matching value, if any.

Fully associative. With a fully associative cache, the address can be stored
anywhere in the table, and so on a lookup, the system must check the address against
all of the entries in the table as illustrated in Figure 9.9. There is a cache hit if any of
the table entries match. Because any address can be stored anywhere, this provides
the system maximal flexibility when it needs to choose an entry to discard when it runs
out of space.

We saw two examples of fully associative caches in the previous chapter. Until very
recently, TLBs were often fully associative — the TLB would check the virtual page
against every entry in the TLB in parallel. Likewise, physical memory is a fully
associative cache. Any page frame can hold any virtual page, and we can find where
each virtual page is stored using a multi-level tree lookup. The set of page tables
defines whether there is a match.

A problem with fully associative lookup is the cumulative impact of Moore’s Law. As
more memory can be packed on chip, caches become larger. We can use some of the
added memory to make each table entry larger, but this has a limit depending on the
amount of spatial locality in typical applications. Alternately, we can add more table
entries, but this means more lookup hardware and comparators. As an example, a 2
MB on-chip cache with 64 byte blocks has 32K cache table entries! Checking each
address against every table entry in parallel is not practical.

Figure 9.10: Direct mapped cache lookup. The cache hashes the address to determine which location
in the table to check. The cache returns the value stored in the entry if it matches the address.

Direct mapped. With a direct mapped cache, each address can only be stored in one
location in the table. Lookup is easy: we hash the address to its entry, as shown in
Figure 9.10. There is a cache hit if the address matches that entry and a cache miss
otherwise.

A direct mapped cache allows efficient lookup, but it loses much of that advantage in
decreased flexibility. If a program happens to need two different addresses that both
hash to the same entry, such as the program counter and the stack pointer, the system
will thrash. We will first get the instruction; then, oops, we need the stack. Then, oops,
we need the instruction again. Then oops, we need the stack again. The programmer
will see the program running slowly, with no clue why, as it will depend on which
addresses are assigned to which instructions and data. If the programmer inserts a
print statement to try to figure out what is going wrong, that might shift the instructions
to a different cache block, making the problem disappear!

Set associative. A set associative cache melds the two approaches, allowing a
tradeoff of slightly slower lookup than a direct mapped cache in exchange for most of
the flexibility of a fully associative cache. With a set associative cache, we replicate
the direct mapped table and lookup in each replica in parallel. A k set associative
cache has k replicas; a particular address block can be in any of the k replicas. (This is
equivalent to a hash table with a bucket size of k.) There is a cache hit if the address
matches any of the replicas.

A set associative cache avoids the problem of thrashing with a direct mapped cache,
provided the working set for a given bucket is larger than k. Almost all hardware
caches and TLBs today use set associative matching; an 8-way set associative cache
structure is common.

Figure 9.11: Set associative cache lookup. The cache hashes the address to determine which location to
check. The cache checks the entry in each table in parallel. It returns the value if any of the entries match
the address.

Direct mapped and set associative caches pose a design challenge for the operating
system. These caches are much more efficient if the working set of the program is spread
across the different buckets in the cache. This is easy with a TLB or a virtually addressed
cache, as each successive virtual page or cache block will be assigned to a cache bucket.
A data structure that straddles a page or cache block boundary will be automatically
assigned to two different buckets.

However, the assignment of physical page frames is up to the operating system, and this
choice can have a large impact on the performance of a physically addressed cache. To
make this concrete, suppose we have a 2 MB physically addressed cache with 8-way set
associativity and 4 KB pages; this is typical for a high performance processor. Now
suppose the operating system happens to assign page frames in a somewhat odd way, so
that an application is given physical page frames that are separated by exactly 256 KB.
Perhaps those were the only page frames that were free. What happens?

Figure 9.12: When caches are larger than the page size, multiple page frames can map to the same slice of
the cache. A process assigned page frames that are separated by exactly the cache size will only use a
small portion of the cache. This applies to both set associative and direct mapped caches; the figure
assumes a direct mapped cache to simplify the illustration.

If the hardware uses the low order bits of the page frame to index the cache, then every
page of the current process will map to the same buckets in the cache. We show this in
Figure 9.12. Instead of the cache having 2 MB of useful space, the application will only be
able to use 32 KB (4 KB pages times the 8-way set associativity). This makes it a lot more
likely for the application to thrash.

Even worse, the application would have no way to know this had happened. If by random
chance an application ended up with page frames that map to the same cache buckets, its
performance will be poor. Then, when the user re-runs the application, the operating
system might assign the application a completely different set of page frames, and
performance returns to normal.

To make cache behavior more predictable and more effective, operating systems use a
concept called page coloring. With page coloring, physical page frames are partitioned into
sets based on which cache buckets they will use. For example, with a 2 MB 8-way set
associative cache and 4 KB pages, there will be 64 separate sets, or colors. The operating
system can then assign page frames to spread each application’s data across the various
colors.

9.5 Replacement Policies

Once we have looked up an address in the cache and found a cache miss, we have a new
problem. Which memory block do we choose to replace? Assuming the reference pattern
exhibits temporal locality, the new block is likely to be needed in the near future, so we
need to choose some block of memory to evict from the cache to make room for the new
data. Of course, with a direct mapped cache we do not have a choice: there is only one

block that can be replaced. In general, however, we will have a choice, and this choice can
have a significant impact on the cache hit rate.

As with processor scheduling, there are a number of options for the replacement policy. We
caution that there is no single right answer! Many replacement policies are optimal for
some workloads and pessimal for others, in terms of the cache hit rate; policies that are
good for a working set model will not be good for Zipf workloads.

Policies also vary depending on the setting: hardware caches use a different replacement
policy than the operating system does in managing main memory as a cache for disk. A
hardware cache will often have a limited number of replacement choices, constrained by
the set associativity of the cache, and it must make its decisions very rapidly. In the
operating system, there is often both more time to make a choice and a much larger
number cached items to consider; e.g., with 4 GB of memory, a system will have a million
separate 4 KB pages to choose from when deciding which to replace. Even within the
operating system, the replacement policy for the file buffer cache is often different than the
one used for demand paged virtual memory, depending on what information is easily
available about the access pattern.

We first discuss several different replacement policies in the abstract, and then in the next
two sections we consider how these concepts are applied to the setting of demand paging
memory from disk.

9.5.1 Random

Although it may seem arbitrary, a practical replacement policy is to choose a random block
to replace. Particularly for a first-level hardware cache, the system may not have the time
to make a more complex decision, and the cost of making the wrong choice can be small if
the item is in the next level cache. The bookkeeping cost for more complex policies can be
non-trivial: keeping more information about each block requires space that may be better
spent on increasing the cache size.

Random’s biggest weakness is also its biggest strength. Whatever the access pattern is,
Random will not be pessimal — it will not make the worst possible choice, at least, not on
average. However, it is also unpredictable, and so it might foil an application that was
designed to carefully manage its use of different levels of the cache.

9.5.2 First-In-First-Out (FIFO)

A less arbitrary policy is to evict the cache block or page that has been in memory the
longest, that is, First In First Out, or FIFO. Particularly for using memory as a cache for
disk, this can seem fair — each program’s pages spend a roughly equal amount of time in
memory before being evicted.

Unfortunately, FIFO can be the worst possible replacement policy for workloads that
happen quite often in practice. Consider a program that cycles through a memory array
repeatedly, but where the array is too large to fit in the cache. Many scientific applications
do an operation on every element in an array, and then repeat that operation until the data
reaches a fixed point. Google’s PageRank algorithm for determining which search results

to display uses a similar approach. PageRank iterates repeatedly through all pages,
estimating the popularity of a page based on the popularity of the pages that refer to it as
computed in the previous iteration.

FIFO
Ref. A B C D E A B C D E A B C D E
1 A E D C
2 B A E D
3 C B A E
4 D C B

Figure 9.13: Cache behavior for FIFO for a repeated scan through memory, where the scan is slightly larger
than the cache size. Each row represents the contents of a page frame or cache block; each new reference
triggers a cache miss.

On a repeated scan through memory, FIFO does exactly the wrong thing: it always evicts
the block or page that will be needed next. Figure 9.13 illustrates this effect. Note that in
this figure, and other similar figures in this chapter, we show only a small number of cache
slots; note that these policies also apply to systems with a very large number of slots.

9.5.3 Optimal Cache Replacement (MIN)

If FIFO can be pessimal for some workloads, that raises the question: what replacement
policy is optimal for minimizing cache misses? The optimal policy, called MIN, is to replace
whichever block is used farthest in the future. Equivalently, the worst possible strategy is to
replace the block that is used soonest.

Optimality of MIN

The proof that MIN is optimal is a bit involved. If MIN is not optimal, there must be some alternative optimal
replacement policy, which we will call ALT, that has fewer cache misses than MIN on some specific
sequence of references. There may be many such alternate policies, so let us focus on the one that differs
from MIN at the latest possible point. Consider the first cache replacement where ALT differs from MIN — by
definition, ALT must choose a block to replace that is used sooner than the block chosen by MIN.

We construct a new policy, ALT′, that is at least as good as ALT, but differs from MIN at a later point and so
contradicts the assumption. We construct ALT′ to differ from ALT in only one respect: at the first point where
ALT differs from MIN, ALT′ chooses to evict the block that MIN would have chosen. From that point, the
contents of the cache differ between ALT and ALT′ only for that one block. ALT contains y, the block
referenced farther in the future; ALT′ is the same, except it contains x, the block referenced sooner. On
subsequent cache misses to other blocks, ALT′ mimics ALT, evicting exactly the same blocks that ALT would
have evicted.

It is possible that ALT chooses to evict y before the next reference to x or y; in this case, if ALT′ chooses to
evict x, the contents of the cache for ALT and ALT′ are identical. Further, ALT′ has the same number of
cache misses as ALT, but it differs from MIN at a later point than ALT. This contradicts our assumption
above, so we can exclude this case.

Eventually, the system will reference x, the block that ALT chose to evict; by construction, this occurs before
the reference to y, the block that ALT′ chose to evict. Thus, ALT will have a cache miss, but ALT′ will not. ALT
will evict some block, q, to make room for x; now ALT and ALT′ differ only in that ALT contains y and ALT′
contains q. (If ALT evicts y instead, then ALT and ALT′ have the same cache contents, but ALT′ has fewer
misses than ALT, a contradiction.) Finally, when we reach the reference to y, ALT′ will take a cache miss. If
ALT′ evicts q, then it will have the same number of cache misses as ALT, but it will differ from MIN at a point
later than ALT, a contradiction.

As with Shortest Job First, MIN requires knowledge of the future, and so we cannot
implement it directly. Rather, we can use it as a goal: we want to come up with
mechanisms which are effective at predicting which blocks will be used in the near future,
so that we can keep those in the cache.

If we were able to predict the future, we could do even better than MIN by prefetching
blocks so that they arrive “just in time” — exactly when they are needed. In the best case,
this can reduce the number of cache misses to zero. For example, if we observe a program
scanning through a file, we can prefetch the blocks of the file into memory. Provided we
can read the file into memory fast enough to keep up with the program, the program will
always find its data in memory and never have a cache miss.

9.5.4 Least Recently Used (LRU)

One way to predict the future is to look at the past. If programs exhibit temporal locality, the
locations they reference in the future are likely to be the same as the ones they have
referenced in the recent past.

A replacement policy that captures this effect is to evict the block that has not been used
for the longest period of time, or the least recently used (LRU) block. In software, LRU is
simple to implement: on every cache hit, you move the block to the front of the list, and on
a cache miss, you evict the block at the end of the list. In hardware, keeping a linked list of
cached blocks is too complex to implement at high speed; instead, we need to approximate
LRU, and we will discuss exactly how in a bit.

LRU
Ref. A B A C B D A D E D A E B A C
1 A + + + +
2 B + +
3 C E +
4 D + + C

FIFO
1 A + + E
2 B + A +
3 C + B
4 D + + C

MIN
1 A + + + +

2 B + + C
3 C E +
4 D + +

Figure 9.14: Cache behavior for LRU (top), FIFO (middle), and MIN (bottom) for a reference pattern that
exhibits temporal locality. Each row represents the contents of a page frame or cache block; + indicates a
cache hit. On this reference pattern, LRU is the same as MIN up to the final reference, where MIN can
choose to replace any block.

In some cases, LRU can be optimal, as in the example in Figure 9.14. The table illustrates
a reference pattern that exhibits a high degree of temporal locality; when recent references
are more likely to be referenced in the near future, LRU can outperform FIFO.

LRU
Ref. A B C D E A B C D E A B C D E
1 A E D C
2 B A E D
3 C B A E
4 D C B

MIN
1 A + + +
2 B + + C
3 C + D +
4 D E + +

Figure 9.15: Cache behavior for LRU (top) and MIN (bottom) for a reference pattern that repeatedly scans
through memory. Each row represents the contents of a page frame or cache block; + indicates a cache hit.
On this reference pattern, LRU is the same as FIFO, with a cache miss on every reference; the optimal
strategy is to replace the most recently used page, as that will be referenced farthest into the future.

On this particular sequence of references, LRU behaves similarly to the optimal strategy
MIN, but that will not always be the case. In fact, LRU can sometimes be the worst
possible cache replacement policy. This occurs whenever the least recently used block is
the next one to be referenced. A common situation where LRU is pessimal is when the
program makes repeated scans through memory, illustrated in Figure 9.15; we saw earlier
that FIFO is also pessimal for this reference pattern. The best possible strategy is to
replace the most recently referenced block, as this block will be used farthest into the
future.

9.5.5 Least Frequently Used (LFU)

Consider again the case of a web proxy cache. Whenever a user accesses a page, it is
more likely for that user to access other nearby pages (spatial locality); sometimes, as with

a flash crowd, it can be more likely for other users to access the same page (temporal
locality). On the surface, Least Recently Used seems like a good fit for this workload.

However, when a user visits a rarely used page, LRU will treat the page as important, even
though it is probably just a one-off. When I do a Google search for a mountain hut for a
stay in Western Iceland, the web pages I visit will not suddenly become more popular than
the latest Facebook update from Katy Perry.

A better strategy for references that follow a Zipf distribution is Least Frequently Used
(LFU). LFU discards the block that has been used least often; it therefore keeps popular
pages, even when less popular pages have been touched more recently.

LRU and LFU both attempt to predict future behavior, and they have complementary
strengths. Many systems meld the two approaches to gain the benefits of each. LRU is
better at keeping the current working set in memory; once the working set is taken care of,
however, LRU will yield diminishing returns. Instead, LFU may be better at predicting what
files or memory blocks will be needed in the more distant future, e.g., after the next working
set phase change.

Replacement policy and file size

Our discussion up to now has assumed that all cached items are equal, both in size and in cost to replace.
When these assumptions do not hold, however, we may sometimes want to vary the policy from LFU or
LFU, that is, to keep some items that are less frequently or less recently used ahead of others that are more
frequently or more recently used.

For example, consider a web proxy that caches files to improve web responsiveness. These files may have
vastly different sizes. When making room for a new file, we have a choice between evicting one very large
web page object or a much larger number of smaller objects. Even if each small file is less frequently used
than the large file, it may still make sense to keep the small files. In aggregate they may be more frequently
used, and therefore they may have a larger benefit to overall system performance. Likewise, if a cached
item is expensive to regenerate, it is more important to keep cached than one that is more easily replaced.

Parallel computing makes the calculus even more complex. The performance of a parallel program depends
on its critical path — the minimum sequence of steps for the program to produce its result. Cache misses
that occur on the critical path affect the response time while those that occur off the critical path do not. For
example, a parallel MapReduce job forks a set of tasks onto processors; each task reads in a file and
produces an output. Because MapReduce must wait until all tasks are complete before moving onto the next
step, if any file is not cached it is as bad as if all of the needed files were not cached.

9.5.6 Belady’s Anomaly

Intuitively, it seems like it should always help to add space to a memory cache; being able
to store more blocks should always either improve the cache hit rate, or at least, not make
the cache hit rate any worse. For many cache replacement strategies, this intuition is true.
However, in some cases, adding space to a cache can actually hurt the cache hit rate. This
is called Belady’s anomaly, after the person that discovered it.

First, we note that many of the schemes we have defined can be proven to yield no worse
cache behavior with larger cache sizes. For example, with the optimal strategy MIN, if we
have a cache of size k blocks, we will keep the next k blocks that will be referenced. If we
have a cache of size k + 1 blocks, we will keep all of the same blocks as with a k sized
cache, plus the additional block that will be the k + 1 next reference.

We can make a similar argument for LRU and LFU. For LRU, a cache of size k + 1 keeps
all of the same blocks as a k sized cache, plus the block that is referenced farthest in the
past. Even if LRU is a lousy replacement policy — if it rarely keeps the blocks that will be
used in the near future — it will always do at least as well as a slightly smaller cache also
using the same replacement policy. An equivalent argument can be used for LFU.

FIFO (3 slots)
Ref. A B C D A B E A B C D E
1 A D E +
2 B A + C
3 C B + D

FIFO (4 slots)
1 A + E D
2 B + A E
3 C B
4 D C

Figure 9.16: Cache behavior for FIFO with two different cache sizes, illustrating Belady’s anomaly. For this
sequence of references, the larger cache suffers ten cache misses, while the smaller cache has one fewer.

Some replacement policies, however, do not have this behavior. Instead, the contents of a
cache with k + 1 blocks may be completely different than the contents of a cache with k
blocks. As a result, there cache hit rates may diverge. Among the policies we have
discussed, FIFO suffers from Belady’s anomaly, and we illustrate that in Figure 9.16.

9.6 Case Study: Memory-Mapped Files

To illustrate the concepts presented in this chapter, we consider in detail how an operating
system can implement demand paging. With demand paging, applications can access
more memory than is physically present on the machine, by using memory pages as a
cache for disk blocks. When the application accesses a missing memory page, it is
transparently brought in from disk. We start with the simpler case of a demand paging for a
single, memory-mapped file and then extend the discussion to managing multiple
processes competing for space in main memory.

As we discussed in Chapter 3, most programs use explicit read/write system calls to
perform file I/O. Read/write system calls allow the program to work on a copy of file data.
The program opens a file and then invokes the system call read to copy chunks of file data
into buffers in the program’s address space. The program can then use and modify those

chunks, without affecting the underlying file. For example, it can convert the file from the
disk format into a more convenient in-memory format. To write changes back to the file, the
program invokes the system call write to copy the data from the program buffers out to
disk. Reading and writing files via system calls is simple to understand and reasonably
efficient for small files.

An alternative model for file I/O is to map the file contents into the program’s virtual
address space. For a memory-mapped file, the operating system provides the illusion that
the file is a program segment; like any memory segment, the program can directly issue
instructions to load and store values to the memory. Unlike file read/write, the load and
store instructions do not operate on a copy; they directly access and modify the contents of
the file, treating memory as a write-back cache for disk.

We saw an example of a memory-mapped file in the previous chapter: the program
executable image. To start a process, the operating system brings the executable image
into memory, and creates page table entries to point to the page frames allocated to the
executable. The operating system can start the program executing as soon as the first
page frame is initialized, without waiting for the other pages to be brought in from disk. For
this, the other page table entries are set to invalid — if the process accesses a page that
has not reached memory yet, the hardware traps to the operating system and then waits
until the page is available so it can continue to execute. From the program’s perspective,
there is no difference (except for performance) between whether the executable image is
entirely in memory or still mostly on disk.

We can generalize this concept to any file stored on disk, allowing applications to treat any
file as part of its virtual address space. File blocks are brought in by the operating system
when they are referenced, and modified blocks are copied back to disk, with the
bookkeeping done entirely by the operating system.

9.6.1 Advantages

Memory-mapped files offer a number of advantages:

Transparency. The program can operate on the bytes in the file as if they are part of
memory; specifically, the program can use a pointer into the file without needing to
check if that portion of the file is in memory or not.

Zero copy I/O. The operating system does not need to copy file data from kernel
buffers into user memory and back; rather, it just changes the program’s page table
entry to point to the physical page frame containing that portion of the file. The kernel
is responsible for copying data back and forth to disk. We should note that it is
possible to implement zero copy I/O for explicit read/write file system calls in certain
restricted cases; we will explain how in the next chapter.

Pipelining. The program can start operating on the data in the file as soon as the
page tables have been set up; it does not need to wait for the entire file to be read into
memory. With multiple threads, a program can use explicit read/write calls to pipeline
disk I/O, but it needs to manage the pipeline itself.

Interprocess communication. Two or more processes can share information
instantaneously through a memory-mapped file without needing to shuffle data back
and forth to the kernel or to disk. If the hardware architecture supports it, the page
table for the shared segment can also be shared.

Large files. As long as the page table for the file can fit in physical memory, the only
limit on the size of a memory-mapped file is the size of the virtual address space. For
example, an application may have a giant multi-level tree indexing data spread across
a number of disks in a data center. With read/write system calls, the application needs
to explicitly manage which parts of the tree are kept in memory and which are on disk;
alternatively, with memory-mapped files, the application can leave that bookkeeping to
the operating system.

9.6.2 Implementation

To implement memory-mapped files, the operating system provides a system call to map
the file into a portion of the virtual address space. In the system call, the kernel initializes a
set of page table entries for that region of the virtual address space, setting each entry to
invalid. The kernel then returns to the user process.

Figure 9.17: Before a page fault, the page table has an invalid entry for the referenced page and the data
for the page is stored on disk.

Figure 9.18: After the page fault, the page table has a valid entry for the referenced page with the page
frame containing the data that had been stored on disk. The old contents of the page frame are stored on
disk and the page table entry that previously pointed to the page frame is set to invalid.

When the process issues an instruction that touches an invalid mapped address, a
sequence of events occurs, illustrated in Figures 9.17 and 9.18:

TLB miss. The hardware looks the virtual page up in the TLB, and finds that there is
not a valid entry. This triggers a full page table lookup in hardware.

Page table exception. The hardware walks the multi-level page table and finds the
page table entry is invalid. This causes a hardware page fault exception trap into the
operating system kernel.

Convert virtual address to file offset. In the exception handler, the kernel looks up in
its segment table to find the file corresponding to the faulting virtual address and
converts the address to a file offset.

Disk block read. The kernel allocates an empty page frame and issues a disk
operation to read the required file block into the allocated page frame. While the disk
operation is in progress, the processor can be used for running other threads or
processes.

Disk interrupt. The disk interrupts the processor when the disk read finishes, and the
scheduler resumes the kernel thread handling the page fault exception.

Page table update. The kernel updates the page table entry to point to the page
frame allocated for the block and sets the entry to valid.

Resume process. The operating system resumes execution of the process at the
instruction that caused the exception.

TLB miss. The TLB still does not contain a valid entry for the page, triggering a full
page table lookup.

Page table fetch. The hardware walks the multi-level page table, finds the page table
entry valid, and returns the page frame to the processor. The processor loads the TLB
with the new translation, evicting a previous TLB entry, and then uses the translation
to construct a physical address for the instruction.

To make this work, we need an empty page frame to hold the incoming page from disk. To
create an empty page frame, the operating system must:

Select a page to evict. Assuming there is not an empty page of memory already
available, the operating system needs to select some page to be replaced. We discuss
how to implement this selection in Section 9.6.3 below.

Find page table entries that point to the evicted page. The operating system then
locates the set of page table entries that point to the page to be replaced. It can do this
with a core map — an array of information about each physical page frame, including
which page table entries contain pointers to that particular page frame.

Set each page table entry to invalid. The operating system needs to prevent anyone
from using the evicted page while the new page is being brought into memory.
Because the processor can continue to execute while the disk read is in progress, the
page frame may temporarily contain a mixture of bytes from the old and the new page.
Therefore, because the TLB may cache a copy of the old page table entry, a TLB
shootdown is needed to evict the old translation from the TLB.

Copy back any changes to the evicted page. If the evicted page was modified, the
contents of the page must be copied back to disk before the new page can be brought
into memory. Likewise, the contents of modified pages must also be copied back when
the application closes the memory-mapped file.

Figure 9.19: When a page is clean, its dirty bit is set to zero in both the TLB and the page table, and the
data in memory is the same as the data stored on disk.

Figure 9.20: On the first store instruction to a clean page, the hardware sets the dirty bit for that page in the
TLB and the page table. The contents of the page will differ from what is stored on disk.

How does the operating system know which pages have been modified? A correct, but
inefficient, solution is to simply assume that every page in a memory-mapped file has been
modified; if the data has not been changed, the operating system will have wasted some
work, but the contents of the file will not be affected.

A more efficient solution is for the hardware to keep track of which pages have been
modified. Most processor architectures reserve a bit in each page table entry to record
whether the page has been modified. This is called a dirty bit. The operating system
initializes the bit to zero, and the hardware sets the bit automatically when it executes a
store instruction for that virtual page. Since the TLB can contain a copy of the page table
entry, the TLB also needs a dirty bit per entry. The hardware can ignore the dirty bit if it is
set in the TLB, but whenever it goes from zero to one, the hardware needs to copy the bit
back to the corresponding page table entry. Figures 9.19 and 9.20 show the state of the
TLB, page table, memory and disk before and after the first store instruction to a page.

If there are multiple page table entries pointing at the same physical page frame, the page
is dirty (and must be copied back to disk) if any of the page tables have the dirty bit set.
Normally, of course, a memory-mapped file will have a single page table shared between
all of the processes mapping the file.

Because evicting a dirty page takes more time than evicting a clean page, the operating
system can proactively clean pages in the background. A thread runs in the background,
looking for pages that are likely candidates for being evicted if they were clean. If the
hardware dirty bit is set in the page table entry, the kernel resets the bit in the page table
entry and does a TLB shootdown to remove the entry from the TLB (with the old value of
the dirty bit). It then copies the page to disk. Of course, the on-chip processor memory
cache and write buffers can contain modifications to the page that have not reached main
memory; the hardware ensures that the new data reaches main memory before those
bytes are copied to the disk interface.

The kernel can then restart the application; it need not wait for the block to reach disk — if
the process modifies the page again, the hardware will simply reset the dirty bit, signaling
that the block cannot be reclaimed without saving the new set of changes to disk.

Emulating a hardware dirty bit in software

Interestingly, hardware support for a dirty bit is not strictly required. The operating system can emulate a
hardware dirty bit using page table access permissions. An unmodified page is set to allow only read-only
access, even though the program is logically allowed to write the page. The program can then execute
normally. On a store instruction to the page, the hardware will trigger a memory exception. The operating
system can then record the fact that the page is dirty, upgrade the page protection to read-write, and restart
the process.

To clean a page in the background, the kernel resets the page protection to read-only and does a TLB
shootdown. The shootdown removes any translation that allows for read-write access to the page, forcing
subsequent store instructions to cause another memory exception.

9.6.3 Approximating LRU

A further challenge to implementing demand paged memory-mapped files is that the
hardware does not keep track of which pages are least recently or least frequently used.
Doing so would require the hardware to keep a linked list of every page in memory, and to
modify that list on every load and store instruction (and for memory-mapped executable
images, every instruction fetch as well). This would be prohibitively expensive. Instead, the
hardware maintains a minimal amount of access information per page to allow the
operating system to approximate LRU or LFU if it wants to do so.

We should note that explicit read/write file system calls do not have this problem. Each
time a process reads or writes a file block, the operating system can keep track of which
blocks are used. The kernel can use this information to prioritize its cache of file blocks
when the system needs to find space for a new block.

Most processor architectures keep a use bit in each page table entry, next to the hardware
dirty bit we discussed above. The operating system clears the use bit when the page table
entry is initialized; the bit is set in hardware whenever the page table entry is brought into
the TLB. As with the dirty bit, a physical page is used if any of the page table entries have
their use bit set.

Figure 9.21: The clock algorithm sweeps through each page frame, collecting the current value of the use
bit for that page and resetting the use bit to zero. The clock algorithm stops when it has reclaimed a
sufficient number of unused page frames.

The operating system can leverage the use bit in various ways, but a commonly used
approach is the clock algorithm, illustrated in Figure 9.21. Periodically, the operating
system scans through the core map of physical memory pages. For each page frame, it
records the value of the use bit in the page table entries that point to that frame, and then
clears their use bits. Because the TLB can have a cached copy of the translation, the
operating system also does a shootdown for any page table entry where the use bit is
cleared. Note that if the use bit is already zero, the translation cannot be in the TLB. While
it is scanning, the kernel can also look for dirty and recently unused pages and flush these
out to disk.

Each sweep of the clock algorithm through memory collects one bit of information about
page usage; by adjusting the frequency of the clock algorithm, we can collect increasingly
fine-grained information about usage, at the cost of increased software overhead. On
modern systems with hundreds of thousands and sometimes millions of physical page
frames, the overhead of the clock algorithm can be substantial.

The policy for what to do with the usage information is up to the operating system kernel. A
common policy is called not recently used, or k’th chance. If the operating system needs to
evict a page, the kernel picks one that has not been used (has not had its use bit set) for
the last k sweeps of the clock algorithm. The clock algorithm partitions pages based on
how recently they have been used; among page frames in the same k’th chance partition,
the operating system can evict pages in FIFO order.

Some systems trigger the clock algorithm only when a page is needed, rather than
periodically in the background. Provided some pages have not been accessed since the
last sweep, an on-demand clock algorithm will find a page to reclaim. If all pages have

been accessed, e.g., if there is a storm of page faults due to phase change behavior, then
the system will default to FIFO.

Emulating a hardware use bit in software

Hardware support for a use bit is also not strictly required. The operating system kernel can emulate a use
bit with page table permissions, in the same way that the kernel can emulate a hardware dirty bit. To collect
usage information about a page, the kernel sets the page table entry to be invalid even though the page is in
memory and the application has permission to access the page. When the page is accessed, the hardware
will trigger an exception and the operating system can record the use of the page. The kernel then changes
the permission on the page to allow access, before restarting the process. To collect usage information over
time, the operating system can periodically reset the page table entry to invalid and shootdown any cached
translations in the TLB.

Many systems use a hybrid approach. In addition to active pages where the hardware collects the use bit,
the operating system maintains a pool of unused, clean page frames that are unmapped in any virtual
address space, but still contain their old data. When a new page frame is needed, pages in this pool can be
used without any further work. However, if the old data is referenced before the page frame is reused, the
page can be pulled out of the pool and mapped back into the virtual address space.

Systems with a software-managed TLB have an even simpler time. Each time there is a TLB miss with a
software-managed TLB, there is a trap to the kernel to look up the translation. During the trap, the kernel
can update its list of frequently used pages.

9.7 Case Study: Virtual Memory

We can generalize on the concept of memory-mapped files, by backing every memory
segment with a file on disk. This is called virtual memory. Program executables, individual
libraries, data, stack and heap segments can all be demand paged to disk. Unlike memory-
mapped files, though, process memory is ephemeral: when the process exits, there is no
need to write modified data back to disk, and we can reclaim the disk space.

The advantage of virtual memory is flexibility. The system can continue to function even
though the user has started more processes than can fit in main memory at the same time.
The operating system simply makes room for the new processes by paging the memory of
idle applications to disk. Without virtual memory, the user has to do memory management
by hand, closing some applications to make room for others.

All of the mechanisms we have described for memory-mapped files apply when we
generalize to virtual memory, with one additional twist. We need to balance the allocation of
physical page frames between processes. Unfortunately, this balancing is quite tricky. If we
add a few extra page faults to a system, no one will notice. However, a modern disk can
handle at most 100 page faults per second, while a modern multi-core processor can
execute 10 billion instructions per second. Thus, if page faults are anything but extremely
rare, performance will suffer.

9.7.1 Self-Paging

One consideration is that the behavior of one process can significantly hurt the
performance of other programs running at the same time. For example, suppose we have
two processes. One is a normal program, with a working set equal to say, a quarter of
physical memory. The other program is greedy; while it can run fine with less memory, it
will run faster if it is given more memory. We gave an example of this earlier with the sort
program.

Can you design a program to take advantage of the clock algorithm to acquire more than
its fair share of memory pages?

 static char *workingSet; // The memory this program wants to acquire.
 static int soFar; // How many pages the program has so far.
 static sthread_t refreshThread;

 // This thread touches the pages we have in memory, to keep them recently used.
 void refresh () {
 int i;

 while (1) {
 // Keep every page in memory recently used.
 for (i = 0; i < soFar; i += PAGESIZE)
 workingSet[i] = 0;
 }
 }

 int main (int argc, char **argv) {
 // Allocate a giant array.
 workingSet = malloc(ARRAYSIZE);
 soFar = 0;

 // Create a thread to keep our pages in memory, once they get there.
 thread_create(&refreshThread, refresh, 0);

 // Touch every page to bring it into memory.
 for (; soFar < ARRAYSIZE; soFar += PAGESIZE)
 workingSet[soFar] = 0;

 // Now that everything is in memory, run computation.
 // ...
 }

Figure 9.22: The “pig” program to greedily acquire memory pages. The implementation assumes we are
running on a multicore computer. When the pig triggers a page fault by touching a new memory page
(soFar), the operating system will find all of the pig’s pages up to soFar recently used. The operating system
will keep these in memory and it will choose to evict a page from some other application.

We give an example in Figure 9.22, which we will dub “pig” for obvious reasons. It allocates
an array in virtual memory equal in size to physical memory; it then uses multiple threads
to cycle through memory, causing each page to be brought in while the other pages remain
very recently used.

A normal program sharing memory with the pig will eventually be frozen out of memory and
stop making progress. When the pig touches a new page, it triggers a page fault, but all of
its pages are recently used because of the background thread. Meanwhile, the normal

program will have recently touched many of its pages but there will be some that are less
recently used. The clock algorithm will choose those for replacement.

As time goes on, more and more of the pages will be allocated to the pig. As the number of
pages assigned to the normal program drops, it starts experiencing page faults at an
increasing frequency. Eventually, the number of pages drops below the working set, at
which point the program stops making much progress. Its pages are even less frequently
used, making them easier to evict.

Of course, a normal user would probably never run (or write!) a program like this, but a
malicious attacker launching a computer virus might use this approach to freeze out the
system administrator. Likewise, in a data center setting, a single server can be shared
between multiple applications from different users, for example, running in different virtual
machines. It is in the interest of any single application to acquire as many physical
resources as possible, even if that hurts performance for other users.

A widely adopted solution is self-paging. With self-paging, each process or user is
assigned its fair share of page frames, using the max-min scheduling algorithm we
described in Chapter 7. If all of the active processes can fit in memory at the same time,
the system does not need to page. As the system starts to page, it evicts the page from
whichever process has the most allocated to it. Thus, the pig would only be able to allocate
its fair share of page frames, and beyond that any page faults it triggers would evict its own
pages.

Unfortunately, self-paging comes at a cost in reduced resource utilization. Suppose we
have two processes, both of which allocate large amounts of virtual address space.
However, the working sets of the two programs can fit in memory at the same time, for
example, if one working set takes up 2/3rds of memory and the other takes up 1/3rd. If they
cooperate, both can run efficiently because the system has room for both working sets.
However, if we need to bulletproof the operating system against malicious programs by
self-paging, then each will be assigned half of memory and the larger program will thrash.

9.7.2 Swapping

Another issue is what happens as we increase the workload for a system with virtual
memory. If we are running a data center, for example, we can share physical machines
among a much larger number of applications each running in a separate virtual machine.
To reduce costs, the data center needs to support the maximum number of applications on
each server, within some performance constraint.

If the working sets of the applications easily fit in memory, then as page faults occur, the
clock algorithm will find lightly used pages — that is, those outside of the working set of
any process — to evict to make room for new pages. So far so good. As we keep adding
active processes, however, their working sets may no longer fit, even if each process is
given their fair share of memory. In this case, the performance of the system will degrade
dramatically.

This can be illustrated by considering how system throughput is affected by the number of
processes. As we add work to the system, throughput increases as long as there is enough

processing capacity and I/O bandwidth. When we reach the point where there are too
many tasks to fit entirely in memory, the system starts demand paging. Throughput can
continue to improve if there are enough lightly used pages to make room for new tasks, but
eventually throughput levels off and then falls off a cliff. In the limit, every instruction will
trigger a page fault, meaning that the processor executes at 100 instructions per second,
rather than 10 billion instructions per second. Needless to say, the user will think the
system is dead even if it is in fact inching forward very slowly.

As we explained in the Chapter 7 discussion on overload control, the only way to achieve
good performance in this case is to prevent the overload condition from occurring. Both
response time and throughput will be better if we prevent additional tasks from starting or if
we remove some existing tasks. It is better to completely starve some tasks of their
resources, if the alternative, assigning each task their fair share, will drag the system to a
halt.

Evicting an entire process from memory is called swapping. When there is too much
paging activity, the operating system can prevent a catastrophic degradation in
performance by moving all of the page frames of a particular process to disk, preventing it
from running at all. Although this may seem terribly unfair, the alternative is that every
process, not just the swapped process, will run much more slowly. By distributing the
swapped process’s pages to other processes, we can reduce the number of page faults,
allowing system performance to recover. Eventually the other tasks will finish, and we can
bring the swapped process back into memory.

9.8 Summary and Future Directions

Caching is central to many areas of computer science: caches are used in processor
design, file systems, web browsers, web servers, compilers, and kernel memory
management, to name a few. To understand these systems, it is important to understand
how caches work, and even more importantly, when they fail.

The management of memory in operating systems is a particularly useful case study. Every
major commercial operating system includes support for demand paging of memory, using
memory as a cache for disk. Often, application memory pages and blocks in the file buffer
are allocated from a common pool of memory, where the operating system attempts to
keep blocks that are likely to be used in memory and evicting those blocks that are less
likely to be used. However, on modern systems, the difference between finding a block in
memory and needing to bring it in from disk can be as much as a factor of 100,000. This
makes virtual memory paging fragile, acceptable only when used in small doses.

Moving forward, several trends are in progress:

Low latency backing store. Due to the weight and power drain of magnetic disks,
many portable devices have moved to solid state persistent storage, such as non-
volatile RAM. Current solid state storage devices have significantly lower latency than
disk, and even faster devices are likely in the future. Similarly, the move towards data
center computing has added a new option to memory management: using DRAM on
other nodes in the data center as a low-latency, very high capacity backing store for

local memory. Both of these trends reduce the cost of paging, making it relatively more
attractive.

Variable page sizes. Many systems use a standard 4 KB page size, but there is
nothing fundamental about that choice — it is a tradeoff chosen to balance internal
fragmentation, page table overhead, disk latency, the overhead of collecting dirty and
usage bits, and application spatial locality. On modern disks, it only takes twice as long
to transfer 256 contiguous pages as it does to transfer one, so internally, most
operating systems arrange disk transfers to include many blocks at a time. With new
technologies such as low latency solid state storage and cluster memory, this balance
may shift back towards smaller effective page sizes.

Memory aware applications. The increasing depth and complexity of the memory
hierarchy is both a boon and a curse. For many applications, the memory hierarchy
delivers reasonable performance without any special effort. However, the wide gulf in
performance between the first level cache and main memory, and between main
memory and disk, implies that there is a significant performance benefit to tuning
applications to the available memory. The poses a particular challenge for operating
systems to adapt to applications that are adapting to their physical resources.

Exercises

1. A computer system has a 1 KB page size and keeps the page table for each process
in main memory. Because the page table entries are usually cached on chip, the
average overhead for doing a full page table lookup is 40 ns. To reduce this overhead,
the computer has a 32-entry TLB. A TLB lookup requires 1 ns. What TLB hit rate is
required to ensure an average virtual address translation time of 2 ns?

2. Most modern computer systems choose a page size of 4 KB.
a. Give a set of reasons why doubling the page size might increase performance.
b. Give a set of reasons why doubling the page size might decrease performance.

3. For each of the following statements, indicate whether the statement is true or false,
and explain why.

a. A direct mapped cache can sometimes have a higher hit rate than a fully
associative cache (on the same reference pattern).

b. Adding a cache never hurts performance.

4. Suppose an application is assigned 4 pages of physical memory and the memory is
initially empty. It then references pages in the following sequence:

 ACBDBAEFBFAGEFA

a. Show how the system would fault pages into the four frames of physical memory,
using the LRU replacement policy.

b. Show how the system would fault pages into the four frames of physical memory,
using the MIN replacement policy.

c. Show how the system would fault pages into the four frames of physical memory,
using the clock replacement policy.

5. Is least recently used a good cache replacement algorithm to use for a workload
following a zipf distribution? Briefly explain why or why not.

6. Briefly explain how to simulate a modify bit per page for the page replacement
algorithm if the hardware does not provide one.

7. Suppose we have four programs:
a. One exhibits both spatial and temporal locality.
b. One touches each page sequentially, and then repeats the scan in a loop.
c. One references pages according to a Zipf distribution (e.g., it is a web server and

its memory consists of cached web pages).
d. One generates memory references completely at random using a uniform random

number generator.

All four programs use the same total amount of virtual memory — that is, they both
touch N distinct virtual pages, amongst a much larger number of total references.

For each program, sketch a graph showing the rate of progress (instructions per unit
time) of each program as a function of the physical memory available to the program,
from 0 to N, assuming the page replacement algorithm approximates least recently
used.

8. Suppose a program repeatedly scans linearly through a large array in virtual memory.
In other words, if the array is four pages long, its page reference pattern is
ABCDABCDABCD...

For each of the following page replacement algorithms, sketch a graph showing the
rate of progress (instructions per unit time) of each program as a function of the
physical memory available to the program, from 0 to N, where N is sufficient to hold
the entire array.

a. FIFO
b. Least recently used
c. Clock algorithm
d. Nth chance algorithm
e. MIN

9. Consider a computer system running a general-purpose workload with demand
paging. The system has two disks, one for demand paging and one for file system
operations. Measured utilizations (in terms of time, not space) are given in
Figure 9.23.

Processor utilization 20.0%
Paging Disk 99.7%
File Disk 10.0%
Network 5.0%

Figure 9.23: Measured utilizations for sample system under consideration.

For each of the following changes, say what its likely impact will be on processor
utilization, and explain why. Is it likely to significantly increase, marginally increase,
significantly decrease, marginally decrease, or have no effect on the processor
utilization?

a. Get a faster CPU

b. Get a faster paging disk

c. Increase the degree of multiprogramming

10. An operating system with a physically addressed cache uses page coloring to more
fully utilize the cache.

a. How many page colors are needed to fully utilize a physically addressed cache,
with 1 TB of main memory, an 8 MB cache with 4-way set associativity, and a 4
KB page size?

b. Develop an algebraic formula to compute the number of page colors needed for
an arbitrary configuration of cache size, set associativity, and page size.

11. The sequence of virtual pages referenced by a program has length p with n distinct
page numbers occurring in it. Let m be the number of page frames that are allocated
to the process (all the page frames are initially empty). Let n > m.

a. What is the lower bound on the number of page faults?
b. What is the upper bound on the number of page faults?

The lower/upper bound should be for any page replacement policy.

12. You have decided to splurge on a low end netbook for doing your operating systems
homework during lectures in your non-computer science classes. The netbook has a
single-level TLB and a single-level, physically addressed cache. It also has two levels
of page tables, and the operating system does demand paging to disk.

The netbook comes in various configurations, and you want to make sure the
configuration you purchase is fast enough to run your applications. To get a handle on
this, you decide to measure its cache, TLB and paging performance running your
applications in a virtual machine. Figure 9.24 lists what you discover for your workload.

Measurement Value
PCacheMiss = probability of a cache miss 0.01
PTLBmiss = probability of a TLB miss 0.01
Pfault = probability of a page fault, given a TLB miss occurs 0.00002
T cache = time to access cache 1 ns = 0.001 μs

T TLB = time to access TLB 1 ns = 0.001 μs
T DRAM = time to access main memory 100 ns = 0.1 μs
T disk = time to transfer a page to/from disk 107 ns = 10 ms

Figure 9.24: Sample measurements of cache behavior on the low-end netbook described in the
exercises.

The TLB is refilled automatically by the hardware on a TLB miss. The page tables are
kept in physical memory and are not cached, so looking up a page table entry incurs
two memory accesses (one for each level of the page table). You may assume the
operating system keeps a pool of clean pages, so pages do not need to be written
back to disk on a page fault.

a. What is the average memory access time (the time for an application program to
do one memory reference) on the netbook? Express your answer algebraically
and compute the result to two
significant digits.

b. The netbook has a few optional performance enhancements:

Item Specs Price
Faster disk drive Transfers a page in 7 ms $100
500 MB more DRAM Makes probability of a page fault 0.00001 $100
Faster network card Allows paging to remote memory. $100

With the faster network card, the time to access remote memory is 500 ms, and
the probability of a remote memory miss (need to go to disk), given there is a
page fault is 0.5.

Suppose you have $200. What options should you buy to maximize the
performance of the netbook for this workload?

13. On a computer with virtual memory, suppose a program repeatedly scans through a
very large array. In other words, if the array is four pages long, its page reference
pattern is ABCDABCDABCD...

Sketch a graph showing the paging behavior, for each of the following page
replacement algorithms. The y-axis of the graph is the number of page faults per
referenced page, varying from 0 to 1; the x-axis is the size of the array being scanned,
varying from smaller than physical memory to much larger than physical memory.
Label any interesting points on the graph on both the x and y axes.

a. FIFO
b. LRU
c. Clock
d. MIN

14. Consider two programs, one that exhibits spatial and temporal locality, and the other
that exhibits neither. To make the comparison fair, they both use the same total
amount of virtual memory — that is, they both touch N distinct virtual pages, among a
much larger number of total references.

Sketch graphs showing the rate of progress (instructions per unit time) of each
program as a function of the physical memory available to the program, from 0 to N,
assuming the clock algorithm is used for page replacement.

a. Program exhibiting locality, running by itself

b. Program exhibiting no locality, running by itself

c. Program exhibiting locality, running with the program exhibiting no locality
(assume both have the same value for N).

d. Program exhibiting no locality, running with the program exhibiting locality
(assume both have the same N).

15. Suppose we are using the clock algorithm to decide page replacement, in its simplest
form (“first-chance” replacement, where the clock is only advanced on a page fault and
not in the background).

A crucial issue in the clock algorithm is how many page frames must be considered in
order to find a page to replace. Assuming we have a sequence of F page faults in a
system with P page frames, let C(F,P) be the number of pages considered for
replacement in handling the F page faults (if the clock hand sweeps by a page frame
multiple times, it is counted each time).

a. Give an algebraic formula for the minimum possible value of C(F,P).

b. Give an algebraic formula for the maximum possible value of C(F,P).

10. Advanced Memory Management
All problems in computer science can be solved by another level of indirection. —David
Wheeler

At an abstract level, an operating system provides an execution context for application
processes, consisting of limits on privileged instructions, the process’s memory regions, a
set of system calls, and some way for the operating system to periodically regain control of
the processor. By interposing on that interface — most commonly, by catching and
transforming system calls or memory references — the operating system can transparently
insert new functionality to improve system performance, reliability, and security.

Interposing on system calls is straightforward. The kernel uses a table lookup to determine
which routine to call for each system call invoked by the application program. The kernel
can redirect a system call to a new enhanced routine by simply changing the table entry.

A more interesting case is the memory system. Address translation hardware provides an
efficient way for the operating system to monitor and gain control on every memory
reference to a specific region of memory, while allowing other memory references to
continue unaffected. (Equivalently, software-based fault isolation provides many of the
same hooks, with different tradeoffs between interposition and execution speed.) This
makes address translation a powerful tool for operating systems to introduce new,
advanced services to applications. We have already shown how to use address translation
for:

Protection. Operating systems use address translation hardware, along with segment
and page table permissions, to restrict access by applications to privileged memory
locations such as those in the kernel.

Fill-on-demand/zero-on-demand. By setting some page table permissions to invalid,
the kernel can start executing a process before all of its code and data has been
loaded into memory; the hardware will trap to the kernel if the process references data
before it is ready. Similarly, the kernel can zero data and heap pages in the
background, relying on page reference faults to catch the first time an application uses
an empty page. The kernel can also allocate memory for kernel and user stacks only
as needed. By marking unused stack pages as invalid, the kernel needs to allocate
those pages only if the program executes a deep procedure call chain.

Copy-on-write. Copy-on-write allows multiple processes to have logically separate
copies of the same memory region, backed by a single physical copy in memory. Each
page in the region is mapped read-only in each process; the operating system makes
a physical copy only when (and if) a page is modified.

Memory-mapped files. Disk files can be made part of a process’s virtual address
space, allowing the process to access the data in the file using normal processor
instructions. When a page from a memory-mapped file is first accessed, a protection
fault traps to the operating system so that it can bring the page into memory from disk.
The first write to a file block can also be caught, marking the block as needing to be
written back to disk.

Demand paged virtual memory. The operating system can run programs that use
more memory than is physically present on the computer, by catching references to
pages that are not physically present and filling them from disk or cluster memory.

In this chapter, we explore how to construct a number of other advanced operating system
services by catching and re-interpreting memory references and system calls.

Chapter roadmap:

Zero-Copy I/O. How do we improve the performance of transferring blocks of data
between user-level programs and hardware devices? (Section 10.1)

Virtual Machines. How do we execute an operating system on top of another
operating system, and how can we use that abstraction to introduce new operating
system services? (Section 10.2)

Fault Tolerance. How can we make applications resilient to machine crashes?
(Section 10.3)

Security. How can we contain malicious applications that can exploit unknown faults
inside the operating system? (Section 10.4)

User-Level Memory Management. How do we give applications control over how
their memory is managed? (Section 10.5)

10.1 Zero-Copy I/O

Figure 10.1: A web server gets a request from the network. The server first asks the kernel to copy the
requested file from disk or its file buffer into the server’s address space. The server then asks the kernel to
copy the contents of the file back out to the network.

A common task for operating systems is to stream data between user-level programs and
physical devices such as disks and network hardware. However, this streaming can be
expensive in processing time if the data is copied as it moves across protection
boundaries. A network packet needs to go from the network interface hardware, into kernel
memory, and then to user-level; the response needs to go from user-level back into kernel
memory and then from kernel memory to the network hardware.

Consider the operation of the web server, as pictured in Figure 10.1. Almost all web
servers are implemented as user-level programs. This way, it is easy to reconfigure server
behavior, and bugs in the server implementation do not necessarily compromise system
security.

A number of steps need to happen for a web server to respond to a web request. For this
example, assume that the connection between the client and server is already established,
there is a server thread allocated to each client connection, and we use explicit read/write
system calls rather than memory mapped files.

Server reads from network. The server thread calls into the kernel to wait for an
arriving request.

Packet arrival. The web request arrives from the network; the network hardware uses
DMA to copy the packet data into a kernel buffer.

Copy packet data to user-level. The operating system parses the packet header to
determine which user process is to receive the web request. The kernel copies the
data into the user-level buffer provided by the server thread and returns to user-level.

Server reads file. The server parses the data in the web request to determine which
file is requested. It issues a file read system call back to the kernel, providing a user-
level buffer to hold the file contents.

Data arrival. The kernel issues the disk request, and the disk controller copies the
data from the disk into a kernel buffer. If the file data is already in the file buffer cache,
as will often be the case for popular web requests, this step is skipped.

Copy file data to user-level. The kernel copies the data into the buffer provided by
the user process and returns to user-level.

Server write to network. The server turns around and hands the buffer containing the
file data back to the kernel to send out to the network.

Copy data to kernel. The kernel copies the data from the user-level buffer into a
kernel buffer, formats the packet, and issues the request to the network hardware.

Data send. The hardware uses DMA to copy the data from the kernel buffer out to the
network.

Although we have illustrated this with a web server, a similar process occurs for any
application that streams data in or out of a computer. Examples include a web client, online
video or music service, BitTorrent, network file systems, and even a software download.
For each of these, data is copied from hardware into the kernel and then into user-space,
or vice versa.

We could eliminate the extra copy across the kernel-user boundary by moving each of
these applications into the kernel. However, that would be impractical as it would require
trusting the applications with the full power of the operating system. Alternately, we could
modify the system call interface to allow applications to directly manipulate data stored in a
kernel buffer, without first copying it to user memory. However, this is not a general-
purpose solution; it would not work if the application needed to do any work on the buffer
as opposed to only transferring it from one hardware device to another.

Instead, two solutions to zero-copy I/O are used in practice. Both eliminate the copy across
the kernel-user boundary for large blocks of data; for small chunks of data, the extra copy
does not hurt performance.

The more widely used approach manipulates the process page table to simulate a copy.
For this to work, the application must first align its user-level buffer to a page boundary.
The user-level buffer is provided to the kernel on a read or write system call, and its
alignment and size is up to the application.

The key idea is that a page-to-page copy from user to kernel space or vice versa can be
simulated by changing page table pointers instead of physically copying memory.

For a copy from user-space to the kernel (e.g., on a network or file system write), the
kernel changes the permissions on the page table entry for the user-level buffer to prevent
it from being modified. The kernel must also pin the page to prevent it from being evicted
by the virtual memory manager. In the common case, this is enough — the page will not

normally be modified while the I/O request is in progress. If the user program does try to
modify the page, the program will trap to the kernel and the kernel can make an explicit
copy at that point.

Figure 10.2: The contents of the page table before and after the kernel “copies” data to user-level by
swapping the page table entry to point to the kernel buffer.

In the other direction, once the data is in the kernel buffer, the operating system can
simulate a copy up to user-space by switching the pointer in the page table, as shown in
Figure 10.2. The process page table originally pointed to the page frame containing the
(empty) user buffer; now it points to the page frame containing the (full) kernel buffer. To
the user program, the data appears exactly where it was expected! The kernel can reclaim
any physical memory behind the empty buffer.

More recently, some hardware I/O devices have been designed to be able to transfer data
to and from virtual addresses, rather than only to and from physical addresses. The kernel
hands the virtual address of the user-level buffer to the hardware device. The hardware
device, rather than the kernel, walks the multi-level page table to determine which physical
page frame to use for the device transfer. When the transfer completes, the data is
automatically where it belongs, with no extra work by the kernel. This procedure is a bit
more complicated for incoming network packets, as the decision as to which process
should receive which packet is determined by the contents of the packet header. The
network interface hardware therefore has to parse the incoming packet to deliver the data
to the appropriate process.

10.2 Virtual Machines

A virtual machine is a way for a host operating system to run a guest operating system as
an application process. The host simulates the behavior of a physical machine so that the
guest system behaves as if it was running on real hardware. Virtual machines are widely
used on client machines to run applications that are not native to the current version of the
operating system. They are also widely used in data centers to allow a single physical
machine to be shared between multiple independent uses, each of which can be written as
if it has system administrator control over the entire (virtual) machine. For example,

multiple web servers, representing different web sites, can be hosted on the same physical
machine if they each run inside a separate virtual machine.

Address translation throws a wrinkle into the challenge of implementing a virtual machine,
but it also opens up opportunities for efficiencies and new services.

Figure 10.3: A virtual machine typically has two page tables: one to translate from guest process addresses
to the guest physical memory, and one to translate from guest physical memory addresses to host physical
memory addresses.

10.2.1 Virtual Machine Page Tables

With virtual machines, we have two sets of page tables, instead of one, as shown in
Figure 10.3:

Guest physical memory to host physical memory. The host operating system
provides a set of page tables to constrain the execution of the guest operating system
kernel. The guest kernel thinks it is running on real, physical memory, but in fact its
addresses are virtual. The hardware page table translates each guest operating
system memory reference into a physical memory location, after checking that the
guest has permission to read or write each location. This way the host operating
system can prevent bugs in the guest operating system from overwriting memory in
the host, exactly as if the guest were a normal user-level process.

Guest user memory to guest physical memory. In turn, the guest operating system
manages page tables for its guest processes, exactly as if the guest kernel was
running on real hardware. Since the guest kernel does not know anything about the
physical page frames it has been assigned by the host kernel, these page tables
translate from the guest process addresses to the guest operating system kernel
addresses.

First, consider what happens when the host operating system transfers control to the guest
kernel. Everything works as expected. The guest operating system can read and write its
memory, and the hardware page tables provide the illusion that the guest kernel is running
directly on physical memory.

Now consider what happens when the guest operating system transfers control to the
guest process. The guest kernel is running at user-level, so its attempt to transfer of control
is a privileged instruction. Thus, the hardware processor will first trap back to the host. The
host kernel can then simulate the transfer instruction, handing control to the user process.

However, what page table should we use in this case? We cannot use the page table as
set up by the guest operating system, as the guest operating system thinks it is running in
physical memory, but it is actually using virtual addresses. Nor can we use the page table
as set up by the host operating system, as that would provide permission to the guest
process to access and modify the guest kernel data structures. If we grant access to the
guest kernel memory to the guest process, then the behavior of the virtual machine will be
compromised.

Figure 10.4: To run a guest process, the host operating system constructs a shadow page table consisting
of the composition of the contents of the two page tables.

Instead, we need to construct a composite page table, called a shadow page table, that
represents the composition of the guest page table and the host page table, as shown in
Figure 10.4. When the guest kernel transfers control to a guest process, the host kernel
gains control and changes the page table to the shadow version.

To keep the shadow page table up to date, the host operating system needs to keep track
of changes that either the guest or the host operating systems make to their page tables.
This is easy in the case of the host OS — it can check to see if any shadow page tables
need to be updated before it changes a page table entry.

To keep track of changes that the guest operating system makes to its page tables,
however, we need to do a bit more work. The host operating system sets the memory of
the guest page tables as read-only. This ensures that the guest OS traps to the host every
time it attempts to change a page table entry. The host uses this trap to change the both

the guest page table and the corresponding shadow page table, before resuming the guest
operating system (with the page table still read-only).

Paravirtualization

One way to enable virtual machines to run faster is to assume that the guest operating system is ported to
the virtual machine. The hardware dependent layer, specific to the underlying hardware, is replaced with
code that understands about the virtual machine. This is called paravirtualization, because the resulting
guest operating system is almost, but not precisely, the same as if it were running on real, physical
hardware.

Paravirtualization is helpful in several ways. Perhaps the most important is handling the idle loop. What
should happen when the guest operating system has no threads to run? If the guest believes it is running on
physical hardware, then nothing — the guest spins waiting for more work to do, perhaps putting itself in low
power mode. Eventually the hardware will cause a timer interrupt, transferring control to the host operating
system. The host can then decide whether to resume the virtual machine or run some other thread (or even
some other virtual machine).

With paravirtualization, however, the idle loop can be more efficient. The hardware dependent software
implementing the idle loop can trap into the host kernel, yielding the processor immediately to some other
use.

Likewise, with paravirtualization, the hardware dependent code inside the guest operating system can make
explicit calls to the host kernel to change its page tables, removing the need for the host to simulate guest
page table management.

The Intel architecture has recently added direct hardware support for the composition of
page tables in virtual machines. Instead of a single page table, the hardware can be set up
with two page tables, one for the host and one for the guest operating system. When
running a guest process, on a TLB miss, the hardware translates the virtual address to a
guest physical page frame using the guest page table, and the hardware then translates
the guest physical page frame to the host physical page frame using the host page table.
In other words, the TLB contains the composition of the two page tables, exactly as if the
host maintained an explicit shadow page table. Of course, if the guest operating system
itself hosts a virtual machine as a guest user process, then the guest kernel must construct
a shadow page table.

Although this hardware support simplifies the construction of virtual machines, it is not
clear if it improves performance. The handling of a TLB miss is slower since the host
operating system must consult two page tables instead of one; changes to the guest page
table are faster because the host does not need to maintain the shadow page table. It
remains to be seen if this tradeoff is useful in practice.

10.2.2 Transparent Memory Compression

A theme running throughout this book is the difficulty of multiplexing multiplexors. With
virtual machines, both the host operating system and the guest operating system are
attempting to do the same task: to efficiently multiplex a set of tasks onto a limited amount
of memory. Decisions the guest operating system takes to manage its memory may work at

cross-purposes to the decisions that the host operating system takes to manage its
memory.

Efficient use of memory can become especially important in data centers. Often, a single
physical machine in a data center is configured to run many virtual machines at the same
time. For example, one machine can host many different web sites, each of which is too
small to merit a dedicated machine on its own.

To make this work, the system needs enough memory to be able to run many different
operating systems at the same time. The host operating system can help by sharing
memory between guest kernels, e.g., if it is running two guest kernels with the same
executable kernel image. Likewise, the guest operating system can help by sharing
memory between guest applications, e.g., if it is running two copies of the same program.
However, if different guest kernels both run a copy of the same user process (e.g., both run
the Apache web server), or use the same library, the host kernel has no (direct) way to
share pages between those two instances.

Another example occurs when a guest process exits. The guest operating system places
the page frames for the exiting process on the free list for reallocation to other processes.
The contents of any data pages will never be used again; in fact, the guest kernel will need
to zero those pages before they are reassigned. However, the host operating system has
no (direct) way to know this. Eventually those pages will be evicted by the host, e.g., when
they become least recently used. In the meantime, however, the host operating system
might have evicted pages from the guest that are still active.

One solution is to more tightly coordinate the guest and host memory managers so that
each knows what the other is doing. We discuss this in more detail later in this Chapter.

Commercial virtual machine implementations take a different approach, exploiting
hardware address protection to manage the sharing of common pages between virtual
machines. These systems run a scavenger in the background that looks for pages that can
be shared across virtual machines. Once a common page is identified, the host kernel
manipulates the page table pointers to provide the illusion that each guest has its own copy
of the page, even though the physical representation is more compact.

Figure 10.5: When a host kernel runs multiple virtual machines, it can save space by storing a delta to an
existing page (page A) and by using the same physical page frame for multiple copies of the same page
(page B).

There are two cases to consider, shown in Figure 10.5:

Multiple copies of the same page. Two different virtual machines will often have
pages with the same contents. An obvious case is zeroed pages: each kernel keeps a
pool of pages that have been zeroed, ready to be allocated to a new process. If each
guest operating system were running on its own machine, there would be little cost to
keeping this pool at the ready; no one else but the kernel can use that memory.
However, when the physical machine is shared between virtual machines, having each
guest keep its own pool of zero pages is wasteful.

Instead, the host can allocate a single zero page in physical memory for all of these
instances. All pointers to the page will be set read-only, so that any attempt to modify
the page will cause a trap to the host kernel; the kernel can then allocate a new
(zeroed) physical page for that use, exactly as in copy-on-write. Of course, the guest
kernels do not need to tell anyone when they create a zero page, so in the
background, the host kernel runs a scavenger to look for zero pages in guest memory.
When it finds one, it reclaims the physical page and changes the page table pointers
to point at the shared zero page, with read-only permission.

The scavenger can do the same for other shared page frames. The code and data
segments for both applications and shared libraries will often be the same or quite
similar, even across different operating systems. An application like the Apache web
server will not be re-written from scratch for every separate operating system; rather,

some OS-specific glue code will be added to match the portable portion of the
application to its specific environment.

Compression of unused pages. Even if a page is different, it may be close to some
other page in a different virtual machine. For example, different versions of the
operating system may differ in only some small respects. This provides an opportunity
for the host kernel to introduce a new layer in the memory hierarchy to save space.

Instead of evicting a relatively unused page, the operating system can compress it. If
the page is a delta of an existing page, the compressed version may be quite small.
The kernel manipulates page table permissions to maintain the illusion that the delta is
a real page. The full copy of the page is marked read-only; the delta is marked invalid.
If the delta is referenced, it can be re-constituted as a full page more quickly than if it
was stored on disk. If the original page is modified, the delta can be re-compressed or
evicted, as necessary.

10.3 Fault Tolerance

All systems break. Despite our best efforts, application code can have bugs that cause the
process to exit abruptly. Operating system code can have bugs that cause the machine to
halt and reboot. Power failures and hardware errors can also cause a system to stop
without warning.

Most applications are structured to periodically save user data to disk for just these types
of events. When the operating system or application restarts, the program can read the
saved data off disk to allow the user to resume their work.

In this section, we take this a step further, to see if we can manage memory to recover
application data structures after a failure, and not just user file data.

10.3.1 Checkpoint and Restart

One reason we might want to recover application data is when a program takes a long time
to run. If a simulation of the future global climate takes a week to compute, we do not want
to have to start again from scratch every time there is a power glitch. If enough machines
are involved and the computation takes long enough, it is likely that at least one of the
machines will encounter a failure sometime during the computation.

Of course, the program could be written to treat its internal data as precious — to
periodically save its partial results to a file. To make sure the data is internally consistent,
the program would need some natural stopping point; for example, the program can save
the predicted climate for 2050 before it moves onto computing the climate in 2051.

A more general approach is to have the operating system use the virtual memory system
to provide application recovery as a service. If we can save the state of a process, we can
transparently restart it whenever the power fails, exactly where it left off, with the user none
the wiser.

Figure 10.6: By checkpointing the state of a process, we can recover the saved state of the process after a
failure by restoring the saved copy.

To make this work, we first need to suspend each thread executing in the process and
save its state — the program counter, stack pointer, and registers to application memory.
Once all threads are suspended, we can then store a copy of the contents of the
application memory on disk. This is called a checkpoint or snapshot, illustrated in
Figure 10.6. After a failure, we can resume the execution by restoring the contents of
memory from the checkpoint and resuming each of the threads from from exactly the point
we stopped them. This is called an application restart.

What would happen if we allow threads to continue to run while we are saving the contents
of memory to disk? During the copy, we have a race condition: some pages could be saved
before being modified by some thread, while others could be saved after being modified by
that same thread. When we try to restart the application, its data structures could appear to
be corrupted. The behavior of the program might be different from what would have
happened if the failure had not occurred.

Fortunately, we can use address translation to minimize the amount of time we need to
have the system stalled during a checkpoint. Instead of copying the contents of memory to
disk, we can mark the application’s pages as copy-on-write. At this point, we can restart the
program’s threads. As each page reaches disk, we can reset the protection on that page to
read-write. When the program tries to modify a page before it reaches disk, the hardware
will take an exception, and the kernel can make a copy of the page — one to be saved to
disk and one to be used by the running program.

We can take checkpoints of the operating system itself in the same way. It is easiest to do
this if the operating system is running in a virtual machine. The host can take a checkpoint
by stopping the virtual machine, saving the processor state, and changing the page table

protections (in the host page table) to read-only. The virtual machine is then safe to restart
while the host writes the checkpoint to disk in the background.

Checkpoints and system calls

An implementation challenge for checkpoint/restart is to correctly handle any system calls that are in
process. The state of a program is not only its user-level memory; it also includes the state of any threads
that are executing in the kernel and any per-process state maintained by the kernel, such as its open file
descriptors. While some operating systems have been designed to allow the kernel state of a process to be
captured as part of the checkpoint, it is more common for checkpointing to be supported only at the virtual
machine layer. A virtual machine has no state in the kernel except for the contents of its memory and
processor registers. If we need to take a checkpoint while a trap handler is in progress, the handler can
simply be restarted.

Process migration is the ability to take a running program on one system, stop its
execution, and resume it on a different machine. Checkpoint and restart provide a basis for
transparent process migration. For example, it is now common practice to checkpoint and
migrate entire virtual machines inside a data center, as one way to balance load. If one
system is hosting two web servers, each of which becomes heavily loaded, we can stop
one and move it to a different machine so that each can get better performance.

10.3.2 Recoverable Virtual Memory

Taking a complete checkpoint of a process or a virtual machine is a heavyweight operation,
and so it is only practical to do relatively rarely. We can use copy-on-write page protection
to resume the process after starting the checkpoint, but completing the checkpoint will still
take considerable time while we copy the contents of memory out to disk.

Can we provide an application the illusion of persistent memory, so that the contents of
memory are restored to a point not long before the failure? The ability to do this is called
recoverable virtual memory. An example where we might like recoverable virtual memory is
in an email client; as you read, reply, and delete email, you do not want your work to be
lost if the system crashes.

If we put efficiency aside, recoverable virtual memory is possible. First, we take a
checkpoint so that some consistent version of the application’s data is on disk. Next, we
record an ordered sequence, or log, of every update that the application makes to memory.
Once the log is written to disk we recover after a failure by reading the checkpoint and
applying the changes from the log.

This is exactly how most text editors save their backups, to allow them to recover
uncommitted user edits after a machine or application failure. A text editor could repeatedly
write an entire copy of the file to a backup, but this would be slow, particularly for a large
file. Instead, a text editor will write a version of the file, and then it will append a sequence
of every change the user makes to that version. To avoid having to separately write every
typed character to disk, the editor will batch changes, e.g., all of the changes the user
made in the past 100 milliseconds, and write those to disk as a unit. Even if the very latest

batch has not been written to disk, the user can usually recover the state of the file at
almost the instant immediately before the machine crash.

A downside of this algorithm for text editors is that it can cause information to be leaked
without it being visible in the current version of the file. Text editors sometimes use this
same method when the user hits “save” — just append any changes from the previous
version, rather than writing a fresh copy of the entire file. This means that the old version of
a file can potentially still be recovered from a file. So if you write a memo insulting your
boss, and then edit it to tone it down, it is best to save a completely new version of your file
before you send it off!

Will this method work for persistent memory? Keeping a log of every change to every
memory location in the process would be too slow. We would need to trap on every store
instruction and save the value to disk. In other words, we would run at the speed of the trap
handler, rather than the speed of the processor.

However, we can come close. When we take a checkpoint, we mark all pages as read-only
to ensure that the checkpoint includes a consistent snapshot of the state of the process’s
memory. Then we trap to the kernel on the first store instruction to each page, to allow the
kernel to make a copy-on-write. The kernel resets the page to be read-write so that
successive store instructions to the same page can go at full speed, but it can also record
the page as having been modified.

Figure 10.7: The operating system can recover the state of a memory segment after a crash by saving a
sequence of incremental checkpoints.

We can take an incremental checkpoint by stopping the program and saving a copy of any
pages that have been modified since the previous checkpoint. Once we change those
pages back to read-only, we can restart the program, wait a bit, and take another
incremental checkpoint. After a crash, we can recover the most recent memory by reading
in the first checkpoint and then applying each of the incremental checkpoints in turn, as
shown in Figure 10.7.

How much work we lose during a machine crash is a function of how quickly we can
completely write an incremental checkpoint to disk. This is governed by the rate at which
the application creates new data. To reduce the cost of an incremental checkpoint,
applications needing recoverable virtual memory will designate a specific memory segment

as persistent. After a crash, that memory will be restored to the latest incremental
checkpoint, allowing the program to quickly resume its work.

10.3.3 Deterministic Debugging

A key to building reliable systems software is the ability to locate and fix problems when
they do occur. Debugging a sequential program is comparatively easy: if you give it the
same input, it will execute the same code in the same order, and produce the same output.

Debugging a concurrent program is much harder: the behavior of the program may change
depending on the precise scheduling order chosen by the operating system. If the program
is correct, the same output should be produced on the same input. If we are debugging a
program, however, it is probably not correct. Instead, the precise behavior of the program
may vary from run to run depending on which threads are scheduled first.

Debugging an operating system is even harder: not only does the operating system make
widespread use of concurrency, but it is hard to tell sometimes what is its “input” and
“output.”

It turns out, however, that we can use a virtual machine abstraction to provide a repeatable
debugging environment for an operating system, and we can in turn use that to provide a
repeatable debugging environment for concurrent applications.

It is easiest to see this on a uniprocessor. The execution of an operating system running in
a virtual machine can only be affected by three factors: its initial state, the input data
provided by its I/O devices, and the precise timing of interrupts.

Because the host kernel mediates each of these for the virtual machine, it can record them
and play them back during debugging. As long as the host exactly mimics what it did the
first time, the behavior of the guest operating system will be the same and the behavior of
all applications running on top of the guest operating system will be the same.

Replaying the input is easy, but how do we replay the precise timing of interrupts? Most
modern computer architectures have a counter on the processor to measure the number of
instructions executed. The host operating system can use this to measure how many
instructions the guest operating system (or guest application) executed between the point
where the host gave up control of the processor to the guest, and when control returned to
the kernel due to an interrupt or trap.

To replay the precise timing of an asynchronous interrupt, the host kernel records the guest
program counter and the instruction count at the point when the interrupt was delivered to
the guest. On replay, the host kernel can set a trap on the page containing the program
counter where the next interrupt will be taken. Since the guest might visit the same
program counter multiple times, the host kernel uses the instruction count to determine
which visit corresponds to the one where the interrupt was delivered. (Some systems make
this even easier, by allowing the kernel to request a trap whenever the instruction count
reaches a certain value.)

Moreover, if we want to skip ahead to some known good intermediate point, we can take a
checkpoint, and play forward the sequence of interrupts and input data from there. This is

important as sometimes bugs in operating systems can take weeks to manifest
themselves; if we needed to replay everything from boot the debugging process would be
much more cumbersome.

Matters are more complex on a multicore system, as the precise behavior of both the guest
operating system and the guest applications will depend on the precise ordering of
instructions across the different processors. It is an ongoing area of research how best to
provide deterministic execution in this setting. Provided that the program being debugged
has no race conditions — that is, no access to shared memory outside of a critical section
— then its behavior will be deterministic with one more piece of information. In addition to
the initial state, inputs, and asynchronous interrupts, we also need to record which thread
acquires each critical section in which order. If we replay the threads in that order and
deliver interrupts precisely and provide the same device input, the behavior will be the
same. Whether this is a practical solution is still an open question.

10.4 Security

Hardware or software address translation provides a basis for executing untrusted
application code, to allow the operating system kernel to protect itself and other
applications from malicious or buggy implementations.

A modern smartphone or tablet computer, however, has literally hundreds of thousands of
applications that could be installed. Many or most are completely trustworthy, but others
are specifically designed to steal or corrupt local data by exploiting weaknesses in the
underlying operating system or the natural human tendency to trust technology. How is a
user to know which is which? A similar situation exists for the web: even if most web sites
are innocuous, some embed code that exploits known vulnerabilities in the browser
defenses.

If we cannot limit our exposure to potentially malicious applications, what can we do? One
important step is to keep your system software up to date. The malicious code authors
recognize this: a recent survey showed that the most likely web sites to contain viruses are
those targeted at the most novice users, e.g., screensavers and children’s games.

In this section, we discuss whether there are additional ways to use virtual machines to
limit the scope of malicious applications.

Suppose you want to download a new application, or visit a new web site. There is some
chance it will work as advertised, and there is some chance it will contain a virus. Is there
any way to limit the potential of the new software to exploit some unknown vulnerability in
your operating system or browser?

One interesting approach is to clone your operating system into a new virtual machine, and
run the application in the clone rather than on the native operating system. A virtual
machine constructed for the purpose of executing suspect code is called a virtual machine
honeypot. By using a virtual machine, if the code turns out to be malicious, we can delete
the virtual machine and leave the underlying operating system as it was before we
attempted to run the application.

Creating a virtual machine to execute a new application might seem extravagant. However,
earlier in this chapter, we discussed various ways to make this more efficient: shadow page
tables, memory compression, efficient checkpoint and restart, and copy-on-write. And of
course, reinstalling your system after it has become infected with a virus is even slower!

Both researchers and vendors of commercial anti-virus software make extensive use of
virtual machine honeypots to detect and understand viruses. For example, a frequent
technique is to create an array of virtual machines, each with a different version of the
operating system. By loading a potential virus into each one, and then simulating user
behavior, we can more easily determine which versions of software are vulnerable and
which are not.

A limitation is that we need to be able to tell if the browser or operating system running in
the virtual machine honeypot has been corrupted. Often, viruses operate instantly, by
attempting to install logging software or scanning the disk for sensitive information such as
credit card numbers. There is nothing to keep the virus from lying in wait; this has become
more common recently, particularly those designed for military or business espionage.

Another limitation is that the virus might be designed to infect both the guest operating
system running in the clone and the host kernel implementing the virtual machine. (In the
case of the web, the virus must infect the browser, the guest operating system, and the
host.) As long as the system software is kept up to date, the system is vulnerable only if
the virus is able to exploit some unknown weakness in the guest operating system and a
separate unknown weakness in the host implementation of the virtual machine. This
provides defense in depth, improving security through multiple layers of protection.

10.5 User-Level Memory Management

With the increasing sophistication of applications and their runtime systems, most widely
used operating systems have introduced hooks for applications to manage their own
memory. While the details of the interface differs from system to system, the hooks
preserve the role of the kernel in allocating resources between processes and in
preventing access to privileged memory. Once a page frame has been assigned to a
process, however, the kernel can leave it up to the process to determine what to do with
that resource.

Operating systems can provide applications the flexibility to decide:

Where to get missing pages. As we noted in the previous chapter, a modern
memory hierarchy is deep and complex: local disk, local non-volatile memory, remote
memory inside a data center, or remote disk. By giving applications control, the kernel
can keep its own memory hierarchy simple and local, while still allowing sophisticated
applications to take advantage of network resources when they are available, even
when those resources are on machines running completely different operating
systems.

Which pages can be accessed. Many applications such as browsers and databases
need to set up their own application-level sandboxes for executing untrusted code.
Today this is done with a combination of hardware and software techniques, as we

described in Chapter 8. Finer-grained control over page fault handling allows more
sophisticated models for managing sharing between regions of untrusted code.

Which pages should be evicted. Often, an application will have better information
than the operating system over which pages it will reference in the near future.

Many applications can adapt the size of their working set to the resources provided by the
kernel but they will have worse performance whenever there is a mismatch.

Garbage collected programs. Consider a program that does its own garbage
collection. When it starts up, it allocates a block of memory in its virtual address space
to serve as the heap. Periodically, the program scans through the heap to compact its
data structures, freeing up room for additional data structures. This causes all pages
to appear to be recently used, confounding the kernel’s memory manager. By contrast,
the application knows that the best page to replace is one that was recently cleaned of
application data.

It is equally confounding to the application. How does the garbage collector know how
much memory it should allocate for the heap? Ideally, the garbage collector should
use exactly as much memory as the kernel is able to provide, and no more. If the
runtime heap is too small, the program must garbage collect, even though more page
frames available. If the heap is too large, the kernel will page parts of the heap to disk
instead of asking the application to pay the lower overhead of compacting its memory.

Databases. Databases and other data processing systems often manipulate huge
data sets that must be streamed from disk into memory. As we noted in Chapter 9,
algorithms for large data sets will be more efficient if they are customized to the
amount of available physical memory. If the operating system evicts a page that the
database expects to be in memory, these algorithms will run much more slowly.

Virtual machines. A similar issue arises with virtual machines. The guest operating
system running inside of a virtual machine thinks it has a set of physical page frames,
which it can assign to the virtual pages of applications running in the virtual machine.
In reality, however, the page frames in the guest operating system are virtual and can
be paged to disk by the host operating system. If the host operating system could tell
the guest operating system when it needed to steal a page frame (or donate a page
frame), then the guest would know exactly how many page frames were available to
be allocated to its applications.

In each of these cases, the performance of a resource manager can be compromised if it
runs on top of a virtualized, rather than a physical, resource. What is needed is for the
operating system kernel to communicate how much memory is assigned to a process or
virtual machine so that the application to do its own memory management. As processes
start and complete, the amount of available physical memory will change, and therefore the
assignment to each application will change.

To handle these needs, most operating systems provide some level of application control
over memory. Two models have emerged:

Pinned pages. A simple and widely available model is to allow applications to pin
virtual memory pages to physical page frames, preventing those pages from being
evicted unless absolutely necessary. Once pinned, the application can manage its
memory however it sees fit, for example, by explicitly shuffling data back and forth to
disk.

Figure 10.8: The operation of a user-level page handler. On a page fault, the hardware traps to the
kernel; if the fault is for a segment with a user-level pager, the kernel passes the fault to the user-level
handler to manage. The user-level handler is pinned in memory to avoid recursive faults.

User-level pagers. A more general solution is for applications to specify a user-level
page handler for a memory segment. On a page fault or protection violation, the kernel
trap handler is invoked. Instead of handling the fault itself, the kernel passes control to
user-level handler, as in a UNIX signal handler. The user-level handler can then
decide how to manage the trap: where to fetch the missing page, what action to take if
the application was sandbox, and which page to replace. To avoid infinite recursion,
the user-level page handler must itself be stored in pinned memory.

10.6 Summary and Future Directions

In this chapter, we have argued that address translation provides a powerful tool for
operating systems to provide a set of advanced services to applications to improve system
performance, reliability, and security. Services such as checkpointing, recoverable memory,
deterministic debugging, and honeypots are now widely supported at the virtual machine
layer, and we believe that they will come to be standard in most operating systems as well.

Moving forward, it is clear that the demands on the memory management system for
advanced services will increase. Not only are memory hierarchies becoming increasingly
complex, but the diversity of services provided by the memory management system has
added even more complexity.

Operating systems often go through cycles of gradually increasing complexity followed by
rapid shifts back towards simplicity. The recent commercial interest in virtual machines may
yield a shift back towards simpler memory management, by reducing the need for the
kernel to provide every service that any application might need. Processor architectures
now directly support user-level page tables. This potentially opens up an entire realm for
more sophisticated runtime systems, for those applications that are themselves miniature
operating systems, and a concurrent simplification of the kernel. With the right operating
system support, applications will be able to set up and manage their own page tables
directly, implement their own user-level process abstractions, and provide their own
transparent checkpointing and recovery on memory segments.

Exercises

1. This question concerns the operation of shadow page tables for virtual machines,
where a guest process is running on top of a guest operating system on top of a host
operating system. The architecture uses paged segmentation, with a 32-bit virtual
address divided into fields as follows:

| 4 bit segment number | 12 bit page number | 16 bit offset |

The guest operating system creates and manages segment and page tables to map
the guest virtual addresses to guest physical memory. These tables are as follows (all
values in hexadecimal):

Segment Table Page Table A Page Table B
0 Page Table A 0 0002 0 0001
1 Page Table B 1 0006 1 0004
x (rest invalid) 2 0000 2 0003

3 0005 x (rest invalid)
x (rest invalid)

The host operating system creates and manages segment and page tables to map the
guest physical memory to host physical memory. These tables are as follows:

Segment Table Page Table K
0 Page Table K 0 BEEF

x (rest invalid) 1 F000
2 CAFE
3 3333
4 (invalid)
5 BA11
6 DEAD
7 5555
x (rest invalid)

a. Find the host physical address corresponding to each of the following guest virtual
addresses. Answer “invalid guest virtual address" if the guest virtual address is
invalid; answer “invalid guest physical address if the guest virtual address maps to
a valid guest physical page frame, but the guest physical page has an invalid
virtual address.

i. 00000000
ii. 20021111
iii. 10012222
iv. 00023333
v. 10024444

b. Using the information in the tables above, fill in the contents of the shadow
segment and page tables for direct execution of the guest process.

c. Assuming that the guest physical memory is contiguous, list three reasons why
the host page table might have an invalid entry for a guest physical page frame,
with valid entries on either side.

2. Suppose we doing incremental checkpoints on a system with 4 KB pages and a disk
capable of transferring data at 10 MB/s.

a. What is the maximum rate of updates to new pages if every modified page is sent
in its entirety to disk on every checkpoint and we require that each checkpoint
reach disk before we start the next checkpoint?

b. Suppose that most pages saved during an incremental checkpoint are only
partially modified. Describe how you would design a system to save only the
modified portions of each page as part of the checkpoint.

References

[1]
Keith Adams and Ole Agesen. A comparison of software and hardware techniques
for x86 virtualization. In Proceedings of the 12th International conference on
Architectural Support for Programming Languages and Operating Systems,
ASPLOS-XII, pages 2–13, 2006.

[2]
Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and Henry M. Levy.
Scheduler activations: effective kernel support for the user-level management of
parallelism. ACM Trans. Comput. Syst., 10(1):53–79, February 1992.

[3]
Thomas E. Anderson, Henry M. Levy, Brian N. Bershad, and Edward D. Lazowska.
The interaction of architecture and operating system design. In Proceedings of the
fourth International conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS-IV, pages 108–120, 1991.

[4]
Andrew W. Appel and Kai Li. Virtual memory primitives for user programs. In
Proceedings of the fourth International conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS-IV, pages 96–107,
1991.

[5]
Amittai Aviram, Shu-Chun Weng, Sen Hu, and Bryan Ford. Efficient system-enforced
deterministic parallelism. In Proceedings of the 9th USENIX conference on
Operating Systems Design and Implementation, OSDI’10, pages 1–16, 2010.

[6]
Özalp Babaoglu and William Joy. Converting a swap-based system to do paging in
an architecture lacking page-referenced bits. In Proceedings of the eighth ACM
Symposium on Operating Systems Principles, SOSP ’81, pages 78–86, 1981.

[7]
David Bacon, Joshua Bloch, Jeff Bogda, Cliff Click, Paul Haahr, Doug Lea, Tom May,
Jan-Willem Maessen, Jeremy Manson, John D. Mitchell, Kelvin Nilsen, Bill Pugh,
and Emin Gun Sirer. The “double-checked locking is broken" declaration.
http://www.cs.umd. edu/~pugh/java/memoryModel/DoubleCheckedLocking.html.

[8]
Gaurav Banga, Peter Druschel, and Jeffrey C. Mogul. Resource containers: a new
facility for resource management in server systems. In Proceedings of the third
USENIX symposium on Operating Systems Design and Implementation, OSDI ’99,
pages 45–58, 1999.

[9]
Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. In
Proceedings of the nineteenth ACM Symposium on Operating Systems Principles,
SOSP ’03, pages 164–177, 2003.

[10] Blaise Barney. POSIX threads programming.
http://computing.llnl.gov/tutorials/pthreads/, 2013.

[11] Joel F. Bartlett. A nonstop kernel. In Proceedings of the eighth ACM Symposium on
Operating Systems Principles, SOSP ’81, pages 22–29, 1981.

[12] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca
Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh Singhania.
The multikernel: a new OS architecture for scalable multicore systems. In

http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html

Proceedings of the 22nd ACM Symposium on Operating Systems Principles, SOSP
’09, pages 29–44, 2009.

[13] A. Bensoussan, C. T. Clingen, and R. C. Daley. The multics virtual memory: concepts
and design. Commun. ACM, 15(5):308–318, May 1972.

[14]
Tom Bergan, Nicholas Hunt, Luis Ceze, and Steven D. Gribble. Deterministic
process groups in dOS. In Proceedings of the 9th USENIX conference on Operating
Systems Design and Implementation, OSDI’10, pages 1–16, 2010.

[15]
B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski, D. Becker,
C. Chambers, and S. Eggers. Extensibility safety and performance in the SPIN
operating system. In Proceedings of the fifteenth ACM Symposium on Operating
Systems Principles, SOSP ’95, pages 267–283, 1995.

[16]
Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, and Henry M. Levy.
Lightweight remote procedure call. ACM Trans. Comput. Syst., 8(1):37–55, February
1990.

[17]
Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, and Henry M. Levy.
User-level interprocess communication for shared memory multiprocessors. ACM
Trans. Comput. Syst., 9(2):175–198, May 1991.

[18] Andrew Birrell. An introduction to programming with threads. Technical Report 35,
Digital Equipment Corporation Systems Research Center, 1991.

[19] Andrew D. Birrell and Bruce Jay Nelson. Implementing remote procedure calls. ACM
Trans. Comput. Syst., 2(1):39–59, February 1984.

[20]
Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey Pesterev, M. Frans
Kaashoek, Robert Morris, and Nickolai Zeldovich. An analysis of Linux scalability to
many cores. In Proceedings of the 9th USENIX conference on Operating Systems
Design and Implementation, OSDI’10, pages 1–8, 2010.

[21]
Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. Web caching and
Zipf-like distributions: evidence and implications. In INFOCOM, pages 126–134,
1999.

[22] Thomas C. Bressoud and Fred B. Schneider. Hypervisor-based fault tolerance. ACM
Trans. Comput. Syst., 14(1):80–107, February 1996.

[23]
Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web
search engine. In Proceedings of the seventh International conference on the World
Wide Web, WWW7, pages 107–117, 1998.

[24] Max Bruning. ZFS on-disk data walk (or: Where’s my data?). In OpenSolaris
Developer Conference, 2008.

[25]
Edouard Bugnion, Scott Devine, Kinshuk Govil, and Mendel Rosenblum. Disco:
running commodity operating systems on scalable multiprocessors. ACM Trans.
Comput. Syst., 15(4):412–447, November 1997.

[26] Brian Carrier. File System Forensic Analysis. Addison Wesley Professional, 2005.

[27]
Miguel Castro, Manuel Costa, Jean-Philippe Martin, Marcus Peinado, Periklis
Akritidis, Austin Donnelly, Paul Barham, and Richard Black. Fast byte-granularity
software fault isolation. In Proceedings of the 22nd ACM Symposium on Operating
Systems Principles, SOSP ’09, pages 45–58, 2009.

[28]
J. Chapin, M. Rosenblum, S. Devine, T. Lahiri, D. Teodosiu, and A. Gupta. Hive: fault
containment for shared-memory multiprocessors. In Proceedings of the fifteenth
ACM Symposium on Operating Systems Principles, SOSP ’95, pages 12–25, 1995.

[29] Jeffrey S. Chase, Henry M. Levy, Michael J. Feeley, and Edward D. Lazowska.
Sharing and protection in a single-address-space operating system. ACM Trans.
Comput. Syst., 12(4):271–307, November 1994.

[30]
J. Bradley Chen and Brian N. Bershad. The impact of operating system structure on
memory system performance. In Proceedings of the fourteenth ACM Symposium on
Operating Systems Principles, SOSP ’93, pages 120–133, 1993.

[31] Peter M. Chen and Brian D. Noble. When virtual is better than real. In Proceedings
of the Eighth Workshop on Hot Topics in Operating Systems, HOTOS ’01, 2001.

[32] David Cheriton. The V distributed system. Commun. ACM, 31(3):314–333, March
1988.

[33]
David R. Cheriton and Kenneth J. Duda. A caching model of operating system kernel
functionality. In Proceedings of the 1st USENIX conference on Operating Systems
Design and Implementation, OSDI ’94, 1994.

[34]
David D. Clark. The structuring of systems using upcalls. In Proceedings of the tenth
ACM Symposium on Operating Systems Principles, SOSP ’85, pages 171–180,
1985.

[35]
Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek, Benjamin
Lee, Doug Burger, and Derrick Coetzee. Better I/O through byte-addressable,
persistent memory. In Proceedings of the 22nd ACM Symposium on Operating
Systems Principles, SOSP ’09, pages 133–146, 2009.

[36] Fernando J. Corbató. On building systems that will fail. Commun. ACM, 34(9):72–81,
September 1991.

[37] Fernando J. Corbató and Victor A. Vyssotsky. Introduction and overview of the
Multics system. AFIPS Fall Joint Computer Conference, 27(1):185–196, 1965.

[38] R. J. Creasy. The origin of the VM/370 time-sharing system. IBM J. Res. Dev.,
25(5):483–490, September 1981.

[39]
Michael D. Dahlin, Randolph Y. Wang, Thomas E. Anderson, and David A.
Patterson. Cooperative caching: using remote client memory to improve file system
performance. In Proceedings of the 1st USENIX conference on Operating Systems
Design and Implementation, OSDI ’94, 1994.

[40] Robert C. Daley and Jack B. Dennis. Virtual memory, processes, and sharing in
Multics. Commun. ACM, 11(5):306–312, May 1968.

[41]
Wiebren de Jonge, M. Frans Kaashoek, and Wilson C. Hsieh. The logical disk: a
new approach to improving file systems. In Proceedings of the fourteenth ACM
Symposium on Operating Systems Principles, SOSP ’93, pages 15–28, 1993.

[42]
Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on
large clusters. In Proceedings of the 6th USENIX Symposium on Operating Systems
Design & Implementation, OSDI’04, 2004.

[43] Peter J. Denning. The working set model for program behavior. Commun. ACM,
11(5):323–333, May 1968.

[44] P.J. Denning. Working sets past and present. Software Engineering, IEEE
Transactions on, SE-6(1):64 – 84, jan. 1980.

[45] Jack B. Dennis. Segmentation and the design of multiprogrammed computer
systems. J. ACM, 12(4):589–602, October 1965.

[46] Jack B. Dennis and Earl C. Van Horn. Programming semantics for multiprogrammed
computations. Commun. ACM, 9(3):143–155, March 1966.

[47] E. W. Dijkstra. Solution of a problem in concurrent programming control. Commun.
ACM, 8(9):569–, September 1965.

[48] Edsger W. Dijkstra. The structure of the “THE”-multiprogramming system. Commun.
ACM, 11(5):341–346, May 1968.

[49]

Mihai Dobrescu, Norbert Egi, Katerina Argyraki, Byung-Gon Chun, Kevin Fall,
Gianluca Iannaccone, Allan Knies, Maziar Manesh, and Sylvia Ratnasamy.
Routebricks: exploiting parallelism to scale software routers. In Proceedings of the
22nd ACM Symposium on Operating Systems Principles, SOSP ’09, pages 15–28,
2009.

[50] Alan Donovan, Robert Muth, Brad Chen, and David Sehr. Portable Native Client
executables. Technical report, Google, 2012.

[51]
Fred Douglis and John Ousterhout. Transparent process migration: design
alternatives and the Sprite implementation. Softw. Pract. Exper., 21(8):757–785, July
1991.

[52]
Richard P. Draves, Brian N. Bershad, Richard F. Rashid, and Randall W. Dean.
Using continuations to implement thread management and communication in
operating systems. In Proceedings of the thirteenth ACM Symposium on Operating
Systems Principles, SOSP ’91, pages 122–136, 1991.

[53] Peter Druschel and Larry L. Peterson. Fbufs: a high-bandwidth cross-domain
transfer facility. SIGOPS Oper. Syst. Rev., 27(5):189–202, December 1993.

[54]
George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai, and Peter M.
Chen. ReVirt: enabling intrusion analysis through virtual-machine logging and replay.
SIGOPS Oper. Syst. Rev., 36(SI):211–224, December 2002.

[55]
Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cliff Frey, David Ziegler,
Eddie Kohler, David Mazières, Frans Kaashoek, and Robert Morris. Labels and
event processes in the Asbestos operating system. In Proceedings of the twentieth
ACM Symposium on Operating Systems Principles, SOSP ’05, pages 17–30, 2005.

[56]
D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exokernel: an operating system
architecture for application-level resource management. In Proceedings of the
fifteenth ACM Symposium on Operating Systems Principles, SOSP ’95, pages 251–
266, 1995.

[57]
Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf. Bugs
as deviant behavior: a general approach to inferring errors in systems code. In
Proceedings of the eighteenth ACM Symposium on Operating Systems Principles,
SOSP ’01, pages 57–72, 2001.

[58] R. S. Fabry. Capability-based addressing. Commun. ACM, 17(7):403–412, July
1974.

[59]
Jason Flinn and M. Satyanarayanan. Energy-aware adaptation for mobile
applications. In Proceedings of the seventeenth ACM Symposium on Operating
Systems Principles, SOSP ’99, pages 48–63, 1999.

[60]
Christopher Frost, Mike Mammarella, Eddie Kohler, Andrew de los Reyes, Shant
Hovsepian, Andrew Matsuoka, and Lei Zhang. Generalized file system
dependencies. In Proceedings of twenty-first ACM Symposium on Operating
Systems Principles, SOSP ’07, pages 307–320, 2007.

[61] Gregory R. Ganger, Marshall Kirk McKusick, Craig A. N. Soules, and Yale N. Patt.
Soft updates: a solution to the metadata update problem in file systems. ACM Trans.

Comput. Syst., 18(2):127–153, May 2000.

[62] Simson Garfinkel and Gene Spafford. Practical Unix and Internet security (2nd ed.).
O’Reilly & Associates, Inc., 1996.

[63]
Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum, and Dan Boneh. Terra: a
virtual machine-based platform for trusted computing. In Proceedings of the
nineteenth ACM Symposium on Operating Systems Principles, SOSP ’03, pages
193–206, 2003.

[64]

Kirk Glerum, Kinshuman Kinshumann, Steve Greenberg, Gabriel Aul, Vince
Orgovan, Greg Nichols, David Grant, Gretchen Loihle, and Galen Hunt. Debugging
in the (very) large: ten years of implementation and experience. In Proceedings of
the 22nd ACM Symposium on Operating Systems Principles, SOSP ’09, pages 103–
116, 2009.

[65] R.P. Goldberg. Survey of virtual machine research. IEEE Computer, 7(6):34–45,
June 1974.

[66]
Kinshuk Govil, Dan Teodosiu, Yongqiang Huang, and Mendel Rosenblum. Cellular
Disco: resource management using virtual clusters on shared-memory
multiprocessors. In Proceedings of the seventeenth ACM Symposium on Operating
Systems Principles, SOSP ’99, pages 154–169, 1999.

[67]
Jim Gray. The transaction concept: virtues and limitations (invited paper). In
Proceedings of the seventh International conference on Very Large Data Bases,
VLDB ’81, pages 144–154, 1981.

[68] Jim Gray. Why do computers stop and what can be done about it? Technical Report
TR-85.7, HP Labs, 1985.

[69]
Jim Gray, Paul McJones, Mike Blasgen, Bruce Lindsay, Raymond Lorie, Tom Price,
Franco Putzolu, and Irving Traiger. The recovery manager of the System R database
manager. ACM Comput. Surv., 13(2):223–242, June 1981.

[70] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques.
Morgan Kaufmann, 1993.

[71] Jim Gray and Daniel P. Siewiorek. High-availability computer systems. Computer,
24(9):39–48, September 1991.

[72]

Diwaker Gupta, Sangmin Lee, Michael Vrable, Stefan Savage, Alex C. Snoeren,
George Varghese, Geoffrey M. Voelker, and Amin Vahdat. Difference engine:
harnessing memory redundancy in virtual machines. In Proceedings of the 8th
USENIX conference on Operating Systems Design and Implementation, OSDI’08,
pages 309–322, 2008.

[73] Hadoop. http://hadoop.apache.org.

[74]
Steven M. Hand. Self-paging in the Nemesis operating system. In Proceedings of the
third USENIX Symposium on Operating Systems Design and Implementation, OSDI
’99, pages 73–86, 1999.

[75] Per Brinch Hansen. The nucleus of a multiprogramming system. Commun. ACM,
13(4):238–241, April 1970.

[76]
Mor Harchol-Balter and Allen B. Downey. Exploiting process lifetime distributions for
dynamic load balancing. In Proceedings of the fifteenth ACM Symposium on
Operating Systems Principles, SOSP ’95, pages 236–, 1995.

[77] Kieran Harty and David R. Cheriton. Application-controlled physical memory using
external page-cache management. In Proceedings of the fifth International

conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS-V, pages 187–197, 1992.

[78] Rober Haskin, Yoni Malachi, and Gregory Chan. Recovery management in
QuickSilver. ACM Trans. Comput. Syst., 6(1):82–108, February 1988.

[79] John L. Hennessy and David A. Patterson. Computer Architecture - A Quantitative
Approach (5. ed.). Morgan Kaufmann, 2012.

[80] Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst.,
13(1):124–149, January 1991.

[81] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan
Kaufmann, 2008.

[82] Dave Hitz, James Lau, and Michael Malcolm. File system design for an NFS file
server appliance. Technical Report 3002, Network Appliance, 1995.

[83] C. A. R. Hoare. Monitors: An operating system structuring concept. Communications
of the ACM, 17:549–557, 1974.

[84] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–
677, August 1978.

[85] C. A. R. Hoare. The emperor’s old clothes. Commun. ACM, 24(2):75–83, February
1981.

[86]
Thomas R. Horsley and William C. Lynch. Pilot: A software engineering case study.
In Proceedings of the 4th International conference on Software engineering, ICSE
’79, pages 94–99, 1979.

[87] Raj Jain. The Art of Computer Systems Performance Analysis. John Wiley & Sons,
1991.

[88]
Asim Kadav and Michael M. Swift. Understanding modern device drivers. In
Proceedings of the seventeenth international conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’12, pages 87–98, New
York, NY, USA, 2012. ACM.

[89]
Paul A. Karger, Mary Ellen Zurko, Douglas W. Bonin, Andrew H. Mason, and
Clifford E. Kahn. A retrospective on the VAX VMM security kernel. IEEE Trans.
Softw. Eng., 17(11):1147–1165, November 1991.

[90]
Yousef A. Khalidi and Michael N. Nelson. Extensible file systems in Spring. In
Proceedings of the fourteenth ACM Symposium on Operating Systems Principles,
SOSP ’93, pages 1–14, 1993.

[91]

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip
Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish,
Thomas Sewell, Harvey Tuch, and Simon Winwood. sel4: formal verification of an
OS kernel. In Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles, SOSP ’09, pages 207–220, 2009.

[92] L. Kleinrock and R. R. Muntz. Processor sharing queueing models of mixed
scheduling disciplines for time shared system. J. ACM, 19(3):464–482, July 1972.

[93] Leonard Kleinrock. Queueing Systems, Volume II: Computer Applications. Wiley
Interscience, 1976.

[94] H. T. Kung and John T. Robinson. On optimistic methods for concurrency control.
ACM Trans. Database Syst., 6(2):213–226, June 1981.

[95] Leslie Lamport. A fast mutual exclusion algorithm. ACM Trans. Comput. Syst.,
5(1):1–11, January 1987.

[96] B. W. Lampson. Hints for computer system design. IEEE Softw., 1(1):11–28, January
1984.

[97] Butler Lampson and Howard Sturgis. Crash recovery in a distributed data storage
system. Technical report, Xerox Palo Alto Research Center, 1979.

[98] Butler W. Lampson and David D. Redell. Experience with processes and monitors in
Mesa. Commun. ACM, 23(2):105–117, February 1980.

[99] Butler W. Lampson and Howard E. Sturgis. Reflections on an operating system
design. Commun. ACM, 19(5):251–265, May 1976.

[100] James Larus and Galen Hunt. The Singularity system. Commun. ACM, 53(8):72–79,
August 2010.

[101] Hugh C. Lauer and Roger M. Needham. On the duality of operating system
structures. In Operating Systems Review, pages 3–19, 1979.

[102]
Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik.
Quantitative system performance: computer system analysis using queueing network
models. Prentice-Hall, Inc., 1984.

[103]
Will E. Leland, Murad S. Taqqu, Walter Willinger, and Daniel V. Wilson. On the self-
similar nature of Ethernet traffic (extended version). IEEE/ACM Trans. Netw., 2(1):1–
15, February 1994.

[104] N. G. Leveson and C. S. Turner. An investigation of the Therac-25 accidents.
Computer, 26(7):18–41, July 1993.

[105] H. M. Levy and P. H. Lipman. Virtual memory management in the VAX/VMS
operating system. Computer, 15(3):35–41, March 1982.

[106] J. Liedtke. On micro-kernel construction. In Proceedings of the fifteenth ACM
Symposium on Operating Systems Principles, SOSP ’95, pages 237–250, 1995.

[107] John Lions. Lions’ Commentary on UNIX 6th Edition, with Source Code. Peer-to-
Peer Communications, 1996.

[108] J. S. Liptay. Structural aspects of the System/360 model 85: ii the cache. IBM Syst.
J., 7(1):15–21, March 1968.

[109]
David E. Lowell, Subhachandra Chandra, and Peter M. Chen. Exploring failure
transparency and the limits of generic recovery. In Proceedings of the 4th conference
on Symposium on Operating Systems Design and Implementation, OSDI’00, pages
20–20, 2000.

[110]
David E. Lowell and Peter M. Chen. Free transactions with Rio Vista. In Proceedings
of the sixteenth ACM Symposium on Operating Systems Principles, SOSP ’97,
pages 92–101, 1997.

[111] P. McKenney. Is parallel programming hard, and, if so, what can be done about it?
http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.2011.05.30a.pdf.

[112]
Paul E. McKenney, Dipankar Sarma, Andrea Arcangeli, Andi Kleen, Orran Krieger,
and Rusty Russell. Read-copy update. In Ottawa Linux Symposium, pages 338–367,
June 2002.

[113] Marshall K. McKusick, William N. Joy, Samuel J. Leffler, and Robert S. Fabry. A fast
file system for UNIX. ACM Trans. Comput. Syst., 2(3):181–197, August 1984.

[114]
Marshall Kirk McKusick, Keith Bostic, Michael J. Karels, and John S. Quarterman.
The design and implementation of the 4.4BSD operating system. Addison Wesley
Longman Publishing Co., Inc., 1996.

[115] John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable

synchronization on shared-memory multiprocessors. ACM Trans. Comput. Syst.,
9(1):21–65, February 1991.

[116] Scott Meyers and Andrei Alexandrescu. C++ and the perils of double-checked
locking. Dr. Dobbs Journal, 2004.

[117] Jeffrey C. Mogul and K. K. Ramakrishnan. Eliminating receive livelock in an
interrupt-driven kernel. ACM Trans. Comput. Syst., 15(3):217–252, August 1997.

[118]
Jeffrey C. Mogul, Richard F. Rashid, and Michael J. Accetta. The packet filter: An
efficient mechanism for user-level network code. In In the Proceedings of the
eleventh ACM Symposium on Operating Systems Principles, pages 39–51, 1987.

[119]
C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz.
ARIES: a transaction recovery method supporting fine-granularity locking and partial
rollbacks using write-ahead logging. ACM Trans. Database Syst., 17(1):94–162,
March 1992.

[120] Gordon E. Moore. Cramming more components onto integrated circuits. Electronics,
38(8):114–117, 1965.

[121]
Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler,
Piramanayagam Arumuga Nainar, and Iulian Neamtiu. Finding and reproducing
Heisenbugs in concurrent programs. In Proceedings of the 8th USENIX conference
on Operating Systems Design and Implementation, OSDI’08, pages 267–280, 2008.

[122] Kai Nagel and Michael Schreckenberg. A cellular automaton model for freeway
traffic. J. Phys. I France, 1992.

[123]
George C. Necula and Peter Lee. Safe kernel extensions without run-time checking.
In Proceedings of the second USENIX Symposium on Operating Systems Design
and Implementation, OSDI ’96, pages 229–243, 1996.

[124] Edmund B. Nightingale, Kaushik Veeraraghavan, Peter M. Chen, and Jason Flinn.
Rethink the sync. ACM Trans. Comput. Syst., 26(3):6:1–6:26, September 2008.

[125] Elliott I. Organick. The Multics system: an examination of its structure. MIT Press,
1972.

[126]
Steven Osman, Dinesh Subhraveti, Gong Su, and Jason Nieh. The design and
implementation of Zap: a system for migrating computing environments. In
Proceedings of the fifth USENIX Symposium on Operating Systems Design and
Implementation, OSDI ’02, pages 361–376, 2002.

[127]
John Ousterhout. Scheduling techniques for concurrent systems. In Proceedings of
Third International Conference on Distributed Computing Systems, pages 22–30,
1982.

[128] John Ousterhout. Why aren’t operating systems getting faster as fast as hardware?
In Proceedings USENIX Conference, pages 247–256, 1990.

[129] John Ousterhout. Why threads are a bad idea (for most purposes). In USENIX
Winter Technical Conference, 1996.

[130]
Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel. Flash: an efficient and portable
web server. In Proceedings of the annual conference on USENIX Annual Technical
Conference, ATEC ’99, 1999.

[131]
Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel. IO-lite: a unified I/O buffering
and caching system. In Proceedings of the third USENIX Symposium on Operating
Systems Design and Implementation, OSDI ’99, pages 15–28, 1999.

[132] David A. Patterson, Garth Gibson, and Randy H. Katz. A case for redundant arrays

of inexpensive disks (RAID). In Proceedings of the 1988 ACM SIGMOD International
conference on Management of Data, SIGMOD ’88, pages 109–116, 1988.

[133]
L. Peterson, N. Hutchinson, S. O’Malley, and M. Abbott. RPC in the x-Kernel:
evaluating new design techniques. In Proceedings of the twelfth ACM Symposium on
Operating Systems Principles, SOSP ’89, pages 91–101, 1989.

[134] Jonathan Pincus and Brandon Baker. Beyond stack smashing: recent advances in
exploiting buffer overruns. IEEE Security and Privacy, 2(4):20–27, July 2004.

[135]
Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz André Barroso. Failure trends in a
large disk drive population. In Proceedings of the 5th USENIX conference on File
and Storage Technologies, FAST ’07, pages 2–2, 2007.

[136]
Vijayan Prabhakaran, Lakshmi N. Bairavasundaram, Nitin Agrawal, Haryadi S.
Gunawi, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. IRON file
systems. In Proceedings of the twentieth ACM Symposium on Operating Systems
Principles, SOSP ’05, pages 206–220, 2005.

[137]
Richard Rashid, Robert Baron, Alessandro Forin, David Golub, Michael Jones,
Daniel Julin, Douglas Orr, and Richard Sanzi. Mach: A foundation for open systems.
In Proceedings of the Second Workshop on Workstation Operating
Systems(WWOS2), 1989.

[138]
Richard F. Rashid, Avadis Tevanian, Michael Young, David B. Golub, Robert V.
Baron, David L. Black, William J. Bolosky, and Jonathan Chew. Machine-
independent virtual memory management for paged uniprocessor and
multiprocessor architectures. IEEE Trans. Computers, 37(8):896–907, 1988.

[139] E.S. Raymond. The Cathedral and the Bazaar: Musings On Linux And Open Source
By An Accidental Revolutionary. O’Reilly Series. O’Reilly, 2001.

[140]
David D. Redell, Yogen K. Dalal, Thomas R. Horsley, Hugh C. Lauer, William C.
Lynch, Paul R. McJones, Hal G. Murray, and Stephen C. Purcell. Pilot: an operating
system for a personal computer. Commun. ACM, 23(2):81–92, February 1980.

[141] Dennis M. Ritchie and Ken Thompson. The UNIX time-sharing system. Commun.
ACM, 17(7):365–375, July 1974.

[142] Mendel Rosenblum and John K. Ousterhout. The design and implementation of a
log-structured file system. ACM Trans. Comput. Syst., 10(1):26–52, February 1992.

[143] Chris Ruemmler and John Wilkes. An introduction to disk drive modeling. Computer,
27(3):17–28, March 1994.

[144] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system design.
ACM Trans. Comput. Syst., 2(4):277–288, November 1984.

[145] Jerome H. Saltzer. Protection and the control of information sharing in Multics.
Commun. ACM, 17(7):388–402, July 1974.

[146]
M. Satyanarayanan, Henry H. Mashburn, Puneet Kumar, David C. Steere, and
James J. Kistler. Lightweight recoverable virtual memory. ACM Trans. Comput. Syst.,
12(1):33–57, February 1994.

[147]
Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas
Anderson. Eraser: a dynamic data race detector for multithreaded programs. ACM
Trans. Comput. Syst., 15(4):391–411, November 1997.

[148]
Bianca Schroeder and Garth A. Gibson. Disk failures in the real world: what does an
MTTF of 1,000,000 hours mean to you? In Proceedings of the 5th USENIX
conference on File and Storage Technologies, FAST ’07, 2007.

[149] Bianca Schroeder and Mor Harchol-Balter. Web servers under overload: How
scheduling can help. ACM Trans. Internet Technol., 6(1):20–52, February 2006.

[150]
Michael D. Schroeder, David D. Clark, and Jerome H. Saltzer. The Multics kernel
design project. In Proceedings of the sixth ACM Symposium on Operating Systems
Principles, SOSP ’77, pages 43–56, 1977.

[151] Michael D. Schroeder and Jerome H. Saltzer. A hardware architecture for
implementing protection rings. Commun. ACM, 15(3):157–170, March 1972.

[152] D. P. Siewiorek. Architecture of fault-tolerant computers. Computer, 17(8):9–18,
August 1984.

[153] E. H. Spafford. Crisis and aftermath. Commun. ACM, 32(6):678–687, June 1989.
[154] Structured Query Language (SQL). http://en.wikipedia.org/wiki/SQL.

[155] Michael Stonebraker. Operating system support for database management.
Commun. ACM, 24(7):412–418, July 1981.

[156]
Michael M. Swift, Muthukaruppan Annamalai, Brian N. Bershad, and Henry M. Levy.
Recovering device drivers. ACM Trans. Comput. Syst., 24(4):333–360, November
2006.

[157] K. Thompson. Unix implementation. Bell System Technical Journal, 57:1931–1946,
1978.

[158] Ken Thompson. Reflections on trusting trust. Commun. ACM, 27(8):761–763, August
1984.

[159] Paul Tyma. Thousands of threads and blocking i/o.
http://www.mailinator.com/tymaPaulMultithreaded.pdf, 2008.

[160]
Robbert van Renesse. Goal-oriented programming, or composition using events, or
threads considered harmful. In ACM SIGOPS European Workshop on Support for
Composing Distributed Applications, pages 82–87, 1998.

[161] Joost S. M. Verhofstad. Recovery techniques for database systems. ACM Comput.
Surv., 10(2):167–195, June 1978.

[162]
Michael Vrable, Justin Ma, Jay Chen, David Moore, Erik Vandekieft, Alex C.
Snoeren, Geoffrey M. Voelker, and Stefan Savage. Scalability, fidelity, and
containment in the Potemkin virtual honeyfarm. In Proceedings of the twentieth ACM
Symposium on Operating Systems Principles, SOSP ’05, pages 148–162, 2005.

[163]
Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. Efficient
software-based fault isolation. In Proceedings of the fourteenth ACM Symposium on
Operating Systems Principles, SOSP ’93, pages 203–216, 1993.

[164] Carl A. Waldspurger. Memory resource management in VMware ESX server.
SIGOPS Oper. Syst. Rev., 36(SI):181–194, December 2002.

[165]
Andrew Whitaker, Marianne Shaw, and Steven D. Gribble. Scale and performance in
the Denali isolation kernel. In Proceedings of the fifth USENIX Symposium on
Operating Systems Design and Implementation, OSDI ’02, pages 195–209, 2002.

[166]
J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. The HP AutoRAID hierarchical
storage system. In Proceedings of the fifteenth ACM Symposium on Operating
Systems Principles, SOSP ’95, pages 96–108, 1995.

[167]
Alec Wolman, M. Voelker, Nitin Sharma, Neal Cardwell, Anna Karlin, and Henry M.
Levy. On the scale and performance of cooperative web proxy caching. In
Proceedings of the seventeenth ACM Symposium on Operating Systems Principles,
SOSP ’99, pages 16–31, 1999.

[168] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F. Pollack. Hydra:
the kernel of a multiprocessor operating system. Commun. ACM, 17(6):337–345,
June 1974.

[169]
Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth, Tavis
Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar. Native Client: a
sandbox for portable, untrusted x86 native code. In Proceedings of the 2009 30th
IEEE Symposium on Security and Privacy, SP ’09, pages 79–93, 2009.

[170] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières. Making
information flow explicit in HiStar. Commun. ACM, 54(11):93–101, November 2011.

Glossary
absolute path

A file path name interpreted relative to the root directory.
abstract virtual machine

The interface provided by an operating system to its applications, including the system
call interface, the memory abstraction, exceptions, and signals.

ACID properties
A mnemonic for the properties of a transaction: atomicity, consistency, isolation, and
durability.

acquire-all/release-all
A design pattern to provide atomicity of a request consisting of multiple operations. A
thread acquires all of the locks it might need before starting to process a request; it
releases the locks once the request is done.

address translation
The conversion from the memory address the program thinks it is referencing to the
physical location of the memory.

affinity scheduling
A scheduling policy where tasks are preferentially scheduled onto the same processor
they had previously been assigned, to improve cache reuse.

annual disk failure rate
The fraction of disks expected to failure each year.

API
See: application programming interface.

application programming interface
The system call interface provided by an operating system to applications.

arm
An attachment allowing the motion of the disk head across a disk surface.

arm assembly
A motor plus the set of disk arms needed to position a disk head to read or write each
surface of the disk.

arrival rate
The rate at which tasks arrive for service.

asynchronous I/O
A design pattern for system calls to allow a single-threaded process to make multiple
concurrent I/O requests. When the process issues an I/O request, the system call
returns immediately. The process later on receives a notification when the I/O
completes.

asynchronous procedure call
A procedure call where the caller starts the function, continues execution concurrently
with the called function, and later waits for the function to complete.

atomic commit
The moment when a transaction commits to apply all of its updates.

atomic memory

The value stored in memory is the last value stored by one of the processors, not a
mixture of the updates of different processors.

atomic operations
Indivisible operations that cannot be interleaved with or split by other operations.

atomic read-modify-write instruction
A processor-specific instruction that lets one thread temporarily have exclusive and
atomic access to a memory location while the instruction executes. Typically, the
instruction (atomically) reads a memory location, does some simple arithmetic
operation to the value, and stores the result.

attribute record
In NTFS, a variable-size data structure containing either file data or file metadata.

availability
The percentage of time that a system is usable.

average seek time
The average time across seeks between each possible pair of tracks on a disk.

AVM
See: abstract virtual machine.

backup
A logically or physically separate copy of a system’s main storage.

base and bound memory protection
An early system for memory protection where each process is limited to a specific
range of physical memory.

batch operating system
An early type of operating system that efficiently ran a queue of tasks. While one
program was running, another was being loaded into memory.

bathtub model
A model of disk device failure combining device infant mortality and wear out.

Belady’s anomaly
For some cache replacement policies and some reference patterns, adding space to a
cache can hurt the cache hit rate.

best fit
A storage allocation policy that attempts to place a newly allocated file in the smallest
free region that is large enough to hold it.

BIOS
The initial code run when an Intel x86 computer boots; acronym for Basic Input/Output
System. See also: Boot ROM.

bit error rate
The non-recoverable read error rate.

bitmap
A data structure for block allocation where each block is represented by one bit.

block device
An I/O device that allows data to be read or written in fixed-sized blocks.

block group
A set of nearby disk tracks.

block integrity metadata
Additional data stored with a block to allow the software to validate that the block has
not been corrupted.

blocking bounded queue

A bounded queue where a thread trying to remove an item from an empty queue will
wait until an item is available, and a thread trying to put an item into a full queue will
wait until there is room.

Bohrbugs
Bugs that are deterministic and reproducible, given the same program input. See also:
Heisenbugs.

Boot ROM
Special read-only memory containing the initial instructions for booting a computer.

bootloader
Program stored at a fixed position on disk (or flash RAM) to load the operating system
into memory and start it executing.

bounded queue
A queue with a fixed size limit on the number of items stored in the queue.

bounded resources
A necessary condition for deadlock: there are a finite number of resources that threads
can simultaneously use.

buffer overflow attack
An attack that exploits a bug where input can overflow the buffer allocated to hold it,
overwriting other important program data structures with data provided by the attacker.
One common variation overflows a buffer allocated on the stack (e.g., a local,
automatic variable) and replaces the function’s return address with a return address
specified by the attacker, possibly to code “pushed” onto the stack with the overflowing
input.

bulk synchronous
A type of parallel application where work is split into independent tasks and where
each task completes before the results of any of the tasks can be used.

bulk synchronous parallel programming
See: data parallel programming.

bursty distribution
A probability distribution that is less evenly distributed around the mean value than an
exponential distribution. See: exponential distribution. Compare: heavy-tailed
distribution.

busy-waiting
A thread spins in a loop waiting for a concurrent event to occur, consuming CPU
cycles while it is waiting.

cache
A copy of data that can be accessed more quickly than the original.

cache hit
The cache contains the requested item.

cache miss
The cache does not contain the requested item.

checkpoint
A consistent snapshot of the entire state of a process, including the contents of
memory and processor registers.

child process
A process created by another process. See also: parent process.

Circular SCAN
See: CSCAN.

circular waiting

A necessary condition for deadlock to occur: there is a set of threads such that each
thread is waiting for a resource held by another.

client-server communication
Two-way communication between processes, where the client sends a request to the
server to do some task, and when the operation is complete, the server replies back to
the client.

clock algorithm
A method for identifying a not recently used page to evict. The algorithm sweeps
through each page frame: if the page use bit is set, it is cleared; if the use bit is not
set, the page is reclaimed.

cloud computing
A model of computing where large-scale applications run on shared computing and
storage infrastructure in data centers instead of on the user’s own computer.

commit
The outcome of a transaction where all of its updates occur.

compare-and-swap
An atomic read-modify-write instruction that first tests the value of a memory location,
and if the value has not been changed, sets it to a new value.

compute-bound task
A task that primarily uses the processor and does little I/O.

computer virus
A computer program that modifies an operating system or application to copy itself
from computer to computer without the computer owner’s permission or knowledge.
Once installed on a computer, a virus often provides the attacker control over the
system’s resources or data.

concurrency
Multiple activities that can happen at the same time.

condition variable
A synchronization variable that enables a thread to efficiently wait for a change to
shared state protected by a lock.

continuation
A data structure used in event-driven programming that keeps track of a task’s current
state and its next step.

cooperating threads
Threads that read and write shared state.

cooperative caching
Using the memory of nearby nodes over a network as a cache to avoid the latency of
going to disk.

cooperative multi-threading
Each thread runs without interruption until it explicitly relinquishes control of the
processor, e.g., by exiting or calling thread_yield.

copy-on-write
A method of sharing physical memory between two logically distinct copies (e.g., in
different processes). Each shared page is marked as read-only so that the operating
system kernel is invoked and can make a copy of the page if either process tries to
write it. The process can then modify the copy and resume normal execution.

copy-on-write file system
A file system where an update to the file system is made by writing new versions of
modified data and metadata blocks to free disk blocks. The new blocks can point to

unchanged blocks in the previous version of the file system. See also: COW file
system.

core map
A data structure used by the memory management system to keep track of the state of
physical page frames, such as which processes reference the page frame.

COW file system
See: copy-on-write file system.

critical path
The minimum sequence of steps for a parallel application to compute its result, even
with infinite resources.

critical section
A sequence of code that operates on shared state.

cross-site scripting
An attack against a client computer that works by compromising a server visited by the
client. The compromised server then provides scripting code to the client that
accesses and downloads the client’s sensitive data.

cryptographic signature
A specially designed function of a data block and a private cryptographic key that
allows someone with the corresponding public key to verify that an authorized entity
produced the data block. It is computationally intractable for an attacker without the
private key to create a different data block with a valid signature.

CSCAN
A variation of the SCAN disk scheduling policy in which the disk only services requests
when the head is traveling in one direction. See also: Circular SCAN.

current working directory
The current directory of the process, used for interpreting relative path names.

data breakpoint
A request to stop the execution of a program when it references or modifies a
particular memory location.

data parallel programming
A programming model where the computation is performed in parallel across all items
in a data set.

deadlock
A cycle of waiting among a set of threads, where each thread waits for some other
thread in the cycle to take some action.

deadlocked state
The system has at least one deadlock.

declustering
A technique for reducing the recovery time after a disk failure in a RAID system by
spreading redundant disk blocks across many disks.

defense in depth
Improving security through multiple layers of protection.

defragment
Coalesce scattered disk blocks to improve spatial locality, by reading data from its
present storage location and rewriting it to a new, more compact, location.

demand paging
Using address translation hardware to run a process without all of its memory
physically present. When the process references a missing page, the hardware traps
to the kernel, which brings the page into memory from disk.

deterministic debugging
The ability to re-execute a concurrent process with the same schedule and sequence
of internal and external events.

device driver
Operating system code to initialize and manage a particular I/O device.

direct mapped cache
Only one entry in the cache can hold a specific memory location, so on a lookup, the
system must check the address against only that entry to determine if there is a cache
hit.

direct memory access
Hardware I/O devices transfer data directly into/out of main memory at a location
specified by the operating system. See also: DMA.

dirty bit
A status bit in a page table entry recording whether the contents of the page have
been modified relative to what is stored on disk.

disk buffer memory
Memory in the disk controller to buffer data being read or written to the disk.

disk infant mortality
The device failure rate is higher than normal during the first few weeks of use.

disk wear out
The device failure rate rises after the device has been in operation for several years.

DMA
See: direct memory access.

dnode
In ZFS, a file is represented by variable-depth tree whose root is a dnode and whose
leaves are its data blocks.

double indirect block
A storage block containing pointers to indirect blocks.

double-checked locking
A pitfall in concurrent code where a data structure is lazily initialized by first, checking
without a lock if it has been set, and if not, acquiring a lock and checking again, before
calling the initialization function. With instruction re-ordering, double-checked locking
can fail unexpectedly.

dual redundancy array
A RAID storage algorithm using two redundant disk blocks per array to tolerate two
disk failures. See also: RAID 6.

dual-mode operation
Hardware processor that has (at least) two privilege levels: one for executing the
kernel with complete access to the capabilities of the hardware and a second for
executing user code with restricted rights. See also: kernel-mode operation. See also:
user-mode operation.

dynamically loadable device driver
Software to manage a specific device, interface, or chipset, added to the operating
system kernel after the kernel starts running.

earliest deadline first
A scheduling policy that performs the task that needs to be completed first, but only if
it can be finished in time.

EDF
See: earliest deadline first.

efficiency
The lack of overhead in implementing an abstraction.

erasure block
The unit of erasure in a flash memory device. Before any portion of an erasure block
can be over-written, every cell in the entire erasure block must be set to a logical “1.”

error correcting code
A technique for storing data redundantly to allow for the original data to be recovered
even though some bits in a disk sector or flash memory page are corrupted.

event-driven programming
A coding design pattern where a thread spins in a loop; each iteration gets and
processes the next I/O event.

exception
See: processor exception.

executable image
File containing a sequence of machine instructions and initial data values for a
program.

execution stack
Space to store the state of local variables during procedure calls.

exponential distribution
A convenient probability distribution for use in queueing theory because it has the
property of being memoryless. For a continuous random variable with a mean of 1⁄λ,
the probability density function is f(x) = λ times e raised to the -λx.

extent
A variable-sized region of a file that is stored in a contiguous region on the storage
device.

external fragmentation
In a system that allocates memory in contiguous regions, the unusable memory
between valid contiguous allocations. A new request for memory may find no single
free region that is both contiguous and large enough, even though there is enough
free memory in aggregate.

fairness
Partitioning of shared resources between users or applications either equally or
balanced according to some desired priorities.

false sharing
Extra inter-processor communication required because a single cache entry contains
portions of two different data structures with different sharing patterns.

fate sharing
When a crash in one module implies a crash in another. For example, a library shares
fate with the application it is linked with; if either crashes, the process exits.

fault isolation
An error in one application should not disrupt other applications, or even the operating
system itself.

file
A named collection of data in a file system.

file allocation table
An array of entries in the FAT file system stored in a reserved area of the volume,
where each entry corresponds to one file data block, and points to the next block in
the file.

file data

Contents of a file.
file descriptor

A handle to an open file, device, or channel. See also: file handle. See also: file
stream.

file directory
A list of human-readable names plus a mapping from each name to a specific file or
sub-directory.

file handle
See: file descriptor.

file index structure
A persistently stored data structure used to locate the blocks of the file.

file metadata
Information about a file that is managed by the operating system, but not including the
file contents.

file stream
See: file descriptor.

file system
An operating system abstraction that provides persistent, named data.

file system fingerprint
A checksum across the entire file system.

fill-on-demand
A method for starting a process before all of its memory is brought in from disk. If the
first access to the missing memory triggers a trap to the kernel, the kernel can fill the
memory and then resume.

fine-grained locking
A way to increase concurrency by partitioning an object’s state into different subsets
each protected by a different lock.

finished list
The set of threads that are complete but not yet de-allocated, e.g., because a join may
read the return value from the thread control block.

first-in-first-out
A scheduling policy that performs each task in the order in which it arrives.

flash page failure
A flash memory device failure where the data stored on one or more individual pages
of flash are lost, but the rest of the flash continues to operate correctly.

flash translation layer
A layer that maps logical flash pages to different physical pages on the flash device.
See also: FTL.

flash wear out
After some number of program-erase cycles, a given flash storage cell may no longer
be able to reliably store information.

fork-join parallelism
A type of parallel programming where threads can be created (forked) to do work in
parallel with a parent thread; a parent may asynchronously wait for a child thread to
finish (join).

free space map
A file system data structure used to track which storage blocks are free and which are
in use.

FTL

See: flash translation layer.
full disk failure

When a disk device stops being able to service reads or writes to all sectors.
full flash drive failure

When a flash device stops being able to service reads or writes to all memory pages.
fully associative cache

Any entry in the cache can hold any memory location, so on a lookup, the system
must check the address against all of the entries in the cache to determine if there is a
cache hit.

gang scheduling
A scheduling policy for multiprocessors that performs all of the runnable tasks for a
particular process at the same time.

Global Descriptor Table
The x86 terminology for a segment table for shared segments. A Local Descriptor
Table is used for segments that are private to the process.

grace period
For a shared object protected by a read-copy-update lock, the time from when a new
version of a shared object is published until the last reader of the old version is
guaranteed to be finished.

green threads
A thread system implemented entirely at user-level without any reliance on operating
system kernel services, other than those designed for single-threaded processes.

group commit
A technique that batches multiple transaction commits into a single disk operation.

guest operating system
An operating system running in a virtual machine.

hard link
The mapping between a file name and the underlying file, typically when there are
multiple path names for the same underlying file.

hardware abstraction layer
A module in the operating system that hides the specifics of different hardware
implementations. Above this layer, the operating system is portable.

hardware timer
A hardware device that can cause a processor interrupt after some delay, either in
time or in instructions executed.

head
The component that writes the data to or reads the data from a spinning disk surface.

head crash
An error where the disk head physically scrapes the magnetic surface of a spinning
disk surface.

head switch time
The time it takes to re-position the disk arm over the corresponding track on a different
surface, before a read or write can begin.

heap
Space to store dynamically allocated data structures.

heavy-tailed distribution
A probability distribution such that events far from the mean value (in aggregate) occur
with significant probability. When used for the distribution of time between events, the

remaining time to the next event is positively related to the time already spent waiting
— you expect to wait longer the longer you have already waited.

Heisenbugs
Bugs in concurrent programs that disappear or change behavior when you try to
examine them. See also: Bohrbugs.

hint
A result of some computation whose results may no longer be valid, but where using
an invalid hint will trigger an exception.

home directory
The sub-directory containing a user’s files.

host operating system
An operating system that provides the abstraction of a virtual machine, to run another
operating system as an application.

host transfer time
The time to transfer data between the host’s memory and the disk’s buffer.

hyperthreading
See: simultaneous multi-threading.

I/O-bound task
A task that primarily does I/O, and does little processing.

idempotent
An operation that has the same effect whether executed once or many times.

incremental checkpoint
A consistent snapshot of the portion of process memory that has been modified since
the previous checkpoint.

independent threads
Threads that operate on completely separate subsets of process memory.

indirect block
A storage block containing pointers to file data blocks.

inode
In the Unix Fast File System (FFS) and related file systems, an inode stores a file’s
metadata, including an array of pointers that can be used to find all of the file’s blocks.
The term inode is sometimes used more generally to refer to any file system’s per-file
metadata data structure.

inode array
The fixed location on disk containing all of the file system’s inodes. See also: inumber.

intentions
The set of writes that a transaction will perform if the transaction commits.

internal fragmentation
With paged allocation of memory, the unusable memory at the end of a page because
a process can only be allocated memory in page-sized chunks.

interrupt
An asynchronous signal to the processor that some external event has occurred that
may require its attention.

interrupt disable
A privileged hardware instruction to temporarily defer any hardware interrupts, to allow
the kernel to complete a critical task.

interrupt enable
A privileged hardware instruction to resume hardware interrupts, after a non-
interruptible task is completed.

interrupt handler
A kernel procedure invoked when an interrupt occurs.

interrupt stack
A region of memory for holding the stack of the kernel’s interrupt handler. When an
interrupt, processor exception, or system call trap causes a context switch into the
kernel, the hardware changes the stack pointer to point to the base of the kernel’s
interrupt stack.

interrupt vector table
A table of pointers in the operating system kernel, indexed by the type of interrupt, with
each entry pointing to the first instruction of a handler procedure for that interrupt.

inumber
The index into the inode array for a particular file.

inverted page table
A hash table used for translation between virtual page numbers and physical page
frames.

kernel thread
A thread that is implemented inside the operating system kernel.

kernel-mode operation
The processor executes in an unrestricted mode that gives the operating system full
control over the hardware. Compare: user-mode operation.

LBA
See: logical block address.

least frequently used
A cache replacement policy that evicts whichever block has been used the least often,
over some period of time. See also: LFU.

least recently used
A cache replacement policy that evicts whichever block has not been used for the
longest period of time. See also: LRU.

LFU
See: least frequently used.

Little’s Law
In a stable system where the arrival rate matches the departure rate, the number of
tasks in the system equals the system’s throughput multiplied by the average time a
task spends in the system: N = X R.

liveness property
A constraint on program behavior such that it always produces a result. Compare:
safety property.

locality heuristic
A file system block allocation policy that places files in nearby disk sectors if they are
likely to be read or written at the same time.

lock
A type of synchronization variable used for enforcing atomic, mutually exclusive
access to shared data.

lock ordering
A widely used approach to prevent deadlock, where locks are acquired in a pre-
determined order.

lock-free data structures
Concurrent data structure that guarantees progress for some thread: some method will
finish in a finite number of steps, regardless of the state of other threads executing in

the data structure.
log

An ordered sequence of steps saved to persistent storage.
logical block address

A unique identifier for each disk sector or flash memory block, typically numbered from
1 to the size of the disk/flash device. The disk interface converts this identifier to the
physical location of the sector/block. See also: LBA.

logical separation
A backup storage policy where the backup is stored at the same location as the
primary storage, but with restricted access, e.g., to prevent updates.

LRU
See: least recently used.

master file table
In NTFS, an array of records storing metadata about each file. See also: MFT.

maximum seek time
The time it takes to move the disk arm from the innermost track to the outermost one
or vice versa.

max-min fairness
A scheduling objective to maximize the minimum resource allocation given to each
task.

MCS lock
An efficient spinlock implementation where each waiting thread spins on a separate
memory location.

mean time to data loss
The expected time until a RAID system suffers an unrecoverable error. See also:
MTTDL.

mean time to failure
The average time that a system runs without failing. See also: MTTF.

mean time to repair
The average time that it takes to repair a system once it has failed. See also: MTTR.

memory address alias
Two or more virtual addresses that refer to the same physical memory location.

memory barrier
An instruction that prevents the compiler and hardware from reordering memory
accesses across the barrier — no accesses before the barrier are moved after the
barrier and no accesses after the barrier are moved before the barrier.

memory protection
Hardware or software-enforced limits so that each application process can read and
write only its own memory and not the memory of the operating system or any other
process.

memoryless property
For a probability distribution for the time between events, the remaining time to the
next event does not depend on the amount of time already spent waiting. See also:
exponential distribution.

memory-mapped file
A file whose contents appear to be a memory segment in a process’s virtual address
space.

memory-mapped I/O

Each I/O device’s control registers are mapped to a range of physical addresses on
the memory bus.

memristor
A type of solid-state persistent storage using a circuit element whose resistance
depends on the amounts and directions of currents that have flowed through it in the
past.

MFQ
See: multi-level feedback queue.

MFT
See: master file table.

microkernel
An operating system design where the kernel itself is kept small, and instead most of
the functionality of a traditional operating system kernel is put into a set of user-level
processes, or servers, accessed from user applications via interprocess
communication.

MIN cache replacement
See: optimal cache replacement.

minimum seek time
The time to move the disk arm to the next adjacent track.

MIPS
An early measure of processor performance: millions of instructions per second.

mirroring
A system for redundantly storing data on disk where each block of data is stored on
two disks and can be read from either. See also: RAID 1.

model
A simplification that tries to capture the most important aspects of a more complex
system’s behavior.

monolithic kernel
An operating system design where most of the operating system functionality is linked
together inside the kernel.

Moore’s Law
Transistor density increases exponentially over time. Similar exponential
improvements have occurred in many other component technologies; in the popular
press, these often go by the same term.

mount
A mapping of a path in the existing file system to the root directory of another file
system volume.

MTTDL
See: mean time to data loss.

MTTF
See: mean time to failure.

MTTR
See: mean time to repair.

multi-level feedback queue
A scheduling algorithm with multiple priority levels managed using round robin queues,
where a task is moved between priority levels based on how much processing time it
has used. See also: MFQ.

multi-level index
A tree data structure to keep track of the disk location of each data block in a file.

multi-level paged segmentation
A virtual memory mechanism where physical memory is allocated in page frames,
virtual addresses are segmented, and each segment is translated to physical
addresses through multiple levels of page tables.

multi-level paging
A virtual memory mechanism where physical memory is allocated in page frames, and
virtual addresses are translated to physical addresses through multiple levels of page
tables.

multiple independent requests
A necessary condition for deadlock to occur: a thread first acquires one resource and
then tries to acquire another.

multiprocessor scheduling policy
A policy to determine how many processors to assign each process.

multiprogramming
See: multitasking.

multitasking
The ability of an operating system to run multiple applications at the same time, also
called multiprogramming.

multi-threaded process
A process with multiple threads.

multi-threaded program
A generalization of a single-threaded program. Instead of only one logical sequence of
steps, the program has multiple sequences, or threads, executing at the same time.

mutual exclusion
When one thread uses a lock to prevent concurrent access to a shared data structure.

mutually recursive locking
A deadlock condition where two shared objects call into each other while still holding
their locks. Deadlock occurs if one thread holds the lock on the first object and calls
into the second, while the other thread holds the lock on the second object and calls
into the first.

named data
Data that can be accessed by a human-readable identifier, such as a file name.

native command queueing
See: tagged command queueing.

NCQ
See: native command queueing.

nested waiting
A deadlock condition where one shared object calls into another shared object while
holding the first object’s lock, and then waits on a condition variable. Deadlock results
if the thread that can signal the condition variable needs the first lock to make
progress.

network effect
The increase in value of a product or service based on the number of other people
who have adopted that technology and not just its intrinsic capabilities.

no preemption
A necessary condition for deadlock to occur: once a thread acquires a resource, its
ownership cannot be revoked until the thread acts to release it.

non-blocking data structure

Concurrent data structure where a thread is never required to wait for another thread
to complete its operation.

non-recoverable read error
When sufficient bit errors occur within a disk sector or flash memory page, such that
the original data cannot be recovered even after error correction.

non-resident attribute
In NTFS, an attribute record whose contents are addressed indirectly, through extent
pointers in the master file table that point to the contents in those extents.

non-volatile storage
Unlike DRAM, memory that is durable and retains its state across crashes and power
outages. See also: persistent storage. See also: stable storage.

not recently used
A cache replacement policy that evicts some block that has not been referenced
recently, rather than the least recently used block.

oblivious scheduling
A scheduling policy where the operating system assigns threads to processors without
knowledge of the intent of the parallel application.

open system
A system whose source code is available to the public for modification and reuse, or a
system whose interfaces are defined by a public standards process.

operating system
A layer of software that manages a computer’s resources for its users and their
applications.

operating system kernel
The kernel is the lowest level of software running on the system, with full access to all
of the capabilities of the hardware.

optimal cache replacement
Replace whichever block is used farthest in the future.

overhead
The added resource cost of implementing an abstraction versus using the underlying
hardware resources directly.

ownership design pattern
A technique for managing concurrent access to shared objects in which at most one
thread owns an object at any time, and therefore the thread can access the shared
data without a lock.

page coloring
The assignment of physical page frames to virtual addresses by partitioning frames
based on which portions of the cache they will use.

page fault
A hardware trap to the operating system kernel when a process references a virtual
address with an invalid page table entry.

page frame
An aligned, fixed-size chunk of physical memory that can hold a virtual page.

paged memory
A hardware address translation mechanism where memory is allocated in aligned,
fixed-sized chunks, called pages. Any virtual page can be assigned to any physical
page frame.

paged segmentation

A hardware mechanism where physical memory is allocated in page frames, but
virtual addresses are segmented.

pair of stubs
A pair of short procedures that mediate between two execution contexts.

paravirtualization
A virtual machine abstraction that allows the guest operating system to make system
calls into the host operating system to perform hardware-specific operations, such as
changing a page table entry.

parent process
A process that creates another process. See also: child process.

path
The string that identifies a file or directory.

PCB
See: process control block.

PCM
See: phase change memory.

performance predictability
Whether a system’s response time or other performance metric is consistent over
time.

persistent data
Data that is stored until it is explicitly deleted, even if the computer storing it crashes or
loses power.

persistent storage
See: non-volatile storage.

phase change behavior
Abrupt changes in a program’s working set, causing bursty cache miss rates: periods
of low cache misses interspersed with periods of high cache misses.

phase change memory
A type of non-volatile memory that uses the phase of a material to represent a data bit.
See also: PCM.

physical address
An address in physical memory.

physical separation
A backup storage policy where the backup is stored at a different location than the
primary storage.

physically addressed cache
A processor cache that is accessed using physical memory addresses.

pin
To bind a virtual resource to a physical resource, such as a thread to a processor or a
virtual page to a physical page.

platter
A single thin round plate that stores information in a magnetic disk, often on both
surfaces.

policy-mechanism separation
A system design principle where the implementation of an abstraction is independent
of the resource allocation policy of how the abstraction is used.

polling
An alternative to hardware interrupts, where the processor waits for an asynchronous
event to occur, by looping, or busy-waiting, until the event occurs.

portability
The ability of software to work across multiple hardware platforms.

precise interrupts
All instructions that occur before the interrupt or exception, according to the program
execution, are completed by the hardware before the interrupt handler is invoked.

preemption
When a scheduler takes the processor away from one task and gives it to another.

preemptive multi-threading
The operating system scheduler may switch out a running thread, e.g., on a timer
interrupt, without any explicit action by the thread to relinquish control at that point.

prefetch
To bring data into a cache before it is needed.

principle of least privilege
System security and reliability are enhanced if each part of the system has exactly the
privileges it needs to do its job and no more.

priority donation
A solution to priority inversion: when a thread waits for a lock held by a lower priority
thread, the lock holder is temporarily increased to the waiter’s priority until the lock is
released.

priority inversion
A scheduling anomaly that occurs when a high priority task waits indefinitely for a
resource (such as a lock) held by a low priority task, because the low priority task is
waiting in turn for a resource (such as the processor) held by a medium priority task.

privacy
Data stored on a computer is only accessible to authorized users.

privileged instruction
Instruction available in kernel mode but not in user mode.

process
The execution of an application program with restricted rights — the abstraction for
protection provided by the operating system kernel.

process control block
A data structure that stores all the information the operating system needs about a
particular process: e.g., where it is stored in memory, where its executable image is on
disk, which user asked it to start executing, and what privileges the process has. See
also: PCB.

process migration
The ability to take a running program on one system, stop its execution, and resume it
on a different machine.

processor exception
A hardware event caused by user program behavior that causes a transfer of control
to a kernel handler. For example, attempting to divide by zero causes a processor
exception in many architectures.

processor scheduling policy
When there are more runnable threads than processors, the policy that determines
which threads to run first.

processor status register
A hardware register containing flags that control the operation of the processor,
including the privilege level.

producer-consumer communication

Interprocess communication where the output of one process is the input of another.
proprietary system

A system that is under the control of a single company; it can be changed at any time
by its provider to meet the needs of its customers.

protection
The isolation of potentially misbehaving applications and users so that they do not
corrupt other applications or the operating system itself.

publish
For a read-copy-update lock, a single, atomic memory write that updates a shared
object protected by the lock. The write allows new reader threads to observe the new
version of the object.

queueing delay
The time a task waits in line without receiving service.

quiescent
For a read-copy-update lock, no reader thread that was active at the time of the last
modification is still active.

race condition
When the behavior of a program relies on the interleaving of operations of different
threads.

RAID
A Redundant Array of Inexpensive Disks (RAID) is a system that spreads data
redundantly across multiple disks in order to tolerate individual disk failures.

RAID 1
See: mirroring.

RAID 5
See: rotating parity.

RAID 6
See: dual redundancy array.

RAID strip
A set of several sequential blocks placed on one disk by a RAID block placement
algorithm.

RAID stripe
A set of RAID strips and their parity strip.

R-CSCAN
A variation of the CSCAN disk scheduling policy in which the disk takes into account
rotation time.

RCU
See: read-copy-update.

read disturb error
Reading a flash memory cell a large number of times can cause the data in
surrounding cells to become corrupted.

read-copy-update
A synchronization abstraction that allows concurrent access to a data structure by
multiple readers and a single writer at a time. See also: RCU.

readers/writers lock
A lock which allows multiple “reader” threads to access shared data concurrently
provided they never modify the shared data, but still provides mutual exclusion
whenever a “writer” thread is reading or modifying the shared data.

ready list

The set of threads that are ready to be run but which are not currently running.
real-time constraint

The computation must be completed by a deadline if it is to have value.
recoverable virtual memory

The abstraction of persistent memory, so that the contents of a memory segment can
be restored after a failure.

redo logging
A way of implementing a transaction by recording in a log the set of writes to be
executed when the transaction commits.

relative path
A file path name interpreted as beginning with the process’s current working directory.

reliability
A property of a system that does exactly what it is designed to do.

request parallelism
Parallel execution on a server that arises from multiple concurrent requests.

resident attribute
In NTFS, an attribute record whose contents are stored directly in the master file table.

response time
The time for a task to complete, from when it starts until it is done.

restart
The resumption of a process from a checkpoint, e.g., after a failure or for debugging.

roll back
The outcome of a transaction where none of its updates occur.

root directory
The top-level directory in a file system.

root inode
In a copy-on-write file system, the inode table’s inode: the disk block containing the
metadata needed to find the inode table.

rotating parity
A system for redundantly storing data on disk where the system writes several blocks
of data across several disks, protecting those blocks with one redundant block stored
on yet another disk. See also: RAID 5.

rotational latency
Once the disk head has settled on the right track, it must wait for the target sector to
rotate under it.

round robin
A scheduling policy that takes turns running each ready task for a limited period before
switching to the next task.

R-SCAN
A variation of the SCAN disk scheduling policy in which the disk takes into account
rotation time.

safe state
In the context of deadlock, a state of an execution such that regardless of the
sequence of future resource requests, there is at least one safe sequence of decisions
as to when to satisfy requests such that all pending and future requests are met.

safety property
A constraint on program behavior such that it never computes the wrong result.
Compare: liveness property.

sample bias

A measurement error that occurs when some members of a group are less likely to be
included than others, and where those members differ in the property being measured.

sandbox
A context for executing untrusted code, where protection for the rest of the system is
provided in software.

SCAN
A disk scheduling policy where the disk arm repeatedly sweeps from the inner to the
outer tracks and back again, servicing each pending request whenever the disk head
passes that track.

scheduler activations
A multiprocessor scheduling policy where each application is informed of how many
processors it has been assigned and whenever the assignment changes.

scrubbing
A technique for reducing non-recoverable RAID errors by periodically scanning for
corrupted disk blocks and reconstructing them from the parity block.

secondary bottleneck
A resource with relatively low contention, due to a large amount of queueing at the
primary bottleneck. If the primary bottleneck is improved, the secondary bottleneck will
have much higher queueing delay.

sector
The minimum amount of a disk that can be independently read or written.

sector failure
A magnetic disk error where data on one or more individual sectors of a disk are lost,
but the rest of the disk continues to operate correctly.

sector sparing
Transparently hiding a faulty disk sector by remapping it to a nearby spare sector.

security
A computer’s operation cannot be compromised by a malicious attacker.

security enforcement
The mechanism the operating system uses to ensure that only permitted actions are
allowed.

security policy
What operations are permitted — who is allowed to access what data, and who can
perform what operations.

seek
The movement of the disk arm to re-position it over a specific track to prepare for a
read or write.

segmentation
A virtual memory mechanism where addresses are translated by table lookup, where
each entry in the table is to a variable-size memory region.

segmentation fault
An error caused when a process attempts to access memory outside of one of its valid
memory regions.

segment-local address
An address that is relative to the current memory segment.

self-paging
A resource allocation policy for allocating page frames among processes; each page
replacement is taken from a page frame already assigned to the process causing the
page fault.

semaphore
A type of synchronization variable with only two atomic operations, P() and V(). P
waits for the value of the semaphore to be positive, and then atomically decrements it.
V atomically increments the value, and if any threads are waiting in P, triggers the
completion of the P operation.

serializability
The result of any program execution is equivalent to an execution in which requests
are processed one at a time in some sequential order.

service time
The time it takes to complete a task at a resource, assuming no waiting.

set associative cache
The cache is partitioned into sets of entries. Each memory location can only be stored
in its assigned set, by it can be stored in any cache entry in that set. On a lookup, the
system needs to check the address against all the entries in its set to determine if
there is a cache hit.

settle
The fine-grained re-positioning of a disk head after moving to a new track before the
disk head is ready to read or write a sector of the new track.

shadow page table
A page table for a process inside a virtual machine, formed by constructing the
composition of the page table maintained by the guest operating system and the page
table maintained by the host operating system.

shared object
An object (a data structure and its associated code) that can be accessed safely by
multiple concurrent threads.

shell
A job control system implemented as a user-level process. When a user types a
command to the shell, it creates a process to run the command.

shortest job first
A scheduling policy that performs the task with the least remaining time left to finish.

shortest positioning time first
A disk scheduling policy that services whichever pending request can be handled in
the minimum amount of time. See also: SPTF.

shortest seek time first
A disk scheduling policy that services whichever pending request is on the nearest
track. Equivalent to shortest positioning time first if rotational positioning is not
considered. See also: SSTF.

SIMD (single instruction multiple data) programming
See data parallel programming

simultaneous multi-threading
A hardware technique where each processor simulates two (or more) virtual
processors, alternating between them on a cycle-by-cycle basis. See also:
hyperthreading.

single-threaded program
A program written in a traditional way, with one logical sequence of steps as each
instruction follows the previous one. Compare: multi-threaded program.

slip sparing
When remapping a faulty disk sector, remapping the entire sequence of disk sectors
between the faulty sector and the spare sector by one slot to preserve sequential

access performance.
soft link

A directory entry that maps one file or directory name to another. See also: symbolic
link.

software transactional memory (STM)
A system for general-purpose transactions for in-memory data structures.

software-loaded TLB
A hardware TLB whose entries are installed by software, rather than hardware, on a
TLB miss.

solid state storage
A persistent storage device with no moving parts; it stores data using electrical
circuits.

space sharing
A multiprocessor allocation policy that assigns different processors to different tasks.

spatial locality
Programs tend to reference instructions and data near those that have been recently
accessed.

spindle
The axle of rotation of the spinning disk platters making up a disk.

spinlock
A lock where a thread waiting for a BUSY lock “spins” in a tight loop until some other
thread makes it FREE.

SPTF
See: shortest positioning time first.

SSTF
See: shortest seek time first.

stable property
A property of a program, such that once the property becomes true in some execution
of the program, it will stay true for the remainder of the execution.

stable storage
See: non-volatile storage.

stable system
A queueing system where the arrival rate matches the departure rate.

stack frame
A data structure stored on the stack with storage for one invocation of a procedure: the
local variables used by the procedure, the parameters the procedure was called with,
and the return address to jump to when the procedure completes.

staged architecture
A staged architecture divides a system into multiple subsystems or stages, where
each stage includes some state private to the stage and a set of one or more worker
threads that operate on that state.

starvation
The lack of progress for one task, due to resources given to higher priority tasks.

state variable
Member variable of a shared object.

STM
See: software transactional memory (STM).

structured synchronization

A design pattern for writing correct concurrent programs, where concurrent code uses
a set of standard synchronization primitives to control access to shared state, and
where all routines to access the same shared state are localized to the same logical
module.

superpage
A set of contiguous pages in physical memory that map a contiguous region of virtual
memory, where the pages are aligned so that they share the same high-order
(superpage) address.

surface
One side of a disk platter.

surface transfer time
The time to transfer one or more sequential sectors from (or to) a surface once the
disk head begins reading (or writing) the first sector.

swapping
Evicting an entire process from physical memory.

symbolic link
See: soft link.

synchronization barrier
A synchronization primitive where n threads operating in parallel check in to the barrier
when their work is completed. No thread returns from the barrier until all n check in.

synchronization variable
A data structure used for coordinating concurrent access to shared state.

system availability
The probability that a system will be available at any given time.

system call
A procedure provided by the kernel that can be called from user level.

system reliability
The probability that a system will continue to be reliable for some specified period of
time.

tagged command queueing
A disk interface that allows the operating system to issue multiple concurrent requests
to the disk. Requests are processed and acknowledged out of order. See also: native
command queueing. See also: NCQ.

tagged TLB
A translation lookaside buffer whose entries contain a process ID; only entries for the
currently running process are used during translation. This allows TLB entries for a
process to remain in the TLB when the process is switched out.

task
A user request.

TCB
See: thread control block.

TCQ
See: tagged command queueing.

temporal locality
Programs tend to reference the same instructions and data that they had recently
accessed.

test and test-and-set
An implementation of a spinlock where the waiting processor waits until the lock is
FREE before attempting to acquire it.

thrashing
When a cache is too small to hold its working set. In this case, most references are
cache misses, yet those misses evict data that will be used in the near future.

thread
A single execution sequence that represents a separately schedulable task.

thread context switch
Suspend execution of a currently running thread and resume execution of some other
thread.

thread control block
The operating system data structure containing the current state of a thread. See also:
TCB.

thread scheduler
Software that maps threads to processors by switching between running threads and
threads that are ready but not running.

thread-safe bounded queue
A bounded queue that is safe to call from multiple concurrent threads.

throughput
The rate at which a group of tasks are completed.

time of check vs. time of use attack
A security vulnerability arising when an application can modify the user memory
holding a system call parameter (such as a file name), after the kernel checks the
validity of the parameter, but before the parameter is used in the actual
implementation of the routine. Often abbreviated TOCTOU.

time quantum
The length of time that a task is scheduled before being preempted.

timer interrupt
A hardware processor interrupt that signifies a period of elapsed real time.

time-sharing operating system
An operating system designed to support interactive use of the computer.

TLB
See: translation lookaside buffer.

TLB flush
An operation to remove invalid entries from a TLB, e.g., after a process context switch.

TLB hit
A TLB lookup that succeeds at finding a valid address translation.

TLB miss
A TLB lookup that fails because the TLB does not contain a valid translation for that
virtual address.

TLB shootdown
A request to another processor to remove a newly invalid TLB entry.

TOCTOU
See: time of check vs. time of use attack.

track
A circle of sectors on a disk surface.

track buffer
Memory in the disk controller to buffer the contents of the current track even though
those sectors have not yet been requested by the operating system.

track skewing

A staggered alignment of disk sectors to allow sequential reading of sectors on
adjacent tracks.

transaction
A group of operations that are applied persistently, atomically as a group or not at all,
and independently of other transactions.

translation lookaside buffer
A small hardware table containing the results of recent address translations. See also:
TLB.

trap
A synchronous transfer of control from a user-level process to a kernel-mode handler.
Traps can be caused by processor exceptions, memory protection errors, or system
calls.

triple indirect block
A storage block containing pointers to double indirect blocks.

two-phase locking
A strategy for acquiring locks needed by a multi-operation request, where no lock can
be released before all required locks have been acquired.

uberblock
In ZFS, the root of the ZFS storage system.

UNIX exec
A system call on UNIX that causes the current process to bring a new executable
image into memory and start it running.

UNIX fork
A system call on UNIX that creates a new process as a complete copy of the parent
process.

UNIX pipe
A two-way byte stream communication channel between UNIX processes.

UNIX signal
An asynchronous notification to a running process.

UNIX stdin
A file descriptor set up automatically for a new process to use as its input.

UNIX stdout
A file descriptor set up automatically for a new process to use as its output.

UNIX wait
A system call that pauses until a child process finishes.

unsafe state
In the context of deadlock, a state of an execution such that there is at least one
sequence of future resource requests that leads to deadlock no matter what
processing order is tried.

upcall
An event, interrupt, or exception delivered by the kernel to a user-level process.

use bit
A status bit in a page table entry recording whether the page has been recently
referenced.

user-level memory management
The kernel assigns each process a set of page frames, but how the process uses its
assigned memory is left up to the application.

user-level page handler
An application-specific upcall routine invoked by the kernel on a page fault.

user-level thread
A type of application thread where the thread is created, runs, and finishes without
calls into the operating system kernel.

user-mode operation
The processor operates in a restricted mode that limits the capabilities of the
executing process. Compare: kernel-mode operation.

utilization
The fraction of time a resource is busy.

virtual address
An address that must be translated to produce an address in physical memory.

virtual machine
An execution context provided by an operating system that mimics a physical
machine, e.g., to run an operating system as an application on top of another
operating system.

virtual machine honeypot
A virtual machine constructed for the purpose of executing suspect code in a safe
environment.

virtual machine monitor
See: host operating system.

virtual memory
The illusion of a nearly infinite amount of physical memory, provided by demand
paging of virtual addresses.

virtualization
Provide an application with the illusion of resources that are not physically present.

virtually addressed cache
A processor cache which is accessed using virtual, rather than physical, memory
addresses.

volume
A collection of physical storage blocks that form a logical storage device (e.g., a logical
disk).

wait while holding
A necessary condition for deadlock to occur: a thread holds one resource while waiting
for another.

wait-free data structures
Concurrent data structure that guarantees progress for every thread: every method
finishes in a finite number of steps, regardless of the state of other threads executing
in the data structure.

waiting list
The set of threads that are waiting for a synchronization event or timer expiration to
occur before becoming eligible to be run.

wear leveling
A flash memory management policy that moves logical pages around the device to
ensure that each physical page is written/erased approximately the same number of
times.

web proxy cache
A cache of frequently accessed web pages to speed web access and reduce network
traffic.

work-conserving scheduling policy
A policy that never leaves the processor idle if there is work to do.

working set
The set of memory locations that a program has referenced in the recent past.

workload
A set of tasks for some system to perform, along with when each task arrives and how
long each task takes to complete.

wound wait
An approach to deadlock recovery that ensures progress by aborting the most recent
transaction in any deadlock.

write acceleration
Data to be stored on disk is first written to the disk’s buffer memory. The write is then
acknowledged and completed in the background.

write-back cache
A cache where updates can be stored in the cache and only sent to memory when the
cache runs out of space.

write-through cache
A cache where updates are sent immediately to memory.

zero-copy I/O
A technique for transferring data across the kernel-user boundary without a memory-
to-memory copy, e.g., by manipulating page table entries.

zero-on-reference
A method for clearing memory only if the memory is used, rather than in advance. If
the first access to memory triggers a trap to the kernel, the kernel can zero the
memory and then resume.

Zipf distribution
The relative frequency of an event is inversely proportional to its position in a rank
order of popularity.

About the Authors
Thomas Anderson holds the Warren Francis and Wilma Kolm Bradley Chair of Computer
Science and Engineering at the University of Washington, where he has been teaching
computer science since 1997.

Professor Anderson has been widely recognized for his work, receiving the Diane S.
McEntyre Award for Excellence in Teaching, the USENIX Lifetime Achievement Award, the
IEEE Koji Kobayashi Computers and Communications Award, the ACM SIGOPS Mark
Weiser Award, the USENIX Software Tools User Group Award, the IEEE Communications
Society William R. Bennett Prize, the NSF Presidential Faculty Fellowship, and the Alfred
P. Sloan Research Fellowship. He is an ACM Fellow. He has served as program co-chair of
the ACM SIGCOMM Conference and program chair of the ACM Symposium on Operating
Systems Principles (SOSP). In 2003, he helped co-found the USENIX/ACM Symposium on
Networked Systems Design and Implementation (NSDI).

Professor Anderson’s research interests span all aspects of building practical, robust, and
efficient computer systems, including operating systems, distributed systems, computer
networks, multiprocessors, and computer security. Over his career, he has authored or co-
authored over one hundred peer-reviewed papers; nineteen of his papers have won best
paper awards.

Michael Dahlin is a Principal Engineer at Google. Prior to that, from 1996 to 2014, he was
a Professor of Computer Science at the University of Texas in Austin, where he taught
operating systems and other subjects and where he was awarded the College of Natural
Sciences Teaching Excellence Award.

Professor Dahlin’s research interests include Internet- and large-scale services, fault
tolerance, security, operating systems, distributed systems, and storage systems.

Professor Dahlin’s work has been widely recognized. Over his career, he has authored
over seventy peer reviewed papers; ten of which have won best paper awards. He is both
an ACM Fellow and an IEEE Fellow, and he has received an Alfred P. Sloan Research
Fellowship and an NSF CAREER award. He has served as the program chair of the ACM
Symposium on Operating Systems Principles (SOSP), co-chair of the USENIX/ACM
Symposium on Networked Systems Design and Implementation (NSDI), and co-chair of
the International World Wide Web conference (WWW).

	Contents
	Preface
	8 Address Translation
	9 Caching and Virtual Memory
	10 Advanced Memory Management
	References
	Glossary
	About the Authors

